WorldWideScience

Sample records for green ceramics initial

  1. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1983-01-01

    The effectiveness of microradiography, ultrasonic methods, unclear magnetic resonance, and neutron radiography was assessed for the nondestructive evaluation of green (unfired) ceramics. The application of microradiography to ceramics is reviewed, and preliminary experiments with a commercial microradiography unit are described. Conventional ultrasonic techniques are difficult to apply to flaw detection green ceramics because of the high attenuation, fragility, and couplant-absorbing properties of these materials. However, velocity, attenuation, and spectral data were obtained with pressure-coupled transducers and provided useful informaion related to density variations and the presence of agglomerates. Nuclear magnetic resonance (NMR) imaging techniques and neutron radiography were considered for detection of anomalies in the distribution of porosity. With NMR, areas of high porosity might be detected after the samples are doped with water. In the case of neutron radiography, although imaging the binder distribution throughout the sample may not be feasible because of the low overall concentration of binder, regions of high binder concentration (thus high porosity) should be detectable

  2. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1984-03-01

    This paper describes a preliminary investigation to assess the effectiveness of microradiography, ultrasonic methods, nuclear magnetic resonance, and neutron radiography for the nondestructive evaluation of green (unfired), ceramics. Objective is to obtain useful information on defects, cracking, delaminations, agglomerates, inclusions, regions of high porosity, and anisotropy

  3. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  4. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    Science.gov (United States)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  5. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  6. Inclusion-initiated fracture model for ceramics

    International Nuclear Information System (INIS)

    Sung, J.; Nicholson, P.S.

    1990-01-01

    The fracture of ceramics initiating from a typical inclusion is analyzed. The inclusion is considered to have a thermal expansion coefficient and fracture toughness lower than those of the matrix and a Young's modulus higher than that of the matrix. Inclusion-initiated fracture is modeled for a spherical inclusion using a weight function method to compute the residual stress intensity factor for a part-through elliptical crack. The results are applied to an α-Al 2 O 3 inclusion embedded in a tetragonal ZrO 2 ceramic. The strength predictions agree well with experimental data

  7. Determination of binder distributions in green-state ceramics by NMR imaging

    International Nuclear Information System (INIS)

    Garrido, L.; Ackerman, J.L.; Ellingson, W.A.; Weyand, J.D.

    1988-03-01

    The manufacture of reliable high performance structural ceramics requires a good understanding of the different steps involved in the process. The presence of nonuniformities in the distribution of the polymeric binder could give rise to local fluctuations of density that could produce failure of the ceramic piece. Specimens prepared from Al 2 O 3 with 15 and 2.5% ww binder were imaged using NMR in order to measure binder distribution maps. Results show that NMR imaging could be a useful technique to nondestructively evaluate the quality of green-state specimens. 5 refs., 5 figs

  8. The Y2BaCuO5 oxide as green pigment in ceramics

    International Nuclear Information System (INIS)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R.; Llopis, J.; Paje, S.E.; Saez-Puche, R.; Julian, I.

    1998-01-01

    Fine particles of green yttrium-barium-copper-oxide pigments Y 2 BaCuO 5 have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 μm. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 μm. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.)

  9. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass

  10. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  11. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    Science.gov (United States)

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  12. Developing agricultural opportunities on mine tailings : the Green Mines green energy initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Spiers, G.; Beckett, P.; Lock, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The goal of the Green Mines green energy initiative is to advance mine reclamation through the beneficial use of organic residuals for the sustainable establishment of bioenergy crops and other productive land uses. Target organic residuals include: source separated organic compost; papermill biosolids; leaf and yard waste compost; and municipal wastewater biosolids. This presentation discussed the Green Mines green energy initiative with particular reference to potential uses; current participants; scope of the initiative; and progress to date. The presentation also discussed a column study that involved adding filter, filter fabric, silica sand and polyethylene beads to the base of columns. Unoxidized tailings were slurried and pumped into columns and then the oxidized tailings were dried and homogenized. The results of acidic copper/nickel tailings with lime and no lime were also discussed. A summary of findings from the column study was offered. It was found that nutrient management must be considered and organic covers appear to increase metal and arsenic leaching from unlimed tailings. The presentation also made reference to demonstration field plots; biosolids delivery; tilling; monitoring; biomass sampling; and harvesting. The presentation concluded with a discussion of next steps which involve completing construction of the current suite of field plots and implementing full monitoring. figs.

  13. Dual-role plasticizer and dispersant for ceramic layers

    DEFF Research Database (Denmark)

    2016-01-01

    Thus, one aspect of the invention relates to a green ceramic layer comprising a ceramic material, a binder, and a dual-role dispersant and plasticizer, wherein said dual-role dispersant and plasticizer is an organic di- or tri-ester selected from compounds of formula (I), (II), (III) and (IV......). Another aspect of the present invention relates to a slurry for use in the manufacturing of a green ceramic layer comprising a ceramic material, a solvent, a binder, and a dual-role dispersant and plasticizer, wherein said dual role dispersant and plasticizer is an organic di- or tri- ester. Further...... aspects include uses of and methods of manufacturing said green ceramic layers....

  14. 76 FR 25328 - New Mexico Green Initiatives, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-05-04

    ... Mexico Green Initiatives, LLC's application for market-based rate authority, with an accompanying rate... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3431-000] New Mexico Green Initiatives, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

  15. Method for preparing corrosion-resistant ceramic shapes

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1979-12-07

    Ceramic shapes having impermeable tungsten coatings can be used for containing highly corrosive molten alloys and salts. The shapes are prepared by coating damp green ceramic shapes containing a small amount of yttria with a tungsten coating slip which has been adjusted to match the shrinkage rate of the green ceramic and which will fire to a theoretical density of at least 80% to provide an impermeable coating.

  16. Green power programs in Canada : 2002 : Overview of Government green power policies, utility green power development programs, green power and certificate marketing initiatives, and their benefits

    International Nuclear Information System (INIS)

    Bramley, M.; Boustie, S.; Vadgama, J.; Wieler, C.; Pape-Salmon, A.; Holmes, R.

    2003-11-01

    Green power is generally defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. Green power offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities associated with these four categories in 2002 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities in the report, such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Each category was presented in detail. The information included in the report was based on surveys sent to each program proponent. Follow-up communications and other publicly available information was also included. New programs operating in 2003 or currently under development were listed. refs., 8 tabs

  17. Green power programs in Canada : 2003 : overview of Government green power policies, utility green power implementation initiatives, green power and certificate marketing programs, and their benefits

    International Nuclear Information System (INIS)

    Whitmore, J.; Bramley, M.; Holmes, R.

    2004-09-01

    Green power is defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. It offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities in Canada associated with these four categories in 2003 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Green power generation facilities in 2003 totaled 775 MW of capacity compared to 539 MW in 2002. Hydro capacity represented 41 per cent, followed by wind capacity at 40 per cent and wood waste at 17 per cent. Most of the green power generation facilities in 2003 were located in Alberta, followed by British Columbia, Ontario and Quebec. 230 refs., 8 tabs., 1 fig

  18. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics

    Science.gov (United States)

    Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing

    2018-02-01

    Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.

  19. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Pollution prevention initiatives at US EPA: 'Green Lights'

    International Nuclear Information System (INIS)

    Lawson, J.; Kwartin, R.

    1991-01-01

    US EPA is initiating a pollution prevention approach to supplement its historic command-control, regulatory approach to environmental protection. EPA believes polllution prevention, where applicable and possible, represents a quicker, less expensive and even profitable strategy for environmental protection. Most clearly, energy-efficiency provides an opportunity to prevent significant amounts of pollution related to the inefficeint generation and use of electricity. EPA's first energy productivity and pollution prevention program is Green Lights. Beyond its own merits, Green Lights will also provide important experience to EPA as it develops its Green Machines program to accelerate the market for efficient appliances and equipment

  1. Motivators to Adopt Green Supply Chain Initiatives

    OpenAIRE

    Amarpreet S. Kohli; Ellen Hawkins

    2015-01-01

    There are several factors that drive organizations to consider implementing green supply chain (GSC) initiatives. This paper refines an instrument to empirically test the significance of the following drivers for participation in GSC initiatives: Government Regulation, Buyer/Supply Chain Influence, Internal Readiness, Competitive Advantage, and Corporate Social Responsibility. Corporate Social Responsibility emerged as the most significant variable that effected the decision making of the org...

  2. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  3. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  4. 2-micron lasing in Tm:Lu2O3 ceramic: initial operation

    Science.gov (United States)

    Vetrovec, John; Filgas, David M.; Smith, Carey A.; Copeland, Drew A.; Litt, Amardeep S.; Briscoe, Eldridge; Schirmer, Ernestina

    2018-03-01

    We report on initial lasing of Tm:Lu2O3 ceramic laser with tunable output in the vicinity of 2 μm. Tm:Lu2O3 ceramic gain materials offer a much lower saturation fluence than the traditionally used Tm:YLF and Tm:YAG materials. The gain element is pumped by 796 nm diodes via a "2-for-1" crossrelaxation energy transfer mechanism, which enables high efficiency. The high thermal conductivity of the Lu2O3 host ( 18% higher than YAG) in combination with low quantum defect of 20% supports operation at high-average power. Konoshima's ceramic fabrication process overcomes the scalability limits of single crystal sesquioxides. Tm:Lu2O3 offers wide-bandwidth amplification of ultrashort pulses in a chirped-pulse amplification (CPA) system. A laser oscillator was continuously tuned over a 230 nm range from 1890 to 2120 nm while delivering up to 43W QCW output with up to 37% efficiency. This device is intended for initial testing and later seeding of a multi-pass edge-pumped disk amplifier now being developed by Aqwest which uses composite Tm:Lu2O3 disk gain elements.

  5. Systems scale assessment of the sustainability implications of emerging green initiatives

    International Nuclear Information System (INIS)

    Tiwary, Abhishek; Namdeo, Anil; Fuentes, Jose; Dore, Anthony; Hu, Xiao-Ming; Bell, Margaret

    2013-01-01

    This paper demonstrates a systems framework for assessment of environmental impacts from ‘green initiatives’, through a case study of meso-scale, anthropogenic–biogenic interactions. The following cross-sectoral green initiatives, combining the emerging trends in the North East region of the United Kingdom, have been considered – increasing the vegetation cover; decarbonising road transport; decentralising energy production through biomass plants. Two future scenarios are assessed – Baseline 2 020 (projected emissions from realisation of policy instruments); Aggressive 2 020 (additional emissions from realisation of green initiatives). Resulting trends from the Aggressive 2 020 scenario suggest an increase in emissions of pollutant precursors, including biogenic volatile organic compounds and nitrogen dioxide over the base case by up to 20% and 5% respectively. This has implications for enhanced daytime ozone and secondary aerosols formation by up to 15% and over 5% respectively. Associated land cover changes show marginal decrease of ambient temperature but modest reductions in ammonia and ambient particulates. -- Highlights: • A systems scale assessment framework for emerging green initiatives is proposed. • Interactions between urban greenspace, greener vehicles and bioenergy system examined. • Altering future emissions profile enhances synthesis of photochemical precursors. • Incorporating whole-system evaluation deemed vital for well-rounded sustainability. -- Systems scale implication for air pollution was assessed across three sectors of emerging green initiatives-energy, transport and ecosystem

  6. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  7. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2016-04-01

    Full Text Available For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC and liquid chromatography–tandem mass Spectrometry (LC-MS/MS analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  8. Initiating and maintaining recreational walking: a longitudinal study on the influence of neighborhood green space.

    Science.gov (United States)

    Sugiyama, Takemi; Giles-Corti, Billie; Summers, Jacqui; du Toit, Lorinne; Leslie, Eva; Owen, Neville

    2013-09-01

    This study examined prospective relationships of green space attributes with adults initiating or maintaining recreational walking. Postal surveys were completed by 1036 adults living in Adelaide, Australia, at baseline (two time points in 2003-04) and follow-up (2007-08). Initiating or maintaining recreational walking was determined using self-reported walking frequency. Green space attributes examined were perceived presence, quality, proximity, and the objectively measured area (total and largest) and number of green spaces within a 1.6 km buffer drawn from the center of each study neighborhood. Multilevel regression analyses examined the odds of initiating or maintaining walking separately for each green space attribute. At baseline, participants were categorized into non-regular (n = 395), regular (n = 286), and irregular walkers (n = 313). Among non-regular walkers, 30% had initiated walking, while 70% of regular walkers had maintained walking at follow-up. No green space attributes were associated with initiating walking. However, positive perceptions of the presence of and proximity to green spaces and the total and largest areas of green space were significantly associated with a higher likelihood of walking maintenance over four years. Neighborhood green spaces may not assist adults to initiate walking, but their presence and proximity may facilitate them to maintain recreational walking over time. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Green initiative impact on stock prices: A quantitative study of the clean energy industry

    Science.gov (United States)

    Jurisich, John M.

    The purpose of this quantitative ex post facto research study was to explore the relationship between green initiative expense disclosures and stock prices of 46 NASDAQ listed Clean Edge Green Energy global companies from 2007 to 2010. The independent variables were sales and marketing, environmental, customer and supplier, community, and corporate governance practices that were correlated with the dependent variable in the study of stock prices. Expense disclosures were examined in an effort to measure the impact of green initiative programs and to expose the interrelationships between green initiative expense disclosures and fluctuations of stock prices. The data for the research was secondary data from existing annual reports. A statistically significant relationship was revealed between environmental practices and changes in stock prices. The study results also provided substantial evidence for leadership and managerial decision making to reduce or increase green initiative practices to maximize shareholder wealth of their respective organizations.

  10. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  11. Study of green state ceramics damage by acoustic emission

    International Nuclear Information System (INIS)

    Kerboul, Genevieve

    1992-01-01

    Dry pressing is a delicate operation of the conventional process of elaboration of ceramic materials as most of the detected defects in sintered products are appearing during it, this research thesis reports the study of ceramic powder forming by using the non destructive technique of acoustic emission to detect defects in pressed samples as soon as they initiate. An original signal processing system has also been designed to analyse the effective value of acoustic signals emitted during pressing on industrial hydraulic presses, but comprising a single tooling. Three powders have been tested: UO_2, Al_2O_3 and a UO_2-PuO_2 mixture. In a first part, the author recalls some elements regarding the fabrication of nuclear fuel, knowledge on powder pressing, and general principles of acoustic emission. She reports a feasibility study and then defines experimental conditions. In the second part, she presents acoustic emission periods during a pressing cycle, and reports the study of the response of flawless and flawed pressed samples. She reports the examination of their evolution with respect to powder nature and to fabrication process parameters. She reports a detailed analysis of acoustic emission parameters as a basis to define the principle of operation of an in situ and real time detection of flawed pressed samples [fr

  12. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    Science.gov (United States)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  13. Ho-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics with bright green emission and good electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei; Hao, Jigong; Li, Wei [College of Materials Science and Engineering, Liaocheng University, Liaocheng (China); Xu, Zhijun; Chu, Ruiqing [School of Environmental and Materials Engineering, Yantai University, Yantai (China)

    2017-10-15

    Ho{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ferroelectric ceramics with bright green light emission and good electrical properties were fabricated in this work. Under blue light excitation, samples showed bright green light with two typical emission bands: a strong green emission centered at 545 nm corresponding to the intra f-f transition from the excited {sup 5}S{sub 2} to the ground state {sup 5}I{sub 8} and a relatively weak red emission located 653 nm induced by the {sup 5}F{sub 5} → {sup 5}I{sub 8} transition of Ho{sup 3+}. Due to the concentration quenching effect, the intensity of emission was strongly dependent on the doping concentration. Furthermore, the electrical properties have improved by Ho{sup 3+} doping. At x = 0.004, samples exhibit optimal electrical properties with high Curie temperature (T{sub c} = 441 C) and large 2P{sub r} and d{sub 33} values (2P{sub r} = 15.54 μC cm{sup -2}, d{sub 33} = 19 pC/N). These results demonstrate that the SBN-xHo ceramics possess excellent multifunctional properties to achieve a variety of applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  15. Comparison of x-ray computed tomography, through-transmission ultrasound, and low-kV x-ray imaging for characterizing green-state ceramics

    International Nuclear Information System (INIS)

    Roberts, R.A.; Ellingson, W.A.; Vannier, M.W.

    1985-06-01

    Green-state MgAl 2 O 4 compact disk specimens have been studied by x-ray computed tomography (CT), through-transmission pulsed ultrasound, and low-kV x-ray imaging to compare the abilities of these nondestructive evaluation (NDE) methods to detect flaws and density variations. X-ray computed tomographic images were obtained from a 125-kV (peak) imaging system with a 512 x 512 matrix and a pixel size of 100 μm. A 3- to 10- MHz focused-beam ultrasonic transducer was used, together with special immersion techniques, to obtain topographical maps of acoustic attenuation and phase velocity; a 30 x 30 matrix was used in the ultrasonic scans. A 35-kV x-ray system with high-resolution type RR film was used to obtain conventional radiographs. Large-scale nonuniform density gradients were detected with CT and ultrasonics in supposedly uniform ceramic disks. In addition, inclusions in the green-state samples were detected by all three methods, with each method providing certain advantages. The influence of grain structure and other ceramic powder characteristics will be examined in the future. 5 refs., 9 figs

  16. The influence of clay fineness upon sludge recycling in a ceramic matrix

    Science.gov (United States)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  17. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  18. Small Island States Green Energy Initiative. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, Nasir [Climate Inst., Washington, DC (United States)

    1999-10-15

    This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.

  19. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications

    Science.gov (United States)

    2016-09-01

    hardness , and fracture strength) and semi-infinite penetration performance of 3-D printed sintered alumina. These results are compared with traditionally...parameters (including density, hardness , and fracture strength), semi-infinite penetration performance, and the fracture profile following impact of 3...of advanced ceramics differs mostly in terms of the initial green part formation when compared with a traditional manufacturing process. The

  1. The Development of a Strategic Prioritisation Method for Green Supply Chain Initiatives.

    Science.gov (United States)

    Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy

    2015-01-01

    To maintain a competitive position, companies are increasingly required to integrate their proactive environmental strategies into their business strategies. The shift from reactive and compliance-based to proactive and strategic environmental management has driven companies to consider the strategic factors while identifying the areas in which they should focus their green initiatives. In previous studies little attention was given to providing the managers with a basis from which they could strategically prioritise these green initiatives across their companies' supply chains. Considering this lacuna in the literature, we present a decision-making method for prioritising green supply chain initiatives aligned with the preferred green strategies alternatives for the manufacturing companies. To develop this method, the study considered a position between determinism and the voluntarism orientation of environmental management involving both external pressures and internal competitive drivers and key resources as decision factors. This decision-making method was developed using the analytic network process (ANP) technique. The elements of the decision model were derived from the literature. The causal relationships among the multiple decision variables were validated based on the results of structural equation modelling (SEM) using a dataset collected from a survey of the ISO 14001-certified manufacturers in Malaysia. A portion of the relative weights required for computation in ANP was also calculated using the SEM results. A case study is presented to demonstrate the applicability of the method.

  2. Ceramic to metal joining by using 1064 nm pulsed and CW laser energy source

    International Nuclear Information System (INIS)

    Lee, Young Min; Kim, Soo Won; Choi, Hae Woon; Kim, Joo Han

    2013-01-01

    A novel joining method for ceramic and metallic layers is proposed using laser drilling and surface tension driven liquid metal filling. A high intensity laser beam irradiated a 500 µm thick ceramic filter, and the irradiated laser drilled the ceramic layer. The pulsed or CW laser transmitted through the ceramic layer irradiated the bottom metallic layer; the molten metallic layer then filled the drilled ceramic holes by the capillary force between the liquid metal and ceramic layer. As process variables, average laser power, pulse duration, and the number of pulses were used. The scattering optical properties were also studied for both green and red lasers. There was no significant difference between the colors and the estimated extinction coefficients were -26.94 1/mm and -28.42 1/mm for the green and red lasers, respectively.

  3. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  4. Green Power Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Patrick Barry [Univ. of Iowa, Iowa City, IA (United States)

    2013-01-28

    National energy policy supports the gathering of more detailed and authoritative data on the introduction of renewable bio-based fuels into new and existing district energy systems via the application of biomass gasification. The University of Iowa developed a biomass-fueled, university-scale steam generation system based on biomass gasification technologies. The system serves as a state-of-the-art research and educational facility in the emerging application of gasification in steam generation. The facility, which includes a smaller down-draft gasifier and a larger multi-stage biomass boiler, was designed to operate primarily on wood-based fuels, but has provisions for testing other biomass fuel sources produced within a 100-mile radius, providing enough flexibility to meet the fluctuating local supply of biomass from industry and Midwest agriculture. The equipment was installed in an existing, staffed facility. The down-draft gasifier unit is operated by College of Engineering staff and students, under the direct technical supervision of qualified Utilities plant staff. The Green Power Initiative also includes a substantial, innovative educational component. In addition to an onsite, graduate-level research program in biomass fuels, the investigators have integrated undergraduate and graduate level teaching – through classroom studies and experiential learning – and applied research into a biomass-based, university-scale, functioning power plant. University of Iowa is unique in that it currently has multiple renewable energy technologies deployed, including significant biomass combustion (oat hulls) at its Main Power Plant and a new reciprocating engine based renewable district energy system. This project complements and supports the national energy policy and State of Iowa initiatives in ethanol and biodiesel. Byproducts of ethanol and biodiesel processes (distiller grains) as well as industry residues (oat hulls, wood chips, construction and demolition

  5. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  6. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  7. Corporate Initiatives and Strategies to Meet the Environmental Challenges – Contributions Towards a Green Economic Development

    Directory of Open Access Journals (Sweden)

    Claudia Ogrean

    2015-12-01

    Full Text Available The paper aims to emphasize, based on an interdisciplinary and multi-level approach, on the actual and potential contributions of businesses towards a green economic development - through the positive integration of the environmental challenges within their initiatives and strategies. The main objectives that the paper will target in order to accomplish this mission are: (1. to outline the general framework of the green economic development; (2. to identify the specific environmental challenges businesses could and have to address in order to support the green economic development; (3. to analyze particular initiatives and strategies which have been successfully developed by companies aiming at internalizing the environmental imperative - and to argue in favor of a new business model, able to end, through the green economic development, a virtuous circle of co-evolution between businesses and the environment.

  8. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    Ceramic microfabrication by rapid prototyping process chains ... is nearly impossible, shaping has to be done by a replication step in the green, unfired state. ... This process chain combines the fast and inexpensive supply of master models by ...

  9. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of carbon-ceramic composites

    International Nuclear Information System (INIS)

    Raman, V.; Bhatia, G.; Mishra, A.; Sengupta, P.R.; Saha, M.; Rashmi

    2005-01-01

    Carbon-ceramic composites (C-SiC-B 4 C) were developed through in situ formation of silicon carbide by mixing coal-tar based green coke and silicon as silicon carbide (SiC) precursor, boron carbide (B 4 C) and heat-treatment to 2200 deg. C. These composites were characterised for their physical, mechanical and oxidation resistance properties. The formation of protective coatings during oxidation of the composites was confirmed by using X-ray diffraction, energy-dispersive X-ray spectrometry, scanning electron microscopy and porosity measurement. Carbon-ceramic composites, which could withstand oxidation at 800-1200 deg. C for about 10 h in air have been developed

  11. Is Green Regulation Effective or a Failure: Comparative Analysis between Bangladesh Bank (BB Green Guidelines and Global Reporting Initiative Guidelines

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kaium Masud

    2018-04-01

    Full Text Available Green reporting and green regulation have been commonly used in the sustainability movement. This study evaluates Bangladesh Bank’s (BB’s green regulation by considering the global reporting initiative (GRI of environmental regulation along with self-determined content to justify BB’s institutional effort in the banking sector. The analytical study has considered secondary data of all listed banks on the Dhaka Stock Exchange between 2013 to 2016. A multi-theoretical framework has been adopted in which the research is comprised of institutional, stakeholder, and legitimacy theories. Considering the analytical research, we have drawn-up a green reporting score and undertaken SWOT analysis. The results of the study have identified the narrow coverage of BB’s regulation and strategic limitations. Moreover, the findings of the study show that banking companies disclosed more green information in line with BB’s regulation. Furthermore, our analysis has found the lack of transparency of green reporting in terms of absent global reporting as well as external verification. Additionally, we have documented that BB’s regulation falls into a legitimacy threat owing to political, corporate, and social responsibility. Therefore, we concluded that for BB to overcome all possible weaknesses and threats, it should consider all possible opportunities for a holistic international reporting framework while taking into account a transparent financial sector.

  12. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  14. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  15. Yukon's green power initiative and support for wind

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, D. [Yukon Development Corp., Whitehorse, YK (Canada)

    2002-07-01

    Yukon's green power initiative is aimed at increasing the production and sale of small-scale renewable energy to meet the requirements of communities and industry while reducing greenhouse gas emissions. The territorial government has created a 10 year, $5 million investment fund including wind research and development. The objective is to replace diesel production and reduce emissions, provide consumers with green power options and improve the cost-effectiveness and long-term competitiveness. Targeted measures led by the Yukon Energy Corporation include: a commercial scale wind installation at Haeckel Hill near Whitehorse; a community wind resource assessment program; pilot and demonstration projects; technical capacity building; and, joint ventures with Yukon First Nations. The utility is providing leadership by allowing access to electricity markets through the generation of franchises and by providing flexible financing through corporate investment led by Yukon Development Corporation. 1 fig.

  16. In situ-growth of silica nanowires in ceramic carbon composites

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2017-09-01

    Full Text Available An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing argon. The ceramic carbon composites except the ones without clay addition showed formation of silica nanowires. The silica nanowire formation was observed in both samples prepared by slip casting and dry powder compaction containing either carbon black or graphite. TEM micrographs showed presence of carbon at the core of the silica nanowires indicating that carbon served the role of a catalyst. Selected area electron diffraction (SAED suggested that the silica nanowires are amorphous. Prior studies have reported formation of silica nanowires from silicon, silica, silicon carbide but this is the first report ever on formation of silica nanowires from clay.

  17. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  18. Phase Transformation of Andalusite-Mullite and Its Roles in the Microstructure and Sinterability of Refractory Ceramic

    Science.gov (United States)

    Li, Bowen; He, Mengsheng; Wang, Huaguang

    2017-07-01

    Andalusite has been realized as a special mineral for the production of refractory ceramics due to its unique property to automatically decompose into mullite and silica during heating at high temperature. The phase transformation from andalusite to mullite plays a critical role for the effective applications of andalusite. This study investigated the microstructural characteristics and sinterability of andalusite powder during high-temperature decomposition. The andalusite powder was bonded with kaolin and prepared as a cylinder green body at 20 MPa; it was then fired at 1423 K to 1723 K (1150 °C to 1450 °C). The microstructures and mechanical strengths of the sintered ceramics were studied by the compressive test, X-ray diffraction, and scanning electron microscopy. The results showed that newly born mullite appeared as rodlike microcrystals and dispersed around the initial andalusite. At 1423 K (1150 °C), the mullitization of andalusite was started, but the complete mullitization was not found until firing at 1723 K (1450 °C). The compressive strength of the ceramics increased from 93.7 to 294.6 MPa while increasing the fire temperature from 1423 K to 1723 K (1150 °C to 1450 °C). Meanwhile, the bulk density of the ceramics was only slightly changed from 2.15 to 2.19 g/cm3.

  19. Characterisation of cyclists’ willingness to pay for green initiatives at Africa’s largest cycle tour

    Directory of Open Access Journals (Sweden)

    Melville Saayman

    2016-08-01

    Full Text Available The Cape Argus Pick n Pay Cycle Tour is a major event on the road cycling calendar. The majority of cyclists travel significant distances and participation produces a substantial carbon footprint. This paper examines participants’ willingness to pay to offset their carbon footprint. The purpose of this paper is to make a contribution to the literature by linking willingness to pay to attitudes towards or beliefs (green views about the initiatives in place, to ensure a greener cycle tour. Factor analysis is used to identify different types of cyclists, based on their green views: those with green money, those who prefer green products and the “re-cyclers”. The results of the regression analysis reveal that socio-demographic variables and the right attitude towards the environment are significant predictors of stated willingness to pay for climate change mitigation.

  20. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  1. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  2. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  3. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications

    International Nuclear Information System (INIS)

    Faddoul, Rita; Reverdy-Bruas, Nadège; Blayo, Anne

    2012-01-01

    Highlights: ► Formulation of water-based pastes. ► Viscosity, yield stress, elastic and viscous modulus determination. ► Screen printing onto green ceramic tapes. ► Rheology effect on line dimensions and electrical properties. ► Resistivity ∼18–33 nΩ m. Minimum width ∼60 μm after sintering. - Abstract: Environmentally friendly, water-based silver pastes, adapted for screen printing, were formulated with different silver contents (67–75%). These pastes allowed screen printing onto low temperature co-fired ceramic (LTCC) of narrow conductive tracks with a 60 μm line width and a 3 × 10 −8 Ω m electrical resistivity. Inks were formulated with a mixture of spherical and flake shape silver particles with 2–4 μm mean diameter. Rheological behaviour of pastes was studied in order to determine its effect on printed lines properties. Prepared inks were then screen printed and sintered under normal atmosphere at 875 °C. As expected, electrical properties depended on silver content. Resistivity values varying from 1.6 × 10 −8 to 3.3 × 10 −8 Ω m were calculated over 36.3 cm line length. These values are very close to bulk silver resistivity (1.6 × 10 −8 Ω m). Compared to previous research and commercial pastes, the newly formulated pastes reached equivalent or even better conductivities with lower silver content (70% by weight).

  4. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  5. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  6. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  7. Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-12-01

    Full Text Available A novel and simple gel system of isobutylene and maleic anhydride (PIBM was used to prepare SiC ceramics. The rheological behaviour of the SiC slurries was investigated as function of organic additives. The SiC slurries with 0.2 wt.% PIBM and 0.2 wt.% tetramethylammonium hydroxide (TMAH showed low viscosity, which was favourable for casting SiC green bodies. In order to obtain homogeneous green bodies, polyvinyl alcohol (PVA was used to assist the dispersion of carbon black in the slurries, and polyethylene glycol (PEG was added to inhibit the surface exfoliation of green bodies. The content of PVA was controlled carefully to avoid the warpage of green bodies during the drying process. Finally, homogeneous defect-free SiC green bodies were successfully fabricated via aqueous gelcasting. The SiC ceramics sintered at 2100 °C (prepared from slurries with solid content of 60 wt.% showed an average flexural strength of 305.7 MPa with porosity of 19.92%.

  8. Additive colours approach for dental ceramics translucency characteristics made from Sumatra and Java natural sands

    Science.gov (United States)

    Takarini, V.; Gunawan, J.; Hasratiningsih, Z.; Rudyawan, A.

    2018-04-01

    Translucency is one of dental ceramics desirable aesthetic characteristics, which can be used as an indirect restoration. Dental ceramics can also be made using Computed Aided Design/Computer Aided Manufacturing (CAD/CAM) unit that can create variety blocks as an ingot into a customized restoration. This paper presents the results of self-synthesized porcelain blocks generated from natural sand of Sumatera and Java Islands to promote national independency. This research aims to determine the translucency of dental ceramics made from Indonesia’s natural sand. Six samples each of two different synthesized temperatures, 1150 °C and 1200 °C, were made. To analyse translucency of the sample, their image was taken in bright light background in a black box, then additive green and blue colours histogram channel with range 0 (opaque) to 255 (transparent) were evaluated using Matlab R2015B. The result revealed that mean of green peaks on 1150 °C has an average translucency value of 41%, compared to 34% of blue peaks. Lower percentage of translucency, 31% and 25% on the green and blue channel respectively were attained in samples synthesized in 1200 °C. These suggest that 1150 °C is the optimum temperature for translucency for these ceramic samples from natural sands as they contain leucite crystals shown by the XRD analyses as a result of silica-undersaturated mixture indicated by the Electron Dispersive Spectroscopy. SEM (Scanning Electron Microscope) results show remnant of air pocket in the samples sintered at higher temperature.In conclusion, natural sand from Sumatera and Java can be considered as reliable, cheap basic material options in developing self-synthesized dental ceramics with a desirable translucency. These preliminary results indicate that better balance between strength and translucency could potentially be achieved by making nano-sized dental ceramics.

  9. ATTAP/AGT101 - Year 2 progress in ceramic technology development

    Science.gov (United States)

    Kidwell, J. R.; Lindberg, L. J.; Morey, R. E.

    1990-01-01

    The progress made by the Advanced Turbine Technology Applications Project (ATTAP) is summarized, with emphasis on the following areas: ceramic materials assessment and characterization, ceramic impact damage assessment, ceramic combustor evaluation, turbine inlet particle separator development, impact-tolerant turbine designs, and net-shape ceramic component fabrications. In the evolutionary ceramics development in the Automotive Gas Turbine (AGT101) and ATTAP programs initial designs were conceived to reduce stresses by using well-established criteria: bodies of revolution were preferred over nonaxisymmetric geometries, sharp corners were avoided, the contact area between components was kept as large as possible, and small parts were preferred over large when feasible. Projects discussed include: initial ceramic component fabrication by ceramic suppliers in 1990, engine test to 1371 C in 1991, 100-hr test bed engine durability test in 1991, and 300-hr test bed engine durability in 1992.

  10. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  11. Novel gelforming process for near net shape ceramic component production

    International Nuclear Information System (INIS)

    Franks, G.V.; Johnson, S.B.; Dunstan, D.E.

    2000-01-01

    A novel gelforming process for producing near-net shape ceramic components has been developed. A low viscosity, high volume fraction, ceramic suspension containing a small amount of bio-polymer is poured or injected into a mould. The suspension is gelled within the mould by a temperature activated crosslinking mechanism. The rheological behaviour of the body within the mould is changed from liquid-like to solid-like in a short period of time. The wet mechanical strength of the gelled bodies is sufficient to allow the body to be demoulded and handled without damaging the component. Near net shapes of complex geometry are formed in this way. The wet green body is then dried and densified using traditional methods. Potentially this process can be used to produce inexpensive reliable high strength ceramic components quickly and safely. Copyright (2000) The Australian Ceramic Society

  12. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  13. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  14. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  15. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  16. Green Campus initiative and its impacts on quality of life of stakeholders in Green and Non-Green Campus universities.

    Science.gov (United States)

    Tiyarattanachai, Ronnachai; Hollmann, Nicholas M

    2016-01-01

    In 2010, Universitas Indonesia (UI) developed the UI GreenMetric World University Ranking for universities to share information about their sustainability practices. This ranking system was well aligned with the basis of Sustainability for Higher Education. The scoring system can also be used as a guideline for universities to achieve sustainability in their campuses. Since its first launch, more universities around the world have increasingly participated in the ranking system including many universities in Thailand. This study compared perception of stakeholders in Green Campus and Non-Green Campus universities in Thailand regarding stakeholders' satisfaction on sustainability practices and perceived quality of life at their campuses. The results showed that stakeholders at the studied Green Campus University were more satisfied and had significantly better perceived quality of life compared to stakeholders from the studied Non-Green Campus university. The results suggested that universities should adopt the criteria set in the UI GreenMetric World University Ranking to achieve better sustainability in their campuses and improve quality of life of their stakeholders.

  17. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly [Ceralink Incorporated, Troy, NY (United States); Ross, Nicole [Ceralink Incorporated, Troy, NY (United States)

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  18. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  19. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  20. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Seitz, Hermann; Rieder, Wolfgang; Irsen, Stephan; Leukers, Barbara; Tille, Carsten

    2005-08-01

    This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250 degrees C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds. This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 microm and wall structures with a thickness down to 330 microm. The mechanical strength of dense test parts is up to 22 MPa. Copyright 2005 Wiley Periodicals, Inc.

  1. Show Me the Green

    Science.gov (United States)

    Norbury, Keith

    2013-01-01

    Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

  2. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    Science.gov (United States)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  3. Mechanical behavior of porous ceramic disks

    International Nuclear Information System (INIS)

    Pucheu, M.A; Sandoval, M.L; Tomba Martinez, A.G; Camerucci, M.A

    2008-01-01

    The mechanical behavior of green and sintered porous ceramic materials, obtained by processing control, in relation to the microstructure developed was studied. Disks in green state were prepared by direct thermal consolidation of aqueous suspensions of kaolin, talc and alumina (preliminary mixture of cordierite) with the addition of different starches as consolidating/binding agents and as formers of pores at high temperature. Commercial kaolin (C-80 washed kaolin, Piedra Grande S.A., Argentina), micronized talc (Talc 40, China), calcinated alumina (A2G ALCOA, USA) and commercial potato, manioc, modified potato and corn starches were used as raw materials. The preliminary ceramic mixture was prepared based on the composition in oxides of the ceramic raw materials, in a relationship that was as close as possible to stoichiometric cordierite. Aqueous suspensions of the powders (65% solids; 0.5% sodium naphtolenosulfonate; 1% Dolapix with 17% of each kind of starch were prepared by intensive mechanical mixing, homogenization (ball mills, 2h) and extracting the air with vacuum 20 min. Disks were prepared (diameter=20-30 mm; thickness=3-4 mm) by thermal consolidation of the suspensions in steel molds at the maximum swelling factor temperature (Tms) for each starch (75- 85 o C) for 4h and, later drying at 50 o C, 12h. The porous materials of cordierite were obtained by calcination and reaction-sintering using a controlled thermal cycle: 1 o C/min up to 650 o C, 2h; 3 o C/min up to 1330 o C, 4h and 5 o C/min to room temperature. The characterization of the porous materials in green and sintered state was done by measuring density and apparent porosity, distribution of pore sizes and SEM. The mechanical resistance of the materials in green and sintered state was evaluated in diametrical compression (Instron universal testing machine servo hydraulic model 8501), in position control (0.1-0.2 mm/min) with a statistical number of test pieces, at room air temperature. The

  4. Continuous-wave yellow-green laser at 0.56  μm based on frequency doubling of a diode-end-pumped ceramic Nd:YAG laser.

    Science.gov (United States)

    Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin

    2015-06-20

    We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.

  5. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    OpenAIRE

    Giftymol Varghese; Mónica Moral; Miguel Castro-García; Juan José López-López; Juan Ramón Marín-Rueda; Vicente Yagüe-Alcaraz; Lorena Hernández-Afonso; Juan Carlos Ruiz-Morales; Jesus Canales-Vázquez

    2018-01-01

    A stereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP) projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60 wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500 °C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given ...

  6. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea.

    Science.gov (United States)

    Xu, Fuxiang; Gao, Zhiqiang; Jiang, Xiaopeng; Shang, Weitao; Ning, Jicai; Song, Debin; Ai, Jinquan

    2018-03-01

    Previous studies have shown that the initial biomass of green tide was the green algae attaching to Pyropia aquaculture rafts in the Southern Yellow Sea. In this study, the green algae was identified with unmanned aerial vehicle (UAV), an biomass estimation model was proposed for green algae biomass in the radial sand ridge area based on Sentinel-2A image (S2A) and UAV images. The result showed that the green algae was detected highly accurately with the normalized green-red difference index (NGRDI); approximately 1340 tons and 700 tons of green algae were attached to rafts and raft ropes respectively, and the lower biomass might be the main cause for the smaller scale of green tide in 2017. In addition, UAV play an important role in raft-attaching green algae monitoring and long-term research of its biomass would provide a scientific basis for the control and forecast of green tide in the Yellow Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  8. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  9. Provenance studies of Sgraffiato and Late Green Glazed wares from Siraf, Iran

    International Nuclear Information System (INIS)

    Michel, H.V.; Asaro, F.; Frierman, J.D.

    1975-03-01

    Results of neutron activation analyses of 23 elements in ceramic archaeological specimens are given. Various wares are divided into the following categories: early Sgraffiato, late Sgraffiato, late Green A, late Green B, and Samarra ware. Results are given on the following elements: Al, Ca, Dy, Mn, Na, K, U, Sm, La, Ti, Lu, Co, Sc, Fe, Cs, Cr, Ni, Eu, Ce, Hf, Ta, Th, and Yb. (JGB)

  10. Ceramic technology for advanced heat engines project: Semiannual progress report, October 1986-March 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains four subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, and (4) Joining. Ceramic research conducted within the Monolithics subelement currently includes work activities on green state ceramic fabrication, characterization, and densification and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon carbide and oxide-based composites, which, in addition to the work activities cited for Monolithics, include fiber synthesis and characterization. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-base coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong stable joints between zirconia ceramics and iron-base alloys. A major objective of the research in the Materials and Processing project element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide US companies with new or improved ways for producing economical highly reliable ceramic components for advanced heat engines.

  11. Sintering and annealing effects on undoped yttria transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Letue, Laetitia; Petit, Johan, E-mail: johan.petit@onera.fr; Ritti, Marie-Hélène; Lalanne, Sylvie; Landais, Stéphane

    2017-06-15

    Transparent yttrium oxide (Y{sub 2}O{sub 3}) ceramics were processed by several densifications steps without any doping species. The green bodies were obtained by the aqueous way and sintered at high temperature under vacuum and then under high pressure. We studied the effects of different sintering cycles and air annealing at different steps of the process on the density and the grain growth. We also focused on the reaction between yttria ceramics and BN-coated graphite crucible which occurs during HIP. We noted that a low heating rate and two annealing steps are necessary to improve our samples’ transparency. - Highlights: • The quality of transparent ceramics is compared with the tested process parameters. • Air annealing is critical when using a carbon environment in the process. • Intra-granular pores, and so the final transparency, are directly linked to the sintering heating rates.

  12. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  13. Development of waste-based ceramic pigments

    Directory of Open Access Journals (Sweden)

    Costa, G.

    2007-02-01

    Full Text Available We report the preparation of ceramic pigments using industrial wastes as primary sources. In this context, the use of Al-rich sludge generated in the wastewater treatment unit of an anodising or surface coating industrial plant, and a galvanizing sludge from the Cr/Ni plating process, will be detailed. The ceramic pigments reported here were prepared using typical solid state reactions involving the metal rich sludge. The main focus will be on the synthesis of chrome-tin orchid cassiterite (Sn,CrO2, chrome-tin red malayaite Ca(Cr,SnSiO5, victoria green garnet Ca3Cr2Si3O12, and chrome alumina pink/green corundum (Cr,Al2O3 pigments. The pigments were fully characterised and then were tested in a standard ceramic glaze after. Typical working conditions and colour development will be reported.

    Se presenta la preparación de pigmentos cerámicos empleando residuos industriales como fuente de materias primas. Se detallan el uso de barros ricos en aluminio obtenidos en los tratamientos de depuración de aguas de plantas industriales de anodizado y barros de galvanizados de chapados de Cr/Ni. Los pigmentos cerámicos se prepararon empleando reacción en estados sólido a partir del barro rico en metal. Los principales pigmentos estudiados son orquídea casiterita de cromo-estaño (Sn,CrO2, malayita rojo de cromo-estaño Ca(Sn,CrSiO3, granate verde victoria Ca3Cr2Si3O12, y corindón rosa/verde de cromo alúmina (Cr,Al2O3. Los pigmentos fueron caracterizados y ensayados después de ser vidriados en cerámicas estándares. Se presentan las condiciones de trabajo y el desarrollo de color.

  14. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  15. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  16. Novel binder-free forming of Al2O3 ceramics by microwave-assisted hydration reaction

    International Nuclear Information System (INIS)

    Shirai, Takashi; Yasuoka, Masaki; Watari, Koji

    2008-01-01

    A novel binder-free forming of ceramics via microwave irradiation is developed. The irradiation of microwave to an alumina green body enhances the hydration reaction strongly between water and particle surfaces, creating surface aluminum trihydroxides structure adjacent to particles that bind them together tightly. This process makes it possible to manufacture mechanically strong green bodies with excellent shape retention ability without the use of organic binders

  17. Opalescence of all-ceramic core and veneer materials.

    Science.gov (United States)

    Cho, Moon-Sang; Yu, Bin; Lee, Yong-Keun

    2009-06-01

    The enamel of natural teeth is opalescent, where there is light scattering of the shorter wavelengths of the visible spectrum, giving a tooth a bluish appearance in the reflected color and an orange/brown appearance in the transmitted color. The objective of this study was to determine the opalescence of all-ceramic core, veneer and layered specimens with a color measuring spectrophotometer. Colors of core (A2-corresponding shade), veneer (A2- and A3-corresponding shades) and layered (A2- and A3-layered) ceramics for all-ceramic restorations in clinically relevant thicknesses were measured in the reflectance and transmittance modes. The opalescence parameter (OP), which was calculated as the difference in blue-yellow coordinate (Deltab(*)) and red-green coordinate (Deltaa(*)), and the differences in blue-yellow coordinate (Deltab(*)) and in color (DeltaE(ab)(*)) between the reflected and transmitted colors were calculated. One-way ANOVA was performed for the OP values of the core, veneer and layered specimens by the kind of materials. Regression analysis was performed between the OP and Deltab(*), and the OP and DeltaE(ab)(*) values. The range of the OP value was 1.6-6.1, 2.0-7.1, 1.3-5.0 and 1.6-4.2 for the core, veneer, A2- and A3-layered specimens, respectively, all of which were significantly influenced by the kind of materials (pOpalescence varied by kind of ceramics. The OP values of ceramics were lower than those of tooth enamel. All-ceramic materials that can simulate the opalescence of natural teeth should be developed.

  18. Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion

    Science.gov (United States)

    Garg, Rajeev

    The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique

  19. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...

  20. Initiatives and outcomes of green supply chain management implementation by Chinese manufacturers.

    Science.gov (United States)

    Zhu, Qinghua; Sarkis, Joseph; Lai, Kee-hung

    2007-10-01

    This paper aims to explore the green supply chain management (GSCM) initiatives (implementation) of various manufacturing industrial sectors in China and examine the links between GSCM initiatives and performance outcomes. We conducted a survey to collect data from four typical manufacturing industrial sectors in China, namely, power generating, chemical/petroleum, electrical/electronic and automobile, and received 171 valid organizational responses for data analysis. Analysis of variance (ANOVA) was used to analyze the data. The results are consistent with our prediction that the different manufacturing industry types display different levels of GSCM implementation and outcomes. We specifically found that the electrical/electronic industry has relatively higher levels of GSCM implementation and achieves better performance outcomes than the other three manufacturer types. Implications of the results are discussed and suggestions for further research on the implementation of GSCM are offered.

  1. [Raman and EDXRF Study on Overglaze Decorations of Jingdezhen Ceramics].

    Science.gov (United States)

    Wu, Juan; Zhang, Mao-lin; Wu, Jun-ming; Li, Qi-jiang; Cao, Jian-wen; Li, Qing-hui; Zhao, Hong-xia

    2015-05-01

    Overglaze decoration porcelain is an important category of ancient Chinese ceramics, which has significant artistic value and scientific value. Nondestructive analysis methods such as Raman spectroscopy and EDXRF were used to analyze the overglaze decorations on the Jingdezhen ceramic samples of Yuan, Ming and Qing Dynasty. The recipe and color mechanism of the overglaze pigments were discussed according to the chemical composition and phase composition analysis. The study found that dark red overglaze decorations of ancient Honglvcai, Wucai and famille rose in Jingdezhen are colored by hematite, yellow color is lead tin yellow, carmine decoration is colored by gold less than 0. 1 % in concentration, and green decorations are colored by bivalent copper ion. The result also indicates that the effective combination of Raman spectroscopy and EDXRF can play an important role in the deep research on ceramic artifacts, especially for the overglaze decoration pigments which are interveined each other.

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. FINE PORE DIFFUSER SYSTEM EVALUATION FOR THE GREEN BAY METROPOLITAN SEWERAGE DISTRICT

    Science.gov (United States)

    The Green Bay Metropolitan Sewerage District retrofitted two quadrants of their activated sludge aeration system with ceramic and membrane fine pore diffusers to provide savings in energy usage compared to the sparged turbine aerators originally installed. Because significant di...

  4. Direct ink write fabrication of transparent ceramic gain media

    Science.gov (United States)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.

    2018-01-01

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.

  5. Efficient photoemission from robust ferroelectric ceramics

    International Nuclear Information System (INIS)

    Boscolo, I.; Castellano, M.; Catani, L.; Ferrario, M.; Tazzioli, F.; Giannessi, L.

    1999-01-01

    Experimental results on photoemission by ferroelectric ceramic disks, with a possible interpretation, are present. Two types of lead zirconate titanate lanthanum doped, PLZT, ceramics have been used for tests. 25 ps light pulses of 532 and 355 nm were used for excitation. The intensity ranged within the interval 0.1-3 GW/cm 2. The upper limit of the intensity was established by the damage threshold tested by the onset of ion emission. At low value of the intensity the yield was comparable at the two wavelengths. At the highest intensity of green light the emitted charge was 1 nC per 10 mm 2, but it was limited by the space charge effect. In fact, the applied field was only 20 kV/cm, allowed both by the mechanical design of the apparatus and the poor vacuum, 10 - 4 mbar. No surface processing was required. The measurement of the electron pulse length under way

  6. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  7. Advanced ceramics in Brazil: actual stage and perspectives

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1986-11-01

    The development of advanced ceramics in Brazil, the perspectives of the world and Brazilian markets, the raw materials, the equipments for industry and research, the human resources, and the disposable technology, are presented. The researches on advanced ceramics in Brazil initiated in the sixty decade, with the nuclear fuel development and production projets. (M.C.K.) [pt

  8. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  9. Green Mines green energy : establishing productive land on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Zinck, J.; Vigneault, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs.

  10. Green Mines green energy : establishing productive land on mine tailings

    International Nuclear Information System (INIS)

    Tisch, B.; Zinck, J.; Vigneault, B.

    2009-01-01

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs

  11. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  12. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels

    International Nuclear Information System (INIS)

    Poitou, B.

    2007-11-01

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  13. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  14. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  15. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  16. Hydroponic Green Farming Initiative : increasing water use efficiency by use of hydroponic cultivation methods in Jordan : final report

    NARCIS (Netherlands)

    Blok, Chris; Os, van Erik; Daoud, Raed; Waked, Laith; Hasan, A.

    2017-01-01

    Hydroponic Green Farming Initiative was executed in Jordan. Wageningen UR Greenhouse Horticultureanalysed the present situation at hydroponic farmers with the aim to adapt and to improve where possibleand to disseminate results and knowledge to other farmers in training sessions. With large amounts

  17. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  18. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  19. Raw materials from the region of Rio Claro - SP for the manufacture of ceramic coatings: technological characteristics and geological-technological modeling

    International Nuclear Information System (INIS)

    Cunha, R.A.; Roveri, C.D.; Maestrelli, S.C.

    2016-01-01

    The Santa Gertrudes Ceramic Polo (PCSG) is the largest national producer of ceramic tiles, located in east-central region of Sao Paulo, encompassing different cities. PCSG uses various clays as the main raw material from the Corumbatai Formation, which is inserted in the Sedimentary Basin of Parana, with more than 1.5 square kilometers. In this context, X-ray diffractograms of samples from different areas of PCSG were used for application of the cluster analysis. Aiming to group the samples in families and subsequently to seek the most representative for the complete analysis. Also, ceramic tests were made by the following methods: the green bulk density after pressing, flexural strength modulus for green. , tests were conducted after firing at 1070 °C and 1120 °C: apparent density after drying, flexural modulus; after firing: apparent density after firing, water absorption linear shrinkage sintering, apparent porosity, modulus of resistance to bending after burning. Further, from the georeferenced sample were created tables for industry in the area, to facilitate the identification of new sample by XRD. Furthermore, the 3D model of the region was developed from the interesting characteristics for ceramic use, using Micromine Mining Software, Enterprise Micromine. (author)

  20. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures

    Directory of Open Access Journals (Sweden)

    Rosa Maria da Rocha

    2005-06-01

    Full Text Available Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.

  1. Laser processing of ceramics for microelectronics manufacturing

    Science.gov (United States)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  2. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    International Nuclear Information System (INIS)

    Varghesea, G.; Moral, M.; Castro-García, M.; López-López, J.J.; Marín-Rueda, J.R.; Yagüe-Alcaraz, V.; Hernández-Afonso, L.; Ruiz-Morales, J.C.; Canales-Vázquez, J.

    2018-01-01

    Astereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP) projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500°C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given sintering temperature. The limit of solid loading in the resin is approximately 60% and beyond those contents, the extra ceramic appears as powder loosely adhered to the sintered objects. Photogrammetry was used to evaluate the accuracy of the 3D printing process and highlighted a marked deviation between the CAD model and the resulting object, particularly in the top part of the specimens, possibly due to the use of volatile solvents which cause changes in the photoresins used. Nevertheless, that problem may be overcome by thermostatising the printer vat and/or using solvents with higher boiling point. The results obtained suggest the potential application of low cost DLP 3D printing techniques to process ceramics for a number of applications including ceramic fuel cells, piezoelectrics, dental applications, etc. [es

  4. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  5. GREEN MARKETING –GO GREEN FOR THE SUSTAINABLE DEVELOPMENT OF THE PUBLIC

    OpenAIRE

    J. Kavitha

    2016-01-01

    Environment plays an important role in our lives. The Humans are only responsible for the environment. The initiatives should be taken from every individual then the day is not so far when global warming could be controlled. In the phrase “GREEN MARKETING” green signifies eco-friendly innovation. The objective of this study is to examine the growth of green marketing sector & its future. The concept of green marketing is originated primarily in the developed markets and rapidly gaining scope ...

  6. Silica frit formulation for low temperature co-fired ceramic tapes (LTCC)

    International Nuclear Information System (INIS)

    Nor Hayati Alias; Che Seman Mahmood

    2006-01-01

    Glassifier agents or so called fluxes could function to lower down the melting temperature of a ceramic material. Two types of silica based glass frits have been formulated to undergo vitrification at temperature lower than 1000 degree C. Frit A powder is composing of 11% Sodium Carbonate, 11% Calcium Oxide,15% Plumbum Oxide and 10% MgO while Frit B is composing of 12% Boron Oxide, 5% Ceria, 11% Sodium Carbonate and 2% Magnesium Oxide as glassifier agent in Silica powder. Two different ceramic slurries were made from a-alumina powder with addition of either Frit A or Frit B and also dispersant, binder and plasticizers, followed by casting into 0.04 mm thickness alumina green tapes. The tapes were then fired at temperature 1000 degree C to burn out plastic binder system and to vitrify the glass frits. Scanning Electron Microscopy (SEM)/EDX techniques were carried out to observe the changes in microstructure of the tape due to vitrication of glass frits. Comparisons were made with alumina green tapes without any glass frit component and with Commercial LTCC DuPont 951 tape. (Author)

  7. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  8. Fractal corrections of BaTiO3-ceramic sintering parameters

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2014-01-01

    Full Text Available Morphology of ceramics grains and pores as well as Brownian character of particle dynamics inside ceramics specimen contributes to better understanding of the sintering process. BaTiO3-ceramics, studied in this paper, has light fractal form and it is emanated in three aspects. First, the surface of grains, even in starting green body as well as distribution of grains shows fractal behavior. Second, existence of pores and their distribution follow the rules of fractal geometry. Third, movement of particles inside viscous flow underlies the rule of Brownian motion, which is essentially a fractal category. These three elements, each in its domain influence sintering dynamics, and can be described by dimensionless quantitative factors, αs αp and αm, being normalized to the interval [0,1]. Following sintering process, the associate formulae of Frenkel, Scherer and Mackenzie-Shuttleworth are shown from the angle of view of ceramics fractal dimension changing that approaches to 3. Also, it is shown that the energy balance is not violated after applying fractal correction to quasi equilibrium of the energy emanating from surface area reduction ES and energy adopted by viscous flow Ef .[Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  9. Research into properties of wear resistant ceramic metal plasma coatings

    Science.gov (United States)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  10. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  11. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  12. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  13. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  14. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests

    Science.gov (United States)

    Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan

    2012-01-01

    Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.

  15. Experimental observation of silver and gold penetration into dental ceramic by means of a radiotracer technique

    International Nuclear Information System (INIS)

    Moya, F.; Payan, J.; Bernardini, J.; Moya, E.G.

    1987-01-01

    A radiotracer technique was used to study silver and gold diffusion into dental porcelain under experimental conditions close to the real conditions in prosthetic laboratories for porcelain bakes. It was clearly shown that these non-oxidizable elements were able to diffuse into the ceramic as well as oxidizable ones. The penetration depth varied widely according to the element. The ratio DAg/DAu was about 10(3) around 850 degrees C. In contrast to gold, the silver diffusion rate was high enough to allow silver, from the metallic alloy, to be present at the external ceramic surface after diffusion into the ceramic. Hence, the greening of dental porcelains baked on silver-rich alloys could be explained mainly by a solid-state diffusion mechanism

  16. Mode I Failure of Armor Ceramics: Experiments and Modeling

    Science.gov (United States)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  17. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  18. Final technical report to Department of Energy, Basic Energy Sciences. ''Oxide ceramic alloys and microlaminates'' (1996-1999) and ''Low temperature processing and kinetics of ceramics and ceramic matrix composites with large interfacial areas'' (1999-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei

    2001-03-26

    We have discovered a novel two-step sintering method that opened up a low temperature processing window within which fully dense nanocrystalline yttrium oxide was obtained with no concurrent grain growth during final-stage sintering. We have developed a new method of processing laminate ceramics using deformation processing in the green state. We have lastly developed a colloidal processing technique to encapsulate biomolecules at ambient, neutral-pH, aqueous conditions.

  19. Tape casting fabrication and properties of planar waveguide YAG/Yb:YAG/YAG transparent ceramics

    Science.gov (United States)

    Zhao, Yu; Liu, Qiang; Ge, Lin; Wang, Chao; Li, Wenxue; Yang, Chao; Wang, Juntao; Yuan, Lei; Xie, Tengfei; Kou, Huamin; Pan, Yubai; Gao, Qingsong; Bo, Yong; Peng, Qinjun; Xu, Zuyan; Li, Jiang

    2017-07-01

    Highly transparent YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were fabricated by the non-aqueous tape casting and solid-state reactive sintering technology. The tapes are relatively homogeneous and the green body shows a dense structure without distinct interfaces after the treatment of debinding and cold isostatic pressing. YAG/10at.%Yb:YAG/YAG ceramics with almost full dense structure were obtained by vacuum-sintering at 1760 °C for 30 h. For the mirror-polished sample with the thickness of 3.5 mm, the In-line transmittance was measured to be 83.6% at the visual wavelength of 400 nm. The diffusion distance of the Yb3+ ions was about 215 μm along the thickness direction of the ceramics. In the lasing experiments, the YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were end-pumped by a 976 nm semiconductor diode laser and enabled efficient continuous-wave lasers, which resulted in a maximum output power of 1.6 W and a slope efficiency of 34.4% at 1030 nm.

  20. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  1. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    Directory of Open Access Journals (Sweden)

    Giftymol Varghese

    2018-01-01

    Full Text Available A stereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60 wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500 °C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given sintering temperature. The limit of solid loading in the resin is approximately 60% and beyond those contents, the extra ceramic appears as powder loosely adhered to the sintered objects. Photogrammetry was used to evaluate the accuracy of the 3D printing process and highlighted a marked deviation between the CAD model and the resulting object, particularly in the top part of the specimens, possibly due to the use of volatile solvents which cause changes in the photoresins used. Nevertheless, that problem may be overcome by thermostatising the printer vat and/or using solvents with higher boiling point. The results obtained suggest the potential application of low cost DLP 3D printing techniques to process ceramics for a number of applications including ceramic fuel cells, piezoelectrics, dental applications, etc.

  2. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  3. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  4. Summary of ceramic pigments by polymer precursors Pechini method

    International Nuclear Information System (INIS)

    Silva, E.M. da; Galvao, S.B.; Paskocimas, C.A.

    2010-01-01

    In this work were synthesized nitrate chromium nitrate and iron-doped titanium oxide by the polymeric precursor method, for application as ceramic pigments. The stains were developed between the temperatures 700 deg C to 1000 deg C, in green for chromium oxide and orange for iron. Noticing an increase of its opacity by increasing temperature. Characterization by thermogravimetry (TG) showed strong thermo decomposition from 355 deg C for the chromium oxide and thermo decomposition gradual for the iron. By analysis of X-ray diffraction revealed the formation of crystalline phases as Iron Titanate (FeTiO3) and Chrome Titanate (CrTiO3), respectively. The scanning electron microscopy showed the formation of rounded particles for both oxides. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials. (author)

  5. External Audit Green Deal Approach. Final report; Externe Audit Green Deal Aanpak. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Van Mil, B.P.A.; Gooskens, B.J.F.; Van Schelven, R.M.; Stutje, A.

    2013-10-15

    External audit of the effectiveness of the Green Deals, based on the question how the Green Deal contributes to green growth. The central idea of this new tool is that the Dutch government facilitates initiatives of businesses, societal organisations, local governments and citizens by removing bottlenecks as much as possible [Dutch] Externe audit over (de effectiviteit van) de Green Deal aanpak, op basis van de volgende onderzoeksvraag: 'Hoe draagt de Green Deal aanpak bij aan het bevorderen van groene groei?' De centrale gedachte van dit nieuwe instrument is dat de overheid initiatieven van bedrijven, maatschappelijke organisaties, decentrale overheden en burgers faciliteert door het wegnemen van knelpunten.

  6. Developing strategic planning of green supply chain in refinery CPO company

    Science.gov (United States)

    Hidayati, J.; Mumtaz, G.; Hasibuan, S.

    2018-02-01

    We are conducted a research at the company of the manufacturing CPO into cooking oil, margarine and materials of oleochemical industries. Today palm oil based industries are facing global challenges related to environmental issues. To against these challenges, it is necessary to have an environmentally friendly supply chain. However, the limited resource owned by the company requires the integrated environmental strategy with the company’s business strategy. The model is developed based on management orientation towards external pressure, internal key resources and competitive advantage that can be obtained as the decision factor. The decision-making method used is Analytical Network Process (ANP). The results obtained institutional pressure becomes the criterion with the greatest influence on green supply chain initiatives and sub criteria of customer desires and stakeholder integration having the most significant influence on green supply chain initiatives. There are five green alternative initiatives that can be done: green product design, greening upstream, greening production, greening downstream and greening post use. For green supply chain initiative, greening upstream is the best priority.

  7. Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ni, De Wei

    stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers......Sintering of ceramic materials is a critical process, especially when the components are shaped as multilayer. Microstructural changes and stresses take place in ceramics as single layer from the green stage to the densification stage, leading to shape distortion, delamination and cracks...

  8. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  9. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  10. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  11. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  12. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    Science.gov (United States)

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance

  13. A fair green economy? Studies of agriculture, energy and waste initiatives in Malaysia

    OpenAIRE

    Hezri, Adnan; Ghazali, Rospidah

    2011-01-01

    This paper proposes that a green economy needs also to be a fair economy. Following broader global trends, in 2009 the Malaysian government established the basic architecture for green economy by incorporating a green technology portfolio into the newly established Ministry of Energy, Green Technology and Water. This was followed by a suite of interventionist policy instruments. However, Malaysia's approach raises the question whether the full range of social, economic and environmental goals...

  14. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  15. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  16. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  18. Disposal criticality analysis for the ceramic waste form from the ANL electrometallurgical treatment process - Internal configurations

    International Nuclear Information System (INIS)

    Lell, R. M.; Agrawal, R.; Morris, E. E.

    2000-01-01

    Criticality safety issues for disposal of the ANL ceramic waste were examined for configurations within the waste package. Co-disposal of ceramic waste and DOE spent fuel is discussed briefly; co-disposal of ANL ceramic and metal wastes is examined in detail. Calculations indicate that no significant potential for criticality exists until essentially all of the important neutron absorbers are flushed from the degraded ceramic waste. Even if all of the neutron absorbers are removed from the ceramic waste rubble, the package remains far subcritical if the blended salts used in ceramic waste production have an initial U-235 enrichment below 40%

  19. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  20. The trashing of Big Green

    International Nuclear Information System (INIS)

    Felten, E.

    1990-01-01

    The Big Green initiative on California's ballot lost by a margin of 2-to-1. Green measures lost in five other states, shocking ecology-minded groups. According to the postmortem by environmentalists, Big Green was a victim of poor timing and big spending by the opposition. Now its supporters plan to break up the bill and try to pass some provisions in the Legislature

  1. Many-Body Green Function of Degenerate Systems

    International Nuclear Information System (INIS)

    Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel

    2009-01-01

    A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

  2. Fabrication and studies of microstructure and mechanical properties of Ba2MgNbO5,5 ceramics for application in the petroleum industry

    International Nuclear Information System (INIS)

    Oliveira, J.C. da S.; Ferreira, R.A.S.; Yadava, Y.P.

    2011-01-01

    The present work aims at the elaboration of a ceramic complex perovskite ceramic components for temperature sensors for oil wells, as well as the study of microstructural characteristics and mechanical properties of ceramics Ba 2 MgNbO 5,5 . The manufacture of pottery Ba 2 MgNbO 5,5 was performed using a thermo-mechanical and solid-state sintering. The pellets of compressed green were calcined for 24 hours at a temperature of 1200°C and then crushed with the help of a set pistil / agate mortar. The resulting powder was compacted and new pellets were sintered at a temperature of 1250°C. Basic studies of stability of ceramics sintered in the environment of crude oil, from onshore wells and the sea, the state of Sergipe in northeastern Brazil. The test results showed that the ceramic is inert to crude oil and can be used to produce ceramic components for the oil industry. (author)

  3. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  4. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  5. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Ga{sub 2}O{sub 3} and YF{sub 3} dual-phase embedded glass ceramics were fabricated. • RE{sup 3+} and Cr{sup 3+} dopants incorporated into YF{sub 3} and Ga{sub 2}O{sub 3} lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga{sub 2}O{sub 3} and β-YF{sub 3} nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu{sup 3+} or Tm{sup 3+}) and transition metal (Cr{sup 3+}) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu{sup 3+} (or Tm{sup 3+}) ions partitioned into the crystallized orthorhombic YF{sub 3} nanophases, while Cr{sup 3+} ones entered into the precipitated cubic Ga{sub 2}O{sub 3} nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm{sup 3+} blue and Cr{sup 3+} deep-red emissions are easily achieved in the Tm{sup 3+}/Cr{sup 3+} co-doped dual-phase glass ceramics.

  6. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture.

    Science.gov (United States)

    Zhang, Jingwei; Barbieri, Davide; ten Hoopen, Hetty; de Bruijn, Joost D; van Blitterswijk, Clemens A; Yuan, Huipin

    2015-03-01

    The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture. © 2014 Wiley Periodicals, Inc.

  7. Elaboration of new ceramic composites containing glass fibre production wastes

    International Nuclear Information System (INIS)

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  8. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  9. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  10. The Green Economy in the Global South

    DEFF Research Database (Denmark)

    Brockington, Dan; Ponte, Stefano

    2015-01-01

    As multiple visions for a Green Economy seek to become real, so are green economic initiatives in the global South multiplying. These can offer integration into wealth-generating markets – as well as displacement, alienation, conflict and opportunities for ‘green washing’. The articles included i...

  11. Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Tadesse Molla, Tesfaye

    due to binder burn out, differential shrinkage behavior and to a potential interfacial reaction between the two materials. To analyze the phenomena, shrinkage of SOFC components single layers and bilayered samples were measured insitu by optical dilatometer. The densification mismatch stress, due...... to the strain rate difference between materials, was calculated using Cai’s model. Camber (curvature) development for in situ co-firing of a bi-layer ceramic green tape has been investigated. Analysis of shape evolution from green to sintered body can be carried out by the thermo-mechanical analysis techniques....

  12. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  13. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  14. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  15. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  17. Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation

    DEFF Research Database (Denmark)

    Trinkler, L.; Bos, A.J.J.; Winkelman, A.J.M.

    1999-01-01

    , an essential drawback of AlN-Y2O3 is its high fading rate. Special attention has been focused on understanding and improving the fading properties. In particular, the influence of the ceramics production conditions and the additive concentration on the fading rate have been studied. Experimental results......Thermally (TL) and optically stimulated luminescence (OSL) were studied in AlN-Y2O3 ceramics after irradiation with ionising radiation. The extremely high TL sensitivity (approximately 60 times the sensitivity of LiF:Mg,Tl (TLD-100)) makes AlN-Y2O3 ceramics attractive as a TLD material. However...... on spectral properties and thermal evolution of OSL are also presented. The stimulation spectrum covers the spectral range from green to infrared light. A combination of thermal and optical stimulation allowed a correlation to be found between parameters of OSL and TL after the same irradiation dose...

  18. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation

    International Nuclear Information System (INIS)

    Lankford, J.; Davidson, D.L.

    1979-01-01

    The threshold for indentation cracking is established for a range of ceramic materials, using the techniques of scanning electron microscopy and acoustic emission. It is found that by taking into account indentation plasticity, current theories may be successfully combined to predict threshold indentation loads and crack sizes. Threshold cracking is seen to relate to radial rather than median cracking. (author)

  20. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  1. SnO2*CoO ceramic obtained by microwave sintering

    International Nuclear Information System (INIS)

    Bordignon, M.A.N; Moura, F.; Zaghete, M.A.; Varela, J.A.; Perazolli, L.

    2009-01-01

    This work consists in the sintering study of CoO doped SnO 2 using microwave sintering oven and silicon carbide as a susceptor. The powders were obtained by dry oxides mixture and conformed in cylindrical shapes with 6mmx8mm and green density to 60%. Then the compacts were sintering up to 1.050 deg C, using heating rate of 50 deg C/min and isotherm up to 30min. The densities obtained were above 95% for both techniques. It was observed that occurred a temperature reducing of 400 deg C and time reducing of 210min to obtain the same densities, when was used the microwave oven without the phenomena of thermal runaway. So the sintered compacts were accomplished using DRX and SEM. It was made the electrical characterization (current x voltage) and it was found to have great potential in the production of dense ceramic-based SnO 2 with low resistivity to obtain electro-ceramic devices. (author)

  2. Green strength of zirconium sponge and uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-01-01

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO 2 ) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO 2 powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO 2 powder was higher than that from unattrited category, accompanied by an improvement in UO 2 green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel

  3. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  4. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  5. Progress report on Green Deals 2012; Voortgangsrapportage Green Deals 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    In the Dutch governmental coalition agreement the Green Deal approach was announced in the autumn of 2010. The focus of the Green Deals is for people and companies to develop sustainable initiatives that contribute to economic growth. This progress report provides an overview of the deals that this bottom-up approach has yielded. The report also provides information on the progress of the deals and the interim results of the approach and the individual deals. Also attention is paid to how the 131 Green Deals score on innovation and entrepreneurship [Dutch] In het regeerakkoord van het kabinet is in het najaar van 2010 de Green Deal-aanpak aangekondigd. Centraal in de aanpak staat dat mensen en bedrijven zoveel mogelijk ruimte krijgen voor eigen duurzame initiatieven die bijdragen aan economische groei. Deze voortgangsrapportage geeft een overzicht van de deals die deze bottom-up aanpak heeft opgeleverd. De rapportage informeert bovendien over de voortgang van de deals en over de tussentijdse resultaten van zowel de aanpak als de afzonderlijke deals. Ook wordt gekeken hoe de 131 Green Deals scoren op innovatief vermogen en ondernemerschap.

  6. Radiation-disorder and aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1992-01-01

    This final technical report documents the accomplishments of the program of research entitled ''Radiation Disorder and Aperiodicity in Irradiated Ceramics'' for the period June 22, 1989--June 21, 1992. This research forms the latest part on an on-going program, begun at MIT in 1983 under DOE support, which has had as its objectives investigation of the responses in radiation environments of ceramics heavily-irradiated with electrons, neutrons and ions, with potential applications to fusion energy technology and high-level nuclear waste storage. Materials investigated have included SiO 2 , MgAl 2 O 4 , Al 23 O 27 N 5 , SiC, BeO, LiAlO 2 , Li 2 ZrO 3 , CaTiO 3 KTaO 3 and Ca(Zr, Pu)Ti 2 O 7 . The program initially proposed for 1989 had as its major objectives two main thrusts: (1) research on defect aggregation in irradiated non-oxide ceramics, and (2) research on irradiation-induced amorphization of network silicas and phosphates

  7. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    International Nuclear Information System (INIS)

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  8. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    Science.gov (United States)

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  9. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  10. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  11. Green buildings in Malaysia towards greener environment: challenges for policy makers

    Science.gov (United States)

    Suhaida, M. S.; Tan, K. L.; Leong, Y. P.

    2013-06-01

    The launch of the National Green Technology Policy (NGTP) in 2009 is a manifesto of the government's seriousness in implementing "green" initiatives for the country. Specifically for buildings, the government promotes the application of renewable energy (RE) and energy efficiency (EE) and the application of green building index. With the introduction of Low Carbon Cities Framework, Green Pass, Green Neighbourhood, Green Building Index by various agencies and organisations in Malaysia, it is time to look back and see how all these tools could come together. This paper attempts to identify the challenges in harmonising the green initiatives for policy makers toward greener environment for sustainability.

  12. A historical perspective of synthetic ceramic and traditional feldspathic porcelain.

    Science.gov (United States)

    Chu, Stephen; Ahmad, Irfan

    2005-10-01

    Ceramics were invented by the Chinese during the T'ang Dynasty, where they quickly became a precious commodity. By the early 18th Century, ceramics found its way into dentistry due to its high strength, biocompatibility, and malleability. Today, ceramic materials are a staple in dentistry, available in both naturally based and partially synthetic formulas. Most recently they have become available as quartz-glass synthetic materials manufactured under controlled conditions to eliminate the inconsistencies and impurities inherent in the naturally based counterpart. This article details the discovery of porcelain and its role as a precious substance throughout the world and time, from its initial use as ornamental earthenware to its practical application in modern dentistry. Upon reading this article, the reader should: Understand the historical significance of porcelain. Recognize the fundamental constituents and physical properties of both natural feldspathic porcelains and fully synthetic ceramics used in dentistry.

  13. Multi-scale monitoring of a remarkable green roof: the Green Wave of Champs-sur-Marne

    Science.gov (United States)

    Stanic, Filip; Versini, Pierre-Antoine; Schertzer, Daniel; Delage, Pierre; Tchiguirinskaia, Ioulia; Cui, Yu-Jun; Baudoin, Genevieve

    2017-04-01

    The installation of green infrastructures on existing or new roofs has become very popular in recent years (more than 2 km2 of green roofs is implemented each year in France) for many reasons. Among all of the green roofs' advantages, those related to storm water management are often pushed forward, since it has been pointed out that urban runoff peak can be significantly reduced and delayed thanks to the green roofs' retention and detention capabilities. Microclimate can also be affected by decreasing the temperature in the surrounding green area. However, dynamic physical processes involved in green roofs are highly non linear and variable. In order to accurately assess their performances, detailed monitoring experiments are required, both in situ and in the lab, so as to better understand the thermo-hydric behaviour of green roofs and to capture the related spatio-temporal variability at different scales. Based on these considerations, the 1 ha area wavy-form green roof of a section of the Bienvenüe building, called the Green Wave, is currently being monitored in Champs-sur-Marne (France), in front of Ecole des Ponts ParisTech. Initiated in the "Blue Green Dream" European project, detailed measurements systems have been implemented for studying all components of the water balance. Among others, a wireless network of water content and temperature sensors has been especially installed for characterizing spatial and temporal variability of infiltration, retention and evapotranspiration processes. In parallel, some laboratory tests have been conducted to better characterize the hydro-mechanical properties of the substrate. Moreover, at the Green Wave scale, some discharge measurements are carried out in the storm-water pipes that are collecting drained water, to determine runoff flow. This talk will present the current monitoring campaigns and analyze the data collected in the Universal Multifractal framework. This work represents the initial stage for developing a

  14. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  15. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  16. Influence of Different Ceramic Systems on Marginal Misfit.

    Science.gov (United States)

    Vargas, S P; Neves, A C C; Vitti, R; Amaral, M; Henrique, M N; Silva-Concílio, L R

    2017-09-01

    the aim of this study was to evaluate the marginal misfit at the interface between a ceramic coping and its abutment. Twenty-four specimens were made with solid abutments. The specimens were divided into 3 groups according to the ceramic system (n = 8): Lava (zirconia), IPS e.max Press (lithium disilicate), and IPS Empress Esthetic (leucite). All copings were cemented with resin luting agent (RelyX U200) and the marginal misfit were evaluated at 3 different times: initial, after cementation, and after mechanical cycling using a linear measuring microscope (Measuring Microscope STM-Olympus) at a magnification of 40x. All specimens were subjected to mechanical cycling (1 million cycles) by an universal testing machine (Instron 8800). The results were statistically analyzed using Analysis of Variance and Student's t-test (α = 0.05). all groups showed an increase in the marginal misfit after cementation. The lithium disilicate group demonstrated the lowest interacial gap values at each evaluation (p = 0.001). The zirconia and leucite groups showed similar interfacial gap values (initial, p = 0.244; and post cementation, p = 0.751). the cementation increase the marginal misfit, but the mechanical cycling did not influence the marginal misfit of the ceramics systems evaluated. Copyright© 2017 Dennis Barber Ltd.

  17. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  18. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  20. Influence of oxygen disordering on static magnetic susceptibility of YBa2Cu3O7-x ceramics

    International Nuclear Information System (INIS)

    Sokolov, B.Yu.; Vil'danov, R.R.

    2008-01-01

    Influence of disordering of the populated oxygen positions in YBa 2 Cu 3 O 7-x ceramic's structure on its static magnetic susceptibility in the range of temperatures T>Tc is investigated. For occurrence of disordering the initial ceramics YBa 2 Cu 3 O 6,9 was annealed at T=520 C with the subsequent quenching in liquid nitrogen. Evolutions of a magnetic susceptibility and resistance of annealed ceramics during its air storage at a room temperature were studied. It is revealed that, unlike the initial optimum doped ceramics, annealed samples have appreciable temperature dependence of a magnetic susceptibility. Interpretation of results is executed on the basis of model of electronic phase separation and occurrence of a pseudo gap in a energy spectrum of free carriers of a superconductor. (authors)

  1. Green Buildings and Health.

    Science.gov (United States)

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health.

  2. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  3. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  4. Aqueous dispersion of red clay-based ceramic powder with the addition of starch

    Directory of Open Access Journals (Sweden)

    Maria Victoria Alcantar Umaran

    2013-04-01

    Full Text Available The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A, the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (% dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%. The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.

  5. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  6. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  7. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  8. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...... to be highly dependent on colloidal behaviour and freeze casting conditions. Manufactured green films were joined by lamination at room temperature and sintered to obtain symmetrical cells consisting of two porous self-supported substrate electrodes (∼420 μm) and dense yttria stabilized zirconia electrolyte...

  9. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Experimentqal and analytical study on thermocracking of alumina ceramic ring in a mechanical seal

    Science.gov (United States)

    Komiya, M.; Matsuda, K.; Kaneta, M.

    1994-04-01

    A mechanism of thermocracking, which occurs in an alumina ceramic ring of a mechanical face seal, is proposed based on experimental and analytical results. Methods for its prevention are also discussed. The experiments were conducted using an external type mechanical face seal composed of a carbon ring and three kinds of alumina ceramic rings, with distilled water as the liquid to be sealed. By using a layer of gold vacuum deposited onto the surface of the ceramic ring as a part of a DC circuit, the moment of crack initiation was identified. The thermal stresses produced in the ceramic ring by frictional heating were calculated using finite element analysis.

  11. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  12. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  13. Net shape manufacturing of ceramic micro parts with tailored graded layers

    Science.gov (United States)

    Hassanin, H.; Jiang, K.

    2014-01-01

    Presented in this paper is a novel net shape manufacturing technology for making three-dimensional micro parts with functionally graded layers. Alumina/zirconia micro parts with either core-shell or top-bottom functionally graded material (FGM) profiles have been successfully fabricated by altering both the surface characteristics of polydimethylsiloxane (PDMS) micro moulds and ceramic suspensions composition. PDMS surface modifications were performed to achieve moulds with hydrophilic surfaces, which were used to form core/shell FGM green layers. On the other hand, moulds with hydrophobic surfaces were used to form top-bottom green layers. Cracks have been found between consecutive layers in both the green and sintered micro parts. It was found that, at dispersant concentration of about 9.0 mg g-1, the differences in the drying shrinkage between layers is less than 0.5%. In addition, layers of composition of 100% Al2O3-0% YSZ, 20% Al2O3-80% YSZ and 40% Al2O3-60% YSZ were found to produce less shrinkage difference during sintering. After optimization of both green and sintering layers, crack free core/shell and top-bottom alumina/zirconia FGM micro parts were successfully obtained. The proposed process enables the production of micro patterns tailored with functionally graded microstructures to locally enhance properties and performance.

  14. A green profitability framework to quantify the impact of green supply chain management in South Africa

    Directory of Open Access Journals (Sweden)

    Nandie Coetzee

    2016-10-01

    Full Text Available Background: The greenhouse gas emissions of South Africa are the largest contribution by a country in the African continent. If the carbon emissions are not reduced, they will continue to grow exponentially. South Africa’s emissions are placed in the top 20 in the world when considering per capita emissions. Objectives: The aim of the research article was to investigate how the impact of implementing environmental initiatives on business profitability and sustainability can best be quantified in a South African business. Method: Various methods, theories and best practices were researched to aid in the development of the green business profitability framework. This framework was applied to two case studies in different areas of the supply chain of a South African fast-moving consumer goods business. Results: Results indicated that the green profitability framework can be used successfully to quantify both the environmental and profitability impact of green supply chain initiatives. The framework is therefore more suitable for the South African company than other existing frameworks in the literature because of its ability to quantify both profitability and sustainability in short- and long-term planning scenarios. Conclusion: The results from the case studies indicated that the green business profitability framework enabled the tracking of environmental initiatives back to logistics operations and profitability, which makes it easier to understand and implement. The developed framework also helped to link the carbon emissions to source, and to translate green supply chain actions into goals.

  15. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  16. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  17. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  18. Novel ceramic processing method for substitution of toxic plasticizers

    DEFF Research Database (Denmark)

    Foghmoes, Søren Preben Vagn; Teocoli, Francesca; Brodersen, K.

    2016-01-01

    properties, was also demonstrated. Incompatible systems were discarded in an initial broad screening while primary systems were further evaluated based on debinding properties, mechanical properties, flow behavior as well as sintering properties of ceramic tapes. The thermomechanical characterization...

  19. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  20. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  1. of Brilliant Green

    Directory of Open Access Journals (Sweden)

    Rana Seyrani

    2016-01-01

    Full Text Available Novel hydrogel nanocomposites, based on κ-carrageenan polysaccharide, were prepared by graft copolymerization of acrylamide (AAM and maleic anhydride (MAH as comonomers in the presence of multiwall carbon nanotubes (MWCNT, using methylene bisacrylamide (MBA and ammonium persulfate (APS,former as a crosslinking agent and the latter as an initiator. The hydrogel nanocomposites structure was characterized by FTIR spectroscopy, scanning electron microscopy (SEM and XRD patterns, and their thermal stability was investigated by TGA thermal analysis. The hydrogel nanocomposites were evaluated using gel content measurements and swelling rate in distilled water and in saline solutions. The carbon nanotube content was examined in relation to its effect on the properties of nanocomposites. The results showed that with increasing carbon nanotube content, the rate of water absorbency and equilibrium swelling in distilled water decreased whereas the water absorbency in the saline solutions increased. Water retention capacity was also studied and the results indicated that the inclusion of carbon nanotube increased water retention under heating condition. Furthermore, the experimental conditions of adsorption kinetics and dynamics for the removal of cationic dye, Brilliant Green (BG, were studied in the range of 6-8 for pH, 10-60 min for time (t, and 10-300 mg/L for initial concentration (C0 of the dye. The optimum conditions obtained for adsorption of Brilliant Green dye were pH 7, t= 50 min and C0= 10 mg/L. Also, the results indicated that more than 98% of the maximum adsorption capacity toward Brilliant Green dye was achieved within the initial 10 min. The experimental tests showed that the hydrogels could be used as fast–responsive and high capacity sorbents in Brilliant Green removal processes from industrial waste water.

  2. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  3. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  4. Longevity of Single-Tooth All-Ceramic CAD/CAM Restorations: A Meta-Analysis

    Science.gov (United States)

    2013-07-01

    to the application of CAD/CAM technology in dentistry . The initial monetary investment for the equipment is significant. Systems currently on the...CURRENT DENTAL CAD/CAM SYSTEMS Current CAD/CAM systems in dentistry include: CEREC (CEramic REConstruction) and CEREC Acquisition Center (AC) with...of Adhesive Dentistry , 1 (3), 255- 265. 42     Bindl A, & Mörmann W. (2002). An up to 5-year clinical evaluation of posterior In- Ceram CAD

  5. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    Science.gov (United States)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  6. Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-12-01

    Full Text Available Aluminum titanate (Al2TiO5 green bodies were prepared from mixture of titania and alumina powders with different particle sizes by conventional slip casting (CSC, pressure slip casting (PSC and cold isostatic pressing (CIP. Precursor-powder mixtures were evaluated with respect to the powder properties, flow behaviours and shaping parameters. Green densities were measured and correlated with the fractographs. A substantial increase in green densities up to 60 %TD (theoretical density of 4.02 g/cm3, calculated based on rule of mixtures is observed with the application of 2–3 MPa pressure with PSC. While particle size distribution and solid loading are the most influential parameters in the case of CSC, with PSC pressure also plays a key role in achieving the higher green densities. Being a dry process, high pressure of > 100 MPa for CIP is essential to achieve densities in the range of 60–65 %TD. Slip pressurization under PSC conditions facilitate the rearrangement of particles through rolling, twisting and interlocking unlike CIP processing where pressure is needed to overcome the inter-particle friction.

  7. Hot impact densification (HID) - a new method of producing ceramic nuclear fuel pellets with tight dimensional tolerances

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.; Muehling, G.; Vollath, D.; Zimmermann, H.

    1984-01-01

    The hot impact densification (HID) is a new powerful method for producing ceramic fuel pellets for nuclear reactors. Green ceramic bodies are directly processed to pellets by high speed shaping in the plastic temperature region of ceramic material. Opposed to the well established press sintering procedure it can be heated, densified, and cooled by orders of magnitude faster. Therefore, at high throughputs, small equipment dimensions become possible. The fuel pellets produced meet all requirements, particular the dimensional tolerances achieved are very closed, consequently circular grinding is omitted. Furthermore, the relatively high temperature level of the impact pressing favors the mixed crystal formation of uranium and plutonium oxide. This improves the solubility of the fuel in nitric acid, an essential point at reprocessing. A prototype facility is designed so that automatic fabrication in continuous operation will be possible. The target working cycle for a fuel pellet is in the range of some seconds. (orig.)

  8. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  9. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  10. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  11. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  12. Green pioneers.

    Science.gov (United States)

    Trueland, Jennifer

    The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output.

  13. Building Effective Green Energy Programs in Community Colleges

    Science.gov (United States)

    Bozell, Maureen R.; Liston, Cynthia D.

    2010-01-01

    Community colleges across the country are engaged in large-scale federal and state initiatives to train low-income individuals for the nascent field that's become known as "green jobs." Many green economy advocates believe that green jobs training can be part of career pathways that help move unemployed and disconnected individuals--who are often…

  14. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  15. Investment Primer for Green Revolving Funds

    Science.gov (United States)

    Weisbord, Dano

    2012-01-01

    Developing return-oriented green revolving funds (GRFs) is a rapidly growing trend at colleges and universities. A green revolving fund (GRF) is a special account designated for investment in on-campus projects that improve energy efficiency or decrease material use. GRFs invest in a variety of cost-saving initiatives, resulting in significant…

  16. A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal

    International Nuclear Information System (INIS)

    O’Keeffe, Juliette M.; Gilmour, Daniel; Simpson, Edward

    2016-01-01

    The Green Deal (GD) was launched in 2013 by the UK Government as a market-led scheme to encourage uptake of energy efficiency measures in the UK and create green sector jobs. The scheme closed in July 2015 after 30 months due to government concerns over low uptake and industry standards but additional factors potentially contributed to its failure such as poor scheme design and lack of understanding of the customer and supply chain journey. We explore the role of key delivery agents of GD services, specifically SMEs, and we use the LoCal-Net project as a case study to examine the use of networks to identify and reduce barriers to SME market engagement. We find that SMEs experienced multiple barriers to interaction with the GD such as lack of access to information, training, and confusion over delivery of the scheme but benefited from interaction with the network to access information, improve understanding of the scheme, increasing networking opportunities and forming new business models and partnerships to reduce risk. The importance of SMEs as delivery agents and their role in the design of market-led schemes such as the GD are discussed with recommendations for improving SME engagement in green sector initiatives. - Highlights: • The role of delivery agents should be addressed in voluntary energy reduction schemes. • SMEs attempting to engage in the Green Deal market faced multiple barriers. • Networks can assist in overcoming SME barriers to entry into new green sector markets. • Access to information, contacts and experts are key benefits of business networks. • Policy driven market-led schemes must consider all actors to prevent early failures.

  17. Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2018-01-01

    Full Text Available The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC, ceramic powder up to 25% by mass (by 5% as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.

  18. 76 FR 11275 - In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission...

    Science.gov (United States)

    2011-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-692] In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission Determination To Review in Part A Final Initial... importation of certain ceramic capacitors and products containing the same by reason of infringement of...

  19. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    Science.gov (United States)

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  20. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  1. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  2. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  3. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Regenerative single-shaft ceramic gas turbine for cogeneration); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saiseishiki ichijiku ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Efforts are exerted to develop a 300kW-class ceramic gas turbine with a turbine inlet temperature of 1350 degrees C and thermal efficiency of 42% or higher. The soundness in strength of the ceramic rotor blades and their fastening structure is confirmed. Rotor blade cushion thickness is found to decrease in start-and-stop repetitions in the initial period, but not thereafter. The exhaust diffuser and exhaust path shape are studied and improved for an increase in output, which improves turbine efficiency by 1.7%. Under the operating conditions of 1350 degrees C and full load, NOx emissions and combustion efficiency prove to be 5.6ppm and 99.9%. Even in the case using a large-diameter liner with its combustion efficiency under light load improved, the ultimate target value is achieved. Studies are further conducted on centrifugal stage loss reduction towards the ultimate goal set for the compressor. The diffuser shape is improved and the shroud clearance is reduced, and insulation efficiency of 81.1% is attained at the designing stage. In a test run of a pilot ceramic gas turbine in which temperature finally arrives at 1350 degrees C, engine thermal efficiency of 35% and shaft output of 282kW are achieved. (NEDO)

  4. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  5. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  6. Processing of porous zirconia ceramics by direct consolidation with starch

    International Nuclear Information System (INIS)

    Garrido, Liliana B; Albano, Maria P

    2008-01-01

    Porous ceramics are used especially for those environments with high temperatures, heavy wear and in a corrosive medium. Zirconium-based materials are useful for such applications as sensors, filters, support for catalytic reactions, porous components for sofc and in biomedical applications. A conventional method for producing porous ceramics consists of the addition and later decomposition by calcination (pyrolisis) of different organic materials that act as pore formers. Several wet processing possibilities have been developed. Among these is a technique of direct consolidation with starch. This process begins with the preparation of an aqueous suspension of the ceramic with the dispersants needed to stabilize it, to which the starch is added. After casting in a waterproof mold, the suspension thermally hardens into the desired shape. The dry compacts undergo the sintering cycle to obtain pieces almost in their final form. This study aims to optimize the processing of porous zirconium ceramics using starch as a pore and binder forming agent. Zirconium with 3% yttrium molar stabilized in tetragonal phase was used. The aqueous suspensions (52-55% vol) of the zirconium-starch mixtures with different compositions were stabilized with a commercial solution of ammonium polyacrylate as a dispersant and were hardened in plastic molds at 90 o C for 30 min. The influence of added volume of starch on the physical characteristics of the pieces in green state was established while maintaining the temperature, the gelling time and the conditions of constant drying. The sintering was carried out at 1000-1500 o C-2h. The characteristics of the sintered product were evaluated by measuring density, volumetric contraction, intrusion of Hg and the evolution of the crystalline phases by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural properties of ceramic (pore volume, the relation between open and closed porosity, size distribution, morphology of

  7. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  8. Molecular Weiss domain polarization in piezoceramics to diaphragm, cantilever and channel construction in low-temperature-cofired ceramics for micro-fluidic applications

    International Nuclear Information System (INIS)

    Khanna, P.K.; Ahmad, S.; Grimme, R.

    2005-01-01

    This paper presents the efforts made to study the process of comminution to Weiss domain polarization and phase transition in piezoceramics together with the versatility of low-temperature-cofired ceramics-based devices and components for their ready adoption for typical applications in the area of micro-fluidics. A conceptual micro-fluidic module has been presented and few unit entities necessary for its realization have been described. The purpose of these entities is to position the sensors and actuators by using piezoelectric materials. Investigations are performed to make useful constructions like diaphragms and cantilevers for laying the sensing elements, cavities for burying the electronic chip devices, and channels for fluid transportation. In order to realize these constructions, the basic step involves machining of circular, straight line, rectangular and square-shaped structure in the green ceramic tapes followed by lamination and firing with post-machining in some cases. The diaphragm and cavity includes one or more un-machined layer stacked together with several machined layers with rectangular or square slits. The cantilever is an extension of the diaphragm creation process with inclusion of a post-machining step. The channel essentially consists of a machined green ceramic layer sandwiched between an un-machined and a partially machined layer. The fabrication for all the above constructions has been exemplified and the details have been discussed

  9. Ceramic Transactions. Volume 21. Proceedings of the Symposium on Microwave Theory and Application in Materials Processing Annual Meeting of the American Ceramic Society (23rd) Held in Cincinnati, Ohio on April 29-May 3 1991

    Science.gov (United States)

    1992-04-27

    organic vehicles , and porosity present in the green ceramic body. In this case we must be aware that electic fields are also "inhomogeneous (Meek, 1987...from the earth and use them as heat sources for thermolectric devices in space vehicles . ACKNOWLEDGMENTS The information contained in this article...Microwaves SI / MICROWAVE ( HIBRID ) HEATING OF ALUMINA AT 2.45 GHZ- 12. EFFECT OF PROCESSING VARIABLES. HEATING RATES AND PARTICLE SIZE Arindam D6

  10. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  11. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  12. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  13. Progress report on Green Deals 2013; Voortgangsrapportage Green Deals 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    In the Dutch governmental coalition agreement the Green Deal approach was announced in the autumn of 2010. The focus of the Green Deals is for people and companies to develop sustainable initiatives that contribute to economic growth. The Green Deal approach started with the theme energy, but has been extended with the themes biobased economy, climate, resources, buildings, food, mobility, water and biological diversity. This progress report provides an overview of the deals that this bottom-up approach has yielded. The report also provides information on the progress of the deals and the interim results of the approach and the individual deals. Also attention is paid to how the 146 Green Deals score on innovation and entrepreneurship [Dutch] In het regeerakkoord van het kabinet is in het najaar van 2010 de Green Deal-aanpak aangekondigd. Centraal in de aanpak staat dat mensen en bedrijven zoveel mogelijk ruimte krijgen voor eigen duurzame initiatieven die bijdragen aan economische groei. De aanpak is gestart vanuit het thema energie, maar beslaat inmiddels ook de thema's biobased economy, klimaat, grondstoffen, bouw, voedsel, mobiliteit, water en biodiversiteit. Deze voortgangsrapportage geeft een overzicht van de deals die deze bottom-up aanpak heeft opgeleverd. De rapportage informeert bovendien over de voortgang van de deals en over de tussentijdse resultaten van zowel de aanpak als de afzonderlijke deals. Ook wordt gekeken hoe de 146 Green Deals scoren op innovatief vermogen en ondernemerschap.

  14. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  15. Using of sawing quartzite fine residual for obtaining ceramic coating

    International Nuclear Information System (INIS)

    Nobrega, L.F.P.M.; Souza, M.M.

    2016-01-01

    Quartzite is a metamorphic rock that is consisting mainly of quartz. In Paraiba there is a mining activity of this rock, in the region of Varzea and Junco do Serido especially where many wastes are created, including the sawing residue. The objective is to use the waste cited as the ceramic component coating mass, thereby replacing the quartz. Initially, the raw materials samples were taken and the chemical analysis was done of them. This passed the comminution process to achieve the required minimum particle size. After this, a formulation which added the residue in ceramic mass was made. The specimens were subjected to sintering and it was later made physical tests according to NBR 13818. The results show that the residue can replace the quartz ceramic mass successfully, but not as good as the original raw material. (author)

  16. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  17. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  18. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  19. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  20. Process considerations for hot pressing ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wilson, C.N.; Brite, D.W.

    1981-01-01

    Spray calcined simulated ceramic nuclear waste powders were hot pressed in graphite, nickel-lined graphite and ZrO 2 -lined Al 2 O 3 dies. Densification, initial off-gas, waste element retention and pellet-die interactions were evaluated. Indicated process considerations and limitations are discussed. 15 figures

  1. Development of the Electromagnetic Induction Type Micro Air Turbine Generator Using MEMS and Multilayer Ceramic Technology

    International Nuclear Information System (INIS)

    Iiduka, A; Ishigaki, K; Takikawa, Y; Ohse, T; Saito, K; Uchikoba, F

    2011-01-01

    The miniaturized electromagnetic induction type air turbine generator is described. The micro air turbine generator rotated by the compressed air and generating electricity was fabricated by the combination of MEMS and multilayer ceramic technology. The micro generator consisted of an air turbine and a magnetic circuit. The turbine part consisted of 7 silicon layers fabricated by the MEMS technology. The magnetic circuit was fabricated by the multilayer ceramic technology based on the green sheet process. The magnetic material used in the circuit was ferrite, and the internal conductor was silver. The dimensions of the obtained generator were 3.5x4x3.5 mm. The output power was 1.92 μW. From FEM analysis of the magnetic flux, it was found that leakage of the flux affected the output power.

  2. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  3. Challenges of green chemistry in Ukraine

    Directory of Open Access Journals (Sweden)

    Shevtsova Ganna Ziyvna

    2017-06-01

    Full Text Available The article deals with study of Ukrainian chemical enterprises’ ecologisation issues and elaboration of the economic problems to realize principles of green chemistry. Theoretical aspects of green chemistry as a modern interdisciplinary conception, which reveals peculiarities to implement sustainable development paradigm in the chemical industry, are studied. Based on the analysis of essence and effectiveness to introduce international initiatives on sustainable development at the chemical industry enterprises, it is concluded that the implemented measures are only first steps on the way to realize key principles of green chemistry.It is proved that in order to promote conceptual ideas of the green chemistry further, it is reasonable to consider economic and marketing aspects of the ecological innovations: to provide economic effectiveness of green chemical products and technologies, to form ecological culture of consumption, to motivate green demand and to prevent market asymmetry of information.

  4. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  5. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  6. Innovative insurance plan promises to leverage green power

    International Nuclear Information System (INIS)

    Edge, Gordon

    1999-01-01

    This article explains the gap between customers of green power signing short term (1-2 year) contracts and the banks wanting power purchase agreements for ten or more years before lending on new projects. Details are given of a new initiative from the US green power industry for a green premium for green power marketeers with the idea of an insurance product to take some of the risk and bridge the gap. Examples of coverage under the green power insurance proposal are discussed, and the funding and implementation of the scheme, and the effect of the insurance are considered

  7. The green highway forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In late 2004, as part of American Coal Ash Association's (ACAA) strategic planning process, a plan was approved by its Board of Directors implementing a 'green highways' concept which emphasized use of coal combustion products (CCPs) in highways in a variety of ways including being used alone, in combination with other forms of CCPs, and combined with non ash materials. The incentives behind the developed concept were the derived advantages from beneficial technical economic and environmental impacts. Although the primary use of fly ash is concrete, other forms of CCPs could be considered for more non-traditional highway applications. For example, these might include soils stabilization, binders for in-place pavement recycling, use in flowable fills, aggregates, source materials for structural fills and embankments, components in manufactured soils, and for granular base courses beneath pavements. At this same time, unknown to ACCA, EPA Region 3 in Philadelphia was working with the Wetlands and Watershed Work Group, a non-profit organization involved in wetlands policy and management along with the Federal Highway Administration (FHWA) on their own Green Highways initiative. These groups were planning a conference, the 'Green Highway Forum'. This was held in College Park, Maryland at the University of Maryland, Nov 8-10 2005. At the conference a draft 'roadmap' was presented as a guide to executive level participants bringing the diverse viewpoints of many agencies and interest groups together. Ten guiding principals were considered. The 'Green Highways' is a new effort to recognize the 'greenness' of many projects already completed and those to be initiated. 2 photos.

  8. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  9. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  10. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  11. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, K.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, One West University Boulevard, Brownsville, TX 78520 (United States); Lynch, R. S.; Archibald, A. M.; Karako-Argaman, C.; Kaspi, V. M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Banaszak, S.; Biwer, C. M.; Day, D.; Flanigan, J.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Boyles, J. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Hessels, J. W. T.; Kondratiev, V. I., E-mail: stovall.kevin@gmail.com [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); and others

    2014-08-10

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.

  12. Sustainability and business: what is green corporate image?

    Science.gov (United States)

    Bathmanathan, Vathana; Hironaka, Chikako

    2016-03-01

    Green corporate image is reckon to be the driving factor in the current business setups. Stakeholder’s green perception of the firm encourages growth of businesses. Organisation is moving from conventional businesses to running businesses with sustainable agenda that creates values to their brand. This paper analyses several green corporate image initiatives and concepts by various researches and shares how this can be essential for business.

  13. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  14. Use of sugar-cane bagasse ash to produce glass-ceramic material in the system Ca O-SiO2-Na2O

    International Nuclear Information System (INIS)

    Teixeira, S.R.; Santos, G.T.A.; Magalhaes, R.S.; Rincon, J.Ma.; Romero, M.; Carvalho, C.L.

    2009-01-01

    A bottom ash was used as raw material to obtain glass which was crystallized to form glass-ceramic material. The characterization of the ash shows that it consists mainly of crystalline materials, predominantly quartz, with oxides of iron, potassium and aluminum as minor elements. The glass was obtained from the mixing of ash with calcium and sodium carbonates. The glass and the glass-ceramic were examined using differential thermal analysis (DTA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD and DTA data show that Wollastonita is the only crystalline phase present in the material crystallized at 1050 deg C. Part of the glass was synthesized at this temperature for one hour, resulting in a green/brown hard material glass-ceramic. The images of SEM show morphology of spherilithic growth indicating volumetric crystallization mechanism. (author)

  15. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  16. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  17. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  18. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  19. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  20. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  1. Dilatometric and dielectric behaviour of Sm modified PCT ceramics

    International Nuclear Information System (INIS)

    Singh, Sarabjit; Thakur, O.P.; Prakash, Chandra; Raina, K.K.

    2005-01-01

    Samarium modified PCT ceramics with composition (Pb 0.76-x Sm x Ca 0.24 )(Ti 0.98 Mn 0.02 )O 3 ; x=0-0.08 in steps of 0.02 were prepared by conventional mixed-oxide method. Detailed dilatometric studies were carried out for green specimens in order to study sintering behaviour. Change in the dilatometric behaviour is correlated with the XRD results of powders calcined at different temperatures. Dielectric constant was observed to increase with increasing Sm concentration, which has been attributed to reduced tetragonality and better densification on Sm substitution. SEM micrographs have revealed the grain size of the samples. Ferroelectric hysteresis behaviour was studied for all the compositions

  2. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    International Nuclear Information System (INIS)

    Kok, K H; Sidek, L M; Basri, H; Muda, Z C; Beddu, S; Abidin, M R Z

    2013-01-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  3. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    Science.gov (United States)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  4. Preparation and Characteristics of Porous Ceramics by a foaming Technology at Low Temperature

    Science.gov (United States)

    Zhang, H. Q.; Wang, S. P.; Wen, J.; Wu, N.; Xu, S. H.

    2017-12-01

    Recycling and converting coal gangue and red mud into porous ceramics with good performance is a feasible disposal route. In this present work, porous foam ceramics was prepared using coal gangue and red mud as main raw materials at low sintering temperature, The amount of coal gangue and red mud were up to 70 wt%. To regulate the forming and sintering performance of the product, quartz sands and clay material were added to the formula. The green body was formed by a foaming technology using aluminum powders as foaming agents at room temperature. After foamed, the specimens were dried at 60-80 °C, and then calcined at 1060°C. Effects of concentration of NaOH and amount of aluminum powders on the phase, mechanical properties and microstructure were investigated here. Such study is expected to provide a new utilization route of the coal gangue and red mud, and brings both intensive environmental and economic benefits.

  5. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  6. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  7. Report on the green paper on energy. Four years of European initiatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In December 2000, the European Commission adopted a Green Paper on European Union energy policy. This brochure takes stock of the action undertaken in the following areas over the last four years:managing demand, diversifying internal energy sources,developing the internal energy market and the security of external supply. It presents: the Green Paper stakes, the progress made, the four political challenges, managing demand, diversifying European sources, the streamlined internal energy market, controlling external supply, future prospects for the Union, legislative developments and ten possibilities for economical energy use. (A.L.B.)

  8. Report on the green paper on energy. Four years of European initiatives

    International Nuclear Information System (INIS)

    2005-01-01

    In December 2000, the European Commission adopted a Green Paper on European Union energy policy. This brochure takes stock of the action undertaken in the following areas over the last four years:managing demand, diversifying internal energy sources,developing the internal energy market and the security of external supply. It presents: the Green Paper stakes, the progress made, the four political challenges, managing demand, diversifying European sources, the streamlined internal energy market, controlling external supply, future prospects for the Union, legislative developments and ten possibilities for economical energy use. (A.L.B.)

  9. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  10. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  11. Effects of grinding on properties of Mg-PSZ ceramics prepared by the surface enrichment of zirconia powders

    International Nuclear Information System (INIS)

    Deb, S.; Das, S.R.

    1995-01-01

    Commercial grade zirconia powders of mean particle size of 3.21 microns were super-ground in wet condition in alcoholic medium in a Planetary Ball-Mill for 12-hours using a zirconia pot as well as balls, in order to avoid contaminations from the grinding media. Sedigraph analysis data show the mean particle sizes within the range of 0.4 to 0.2 micron. The super-ground zirconia powders were then treated with appropriate acid and alkali solutions in order to enrich the surfaces of zirconia powders. The chemical analysis reports depict the enrichment phenomena of the processed zirconia powders. Magnesium oxide of different mole percentages (3 to 9%) have been incorporated to the above super-ground and enriched zirconia powder and green specimens were prepared by pressing with a suitable pressure of 200 MPa to yield the green compaction density of 3.06 gm/cm 3 . The compacted green specimens were sintered without pressure at 1,480 C in air followed by normal cooling. X-ray diffraction patterns of the above sintered and cooled specimens have confirmed the formation of Mg-PSZ ceramics with 40% tetragonal phase. The sintered PSZ-products have shown very good surface properties but at the cost of transverse rupture strength. The effects of grinding were observed on the above Mg-PSZ ceramics which exhibit very little change in the tetragonal phase even after 30-minutes of grinding with a 60-mesh diamond wheel at a normal pressure of 4 kg/cm 2

  12. Going Green in Business - A Study on the Eco-friendly Initiatives towards Sustainable Development in India

    OpenAIRE

    Pradeep M. D

    2017-01-01

    Increasing awareness on the various environmental problems has led to a shift in consumer behaviour. There has been a change in consumer attitude towards a green lifestyle. Thus green Marketing has evolved special implications in the modern market. Green indicates purity through quality, fairness in price and worthy in dealings. Green marketing focuses on marketing eco-friendly products to satisfy the needs and wants of the customers. It adopts innovative techniques of product modification, d...

  13. Recent Observations on the Performance of Hybrid Ceramic Tribo-Contacts

    Science.gov (United States)

    Buttery, M.; Cropper, M.; Wardzinski, B.; Lewis, S.; McLaren, S.; Kreuser, J.

    2015-09-01

    Hybrid ceramic ball bearings offer great promise in space applications but have not been rapidly adopted by industry perhaps partly due to the relatively low amount of published data on specific in-vacuum performance. Such bearings, having, typically, silicon nitride balls and 440C or high nitrogen steel (e.g. X30) raceways offer the potential for long life and low torque noise due a combination of chemical inertness, high hardness and the extremely smooth surfaces produced in ceramic balls. Though initial benefits were foreseen for high speed applications, the potential for reduced adhesive forces and wear in conditions of marginal lubrication, and for improvements in lubricant lifetime in long life applications limited by oil tribo-degradation render hybrid ceramic bearings more generally attractive.This paper draws together a number of experimental studies carried out at Pin-on-Disc (POD), Spiral Orbit Tribometer (SOT) and bearing-level recently at ESTL.

  14. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  15. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  16. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  17. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  18. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  19. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  20. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Development of tools for radiographic defects scanning in ceramic materials

    International Nuclear Information System (INIS)

    Lipnik, Boris.

    1994-03-01

    This work is concentrated on implementation of the most used non-destructive technique - radiography to quality control of structural ceramics. The present thesis deals with microfocus radiographic evaluation of ceramics produced by slip casting method. Radiographic processes are examined relying on image processing by algorithms expanded from others developed for tomographic images of non ceramics objects. At the first stage experiments aimed for characterization of a real-time microfocus radiographic system were carried out. The question of signal-to-noise ratio referring to a defect's detection limit was explored. Arithmetic image operations were used to correct for the background variations. At the second stage microfocus radiographs of: ceramics were systematically processed and analyzed by means of regularization and 'weak membrane' algorithms. The images were considerably improved and it resulted in identification and dimension extraction of defects as small as 40 pico meter . The usefulness of pseudocoloring methods was explored to obtain a fast assessment of gray level variations and to detect more details in the initial digital image. The potential for practical application was found to be very reasonable. The problems experienced were discussed along with suggestions for further studies and improvement

  2. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  3. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  4. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  5. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  6. Evaluation of PCDD/Fs emissions during ceramic production: a laboratory study.

    Science.gov (United States)

    Lu, Mang; Luo, Yi-Jing; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-08-30

    Because of the ubiquity of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in kaolinitic clays, the ceramic industry is considered to be a potential source of PCDD/Fs. However, studies on the emission of PCDD/Fs from ceramic production are still very scarce. In this study, PCDD/Fs emissions during ceramic production were investigated in an electric laboratory batch kiln. The results showed that the PCDD/Fs were completely removed from the ceramic pieces after 30 min of firing at the peak temperature of 1200°C. Nevertheless, on the mass and international toxic equivalent basis, 27.5% and 46.2% of the total PCDD/Fs amount in the raw clay were released into the atmosphere during firing, respectively. These PCDD/Fs were emitted into the air before the temperature was elevated to a level high enough for their destruction. Dechlorination reactions generated a broad distribution within the PCDD/Fs congeners including a variety of non-2,3,7,8-substituted ones. The emission of PCDD/Fs was decreased to 16.3 wt.% of the total PCDD/Fs amount in the raw clay, when the initial kiln temperature was enhanced to 600°C. The emission of PCDD/Fs could be reduced significantly in the presence of a glaze coating on the ceramic test piece. These results indicated that ceramic production is an un-neglectable source of PCDD/Fs in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Lean Green Machines

    Science.gov (United States)

    Villano, Matt

    2011-01-01

    Colleges and universities have been among the leaders nationwide in adopting green initiatives, partly due to their demographics, but also because they are facing their own budget pressures. Virtualization has become the poster child of many schools' efforts, because it provides significant bang for the buck. However, more and more higher…

  8. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  9. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  10. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  11. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  12. Iron supported on bioinspired green silica for water remediation.

    Science.gov (United States)

    Alotaibi, Khalid M; Shiels, Lewis; Lacaze, Laure; Peshkur, Tanya A; Anderson, Peter; Machala, Libor; Critchley, Kevin; Patwardhan, Siddharth V; Gibson, Lorraine T

    2017-01-01

    Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.

  13. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  14. Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Directory of Open Access Journals (Sweden)

    Walter Per-Ole

    2004-11-01

    Full Text Available Abstract Background Slow crack growth can be described in a v (crack velocity versus KI (stress intensity factor diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. Methods We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly disappeared. Results We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. Conclusion The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness, which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials

  15. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  16. Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality

    Directory of Open Access Journals (Sweden)

    D. Reyes Ardila

    1998-10-01

    Full Text Available The rapidly spreading use of optical fiber as a transmission medium has created an interest in fiber-compatible optical devices and methods for growing them, such as the Laser Heated Pedestal Growth (LHPG. This paper reports on the influence of the ceramic feed rod treatment on fiber quality and optimization of ceramic pedestal processing that allows improvements to be made on the final quality in a simple manner. Using the LHPG technique, transparent crack-free colorless single crystal fibers of SrTiO3 (0.50 mm in diameter and 30-40 mm in length were grown directly from green-body feed rods, without using external oxygen atmosphere.

  17. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    Science.gov (United States)

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic

  18. Review of palm oil fuel ash and ceramic waste in the production of concrete

    Science.gov (United States)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  19. Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Lee, Y K; Ha, Y C; Yoo, J-I; Jo, W L; Kim, K-C; Koo, K H

    2017-06-01

    We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival. Four patients (four hips) died and 18 patients (20 hips) were lost to follow-up within five years. The remaining 252 patients (286 hips) were followed for a mean of 66.5 months (60 to 84). There were 144 men (166 hips) and 108 women (120 hips) with a mean age of 49.7 years (16 to 83) at surgery. The mean pre-operative Harris Hip Score of 47.1 points improved to 93.8 points at final follow-up. Six patients reported squeaking in seven hips; however, none were audible. Radiolucent lines involving Gruen zones one and/or seven were seen in 52 hips (18.2%). No hip had detectable wear, focal osteolysis or signs of loosening. One hip was revised because of fracture of the ceramic liner, which occurred due to an undetected malseating of the ceramic liner at the time of surgery. One hip was revised for a periprosthetic fracture of the femur, and one hip was treated for periprosthetic joint infection. The six-year survivorship with re-operation for any reason as the endpoint was 99.0% (95% confidence interval 97.8% to 100%). The rate of delta ceramic fracture was 0.3% (one of 286). While ceramic head fracture was dominant in previous ceramic-on-ceramic THA, fracture of the delta ceramic liner due to malseating is a concern. Cite this article: Bone Joint J 2017;99-B:741-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  20. Raw materials from the region of Rio Claro - SP for the manufacture of ceramic coatings: technological characteristics and geological-technological modeling; Materias-primas da regiao de Rio Claro - SP para fabricacao de revestimentos ceramicos: caracteristicas tecnologicas e modelamento geologico-tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, R.A.; Roveri, C.D.; Maestrelli, S.C., E-mail: rafael.azevedodacunha@gmail.com [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2016-07-01

    The Santa Gertrudes Ceramic Polo (PCSG) is the largest national producer of ceramic tiles, located in east-central region of Sao Paulo, encompassing different cities. PCSG uses various clays as the main raw material from the Corumbatai Formation, which is inserted in the Sedimentary Basin of Parana, with more than 1.5 square kilometers. In this context, X-ray diffractograms of samples from different areas of PCSG were used for application of the cluster analysis. Aiming to group the samples in families and subsequently to seek the most representative for the complete analysis. Also, ceramic tests were made by the following methods: the green bulk density after pressing, flexural strength modulus for green. , tests were conducted after firing at 1070 °C and 1120 °C: apparent density after drying, flexural modulus; after firing: apparent density after firing, water absorption linear shrinkage sintering, apparent porosity, modulus of resistance to bending after burning. Further, from the georeferenced sample were created tables for industry in the area, to facilitate the identification of new sample by XRD. Furthermore, the 3D model of the region was developed from the interesting characteristics for ceramic use, using Micromine Mining Software, Enterprise Micromine. (author)

  1. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  2. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  3. Ceramic transactions: Environmental and waste management issues in the ceramic industry. Volume 39

    International Nuclear Information System (INIS)

    Mellinger, G.B.

    1994-01-01

    A symposium on environmental and waste management issues in the ceramic industry took place in Cincinnati, Ohio, April 19-22, 1993. The symposium was held in conjunction with the 95th Annual Meeting of the American Ceramic Society and was sponsored by the Ceramic Manufacturing Council, Legislative and Regulatory Affairs Committee with the Glass and Optical Materials, Basic Science, Cements, Nuclear, Refractory Ceramics, Structural Clay Products, Whitewares, Design, Electronics, Engineering Ceramics, and Materials and Equipment Divisions. This volume documents several of the papers that were presented at the symposium. Papers presented in this volume are categorized under the following headings: vitrification of hazardous and mixed wastes; waste glass properties and microstructure; processing of nuclear waste disposal glasses; waste form qualification; glass dissolution: modeling and mechanisms; systems and field testing of waste forms

  4. Energy conservation in ICT-businesses. Green computing in the USA; Energiereductie topprioriteit ICT-bedrijven. Green computing is hot in de USA

    Energy Technology Data Exchange (ETDEWEB)

    Hulsebos, M.

    2007-09-15

    A brief overview of the initiatives in ICT-businesses in the USA to save energy, also known as 'green computing'. [Dutch] Een kort overzicht van de initiatieven bij ICT-bedrijven in de USA om energie te besparen, ook bekend onder de naam 'green computing'.

  5. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  6. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  7. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  8. Green business will remain green

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  9. Survival of all-ceramic restorations after a minimum follow-up of five years: A systematic review.

    Science.gov (United States)

    Araujo, Nara Santos; Moda, Mariana Dias; Silva, Ebele Adaobi; Zavanelli, Adriana Cristina; Mazaro, José Vitor Quinelli; Pellizzer, Eduardo Piza

    2016-01-01

    The purpose of this systematic review was to compare the survival and complication rates of all-ceramic restorations after a minimum follow-up time of 5 years. A comprehensive search of studies published from 2005 to November 2015 and listed in the PubMed/MEDLINE, Scopus, and Cochrane Library databases was performed in accordance with the PRISMA statement. Two reviewers independently analyzed the abstracts. Relevant studies were selected according to predetermined inclusion criteria. Twenty-nine studies were selected for the final analysis from an initial yield of 514. Only four studies fulfilled the requirement of having a randomized design, and 25 studies were prospective with a mean follow-up period of 5 to 16 years. Overall, the 5-year complication rates were low. The most frequent complications were secondary caries, endodontic problems, ceramic fractures, ceramic chipping, and loss of retention. This systematic review showed that all-ceramic restorations fabricated using the correct clinical protocol have an adequate clinical survival for at least 5 years of clinical service with very low complication rates. Minor ceramic chipping and debonding did not affect the longevity of the restorations. Long-term clinical performance of all-ceramic restorations manufactured using various ceramic systems provides clinical evidence of complications and long-term management of these restorations. Available evidence indicates the effectiveness of many ceramic systems for numerous clinical applications. Correct planning and a rigorous technical execution protocol increase clinical success. Studies of ceramic prostheses indicate more problems with ceramic failure and debonding.

  10. Trendy v oblasti podnikových IS - Green IT

    OpenAIRE

    Vojtková, Erika

    2011-01-01

    The theme of this thesis is one of the latest trends in IT -- Green IT. For companies implementation of green IT means not only acknowledging its responsibility towards society and environment, but also substantial financial benefits and improved public perception of their business. There are several motivations for companies to go green. Green IT initiatives are increasingly supported by the legislation and various standards. Different procedures and approaches to help companies in their tra...

  11. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  12. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  13. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

  14. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  15. Point Climat no. 14 'Financing the transition to a green economy: their word is their (green) bond?'

    International Nuclear Information System (INIS)

    Morel, Romain; Bordier, Cecile

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: Responding to climate change involves the implementation of initiatives that require significant up-front capital investment. At a time when bank lending is squeezed, green bonds offer an alternative financing for initiatives with an environmental goal. Lately, the Ile-de-France Region's issuance of environmentally and socially responsible bonds on March 20 2012 demonstrates that an increasing number of players are taking interest in this tool. But green bonds are not, however, the panacea to access to finance issues that mainly depend on the bond issuer's characteristics

  16. The Structural Ceramics Database: Technical Foundations

    Science.gov (United States)

    Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.

    1989-01-01

    The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397

  17. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2016-12-01

    Full Text Available Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawanggede Village, Lowokwaru Sub-district, Malang City. The sampling method used nonprobability accidential sampling techniques. The numbers of respondents were 113 consumers in study site. Data were collected by interview using questionnaires. The method of analysis used Generalized Structured Component Analysis (GSCA. The analysis showed that the green packaging, green products, and green advertising had positive significant influence on consumer perceptions. Meanwhile, green product and consumer perception had positive significant influence on purchasing interest, but the green packaging and green advertising has not found sufficient evidence in influencing purchasing intention.

  18. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    Science.gov (United States)

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  20. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  1. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  2. Synthesis and characterization of ceramic pigments based on oxides of chromium and iron, on TiO2

    International Nuclear Information System (INIS)

    Silva, E.M. da; Galvao, S.B.; Paskocimas, C.A.

    2011-01-01

    This work used oxides of chromium and iron, as precursors of the synthesis of ceramic pigments. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through pre-calcination, breakdown, calcination at different temperatures (900 and 1100 ° C), resulting in pigments: green for pigment chrome deposited on TiO 2 and orange for iron on TiO 2 . Noticing an increase in the opacity with increasing temperature. The thermal analysis (TG and DTA), evaluated their thermal behavior, the XRD revealed the formation of crystalline phases as Iron Titanate and Chrome Titanate; SEM showed the formation of hexagonal particles for both oxides. Thus, the synthesized oxides were within the requirements for application as ceramic pigments. (author)

  3. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  4. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  5. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  6. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  7. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  8. Labelling it green

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S.; Brocklehurst, F. [ETSU, Didcot (United Kingdom)

    1998-12-31

    The first two rounds of contracts awarded through the NFFO will expire in December 1998. These generators will then be looking for new contracts to supply renewable electricity. Since these projects were initiated the renewable energy market has grown steadily, but it is still mainly restricted to the protected market within NFFO. Consumer interest has grown steadily too, fuelled by the emergence of green energy supply companies. Market research has indicated that consumers would like the choice of green electricity, what remains unclear is if they would exercise this choice and to what extent they might pay a premium price for the privilege. From September 1998 the phased introduction of domestic sector franchise de-regulation commences. In principle, consumers can purchase their electricity from any supplier. This provides a golden opportunity for green generation. To make the most of this opportunity generators and suppliers will need to clearly explain to the public what their product is, how it is different and how everyone benefits from its use. A major marketing issue will be to provide assurance to the general public, that for example, they can indeed purchase energy from a windfarm in Wales, despite living in areas other than Wales. The DTI is assisting the expansion of the green market into the domestic sector via funding a project which plans to deliver an accreditation scheme in September 1998. This will provide a means of verifying the green claims of generators/supply companies. (Author)

  9. Next steps for a Green Economy Working Group in Kazakhstan. Notes from the Astana Green Economy Dialogue, 24-26 November 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ospanova, Saule; Wilson, Emma; Bass, Steve

    2013-01-15

    In the Republic of Kazakhstan, national concerns over today’s economic, social and environmental challenges have translated into sustainable development policy and initiatives such as the Astana Green Bridge Initiative. The Government of Kazakhstan has developed the Green Bridge Partnership Programme (GBPP), with the support of international organizations, for possible adoption at the Rio+20 World Sustainable Development Conference in June 2012. This programme offers opportunities for 'greening' the economy, with a focus on aspirations for regional and international technology cooperation and finance. it also offers potential for enhancing public participation in decision-making, and harmonising policies and practices across European, Asian and Pacific regions. A range of other initiatives are also ongoing within Kazakhstan, and it is important for those promoting these initiatives to join forces and engage in dialogue. The Astana Green Economy Dialogue, held from 24th to 26th November 2011, organised by IIED and the Kazakhstan Ministry for the Environment and supported by the UK Foreign and Commonwealth Office (FCO) and the Organisation for Security and Co-operation in Europe (OSCE), brought together a range of stakeholders from government, civil society and industry to discuss the notion of the green economy and how it can be applied and developed in Kazakhstan. The dialogue had a particular focus on the energy sector given its relevance. Oil-producing states face a global challenge to play their part in establishing economic systems that reduce climate change and other environmental burdens, and to produce higher societal value from limited natural resources. This short report summarises the key observations and ideas discussed at the workshop, with recommendations for next steps and follow up. It is meant to provide a record of the discussions that took place at this dialogue and provides a foundation for further work.

  10. Six aspects to inspirational green roof design

    Energy Technology Data Exchange (ETDEWEB)

    Kiers, H. [SWA Group, Sausalito, CA (United States)

    2004-07-01

    Green roofs have been categorized as a technology that is not initially faster, better or cheaper, and may even under perform established products. However, green roofs have features and values that early adopters are ready to experiment with in small markets, thereby creating awareness of the technology. Termed as disruptive technologies, green roofs can become competitive within the mainstream market against established products. The challenge in green roof construction is to find the correct balance between idealistic principles and leading edge design. This paper presented case studies to examine the following 6 aspects of design fundamentals to the creation of inspirational green roofs: the use of colour; experimentation with materials and technology; incorporation of texture, form, and pattern; definition of space; engagement of vistas; and, principles of bio-regionalism. It was concluded that good design is not enough to lead to widespread green roof implementation. It was emphasized that change will occur primarily because of the benefits acquired through implementation. 11 refs., 7 figs.

  11. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  12. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert, E-mail: cernyr@fsv.cvut.cz

    2016-06-10

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  13. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    International Nuclear Information System (INIS)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert

    2016-01-01

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  14. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  15. Greening of the White House: Six year report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-11-01

    The White House, which recently celebrated its 200th birthday, has a long tradition of demonstrating technological innovation. In keeping with that tradition, President Clinton announced the Greening of the White House Initiative on Earth Day 1993. The initiative improves the energy and environmental performance of the White House complex by identifying opportunities to reduce waste, lower energy use, and make an appropriate use of renewable resources, all while improving indoor air quality and building comfort. This report on President Clinton's legacy of greening at the White House summarizes progress made to date and gives an overview of new opportunities identified during the past year. It also includes an environmental history of the White House and a short tour of the buildings that make up the White House complex. Over the past five years, this initiative has involved hundreds of dedicated people from both within and outside government. A description of how they worked together to develop and implement the Greening Plan is also included in this report.

  16. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  17. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  18. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  19. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  20. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    OpenAIRE

    Imam Santoso; Rengganis Fitriani

    2016-01-01

    Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawangg...

  1. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  2. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  3. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  4. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  5. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Is "Being Green" a Determinant of Participation in University Sustainability Initiatives?

    Science.gov (United States)

    Figueredo, Felita R.; Tsarenko, Yelena

    2013-01-01

    Purpose: The purpose of this article is to develop and test a model to explain students' willingness to participate in sustainability programs. Specifically, the authors aimed to determine those factors, apart from students' environmental orientation (self-perception of "being green"), that influence students' willingness to participate…

  7. Ion irradiation studies of oxide ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1988-01-01

    This paper presents the initial results of an investigation of the depth-dependent microstructures of three oxide ceramics following ion implantation to moderate doses. The implantations were performed using ion species that occur as cations in the target material; for example, Mg + ions were used for MgO and MgAl 2 O 4 (spinel) irradiations. This minimized chemical effects associated with the implantation and allowed a more direct evaluation to be made of the effects of implanted ions on the microstructure. 11 refs., 14 figs

  8. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  9. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  10. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  11. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    Science.gov (United States)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  12. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  13. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  14. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  15. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    Science.gov (United States)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    submitted to unidirectional dry pressing process (conformation) and the green conformed bodies were tested on the following properties: mechanical flexural strength and adhesion/disaggregation of the conformed material. The binding state of polysaccharides and mineral grains was evaluated by field emission scanning electron microscopy (FESEM). Our data showed that xanthan gum and pullulan were the most effective polysaccharides in improving the performance of spray-dried ceramic powders during unidirectional dry pressing process, in comparison to the control steatite-based ceramic bodies containing synthetic additives. In addition, these polysaccharides yielded the best cost-benefit relationship, representing an eco-friendly and cost-effective alternative to synthetic additives used in technical ceramics industry. Hence, this study has contributed to define a new and sustainable strategy to improve the performance of ceramic materials during unidirectional dry pressing process, reduce production costs and minimize environmental impact. Acknowledgments: This study was financed by Portuguese funds through FCT- Fundação para a Ciência e a Tecnologia (project EXPL/CTM-CER/0637/2012) and supported by Rauschert Portuguesa, SA.

  16. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  17. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  18. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  19. Green Growth: From Intentions to Action

    International Nuclear Information System (INIS)

    Perthuis, Christian de; Jouvet, Pierre-Andre

    2013-01-01

    In an increasingly demanding context of climate change, exhaustion of fossil energy resources and sustained economic crisis, a concept is gradually gaining ground, the concept of 'green growth', which aims to promote an environmentally-friendly form of economic development. 'Greening' economic growth means developing ecological activity, investing in renewable energies and in improving yields from energy and materials use etc. However, moving from the political declaration of such ambitions to their realization is something that has not yet been done convincingly, particularly in Europe. To make that move, we would need a solid vision of the economic model that properly applies to 'green growth'. Pierre-Andre Jouvet and Christian de Perthuis have examined the subject and present their economic analysis of such growth in this article. They stress, initially, that we have moved from a 'rarity barrier' where resources are concerned to an 'environmental barrier -in other words, from a physical limit associated with a store of resources to a limit associated with human capabilities to regulate the natural system. It is actually becoming essential to integrate natural capital into the factors of production (alongside capital and labour). This implies that investments can be made to improve this factor of production. It also implies that natural capital comes into play in the distribution of wealth between factors of production. Yet, as Jouvet and de Perthuis argue, most initiatives implemented in the name of green growth are, for the moment, cosmetic and do not truly bring the environment into the productive system. Hence they have little chance of sparking a new economic dynamic. Real change can come only from the remuneration of natural capital by reallocating the incomes from both labour and capital on a basis proportional to their initial contributions to environmental pollution. With this aim in mind, the authors propose various courses of action -expanding the

  20. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  1. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  2. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  3. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  4. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  5. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  6. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  7. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  8. Fracture mechanics of ceramics. Vol. 7

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  9. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  10. All-ceramic restorations: an overview.

    Science.gov (United States)

    Bassi, F; Carossa, S; Pera, P; Preti, G

    1998-09-01

    Advantages and disadvantages of metal-ceramic and all-ceramic restorations are reviewed particularly from the aesthetic point of view. All-ceramic restorations offer the best results because they let the light through optimally. In constructing all-ceramic crowns on teeth which have been endodontically treated, the material used to rebuild the pin-abutments must be taken into consideration if the best aesthetic results are to be achieved. Materials which, because of their translucent characteristics, are the most aesthetic alternatives to metal alloy pin-abutments in rebuilding teeth which have been endodontically treated, are then described.

  11. Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors

    NARCIS (Netherlands)

    With, de G.

    1993-01-01

    An review with 61 refs. is given of the fracture of and stress situation in ceramic capacitor materials and ceramic multilayer capacitors. A brief introduction to the relevant concepts is given first. Next the data for capacitor materials and the data for capacitors are discussed. The materials data

  12. Interpenetrating network ceramic-resin composite dental restorative materials.

    Science.gov (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  14. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  15. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    Science.gov (United States)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  16. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  18. Hemorrhagic iliopsoas bursitis complicating well-functioning ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim

    2009-08-01

    Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.

  19. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  20. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  1. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  2. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  3. China Green Lights Program: A Review and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang

    1999-06-10

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program.

  4. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  5. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  6. Hydro to market green power at special prices

    International Nuclear Information System (INIS)

    McArthur, D.; Salaff, S.

    1996-01-01

    A 600 kW grid-connected demonstration wind turbine at Ontario Place will provide green power to Toronto residents early in 1997. The joint venture project partners include publicly owned Ontario Hydro, Toronto Hydro and Natural Resources Canada. The power will be sold at a premium under arrangements yet to be announced. The green power pricing initiative would allow some customers to buy their electricity at a green price. The project could be a self-financing model for future renewable energy development. The Ontario Place turbine project will determine whether Toronto electricity customers want green power or electricity from nuclear and fossil stations, and could determine which type of generation should be built in the future

  7. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  8. Re-Greening Ethiopia: History, Challenges and Lessons

    Directory of Open Access Journals (Sweden)

    Mulugeta Lemenih

    2014-07-01

    Full Text Available In Ethiopia, deforestation rates remain high and the gap between demand and domestic supply of forest products is expanding, even though government-initiated re-greening efforts began over a century ago. Today, over 3 million hectares (ha of degraded forest land are under area exclosure; smallholder plantations cover 0.8 million ha; and state-owned industrial plantations stagnate at under 0.25 million ha. This review captures experiences related to re-greening practices in Ethiopia, specifically with regards to area exclosure and afforestation and reforestation, and distills lessons regarding processes, achievements and challenges. The findings show that farmers and non-governmental organizations (NGOs are the main players, and that the private sector has so far played only a small role. The role of the government was mixed: supportive in some cases and hindering in others. The challenges of state- and NGO-led re-greening practices are: inadequate involvement of communities; poorly defined rehabilitation objectives; lack of management plans; unclear responsibilities and benefit-sharing arrangements; and poor silvicultural practices. The lessons include: a more active role for non-state actors in re-greening initiatives; more attention to market signals; devolution of management responsibility; clear definition of responsibilities and benefit-sharing arrangements; and better tenure security, which are all major factors to success.

  9. Evaluation of Monolithic Ceramics and Ceramic Thermal Barrier Coatings for Diesel Engine Applications

    National Research Council Canada - National Science Library

    Swab, Jeffrey J

    2001-01-01

    The Metals and Ceramics Research Branch (MCRB) of the Weapons and Materials Research Directorate is providing ceramic material characterization and evaluation to the Tank Automotive Research, Development, and Engineering Center (TARDEC...

  10. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  11. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  12. An experimental bioactive dental ceramic for metal-ceramic restorations: Textural characteristics and investigation of the mechanical properties.

    Science.gov (United States)

    Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M

    2017-02-01

    The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2016-09-01

    Full Text Available This study fills the research gap in the exploration of the relationships between both proactive and reactive green innovations and green product development performance, and examines the mediating effect of green creativity. Structural equation modeling (SEM is utilized to test the hypotheses. From the sample of 146 valid respondents, the results show that proactive green innovation positively affects green creativity and green product development performance, and green creativity positively affects green product development performance. In addition, our findings also indicate that the relationship between proactive green innovation and green product development performance is partially mediated by green creativity. Accordingly, green creativity plays a critical role for companies to achieve a great green product development performance. However, reactive green innovation does not significantly influence green creativity and green product development performance. Companies should develop proactive green innovation rather than reactive green innovation in order to enhance their green creativity and increase their product development performance.

  14. Web Content Analysis On Sustainable Campus Operation (SCO Initiatives

    Directory of Open Access Journals (Sweden)

    Razman Ruzaimah

    2017-01-01

    Full Text Available The purpose of this paper is to identify and analyse the current practices implemented in global universities for achieving sustainability throughout campus operations. This study adopted a web content analysis method where 30 international green universities’ websites have been thoroughly examined to identify common initiatives implemented to achieve sustainability through campus operations. The findings are ranked based on the implementation of these initiatives by participating universities. From the websites reviewed, as much as 31 initiatives have been identified as common initiatives frequently implemented by green universities to achieve sustainability in campus operations. It was found that the common initiatives frequently implemented by most of the universities include ‘Provide bin with clearly marked signs to increase the number of recycling items’, and ‘Generate electricity on campus by establishing power generation plants’ with 87% and 83% respectively. This paper fills the gap by presenting the investigation of sustainability initiatives from some of the major green universities internationally. It is suggested that higher education institutions, particularly Malaysian universities, initiate or manage their implementation of sustainable campus operation (SCO initiatives based on the findings of this research.

  15. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  16. In vitro comparison of the biological activity of alumina ceramic and titanium particles associated with aseptic loosening

    International Nuclear Information System (INIS)

    Ding Yue; Qin Chuqiang; Xu Jie; Huang Dongsheng; Fu Yuru

    2012-01-01

    Prosthetic wear particles are thought to play a central role in the initiation and development of periprosthetic osteolysis, leading to aseptic loosening of prostheses. This study aimed to compare the biological activity of ceramic and titanium particles that are associated with particle-induced, aseptic joint loosening. Different sizes of alumina-ceramic particles and titanium particles were prepared to stimulate murine macrophage cells RAW 264.7, of which the expressions of tumor necrosis factor alpha (TNF-alpha) and receptor activator of nuclear factor-κB ligand (RANKL) were measured by qPCR and ELISA at various time points. In the presence of all particles, the expression of TNF-alpha increased in a time-dependent manner, whereas the expression of RANKL showed no regular expression patterns. Notably, particles of smaller sizes provoked significantly higher levels of TNF-alpha and RANKL than those of larger sizes. Compared to the titanium particles, the ceramic particles provoked a significantly lower production of TNF-alpha. Thus, the bioactivities of titanium and alumina ceramic particles were inversely proportional to the sizes of the particles, and the expression of RANKL was not parallel to that of TNF-alpha. The successful outcome of ceramic-on-ceramic artificial joint prostheses may be attributed to the low biological activity of ceramic particles, as evidenced here. (paper)

  17. The green protest

    International Nuclear Information System (INIS)

    Brun, R.

    1978-01-01

    The increasing public interest in the 'green' and the 'coloured' made the politicians alert. The ecological movement and the public initiatives show their effects. What 'utopists', 'crazy people' think about large technical development gains public importance. The uneasiness about a social development which was directed only by increasing spending power and permanent expansion, begins to articulate itself. Values such as solidarity and community, considerateness for fellow men and environment which had been eliminated in the past, are regaining their meaning. From the point of view of this steadily increasing movement, the phenomenon of the 'green parties' is investigated. In this context, the persons involved give their opinions, as well as representatives of the established parties, thus giving this volume the character of a documentation on an important trend in today's events. (orig.) [de

  18. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Directory of Open Access Journals (Sweden)

    Román-Manso, B.

    2014-04-01

    Full Text Available Concentrated ceramic inks based on β-SiC powders, with different amounts of Y2O3 and Al2O3 as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densifi cation of the as-produced 3D structures, previously heat treated in air at 600 ºC for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS furnace. The effects of the amount of sintering additives (7 - 20 wt. % and the size of the SiC powders (50 nm and 0.5 μm on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized β-SiC powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink, involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics.Se han fabricado andamiajes de carburo de silicio (SiC usando la técnica de “Robocasting”, a partir de tintas cerámicas conteniendo β-SiC y distintas cantidades de Y2O3 and Al2O3, como aditivos de sinterización. La densificación de las estructuras tridimensionales, previamente calcinadas a 600 ºC para eliminar los aditivos orgánicos, se realizó en un horno de “Spark Plasma Sintering” (SPS. Se analizó el efecto de la cantidad de aditivos de sinterización (7-20 % en peso y del tamaño de partícula inicial del polvo de SiC (50 nm y 0.5 μm en el procesado de las tintas, en la microestructura, la dureza y el módulo elástico de las estructuras sinterizadas. El uso de polvo

  19. Evaluation of the reuse of glass and ceramic blocks in the development of a ceramic products

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Silva, L.A.; Martins, B.E.D.B.S.; Felippe, C.E.C.; Almeida, V.C.

    2010-01-01

    The ceramic industry has enormous potential to absorb wastes. The main objective of this study was to evaluate the feasibility of reusing leftovers ceramic blocks, from construction and, with shards of glass in the development of a ceramic product. The ceramic pieces were prepared with different compositions of glass by the method of pressing conformation and heating at 1000 and 1100 deg C. The conformed pieces were tested for linear shrinkage, water absorption, porosity, and tensile strength. The techniques for characterization were X-ray fluorescence, X-ray diffraction and scanning electron microscopy, the results show that the ceramic material produced has a high flexural strength and low values of water absorption. (author)

  20. Greening and “un”greening Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Guy M. Robinson

    2015-06-01

    Full Text Available The original design for Adelaide, the capital city of the state of South Australia, incorporated a green belt (known as the Park Lands around the city centre, itself laid out on a one square mile (2.59 km2 grid and including five large public squares. The Park Lands provided a barrier to urban sprawl and covered approximately 9.31 km2, of which 1.53 km2 has been used subsequently for cultural institutions, railways, cemeteries, sporting facilities and other constructions. In addressing issues of greening pertaining to Adelaide, the Park Lands and its management represents a core element in the evolving history of the city's growth. This paper will consider some of the contradictions within this growth, examining the changing attitudes of government and the populace to the Park Lands and also to the increasing sprawl of the city. It can be argued that this sprawl has been antithetical to maintenance of biodiversity and principles of “greening”, not only during the main phase of expansion in the 1960s and 1970s but also in recent years when planned development on prime farmland and other “green” areas is contributing to problems for provision of transport infrastructure and generally reducing capacity for sustainability. The potential for conflict between the desire to maintain biodiversity versus protection for the growing number of people moving into bushfire risk areas is just one of several examples of problems arising as a result of a relaxed attitude to low-density expansion. In examining these problems the paper will present maps of the changing footprint of Adelaide and will elaborate new “greening” initiatives that include green roofs, new systems of water harvesting, community-supported agriculture and schemes directly aimed at creating low-carbon living. A consistent theme will be the contradictions within plans for the city between greening and “un”greening.

  1. Pengaruh Green Marketing Hotel Terhadap Green Consumer Behavior

    OpenAIRE

    Yo Fernandez, Eunike Christe; Tjoanda, Evelyn

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh dari green marketing hotel terhadap green consumer behavior. Green marketing memiliki 3 dimensi, yaitu green product, green price, dan green promotion. Penelitian ini melibatkan 272 responden masyarakat Surabaya dan menggunakan metode regresi linear berganda. Hasil penelitian menunjukkan bahwa green product dan green price berpengaruh secara positif dan signifikan sedangkan green promotion berpengaruh namun tidak signifikan terhadap green con...

  2. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  3. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  4. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  5. The dynamics of dry matter accumulation in the initial period of growth of four varieties of the "stay-green"type of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Szulc, P.; Michalski, T.; Bocianowski, J.; Nowosad, K.; Zajac, M.

    2017-01-01

    The aim of the study was to determine the impact of weather conditions (temperature, precipitation) on the dynamics of dry matter accumulation and nitrogen nutritional status of maize plants in the type of "stay-green"Four varieties were evaluated: NK Cooler, Delitop, NK Gazelle, NK Ravello. Thermal conditions and humidity in the period from sowing to the phase of 5-6 leaves (BBCH 15/16) shaped the dynamics of dry matter accumulation and nitrogen nutritional status of plants. The differences were found in tested varieties of "stay-green"in terms of the dynamics of initial growth, expressed by the dynamics of dry matter accumulation and their nitrogen nutritional status. In most of the analyzed characteristics, the variety of NK Cooler was characterized by favorable values of these characteristics, as compared to other varieties. The genetic variation of tested varieties is derived from the heterosis cultivation process of F1 hybrids. Currently, cultivated maize varieties (including "stay-green") are F1 hybrids characterized by identical genotype and varietal differences arise from components of parental hybrid genotype (paternal and maternal), as presented in the paper

  6. Customer value in green power purchases

    International Nuclear Information System (INIS)

    Welsh, L.

    1998-01-01

    A discussion about generating electricity from renewable energy sources was presented. The Environment Canada/ENMAX green power contract stipulates that in order for electricity to quality as green power it must be generated by renewable energy sources such as wind, solar, combustion of sustainably produced biomass, or run-of-the-river hydroelectricity. The contract also includes emissions reduction credit (ERC) ownership for greenhouse gases, sulphur dioxide, nitrogen oxides, particulates, and toxics. By using green power in some of its own facilities the government demonstrates its support for renewable energy sources, and provides the initial market for the industry to build up its capacity to service larger markets. The emission reduction credits 'earned' could be added to the government inventories as environmental assets

  7. Greening of the White House: Six year report; TOPICAL

    International Nuclear Information System (INIS)

    None

    1999-01-01

    The White House, which recently celebrated its 200th birthday, has a long tradition of demonstrating technological innovation. In keeping with that tradition, President Clinton announced the Greening of the White House Initiative on Earth Day 1993. The initiative improves the energy and environmental performance of the White House complex by identifying opportunities to reduce waste, lower energy use, and make an appropriate use of renewable resources, all while improving indoor air quality and building comfort. This report on President Clinton's legacy of greening at the White House summarizes progress made to date and gives an overview of new opportunities identified during the past year. It also includes an environmental history of the White House and a short tour of the buildings that make up the White House complex. Over the past five years, this initiative has involved hundreds of dedicated people from both within and outside government. A description of how they worked together to develop and implement the Greening Plan is also included in this report

  8. Highly matched spectrum needed for photosynthesis in Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weirong; Gao, Huiping [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China); Mao, Yanli, E-mail: ylmao@henu.edu.cn [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2015-11-05

    A series of oxyfluoride glass ceramics containing CaF{sub 2} nano-crystals tri-doped with Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} ions were prepared by high temperature melting method and subsequent heat treatment. The structural properties were examined by X-ray diffraction measurements. The absorption, excitation, and emission spectra of the glass ceramics were investigated. Difference in erbium emission spectra between glass and glass ceramics had been studied. The emission bands originating from the {sup 4}F{sub 9/2} state of Er{sup 3+} were enhanced when the CaF{sub 2} nano-crystal created. By down-converting the ultraviolet wavelength region (280∼400 nm) light and up-converting the near-infrared wavelength region (900∼1100 nm) light, the glass ceramics can also emit strong reddish orange emission. The emission spectra consisting of bluish violet (400∼500 nm) and reddish orange (640∼680 nm) bands match well with the action spectrum of photosynthesis and absorption spectra of chlorophylls. Our materials will be favored to promote the development of glass greenhouses for green plant. - Highlights: • Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics were prepared by high temperature melting method. • 668 nm red emission was obtained under 320 nm, 380 nm and 980 nm excitation, respectively. • The emission of samples matched well with the spectrum for photosynthesis.

  9. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates

    Czech Academy of Sciences Publication Activity Database

    Šestáková, L.; Bermejo, R.; Chlup, Zdeněk; Danzer, R.

    2011-01-01

    Roč. 102, č. 6 (2011), s. 613-626 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminates * Layered ceramics * Residual stress * Fracture toughness * Threshold strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.830, year: 2011

  10. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  11. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  12. Design and In-Situ Processing of Metal-Ceramic and Ceramic-Ceramic Microstructures

    National Research Council Canada - National Science Library

    Sass, Stephen

    1997-01-01

    .... Metal-ceramic microstructures have been synthesized in situ by a variety of novel processing techniques, including the partial reduction of oxide compounds and displacement reactions and sol-gel...

  13. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  14. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Hesitant Trapezoidal Fuzzy QUALIFLEX Method and Its Application in the Evaluation of Green Supply Chain Initiatives

    Directory of Open Access Journals (Sweden)

    Xiaolu Zhang

    2016-09-01

    Full Text Available This paper explores how to handle multiple criteria decision-making (MCDM problems in which the criteria values of alternatives take the form of comparative linguistic expressions. Firstly, the new concept of hesitant trapezoidal fuzzy numbers (HTrFNs is provided to model the semantics of the comparative linguistic expressions. Then, the operational laws and the distance measures of HTrFNs are presented. Afterwards, a useful outranking method, the hesitant trapezoidal fuzzy QUALIFLEX method, is developed to handle the MCDM problems with hierarchical structure in the environment of HTrFN. At length, the proposed method is applied to evaluating green supply chain initiatives in order to achieve sustainable economic and environmental performance, and a case study concerned with a fashion retail chain is presented to demonstrate its feasibility and applicability, also, a comparative analysis with other relevant approaches is conducted to validate the effectiveness of the proposed method.

  16. Microstructural characterization of ceramic floor tiles with the incorporation of wastes from ceramic tile industries

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2010-09-01

    Full Text Available Ceramic floor tiles are widely used in buildings. In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The introduction of the crustiness surface on the ceramic floor tiles interfere in the contact temperature and also it can be an strategy to obtain ceramic tiles more comfortable. In this work, porous ceramic tiles were obtained by pressing an industrial atomized ceramic powder incorporated with refractory raw material (residue from porcelainized stoneware tile polishing and changing firing temperature. Raw materials and obtained compacted samples were evaluated by chemical analysis, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, thermogravimetric analysis (TGA, and differential thermal analysis (DTA. Thermal (thermal conductivity and effusivity and physical (porosity measurements were also evaluated.

  17. China Green Lights Program: A Review and Recommendations; TOPICAL

    International Nuclear Information System (INIS)

    Lin, Jiang

    1999-01-01

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program

  18. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  19. Campaign Country Going Green?

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2017-01-01

    justification. This paper finally discusses the reason for this greening of government initiated Danish energy saving campaigns, which is seen as an indirect result of the 1987 UN report, Our Common Future. The 1988 general election in Denmark led to the formation of a new center-right government coalition...... economics and not least a significant portion of patriotism. Environmental justification was almost entirely absent throughout the 1970s and 1980s. This changed only from 1989 onwards, as government initiatives to curb the ever rising consumption of energy commenced an extensive use of environmental...

  20. Characteristics of ancient Egyptian glazed ceramic objects from Fatimid and Mamluk periods as revealed by ion beam analysis

    International Nuclear Information System (INIS)

    Sadek, Hamada; Abd El Hady M M

    2012-01-01

    Ion beam analysis (PIXE, μPIXE) has been successfully applied in analysis of archaeological materials, it has many advantages. In this work Ion Beam Analysis (IBA) used in analysis of ancient Egyptian glazed ceramic from 10th to the 16th centuries (Fatimid and Mamluk periods). Glazed ceramic samples from Al-Fustat Excavation store have been chosen to represent different colours (green, blue, brown, black ...etc), the colours of glaze depend on many factors such as oxides present in the glaze layer, fluxes and the conditions in which objects had been manufactured in the past. Ion Beam allows the identification of elemental composition of the glaze layer i.e., the information about colorants used in glaze, which is of great importance for compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship between ancient cultures with the environment.

  1. Summary of ceramic pigments by polymer precursors Pechini method; Sintese de pigmentos ceramicos pelo metodo dos precursores polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.M. da; Galvao, S.B.; Paskocimas, C.A., E-mail: everlania_siva@yahoo.com.b [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2010-07-01

    In this work were synthesized nitrate chromium nitrate and iron-doped titanium oxide by the polymeric precursor method, for application as ceramic pigments. The stains were developed between the temperatures 700 deg C to 1000 deg C, in green for chromium oxide and orange for iron. Noticing an increase of its opacity by increasing temperature. Characterization by thermogravimetry (TG) showed strong thermo decomposition from 355 deg C for the chromium oxide and thermo decomposition gradual for the iron. By analysis of X-ray diffraction revealed the formation of crystalline phases as Iron Titanate (FeTiO3) and Chrome Titanate (CrTiO3), respectively. The scanning electron microscopy showed the formation of rounded particles for both oxides. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials. (author)

  2. Experimental study on the penetration effect of ceramics composite projectile on ceramic / A3 steel compound targets

    Directory of Open Access Journals (Sweden)

    Di-qi Hu

    2017-08-01

    Full Text Available In order to improve the penetration of projectiles into ceramic composite armors, the nose of 30 mm standard projectile was replaced by a toughened ceramic nose, and the performance of ceramic-nose projectiles penetrating into ceramic/A3 steel composite targets has been experimentally researched. According to impact dynamics theory,, the performances of 30 mm ceramic-nose projectile and 30 mm standard projectile penetrating into the ceramic/A3 steel composite targets were analyzed and compared using DOP method, especially focusing on the effects made by different nose structures and materials. The aperture and depth of perforation of projectile into the armor plates as well as the residual mass of bullet core under the same conditions were comparatively analyzed. A numerical simulation was built and computed by ANSYS/LS-DYNA. Based on the simulated results, the penetration performance was further analyzed in terms of the residual mass of bullet core. The results show that the ceramic nose has a great effect on the protection of bullet core.

  3. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    International Nuclear Information System (INIS)

    Senapati, Rajeev; Zhang Jianmei

    2010-01-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC 2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  4. E3 Success Story - Whirlpool Trains Staff on Lean and Green Advantage

    Science.gov (United States)

    Whirlpool Corporation invited Green Suppliers Network representatives to its Monterrey facility to provide training on the Lean and Green Advantage. The project sought to expand E3 initiatives to every part of the company's operations.

  5. ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry.

    Science.gov (United States)

    Lohbauer, Ulrich; Scherrer, Susanne S; Della Bona, Alvaro; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, J Robert; Cesar, Paulo F

    2017-06-01

    This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed. Several techniques for the measurement of bond quality and residual stresses are presented with a detailed discussion of advantages and disadvantages. In essence no single technique is able to describe adequately the all-ceramic interface. Invasive or semi-invasive methods have been shown to distort the information regarding the residual stress state while non-invasive methods are limited due to resolution, field of focus or working depth. This guidance document has endeavored to provide a scientific basis for future research aimed at characterizing the ceramic interface of dental restorations. Along with the methodological discussion it is seeking to provide an introduction and guidance to relatively inexperienced researchers. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  7. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  8. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  9. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    International Nuclear Information System (INIS)

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  10. Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions

    International Nuclear Information System (INIS)

    Chou, Yi-Ping

    2001-01-01

    This thesis describes a study of the modification of the interparticle forces of colloidal ceramic particles in aqueous suspensions in order to improve the microstructural homogeneity, and hence the reliability and mechanical performances, of subsequently formed ceramic compacts. A concentrated stable fine ceramic powder suspension has been shown to be able to generate a higher density of a ceramic product with better mechanical, and also electrical, electrochemical and optical, properties of the ceramic body. This is because in a colloidally stable suspension there are no aggregates and so defect formation, which is responsible for the ceramic body performance below its theoretical maximum, is reduced. In order to achieve this, it is necessary to form a well dispersed ceramic suspension by ensuring the interparticle forces between the particles are repulsive, with as a high a loading with particles as possible. By examining the rheological behaviour and the results of Atomic Force Microscope, the dispersion state of the suspensions and hence the interparticle forces can be analysed. In this study, concentrated ceramic suspensions were made from two kinds of zirconia powders, monoclinic (DK1) and yttria partially stabilised (HSY3) zirconia, in the presence of a dispersant, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt (Tiron), in aqueous system. The optimum dispersant concentrations, where the viscosity and rheological moduli are the entire minimum, for DK1 and HSY3 suspensions, respectively, are 0.625% and 0.1%. The modifications of the interparticle forces were also achieved by pH adjustment and it was found that both of the suspensions at the optimum dispersant concentration were stable over the pH range 7 ∼ 10, which coincide with the results of the electrophoretic mobility measurements. Ceramic compacts have then been made by slip casting the suspensions of different dispersant concentration, followed by firing procedure. Mechanical properties of

  11. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  13. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  14. Green Shoots: Environmental Sustainability and Contemporary Film Production

    Directory of Open Access Journals (Sweden)

    Victory, Jonathan

    2015-06-01

    Full Text Available This paper explores the emerging phenomenon of ‘green filmmaking’ in film production, whereby the process of filmmaking is conducted with a view to minimising environmental impact. Establishing the motivations behind green filmmaking and surveying a range of international developments in this area, sustainability initiatives are identified and considered as a means of environmentally-sustainable economic development for the film sector. After identifying challenges of consumption habits to be overcome by the film industry worldwide, recent and current initiatives are highlighted from within the international film industry and one is specifically explored in more detail: the emerging role of a designated crew member or ‘eco-manager’ to oversee environmental initiatives on-set. The paper then concludes on a range of brief policy proposals for the film sector following on from analysis of existing film industry policy towards environmental sustainability.

  15. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  16. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    Science.gov (United States)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  17. An inventory of the first round of Green Deals

    International Nuclear Information System (INIS)

    Wetzels, W.; Hekkenberg, M.; Daniels, B.W.; Ybema, J.R.

    2012-01-01

    By means of the Green Deal, the Dutch government aims to accelerate the sustainability of the economy by supporting initiatives in the field of energy, water, feedstocks and mobility. Businesses, organizations and authorities have submitted over 200 proposals, of which 59 have been selected and elaborated into Green Deals. A previous note has mapped the additional effects of the Green Deals on the share of renewable energy and the emission of non-ETS greenhouse gases. This note addressed questions such as: Which positive effects may occur?; Do the Green Deals lead to additional activities?; Can the results be scaled up?; Can the effects be measured?; Which effects can be observed for renewable energy and emissions in 2020? The note subsequently discusses in which ways the positive effects of the Green Deals could be enhanced. [nl

  18. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  19. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  20. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report.

    Science.gov (United States)

    Tavarez, Rudys Rodolfo de Jesus; Goncalves, Leticia Machado; Dias, Ana Paula; Dias, Anna Claudia Pereira; Malheiros, Adriana Santos; Silva, Alice Carvalho; Bandeca, Matheus Coelho

    2014-06-01

    The rehabilitation of patients requiring an esthetic smile demands a multidisciplinary approach. This clinical report describes a treatment plan for recovery aesthetics' smile of anterior teeth using ceramic prosthesis with zirconia structure. Initially, a review of aesthetic parameters, diagnostic waxing, mock-up and provisional restorations was performed. A contextual assessment of aesthetic, proportion and shape of teeth was done to recreate a natural looking for teeth in consonance with the smile line. Subsequently, based on these parameters, fixed prostheses of the upper anterior teeth using ceramic restorations with zirconia infrastructures were performed. The use of ceramic restorations with zirconia structures associated with a careful treatment plan allows the professional to integrate esthetic and function for satisfactory clinical results. How to cite the article: Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC, Bandeca MC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: A case report. J Int Oral Health 2014;6(3):90-2.

  1. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  2. Summary of model to account for inhibition of CAM corrosion by porous ceramic coating

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, R., LLNL

    1998-03-31

    Corrosion occurs during five characteristic periods or regimes. These are summarized below. For more detailed discussion, see the attached Memorandum by Robert Hopper entitled `Ceramic Barrier Performance Model, Version 1.0, Description of Initial PA Input` and dated March 30, 1998.

  3. Going green with eco-friendly dentistry.

    Science.gov (United States)

    Avinash, Bhagyalakshmi; Avinash, B S; Shivalinga, B M; Jyothikiran, S; Padmini, M N

    2013-07-01

    Eco-friendly dentistry is currently transforming the medical and dental field to decrease its affect on our natural environment and reduce the amount of waste being produced. Eco-friendly dentistry uses a sustainable approach to encourage dentists to implement new strategies to try and reduce the energy being consumed and the large amount of waste being produced by the industry. Many reasonable, practical and easy alternatives do exist which would reduce the environmental footprint of a dental office were it to follow the 'green' recommendations. Dentist should take a leading role in the society by implementing 'green' initiatives to lessen their impact on the environment. This article provides a series of 'green' recommendations that dentists around the world can implement to become a leading Stewards of the environment.

  4. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  5. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-29

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.

  6. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  8. Achievement report for fiscal 1992. Research and development of ceramic gas turbine (Portable regenerative double-shaft ceramic gas turbine for portable power generation); 1992 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Kahanshiki hatsuden'yo saiseishiki ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    Research and development has been advanced on a ceramic gas turbine (CGT) with an output of 300-kW class and thermal efficiency of 42% or higher. Activities were performed in the following three fields: 1) research of heat resistant ceramic members, 2) research of elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, research was performed on forming the heat resistant ceramic members, and all-ceramic members constituting the basic type gas turbine were fabricated. Improvements were given on the problems discovered in the heat shock test, and the hot spin test. In Item 2, elementary researches were made on the basic technologies for the ceramic gas turbine, such as on the heat exchanger, combustor, and ceramic turbine, wherein discussions were given on improvement of mechanical strength and performance. In Item 3, design and prototype fabrication were performed on the basic type ceramic gas turbine, based on the results of research operations on the basic type (metallic gas turbine). Adjustment operations were launched on some of the components. (NEDO)

  9. Making green infrastructure healthier infrastructure.

    Science.gov (United States)

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  10. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  11. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  12. Performances of multi-channel ceramic photomultipliers

    International Nuclear Information System (INIS)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P.

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author)

  13. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  14. Masking ability of bi- and tri- laminate all-ceramic veneers on tooth-colored ceramic discs.

    Science.gov (United States)

    Farhan, Daniel; Sukumar, Smitha; von Stein-Lausnitz, Axel; Aarabi, Ghazal; Alawneh, Ahmad; Reissmann, Daniel R

    2014-01-01

    A predictable esthetic outcome is imperative when placing ceramic veneers. Discolored teeth pose a major challenge as sufficient material thickness is required to achieve a good esthetic result. There is limited evidence in the literature that compares the masking ability of multi-laminate veneers. The aim of this in-vitro study was to compare the masking ability of bi-laminate (BL) and tri-laminate (TL) all-ceramic veneers cemented on tooth-colored ceramic discs. A total of 40 veneers (shade A1, 10-mm diameter, 0.8-mm thick) were manufactured-20 BL veneers (0.4-mm pressable ceramic coping veneered with 0.4-mm thick enamel layer) and 20 TL veneers (0.4-mm coping veneered with 0.2-mm thick opaque interlayer and 0.2-mm thick enamel layer). A bonding apparatus was utilized to adhesively cement all veneers on the ceramic discs (shade A1), simulating teeth of light and dark color. The resulting groups (N = 10 each) were the reference groups (shade A1 ceramic base) BL-1 and TL-1 veneers, and the test groups (shade A4 ceramic base) BL-4 and TL-4 veneers. The color of the cemented veneers was measured using a spectrophotometer. The data were converted to CIE L*a*b* coordinates, and ΔE* were calculated to allow for statistical analysis. The color differences between the samples with the A1 and A4 ceramic bases were significantly lower when covered with TL veneers (mean ΔE*: 3.2 units) than with BL veneers (mean ΔE*: 4.0 units: p bi-laminate veneers. Patients with discolored/darker teeth may benefit from a more predictable esthetic result when teeth restored with tri-laminate rather than bi-laminate veneers. © 2014 Wiley Periodicals, Inc.

  15. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    Energy Technology Data Exchange (ETDEWEB)

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  16. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark); Jambhekar, V. A.; Helmig, R. [Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and Environmental Systems, Universität Stuttgart, Stuttgart (Germany)

    2016-06-08

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free–flow region. In order to analyze such interaction processes, a Representative Elementary Volume (REV)–scale model concept is presented for coupling non–isothermal multi–phase compositional porous–media flow and single–phase compositional laminar free–flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and its transport to the free–flow region according to the existent results from the literature.

  17. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  18. The technical ceramics (second part)

    International Nuclear Information System (INIS)

    Auclerc, S.; Poulain, E.

    2004-01-01

    This work deals with ceramics used in the nuclear and the automotive industries. Concerning the nuclear sector, ceramics are particularly used in reactors, in the treatment of radioactive wastes and for the storage of the ultimate wastes. Details are given about the different ceramics used. In the automobile sector, aluminium is principally used for its lightness and cordierite, basic material of catalyst supports is especially used in the automobile devices of cleansing. (O.M.)

  19. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  20. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  1. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  3. Fiscal 1997 achievement report. Research and development of synergy ceramics; 1997 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development is conducted on two subjects, that is, 1) hyper organized structure control technology and 2) structural element control technology. In addition, joint research and development is conducted on the creation of new materials by hyper organized structure controlling, hyper organized structure controlling for ceramics by a structurization reaction process, designing of precursors to ceramics, and the hyper organized structure control for ceramics by nanostructure process control. The joint research and development endeavors further deal with re-entrusted projects which involve researches on sintered structure control by powdery particulate structure control; dynamic process of synergy ceramics; oxynitride liquids, glasses, and glass-ceramics; and multifunctional ceramic laminates for engineering applications. Under subject 1), researches are made on the development of precursors into ceramics by utilizing chemical reactions of organic metal compounds, and analyses are conducted into the effects, exerted by the molecular structures of precursors and the conditions of a reaction for their development into ceramics, on the microstructures and various properties of the ceramics to be composed. Under subject 2), high strength, great hardness, and high resistance to wear are realized by allowing the precipitation of nano-particulates in crystals of a fine and very compact sintered body of alumina. (NEDO)

  4. What Makes Green Schools Better?

    Science.gov (United States)

    Schimmel, Barry

    2011-01-01

    Green energy represents a way to empower students by demonstrating creative problem-solving with an eye on protecting precious resources, both capital and natural. Many school districts have already taken the initiative during the past five years to implement energy projects, whether for the educational or economic opportunities, or both.…

  5. The SEED Initiative

    Science.gov (United States)

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  6. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    Science.gov (United States)

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  7. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  9. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  10. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  11. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  12. Green primary explosives: 5-nitrotetrazolato-N2-ferrate hierarchies.

    Science.gov (United States)

    Huynh, My Hang V; Coburn, Michael D; Meyer, Thomas J; Wetzler, Modi

    2006-07-05

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[Fe(II)(NT)(3)(H(2)O)(3)], cat(2)[Fe(II)(NT)(4)(H(2)O)(2)], cat(3)[Fe(II)(NT)(5)(H(2)O)], and cat(4)[Fe(II)(NT)(6)] with cat = cation and NT(-) = 5-nitrotetrazolato-N(2). With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N(2)-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries.

  13. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  14. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  15. Determination of Drucker-Prager failure criterion of α-SiC green compacts; Determinacion del criterio de rotura de Drucker-Prager de compactos en verde de α-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Achiaga, B.; Barea, R.; Candela, N.

    2016-08-01

    This paper is concerned with the mechanical behaviour of compacted ceramic green components of two α-SiC with different particle size-shape and purity with the purpose of evaluate the Drucker-Prager criterion in both material. Compaction pressures were between 60 and 100 MPa. The green compact were evaluated by two tests such as diametrical compression and uniaxial compression for different relative densities. These models are used both for die design as for parts design. The results show the different compression behaviour caused by the particles shape of each material. (Author)

  16. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  17. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  18. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  19. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  20. Establishing a green lights revolving fund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The report details the experiences of the City of Houston in establishing a Green Lights Revolving Fund. It provides examples of key documents and guidelines which can be used in other jurisdictions to establish an internal revolving fund to provide continuing monies through recapture of cost savings for an ongoing program of energy improvements in governmental facilities. It provides guidelines on how to establish a continuing source of funds for governmental facility energy improvements. The report provides background information on the ongoing energy improvement programs in the City of Houston, including its participation in the Environmental Protection Agency`s Green Lights Program. It reviews the steps required to establish a Green Lights Revolving Fund, including the administrative, legal, budgetary, accounting, interdepartmental, mayoral, and governing body approvals and actions needed to create a self-sustaining revolving fund devoted to energy improvements. The report also describes two funding sources in addition to the grant seed funds which were used to increase the initial funds available in the Green Lights Revolving Fund. It provides sample documents for modification and use in other jurisdictions that want to use similar funding sources. It reports the initial project submission and selection procedure and criteria, and provides a transferable project application kit based on the criteria specified. It also details a sample repayment memorandum of understanding between departments, which can be used in other governments. Other transferable products provided in the report are sample energy audit summaries which were conducted by qualified, independent staff to determine the accuracy of the departmental project costs and savings payback calculations.