WorldWideScience

Sample records for greatly reducing radiation

  1. Southern Great Plains Atmospheric Radiation Measurement Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  2. Radiation-induced leiomyosarcoma of the great vessels presenting as superior vena cava syndrome

    International Nuclear Information System (INIS)

    Weiss, K.S.; Zidar, B.L.; Wang, S.

    1987-01-01

    A patient with a pleomorphic intravascular leiomyosarcoma of the great vessels of the neck and mediastinum presented clinically with a superior vena cava syndrome. A latent period of 29 years elapsed between receiving orthovoltage radiation to the neck and right side of chest to treat recurrent ganglioneuroblastoma, and the appearance of a leiomyosarcoma and subsequent recurrences. The patient underwent partial resection of the tumor, received adjunct chemotherapy, and was shown to be free of disease by clinical tests and by magnetic resonance imaging (MRI) 17 months after completion of chemotherapy. The criteria for the diagnosis of radiation-induced sarcomas are reviewed in relation to the present case. The critical role of magnetic resonance imaging in both the diagnosis and continued follow-up of the patient is described. This would appear to be the first reported case of radiation-induced intravascular leiomyosarcoma of the great vessels of the neck and mediastinum presenting as a superior vena cava syndrome

  3. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  4. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  5. Great Tits (Parus major) reduce caterpillar damage in commercial apple orchards

    NARCIS (Netherlands)

    Mols, C.M.M.; Visser, M.E.

    2007-01-01

    Alternative ways to control caterpillar pests and reduce the use of pesticides in apple orchards are in the interest of the environment, farmers and the public. Great tits have already been shown to reduce damage under high caterpillar density when breeding in nest boxes in an experimental apple

  6. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  7. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake

    Directory of Open Access Journals (Sweden)

    Matsuoka Yutaka

    2012-05-01

    Full Text Available Abstract Background On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. Methods One month after the disaster, 424 of 1816 (24% disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6, depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D, fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI, and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R. Results Radiation exposure was a concern for 39 (9.2% respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. Conclusion The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers.

  8. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  9. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  10. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  11. Great tits (Parus major reduce caterpillar damage in commercial apple orchards.

    Directory of Open Access Journals (Sweden)

    Christel M M Mols

    Full Text Available Alternative ways to control caterpillar pests and reduce the use of pesticides in apple orchards are in the interest of the environment, farmers and the public. Great tits have already been shown to reduce damage under high caterpillar density when breeding in nest boxes in an experimental apple orchard. We tested whether this reduction also occurs under practical conditions of Integrated Pest Management (IPM, as well as Organic Farming (OF, by setting up an area with nest boxes while leaving a comparable area as a control within 12 commercial orchards. We showed that in IPM orchards, but not in OF orchards, in the areas with breeding great tits, apples had 50% of the caterpillar damage of the control areas. Offering nest boxes to attract insectivorous passerines in orchards can thus lead to more limited pesticide use, thereby adding to the natural biological diversity in an agricultural landscape, while also being economically profitable to the fruit growers.

  12. Great tits (Parus major) reduce caterpillar damage in commercial apple orchards.

    Science.gov (United States)

    Mols, Christel M M; Visser, Marcel E

    2007-02-07

    Alternative ways to control caterpillar pests and reduce the use of pesticides in apple orchards are in the interest of the environment, farmers and the public. Great tits have already been shown to reduce damage under high caterpillar density when breeding in nest boxes in an experimental apple orchard. We tested whether this reduction also occurs under practical conditions of Integrated Pest Management (IPM), as well as Organic Farming (OF), by setting up an area with nest boxes while leaving a comparable area as a control within 12 commercial orchards. We showed that in IPM orchards, but not in OF orchards, in the areas with breeding great tits, apples had 50% of the caterpillar damage of the control areas. Offering nest boxes to attract insectivorous passerines in orchards can thus lead to more limited pesticide use, thereby adding to the natural biological diversity in an agricultural landscape, while also being economically profitable to the fruit growers.

  13. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    Science.gov (United States)

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  14. Reducing occupational radiation exposures at LWRs

    International Nuclear Information System (INIS)

    Lattanzi, D.; Neri, C.; Papa, C.; Paribelli, S.

    1980-01-01

    The occupational radiation doses received by nuclear power plant personnel during a period of several years of operation are briefly reviewed. Comparisons are made between the data for BWRs and PWRs in order to identify the more ''critical'' reactor type, from a radiological poin; of view. Attention is also devoted to GCRs. Furthermore the areas which contribute most to personnel doses are considered and briefly reviewed. The main steps to be taken in order to reduce occupational radiation exposures at LWRs are discussed. (H.K.)

  15. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  16. Medical interventional procedures--reducing the radiation risks

    International Nuclear Information System (INIS)

    Cousins, C.; Sharp, C.

    2004-01-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up

  17. Medical interventional procedures--reducing the radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, C. E-mail: claire.cousins@addenbrookes.nhs.uk; Sharp, C

    2004-06-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up.

  18. Distance factor on reducing scattered radiation risk during interventional fluoroscopy

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Mat Isa; Zainal Jamaluddin; Mohd Firdaus Abdul Rahman; Mohd Khairusalih Mohd Zin

    2012-01-01

    Interventional Radiology (IR) is subspecialty of diagnostic radiology where minimally invasive procedures are performed using an x-ray as a guidance. This procedure can deliver high radiation doses to patient and medical staff compared with other radiological method due to long screening time. The use of proper shielding, shorten the exposure time and keep the distance are the practices to reduce scattered radiation risks to staff involve in this procedure. This project is to study the distance factor on reducing the scattered radiation effect to the medical staff. It also may provide the useful information which can be use to establish the scattered radiation profile during the IR for the sake of radiation protection and safety to the medical staff involved. (author)

  19. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  20. Advances in Nuclear Power Plant Water Chemistry in Reducing Radiation Exposure

    International Nuclear Information System (INIS)

    Febrianto

    2005-01-01

    Water quality in light water reactor in Pressurized Water Reactor as well as in Boiling Water Reactor has being gradually improved since the beginning, to reduce corrosion risk and radiation exposure level. Corrosion problem which occurred to both type of reactors can reduce the plants availability, increase the operation and maintenance cost and increase the radiation exposure. Corrosion and radiation exposure risk in both reactor rare different. BWR type reactor has more experiences in corrosion problem because at the type of reactor lets water to boil in the core, while at PWR type reactor, water is kept not to boil. The BWR reactor has also higher radiation exposure rather than the PWR one. Many collaborative efforts of plants manufacturers and plant operator utilities have been done to reduce the radiation exposure level and corrosion risk. (author)

  1. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  2. Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoon; Kim, Kyomin; Kim, Woochul [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

  3. Vision 20/20: Increased image resolution versus reduced radiation exposure

    International Nuclear Information System (INIS)

    Ritman, Erik L.

    2008-01-01

    patterns resulting from moving grids which alter the refraction of x rays, that have passed through the body, in a predictable fashion, and (3) theoretically, by an image generated from the change in time-of-flight of x-ray photons passing through the body. Imaging phase shift or change in time-of-flight, rather than attenuation, of x-ray photons through tissues presents formidable technological problems for whole-body 3D imaging. However, if achievable in a routine clinical setting, these approaches have the potential for greatly expanding the use of x-ray imaging for screening. This overview examines the increased contrast resolution and reduced radiation exposure that might be achievable by the above-mentioned methods

  4. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    Science.gov (United States)

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  5. Development of radiation immunology

    International Nuclear Information System (INIS)

    Xie Yi; Dang Bingrong; Bing Tao; Zhang Hong; Li Wenjian; Liu Bing

    2005-01-01

    Radiation immunology as a new subject has made a great progress in recent years, especially in the radiation hormesis. At the same time, the research of radiobiological effect on heavy ions has played an important role in the cancer therapy, especially on the radiation immunology of heavy ions in the outer space. In this review, the authors summarized the status and development of radiation-immunology, and try to find out some better ways which can increase efficient killing on tumours, but reduce the damages on normal tissues. (authors)

  6. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1992-01-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  7. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  8. Zinc injection helps reduce radiation field buildup in BWRs

    International Nuclear Information System (INIS)

    Wood, C.

    1991-01-01

    The injection of zinc into the reactor water of BWRs (Boiling Water Reactors) was a technique developed by General Electric (GE) and the Electric Power Research Institute (EPRI) to control the buildup of radiation fields from cobalt-60 on out-of-core piping. The presence of 5-10ppb zinc in the reactor water reduces the growth of oxide films on stainless steel surfaces, thereby reducing the number of sites available for the incorporation of cobalt; zinc also competes with cobalt for the sites. In September 1990, EPRI organized a workshop at the request of several US utilities to provide a forum to discuss experiences with zinc injection. The meeting focused on six main issues: the effect of zinc on radiation fields in normal water chemistry; the radiation buildup in hydrogen water chemistry, with and without zinc; the effects of zinc-65; the corrosion of fuel cladding and structural materials; the performance of zinc injection and monitoring equipment; and planning for zinc injection. (author)

  9. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  10. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  11. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  12. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    Science.gov (United States)

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  13. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  14. The development of occupational, public and environmental radiation protection legislation in Great Britain

    International Nuclear Information System (INIS)

    Bines, W.P.; Chandler, S.D.

    2000-01-01

    In Great Britain, legislation to protect workers exposed to ionising radiation has developed separately from, but largely in parallel with, legislation to protect the public and the environment. Occupational radiation protection started from a narrow and industry specific base in 1947. Over the succeeding years, and partly in response to the obligations arising from the United Kingdom's accession to the European Community, this narrow base has broadened. As the nuclear power industry developed in Great Britain so did a separate and rigorous regulatory regime for nuclear installations, starting with the Nuclear Installations (Licensing and Insurance) Act 1959. The 1959 Act was amended by the Nuclear Installations Act 1965. From 1974, all occupational health and safety legislation began to be brought under the umbrella of a new legal framework, the Health and Safety at Work etc. Act, which for the first time adopted an across-the board approach to all work activities and goal-setting, rather than prescriptive, legislation. The purpose of the Act was to provide one comprehensive and integrated system of law concerning health and safety (including the self-employed) and also public safety, so far as it was affected by work activities. The Act also provided for consultation with all interested parties during the development of legislation. The first across the board occupational radiation protection legislation, covering all uses and users of ionising radiation (including, for the first time, exposure to natural radiation), arrived with the Ionising Radiations Regulations 1985 and supporting Approved Codes of Practice and non-statutory guidance. The need for some controls on the use of radioactive materials that went wider than simply the protection of workers was recognised in 1948, when the first Radioactive Substances Act was made. Although the 1948 Act was the first to mention radioactive waste specifically, it proved ineffective as a regulatory tool. The first

  15. Reducing radiation exposure in newborns with birth head trauma

    Directory of Open Access Journals (Sweden)

    Irina A. Kriukova

    2017-12-01

    Full Text Available Background. Birth head trauma causing intracranial injury is one of the most common causes of neonatal mortality and morbidity. In case of suspected cranial fractures and intracranial hematomas, diagnostic methods involving radiation, such as x-ray radiography and computed tomography, are recommended. Recently, an increasing number of studies have highlighted the risk of cancer complications associated with computed tomography in infants. Therefore, diagnostic methods that reduce radiation exposure in neonates are important. One such method is ultrasonography (US. Aim. We evaluated US as a non-ionizing radiation method for diagnosis of cranial bone fractures and epidural hematomas in newborns with cephalohematomas or other birth head traumas. Material and methods. The study group included 449 newborns with the most common variant of birth head trauma: cephalohematomas. All newborns underwent transcranial-transfontanelle US for detection of intracranial changes and cranial US for visualization of bone structure in the cephalohematoma region. Children with ultrasonic signs of cranial fractures and epidural hematomas were further examined at a children’s hospital by x-ray radiography and/or computed tomography. Results and discussion. We found that cranial US for diagnosis of cranial fractures and transcranial-transfontanelle US for diagnosis of epidural hematomas in newborns were highly effective. In newborns with parietal cephalohematomas (444 children, 17 (3.8% had US signs of linear fracture of the parietal bone, and 5 (1.1% had signs of ipsilateral epidural hematoma. Epidural hematomas were visualized only when US was performed through the temporal bone and not by using the transfontanelle approach. Sixteen cases of linear fractures and all epidural hematomas were confirmed by computed tomography. Conclusion. The use of US diagnostic methods reduced radiation exposure in newborns with birth head trauma. US methods (transcranial

  16. Strategies to reduce radiation dose in cardiac PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung Hsin; Wu, Nien-Yun [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Jay [Institute of Radiological science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2011-08-21

    Background: Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications. Materials: Image quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan. Results: Radiation dose in RGH technique was 22.2{+-}4.0 mSv. It was reduced to 10.95{+-}0.82 and 4.13{+-}0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53{+-}0.5 to 0.16{+-}0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols. Conclusion: The proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  17. Environmental radiation level, radiation anxiety, and psychological distress of non-evacuee residents in Fukushima five years after the Great East Japan Earthquake: Multilevel analyses

    Directory of Open Access Journals (Sweden)

    Maiko Fukasawa

    2017-12-01

    Full Text Available The present study aimed to clarify the associations among radiation exposure or psychological exposure to the Fukushima nuclear power plant accident (i.e., fear/anxiety immediately after the accident, current radiation anxiety, and psychological distress among non-evacuee community residents in Fukushima five years after the Great East Japan Earthquake, which occurred in March 2011. A questionnaire survey was administered to a random sample of non-evacuee community residents from 49 municipalities of Fukushima prefecture from February to April 2016, and data from 1684 respondents (34.4% were analyzed. Environmental radiation levels at the time of the accident were ascertained from survey meter data, while environmental radiation levels at the time of the survey were ascertained from monitoring post data. In the questionnaire, immediate fear/anxiety after the accident, current radiation anxiety, and psychological distress were measured using a single-item question, a 7-item scale, and K6, respectively. Multilevel linear or logistic regression models were applied to analyze the determinants of radiation anxiety and psychological distress. The findings showed that environmental radiation levels at the time of the survey were more strongly associated with radiation anxiety than radiation levels immediately after the accident. Disaster-related experiences, such as direct damage, disaster-related family stress, and fear/anxiety after the accident, and demographic characteristics (e.g., younger age, being married, low socioeconomic status were significantly associated with radiation anxiety. Environmental radiation levels at the time of the accident or survey were not significantly associated with psychological distress. Radiation anxiety largely mediated the association between fear/anxiety after the accident and psychological distress. In addition to environmental radiation levels, respondents’ radiation anxiety was affected by multiple factors

  18. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  19. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  20. Effect of the Great Attractor on the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, E [Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics; Gorski, K M [Los Alamos National Lab., NM (USA); Dekel, A [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1990-06-07

    ANISOTROPY in the cosmic microwave background radiation (CMB) is expected as a result of fluctuations in gravitational potential caused by large-scale structure in the Universe. The background radiation is redshifted as it climbs out of gravitational wells. Here we present a map of the anisotropy in CMB temperature {Delta}T/T of our region of the Universe as viewed by a distant observer, predicted on the basis of the gravitational potential field. We calculate this field in the vicinity of the Local Group of galaxies from the observed peculiar (non-Hubble) velocities of galaxies, under the assumption that the peculiar motions are induced by gravity. If the cosmological density parameter {Omega} is 1, the gravitational potential field of the Great Attractor and surrounding regions produces a maximum Sachs-Wolfe anisotropy of {Delta}T/T=(1.7{plus minus}0.3) x 10{sup -5} on an angular scale of 1deg. Doppler and adiabatic contributions to this anisotropy are expected to be somewhat larger. If similar fluctuations in the gravitational potential are present elsewhere in the Universe, the anisotropy present when the CMB was last scattered should be visible from the Earth, and should be detectable in current experiments. A fundamental test of whether gravity is responsible for the generation of structure in the Universe can be made by looking for the imprint in the CMB of deep potential wells similar to those found in our neighbourhood, (author).

  1. Radiation shielding cloth

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Tamura, Shoji.

    1989-01-01

    Radiation shielding cloth having radiation shielding layers comprising a composition of inorganic powder of high specific gravity and rubber are excellentin flexibility and comfortable to put on. However, since they are heavy in the weight, operators are tired upon putting them for a long time. In view of the above, the radiation ray shielding layers are prepared by calendering sheets obtained by preliminary molding of the composition to set the variation of the thickness within a range of +15% to -0% of prescribed thickness. Since the composition of inorganic powder at high specific gravity and rubber used for radiation ray shielding comprises a great amount of inorganic powder at high specific gravity blended therein, it is generally poor in fabricability. Therefor, it is difficult to attain fine control for the sheet thickness by merely molding a composition block at once. Then, the composition is at first preliminarily molded into a sheet-like shape which is somewhat thickener than the final thickness and then finished by calendering, by which the thickness can be reduced in average as compared with conventional products while keeping the prescribed thickness and reducing the weight reduce by so much. (N.H.)

  2. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  3. Updated estimates of the proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation

    International Nuclear Information System (INIS)

    Little, Mark P; Wakeford, Richard; Kendall, Gerald M

    2009-01-01

    The aetiology of childhood leukaemia remains generally unknown, although exposure to moderate and high levels of ionising radiation, such as was experienced during the atomic bombings of Japan or from radiotherapy, is an established cause. Risk models based primarily upon studies of the Japanese A-bomb survivors imply that low-level exposure to ionising radiation, including to ubiquitous natural background radiation, also raises the risk of childhood leukaemia. In a recent paper (Wakeford et al 2009 Leukaemia 23 770-6) we estimated the proportion of childhood leukaemia incidence in Great Britain attributable to natural background radiation to be about 20%. In this paper we employ the two sets of published leukaemia risk models used previously, but use recently published revised estimates of natural background radiation doses received by the red bone marrow of British children to update the previous results. Using the newer dosimetry we calculate that the best estimate of the proportion of cases of childhood leukaemia in Great Britain predicted to be attributable to this source of exposure is 15-20%, although the uncertainty associated with certain stages in the calculation (e.g. the nature of the transfer of risk between populations and the pertinent dose received from naturally occurring alpha-particle-emitting radionuclides) is significant. The slightly lower attributable proportions compared with those previously derived by Wakeford et al (Leukaemia 2009 23 770-6) are largely due to the lower doses (and in particular lower high LET doses) for the first year of life.

  4. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  5. Spatial variation of natural radiation and childhood leukaemia incidence in Great Britain

    International Nuclear Information System (INIS)

    Richardson, Sylvia; Monfort, Christine; Green, Martyn; Muirhead, Colin; Draper, Gerald

    1995-01-01

    This paper describes an analysis of the geographical variation of childhood leukaemia incidence in Great Britain over a 15 year period in relation to natural radiation (gamma and radon). Data at the level of the 459 district level local authorities in England, Wales and regional districts in Scotland are analysed in two complementary ways: first, by Poisson regressions with the inclusion of environmental covariates and a smooth spatial structure; secondly, by a hierarchical Bayesian model in which extra-Poisson variability is modelled explicitly in terms of spatial and non-spatial components. From this analysis, we deduce a strong indication that a main part of the variability is accounted for by a local neighbourhood 'clustering' structure. This structure is furthermore relatively stable over the 15 year period for the lymphocytic leukaemias which make up the majority of observed cases. We found no evidence of a positive association of childhood leukaemia incidence with outdoor or indoor gamma radiation levels. There is no consistent evidence of any association with radon levels. Indeed, in the Poisson regressions, a significant positive association was only observed for one 5-year period, a result which is not compatible with a stable environmental effect. Moreover, this positive association became clearly non-significant when over-dispersion relative to the Poisson distribution was taken into account. (author)

  6. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    International Nuclear Information System (INIS)

    Erden, M.; Bor, N.M.

    1984-01-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050)

  7. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  8. Calorie restriction reduces the incidence of radiation-induced myeloid leukemia and spontaneous tumor

    International Nuclear Information System (INIS)

    Yoshida, Kazuko

    1999-01-01

    The host-defense mechanisms against cancers are known to be modulated by changing the environmental factor(s). The spontaneous incidence of myeloid leukemia is about 1% in C3H/He mice, and the incidence increases up to 23.3% when a single dose of radiation, 3 Gy X-ray, is exposed to a whole-body. Since calorie restriction was known to reduce the incidence of spontaneous tumors, a question as to whether such radiation induced-increase of myeloid leukemia would be also decreased by calorie restriction, was aimed to answer to elucidate possible mechanism of radiation-induced myeloid leukemia. By the calorie restriction, the incidence of myeloid leukemia was significantly decreased; it was reduced to 7.9% and 10.7% when restriction was started before (6 weeks old) and after (10 weeks old) irradiation, respectively. In addition, the latent period of the myeloid leukemia in the groups for calorie restriction was significantly extended at a greater extent as compared with the control diet groups. Number of hematopoietic stem cells, the possible target cells for radiation-induced leukemias, in the groups for the calorie restriction demonstrated a significant decrease, especially in the spleen, as compared with that in the control, when the evaluation was made at the time of radiation exposure. Then, we examined whether the decreased number of target cells at the time of exposure is caused by the reduction of radiation-induced myeloid leukemia with caloric restriction. The third restricted groups were fed 65 kcal diet (restricted diet) for the first 4 weeks i.e. from 6 weeks to 10 weeks old, then, the mice were fed with control diet after radiation. The incidence of myeloid leukemia in this group was slightly decreased but did not show statistically significance. Therefore, the caloric restriction seems to be more effective in the promotion stage than the initiation stage on radiation-induced leukemogenesis. It is well known that C3H/He mice develop hepatoma spontaneously

  9. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  10. Greatly reduced emission of greenhouse gases from the wood-processing industry

    International Nuclear Information System (INIS)

    2004-01-01

    The strong support for biomass energy in the Norwegian wood-processing industry during the last 10-15 years has contributed greatly to a considerable reduction of the emission of greenhouse gases. The potential for further reductions is primarily linked with the use of oil and involves only a few works. Oil can be replaced by other fuels, and process-technical improvements can reduce the emissions. According to prognoses, emissions will go on decreasing until 2007, when the total emission of greenhouse gases from the wood-processing industry will be about 13 per cent less than in 1998. Carbon dioxide (CO 2 ) amounts to 90 per cent of the total emission, the remaining parts being methane (CH 4 ) from landfills and dumps, and small amounts of N 2 O

  11. Ways of reducing radiation exposure in a future nuclear power economy

    International Nuclear Information System (INIS)

    Morgan, K.Z.

    1976-01-01

    The reasons for attempting to reduce radiation exposure in a future nuclear power economy are first discussed. This is followed by a detailed examination of ways for reducing exposures. The entire fuel cycle from uranium mining through fuel reprocessing is covered but special attention is devoted to reactors, fuel and waste shipping and fuel reprocessing

  12. Reduced radiation exposure to the mammary glands in thoracic computed tomography using organ-based tube-current modulation

    International Nuclear Information System (INIS)

    Munechika, Jiro; Ohgiya, Yoshimitsu; Gokan, Takehiko; Hashimoto, Toshi; Iwai, Tsugunori

    2013-01-01

    Organ-based tube-current modulation has been used to reduce radiation exposure to specific organs. However, there are no reports yet published on reducing radiation exposure in clinical cases. In this study, we assessed the reduction in radiation exposure to the mammary glands during thoracic computed tomography (CT) using X-CARE. In a phantom experiment, the use of X-CARE reduced radiation exposure at the midline of the precordial region by a maximum of 45.1%. In our corresponding clinical study, CT was performed using X-CARE in 15 patients, and without X-CARE in another 15. Compared to the non-X-CARE group, radiation exposure was reduced in the X-CARE group at the midline of the precordial region by 22.3% (P 0.05). X-CARE thus reduced radiation exposure at the midline of the precordial region and allowed us to obtain consistent CT values without increasing noise. However, this study revealed increases in radiation exposure at the lateral sides of the breasts. It is conceivable that patients' breasts were laterally displaced by gravity under the standard thoracic imaging conditions. Further studies that consider factors such as body size and adjustment of imaging conditions may be needed in the future. (author)

  13. Improvement of NSSS design to reduce occupational radiation exposure (ORE)

    International Nuclear Information System (INIS)

    Dubourg, M.

    1985-05-01

    As a result of its R and D activities, FRAMATOME has initiated concrete measures to help to reduce personnel radiation exposure. These measures include reduction in the sources and quantity of activable products, and in the duration of personnel exposure during maintenance

  14. Measures to reduce occupational radiation exposure in PET facilities from nurses' point of view

    International Nuclear Information System (INIS)

    Miyazawa, Keiko; Takahashi, Juri; Mochiduki, Yoshikazu

    2006-01-01

    In parallel with the increase in the number of institutions having PET facilities, the number of nurse working in these facilities has also increased, and the issue of occupational radiation exposure has assumed ever greater importance. In our clinic, since nurses have started to administer FDG intravenous injections, their annual radiation exposure has amounted to 4.8 - 7.1 mSv. To reduce their annual radiation exposure to less than 5 mSv, we identified sources of increased exposure and considered countermeasures based on this information. By implementing countermeasures such as improvements in daily working conditions and ways to avoid various troubles, it was possible to reduce the annual radiation exposure of all nurses to less than 5 mSv. Our experience demonstrates that to provide a working environment with a minimum of occupational radiation exposure, educational training and enhancement of knowledge and technical skills are vital. (author)

  15. Initiatives to reduce the occupational radiation exposure of ABWR plants

    International Nuclear Information System (INIS)

    Hirasawa, Hajime; Urata, Hidehiro; Ueda, Taku; Yamamoto, Seiji; Yaita, Yumi

    2014-01-01

    Toshiba has carried out radiation exposure reduction by radiation level reduction, as reduction of reactor water activated corrosion products concentration, reduction of activated corrosion products deposition and radiation shielding, and exposure time reduction, as remote control and improvement of maintenance work procedures. Water chemistry has been mainly carried out reduction of reactor water activated corrosion products concentration and reduction of activated corrosion products deposition in radiation level reduction. The reduction measures of reactor water activated corrosion products concentration are mainly reduction of iron crud concentration and reduction of cobalt ion concentration. The activated corrosion products deposition are reduced by the means of water quality control and the surface treatment. Water quality control for reduction of activated corrosion products deposition moves to ultra low iron high nickel control from Ni/Fe ratio control. The surface treatments are adopted to the stainless steel piping and carbon steel piping. As a measure further to radiation exposure reduction for ABWR (Advanced Boiling Water Reactors), we report on the effect of generation amount reduction by the adoption of alternate material and the effect of deposition reduction by material change of piping and the adoption of advanced water quality control, etc. (author)

  16. The use of ultrasound and infrared radiation to reduce microbiological contamination of raw materials in the production of citric acid

    International Nuclear Information System (INIS)

    Sharova, N.Yu.; Kamen'kova, N.V.

    2012-01-01

    The microflora of the main raw materials for producing citric acid (beet molasses and grain) is capable of greatly reducing the yield of target metabolite or changing the focus of biosynthesis. Rye, oats and barley grain with humidity of 16% and its grinds (a particle size 1 mm) was treated ultrasound having a capacity of 1.5 kW, frequency 15 and 22 kHz. Infrared radiation treatment was carried out at t 120 to 180 degrees C for 2-30 min and the exposure power W/sq. cm. In molasses there were found spore-forming heat-resistant bacteria with Bacillus subtilis and B. mesentericus being predominated, gaseous, nitrite-forming, acid-forming bacteria, yeast of gen. Candida, Leuconostoc mesenteroides that consume sugar, nitric and mineral substances reducing the biosynthetic activity of Aspergillus niger producer. For molasses treated with ultrasound 1.5 kW and frequency 22 kHz, the total viable count reduces by the order compared to the control. Increasing the exposure time up to 30 min results in slightly reducing the achieved level. Under influence of ultrasound the contamination with bacteria and mold fungi of rye, oats and barley grain grinds reduces by 2-3 orders compared to the control and much more at frequency 22 kHz. The great increase in the parameter of the total viable count is achieved by IR-treatment of grain and grinds. The microflora practically entirely dies by increasing the temperature up to 160-180 degrees C even in case of 2 minute exposure. IR treatment providing t 120 degrees C for 2-6 min resulted in reducing the number of cells of microorganisms by 3-4 orders compared to the untreated control

  17. Reducing waste generation and radiation exposure by analytical method modification

    International Nuclear Information System (INIS)

    Ekechukwu, A.A.

    1996-01-01

    The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications

  18. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  19. Ultraviolet radiation, human health, and the urban forest

    Science.gov (United States)

    Gordon M. Heisler; Richard H. Grant

    2000-01-01

    Excess exposure to ultraviolet (UV) radiation from the sun, particularly the ultraviolet B (UVB) portion, has been linked with adverse effects on human health ranging from skin cancers to eye diseases such as cataracts. Trees may prevent even greater disease rates in humans by reducing UV exposure. Tree shade greatly reduces UV irradiance when both the sun and sky are...

  20. Feasibility of radiation preservation of potatoes and onions in Pakistan

    International Nuclear Information System (INIS)

    Khan, Ismail; Muhammad, Amir.

    1975-01-01

    The storage problem of potatoes and onions in Pakistan has been explained. The feasibility of preserving these vegetables by radiation and the cost and economics of the technology is examined. It has been concluded that radiation with subsequent storage at 15 0 -20 0 C will not only reduce the spoilage losses considerably but also give great benefit to the producer

  1. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  2. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, Alessandro [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 206A Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States); Mansour, Nagi N. [NASA Ames Research Center, Moffett Field, 94035 CA (United States); Panesi, Marco, E-mail: munafo@illinois.edu, E-mail: nagi.n.mansour@nasa.gov, E-mail: m.panesi@illinois.edu [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States)

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α , β , and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  3. Great hammerhead sharks swim on their side to reduce transport costs.

    Science.gov (United States)

    Payne, Nicholas L; Iosilevskii, Gil; Barnett, Adam; Fischer, Chris; Graham, Rachel T; Gleiss, Adrian C; Watanabe, Yuuki Y

    2016-07-26

    Animals exhibit various physiological and behavioural strategies for minimizing travel costs. Fins of aquatic animals play key roles in efficient travel and, for sharks, the functions of dorsal and pectoral fins are considered well divided: the former assists propulsion and generates lateral hydrodynamic forces during turns and the latter generates vertical forces that offset sharks' negative buoyancy. Here we show that great hammerhead sharks drastically reconfigure the function of these structures, using an exaggerated dorsal fin to generate lift by swimming rolled on their side. Tagged wild sharks spend up to 90% of time swimming at roll angles between 50° and 75°, and hydrodynamic modelling shows that doing so reduces drag-and in turn, the cost of transport-by around 10% compared with traditional upright swimming. Employment of such a strongly selected feature for such a unique purpose raises interesting questions about evolutionary pathways to hydrodynamic adaptations, and our perception of form and function.

  4. A history of presatellite investigations of the earth's radiation budget

    Science.gov (United States)

    Hunt, G. E.; Kandel, R.; Mecherikunnel, A. T.

    1986-01-01

    The history of radiation budget studies from the early twentieth century to the advent of the space age is reviewed. By the beginning of the 1960's, accurate radiative models had been developed capable of estimating the global and zonally averaged components of the radiation budget, though great uncertainty in the derived parameters existed due to inaccuracy of the data describing the physical parameters used in the model, associated with clouds, the solar radiation, and the gaseous atmospheric absorbers. Over the century, the planetary albedo estimates had reduced from 89 to 30 percent.

  5. The great advances in radiation measurements

    International Nuclear Information System (INIS)

    Brodsky, A.

    2002-01-01

    The title of this banquet talk was selected to entertain conferees with recollections of major advances in dosimetry that have stimulated appetites for scientific progress. Recalling over fifty years of use of dosimetric instruments and concepts in the 1950-2000 era leads to an appreciation of many advances in solid state dosimetry, which others here know well and pursue vigorously. This author has been mainly a user, admirer, and interpreter of the fundamental methods of dose measurement. These advances have allowed ease of application in radiation protection and medical physics, for determining current routine and accidental exposures to workers, and for precise radiotherapeutic dose delivery. In more recent years, advances in identifying means of locating selective depositions of energy in various materials are providing ways of retrospectively assessing doses to tissue that were deposited many years ago. These methods also will allow development of quantitative theories of radiation damage once the lesions of interest are identified through further advances in molecular genetics. Yet, reflections on the past fifty years lead to increasing appreciation of the enormous achievements of our predecessors in the 1900-1950 period. Therefore, this presentation emphasises methods used by the author and some of his data interpretations during his 52-year career, with some examination of the earlier origin of some of these methods. (author)

  6. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  7. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Monobe, Manami

    2002-01-01

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/μm carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)

  8. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    Science.gov (United States)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  9. Potentials of ionizing radiation in reducing hazards to man and environment

    Energy Technology Data Exchange (ETDEWEB)

    Mullie, W C; Van Laerhoven, M J.A.M.; Kroes, R

    1991-07-01

    The main goal of the title study was to compare a relevant number of conventional processes and technologies for a range of uses with the application of ionizing radiation technology. Special emphasis is given to the hazardous effects of contemporary processes and chemicals on man and environment and to the potential role of the radiation processing technology, gamma irradiation in particular, in reducing these hazards. Based on their quantities and on (eco)toxicological criteria, four fields of application were identified a priori as potentially of interest for radiation processing. These fields of application are food preservation, sterilization and sanitization of pharmaceuticals and cosmetics, waste water and drinking water disinfection, and disinfection of sewage sludge and infectious hospital waste. Other fields of application as mentioned above are discussed in a more general matter. 12 figs., 31 tabs., 4 apps., refs.

  10. Reducing radiation exposure in an electrophysiology lab with introduction of newer fluoroscopic technology

    Directory of Open Access Journals (Sweden)

    Munish Sharma

    2017-09-01

    Full Text Available The use of fluoroscopic devices exposes patients and operators to harmful effects of ionizing radiation in an electrophysiology (EP lab. We sought to know if the newer fluoroscopic technology (Allura Clarity installed in a hybrid EP helps to reduce prescribed radiation dose. We performed radiation dose analysis of 90 patients who underwent various procedures in the EP lab at a community teaching hospital after the introduction of newer fluoroscopic technology in June of 2016.Watchman device insertion, radiofrequency ablation procedures, permanent pacemaker (PPM/implantable cardioverter defibrillator (ICD placement and battery changes were included in the study to compare radiation exposure during different procedures performed commonly in an EP lab. In all cases of watchman device placement, radiofrequency ablation procedures, PPM/ICD placement and battery changes, there was a statistically significant difference (<0.05 in radiation dose exposure. Significant reduction in radiation exposure during various procedures performed in an EP lab was achieved with aid of newer fluoroscopic technology and better image detection technology.

  11. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    International Nuclear Information System (INIS)

    Hindley, Andrew; Zain, Zakiyah; Wood, Lisa; Whitehead, Anne; Sanneh, Alison; Barber, David; Hornsby, Ruth

    2014-01-01

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected

  12. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Andrew, E-mail: andrew.hindley@lthtr.nhs.uk [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom); Zain, Zakiyah [College of Arts and Sciences, Universiti Utara Malaysia, Kedah (Malaysia); Wood, Lisa [Department of Social Sciences, Lancaster Medical School, Lancaster (United Kingdom); Whitehead, Anne [Medical and Pharmaceutical Statistics Research Unit, Lancaster University, Lancaster (United Kingdom); Sanneh, Alison; Barber, David; Hornsby, Ruth [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom)

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  13. State of damage of radiation facilities in great Hanshin earthquake

    International Nuclear Information System (INIS)

    1995-01-01

    The southern Hyogo Prefecture earthquake of magnitude 7.2 occurred in the early morning of January 17, 1995. The outline of the earthquake and dead and injured, the damages of buildings, life lines, roads, railways and harbors, liquefaction phenomena, the state of occurrence of fires and so on are reported. The districts where the earthquakes of magnitude 5 or stronger occurred, and the radiation facilities in those districts are shown. The state of damage of radiation facilities in past earthquakes is summarized. From January 17 to 19 after the earthquake, Science and Technology Agency gave necessary instruction to and heard the state of damage from 79 permitted facilities in the areas of magnitude 7 or 6 by telephone, and received the report that there was not the fear of radiation damage in all facilities. Also the state of damage of radiation facilities was investigated at the actual places, and the questionnaires on the state of radiation facilities and the action at the time of the earthquake were performed. The state of radiation facilities accompanying the earthquake is reported. The matters to be reflected to the countermeasures to earthquakes anew for the protection of facilities, communication system, facility checkup system and the resumption of use are pointed out. (K.I.)

  14. Guide to reducing radiation exposure to as low as reasonably achievable (ALARA)

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.

    1980-04-01

    This document is designed to provide DOE contractor personnel with general guidance regarding programs and techniques to reduce radiation exposures to as low as reasonably achievable (ALARA). Thus it is directed towards a broad audience, and should have special relevance and interest for operating management as well as radiation protection personnel. It is well recognized that each contractor has needs specific and critical to its radiation protection program. Hence no single set of specific and detailed criteria can be set down as a prescription for achieving the ALARA goal. Rather, general guidance in the form of broad principles is given in order to acquaint management with ALARA needs and concepts. The purpose is to encourage maximum management support of the technical personnel responsible for carrying out day-to-day radiation protection activities. Although primarily written for management, this document also contains technical guidance of potential value to those directly involved in radiation protection activities. Again it should be stressed that what is provided is guidance, and is therefore not mandatory.

  15. Guide to reducing radiation exposure to as low as reasonably achievable (ALARA)

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1980-04-01

    This document is designed to provide DOE contractor personnel with general guidance regarding programs and techniques to reduce radiation exposures to as low as reasonably achievable (ALARA). Thus it is directed towards a broad audience, and should have special relevance and interest for operating management as well as radiation protection personnel. It is well recognized that each contractor has needs specific and critical to its radiation protection program. Hence no single set of specific and detailed criteria can be set down as a prescription for achieving the ALARA goal. Rather, general guidance in the form of broad principles is given in order to acquaint management with ALARA needs and concepts. The purpose is to encourage maximum management support of the technical personnel responsible for carrying out day-to-day radiation protection activities. Although primarily written for management, this document also contains technical guidance of potential value to those directly involved in radiation protection activities. Again it should be stressed that what is provided is guidance, and is therefore not mandatory

  16. Improved radiation protection for physicians performing cardiac catheterization

    International Nuclear Information System (INIS)

    Gertz, E.W.; Wisneski, J.A.; Gould, R.G.; Akin, J.R.

    1982-01-01

    Physicians and their assistants performing diagnostic angiography must be concerned with the radiation exposure they receive. The introduction of hemiaxial projections for imaging has increased diagnostic accuracy but has also greatly increased the physicians' exposure to scattered radiation. This increase is especially critical for the eyes and thyroid of the physician who routinely performs these procedures. To reduce such exposure a ceiling-suspended shield (60 x 45 cm), made of 6.4 mm glass with a 19.5 kg/m2 (4 lb/ft2) lead equivalency, was developed. During procedures the shield is interposed between the physician and the region of the patient acting as the source of scattered radiation. The degree of radiation protection to the operator was assessed by measuring the distribution of scattered radiation in the vicinity of the operator with and without the shield. The effectiveness of the shield was determined in the 30 degrees right anterior oblique (RAO), 5 degrees left anterior oblique (LAO), 35 degrees LAO, and 50 degrees LAO-15 degrees cranial angulations. At critical heights such as the level of the eyes and thyroid, scattered radiation levels were reduced by 85% or greater in all angulations. Without interfering with the physician's ability to observe the patient or manipulate the catheter, this shield can significantly reduce the physician's exposure to radiation

  17. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2016-09-01

    Full Text Available Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = −0.01 ± 0.03, whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02.

  18. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    International Nuclear Information System (INIS)

    Xiang, Bin; Han, Lichi; Wang, Xinyue; Tang, Ling; Li, Kailiang; Li, Xiuxiu; Zhao, Xibo; Xia, Miaomiao; Zhou, Xixi; Zhang, Fuyin; Liu, Ke Jian

    2016-01-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  19. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bin, E-mail: xiangbin72@163.com [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Han, Lichi [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Wang, Xinyue [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Tang, Ling [Life Sciences and Technology College, Dalian University, Dalian (China); Li, Kailiang [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Li, Xiuxiu [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhao, Xibo [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Xia, Miaomiao [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States); Zhang, Fuyin [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States)

    2016-11-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  20. The application of entropy weight TOPSIS method to optimal points in monitoring the Xinjiang radiation environment

    International Nuclear Information System (INIS)

    Feng Guangwen; Hu Youhua; Liu Qian

    2009-01-01

    In this paper, the application of the entropy weight TOPSIS method to optimal layout points in monitoring the Xinjiang radiation environment has been indroduced. With the help of SAS software, It has been found that the method is more ideal and feasible. The method can provide a reference for us to monitor radiation environment in the same regions further. As the method could bring great convenience and greatly reduce the inspecting work, it is very simple, flexible and effective for a comprehensive evaluation. (authors)

  1. Direct coronary stenting in reducing radiation and radiocontrast consumption

    International Nuclear Information System (INIS)

    Caluk, Jasmin; Osmanovic, Enes; Barakovic, Fahir; Kusljugic, Zumreta; Terzic, Ibrahim; Caluk, Selma; Sofic, Amela

    2010-01-01

    Coronary stenting is the primary means of coronary revascularization. There are two basic techniques of stent implantation: stenting with balloon predilatation of stenosis and stenting without predilatation (direct stenting). Limiting the time that a fluoroscope is activated and by appropriately managing the intensity of the applied radiation, the operator limits radiation in the environment, and this saves the exposure to the patient and all personnel in the room. Nephrotoxicity is one of the most important properties of radiocontrast. The smaller amount of radiocontrast used also provides multiple positive effects, primarily regarding the periprocedural risk for the patients with the reduced renal function. The goal of the study was to compare fluoroscopy time, the amount of radiocontrast, and expenses of material used in direct stenting and in stenting with predilatation. In a prospective study, 70 patients with coronary disease were randomized to direct stenting, or stenting with predilatation. Fluoroscopy time and radiocontrast use were significantly reduced in the directly stented patients in comparison to the patients stented with balloon-predilatation. The study showed a significant reduction of expenses when using a direct stenting method in comparison to stenting with predilatation. If the operator predicts that the procedure can be performed using direct stenting, he is encouraged to do so. Direct stenting is recommended for all percutaneous coronary interventions when appropriate conditions have been met. If direct stenting has been unsuccessful, the procedure can be converted to predilatation

  2. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  3. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  4. Agricultural measures to reduce radiation doses to man caused by severe nuclear accidents

    International Nuclear Information System (INIS)

    Dorp, F. van; Eleveld, R.; Frissel, M.J.

    1981-01-01

    Agricultural land and products may become contaminated after a severe nuclear accident. If radiation doses to man caused by the ingestion of contaminated agricultural products from such areas will be unacceptably high, measures to reduce this radiation dose will have to be taken. Radiation doses to man can be estimated by using models which describe quantitatively the transfer of radionuclides through the biosphere. The following processes and pathways are described in this study: accidental releases into atmospheric environments and subsequent nearby deposition; contamination of crops by direct deposition and the subsequent short term pathway (e.g. grass-cow-milk-man); contamination of soil and the subsequent long term pathway (e.g. soil-crop-man, soil-grass-cattle-milk/meat-man). Depending on the degree of contamination and on the estimated radiation doses to man, various measures are advised. (Auth.)

  5. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  6. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  7. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.E.; Harris, A.M.; van der Merwe, E.J.; Nortje, C.J. (Ontario Cancer Institute, Princess Margaret Hospital, Toronto (Canada))

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  8. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Wood, R.E.; Harris, A.M.; van der Merwe, E.J.; Nortje, C.J.

    1991-01-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing

  9. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  10. Radiation transport in MEDUSA

    International Nuclear Information System (INIS)

    Rose, S.J.; Evans, R.G.

    1983-09-01

    The transport of energy by X-ray photons has been included in the lD Lagrangian hydrodynamics code, MEDUSA. Calculations of the implosion by 0.53 μm laser irradiation of plastic and glass microballoons of current interest at the Central Laser Facility show that radiation preheats the fill gas and alters the temperature and density profiles during the implosion. A lower maximum gas temperature is obtained and this results, for a DT gas fill, in a greatly reduced neutron yield. (author)

  11. Investigations on image improvement in radiodiagnosis under special consideration of reducing scattered radiation

    International Nuclear Information System (INIS)

    Becker, R.

    1976-10-01

    In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de

  12. Childhood leukaemia in Great Britain and fallout from nuclear weapons testing

    International Nuclear Information System (INIS)

    Haynes, R.; Bentham, G.

    1995-01-01

    The possible effects of radiation from fallout on childhood leukaemia mortality from 1950 to 1987 and registrations from 1963 to 1987 were assessed using a division of Great Britain into regions with higher rainfall and a consequently higher fallout radiation dose in the 1960s and regions with lower rainfall and a lower radiation dose. Childhood leukaemia mortality rates declined and registration rates increased throughout the period. For ages 0-14 years, the differences between rates in wet regions and dry regions were small and appeared unrelated to periods of low, medium and high radiation exposure based on dose equivalent to the red bone marrow after birth. For the 0-4 years age group the highest ratios of leukaemia death rates and registration rates in the wet compared with the dry part of Great Britain occurred in the period of highest radiation exposure after birth. The death rate ratio was significantly raised in the period of high exposure compared with the surrounding medium exposure periods, but the difference in registration rate ratios between the high exposure period and the medium exposure period following was not statistically significant. The results might be explained by survival and registration changes, or chance in the case of registrations, but do not exclude the possibility that low doses of radiation from fallout were responsible for an increased risk of leukaemia in young children in Great Britain. (author)

  13. Effect of gamma radiation on the growth of botryodiplodia theobromae and on rot development in banana fruits

    International Nuclear Information System (INIS)

    Mostafa, I.Y.; El-Ashmawi, A.M.; Fahim, M.M.; Kararah, M.A.

    1984-01-01

    Radiosensitivity of Botryodiplodia theobromae Pat. increased with the increase in doses of gamma radiation. Young cultures (7 days old) were less sensitive to radiation than old ones (48 days); lethal doses being 800 and 600 Krad respectively. Rot development was greatly reduced when inoculated banana fruits were exposed to 300 Krad. Disease development was checked for 10 days in inoculated fruits exposed to 400 Krad. The combined treatment of 200 p.p.m. T B Z and 100 or 200 Krad gamma radiation was more effective in reducing disease incidence than either treatments alone. No deleterious effects occurred in banana fruits that were irradiated with the low doses of gamma radiation

  14. Effect of electron radiation on sugar content in inverted liquid sugar

    International Nuclear Information System (INIS)

    Podadera, P.; Sabato, S.F.

    2009-01-01

    Inverted liquid sugar is a mixture of sucrose, glucose and fructose, which shows its relevant characteristic on high sweetness power. Ionizing radiation has been applied to different kind of food and ingredients for different reasons, such as pathogens reduction, disinfestations, quarantine purposes, ripening delay among others. Radiation from an electron beam can be utilized as a technique to treat this ingredient because it can process a great volume of material per unit of time. The main goal of this paper was to verify the effect of radiation on the properties of inverted liquid sugar. This ingredient was irradiated in an electron accelerator (Radiation Dynamics) at a dose ranging from 5 to 50 kGy. Sucrose content measurements were reduced by 23% at 30 kGy when compared to control and the reduced sugar content increased around 11%. Density and moisture values were not affected by radiation. The total soluble solids (Brix degrees) rose in function of the absorbed dose. (authors)

  15. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  16. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  17. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  19. Solar radiation for buildings application: comparing reduced data set for mediterranean sites

    International Nuclear Information System (INIS)

    La Gennusa, M.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G.

    2006-01-01

    A growing diffusion of computer programs for the thermal simulation of buildings is occurring in the last year; they allow the description of the thermal behaviour of buildings during the year, in order to verify their energy efficiencies and to suggest eventual improvements, even at the design stage. These thermal simulation programs generally need a complete input data set and among these, information particularly referring to the climatic conditions of the site where the building will be built-up. As it is well known, a climatic issue, particularly important for the thermal energy balance, is the solar radiation. In this work we have updated a short reference year of the solar radiation, more precisely the Monthly Average Day (MAD) for a town of the Southern Italy (Palermo), which shows climatic features similar to other places in the Mediterranean basin. In addition, we have compared the climatic data of the MAD (for the global and diffuse solar radiations) obtained from hourly measures for seven years, with those obtained both from geo-astronomical parameters and from the monthly average of the daily global solar radiation, which is commonly adopted on purposes. The comparison does suggest a particular caution in the choice of the method used for generating reduced data sets of the solar radiation for these mediterranean.(Author)

  20. Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station.

    Science.gov (United States)

    Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L

    2015-02-01

    The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.

  1. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  2. A programme to reduce down-time and site radiation dose through improvements in control rod design

    International Nuclear Information System (INIS)

    Izatt, J.A.; Scobie, J.

    1983-01-01

    In many nuclear facilities a high proportion of the total radiation dose to staff may be ascribed to very few routine operations. Often this critical operation will require significant shut-down time, both to perform the function itself and to allow sufficient decay time to reduce radiation levels to acceptable values. This situation arises on the UTR-300 reactor at S.U.R.R.C., where over the twenty years of operation it has been found necessary to carry out preventive, and on some occasions remedial, maintenance at least once per year on the in-core elements of the control rod assemblies. This had led inevitably to reduced availability of the reactor and to significant overall radiation doses to the few long-serving staff members who carry out this work. The source of the problem seems to lie in the basic design of the assemblies, which may have been adequate for the original 10 KW versions of this reactor, but has proven to be deficient in several respects at the present 300 KW operating level. In an attempt to reduce down-time and radiation dose to staff a radical re-design of the control assemblies was undertaken in-house, and a conversion programme has been underway over the last two years. Details of the design improvements are presented with a discussion of the operating experience to date. (author)

  3. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    Science.gov (United States)

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  4. Health effects of radiation exposure and protection from radiation through an industrial health management angle

    International Nuclear Information System (INIS)

    Kobashi, Gen

    2014-01-01

    This paper outlines fundamental knowledge, health risks, and protection related to radiation in order to carry out appropriate industrial health management to reduce great public anxiety caused by the Fukushima Daiichi Nuclear Power Plant accident developed by the Tohoku earthquake and tsunami of March 11, 2011. Radiation generally causes damage to DNA such as generation of reactive oxygen species in cells, which are also created by exposures of various kinds of physical and chemical factors. This suggests that as well as applying 5 basic measures for industrial health management in the work place, common public health measures and disease prevention, such as keeping good sanitary conditions, healthy lifestyles, home discipline, social supports, efficient health education, etc. are important for us to prevent radiation-related cancer manifestation. Improvement of early detection and treatment for cancer is also important to eliminate the public anxiety. (A.O.)

  5. Radiation safety education reduces the incidence of adult fingers on neonatal chest radiographs

    International Nuclear Information System (INIS)

    Sahota, N; Burbridge, B E; Duncan, M D

    2014-01-01

    A previous audit revealed a high frequency of adult fingers visualised on neonatal intensive care unit (NICU) chest radiographs—representing an example of inappropriate occupational radiation exposure. Radiation safety education was provided to staff and we hypothesised that the education would reduce the frequency of adult fingers visualised on NICU chest radiographs. Two cross-sectional samples taken before and after the administration of the education were compared. We examined fingers visualised directly in the beam, fingers in the direct beam but eliminated by technologists editing the image, and fingers under the cones of the portable x-ray machine. There was a 46.2% reduction in fingers directly in the beam, 50.0% reduction in fingers directly in the beam but cropped out, and 68.4% reduction in fingers in the coned area. There was a 57.1% overall reduction in adult fingers visualised, which was statistically significant (Z value − 7.48, P < 0.0001). This study supports radiation safety education in minimising inappropriate occupational radiation exposure. (paper)

  6. Radiation preservation with reduced nitrites of bacon and other cured meats - a review

    International Nuclear Information System (INIS)

    Singh, H.

    1987-01-01

    The main problem caused by nitrite as a preservative is the formation of carcinogenic nitrosamines in bacon and other cured meats. This has led to a search for alternatives to the use of nitrite. Irradiation with reduced level of nitrite is a promising alternative to the use of current levels of nitrite. Radurization (radiation pasteurization) of bacon containing 20 to to 40 mg/kg of nitrite in evacuated packages, irradiated and stored at 4 degrees C, gives a product with good organoleptic qualities and extended shelf life of > 80 days vs. < days 30 days for the conventionally treated bacon. Radappertization (radiation sterilization) of bacon containing 20 mg/kg of nitrite at a dose of about 30 kGy, irradiated at -20 degrees or lower in evacuated packages, results in a product that is shelf stable for months to years at room temperature (∼ 25 degrees C). It has organoleptic properties comparable to commercial bacon in terms of color, flavor, odor and texture. Irradiation also reduces the nitrite and preformed nitrosamines present in bacon. Lower levels of nitrosamines are formed on cooking irradiated bacon containing presently used commercial levels of nitrite (120-150 mg/kg) and the levels of nitrosamines become negligible with 20 mg/kg of nitrite. Various aspects of preservation of bacon and other cured meats are reviewed in this report with emphasis on radiation processing. 357 refs

  7. New radiation mitigators to reduce bone marrow death of mice by post-irradiation administration

    International Nuclear Information System (INIS)

    Anzai, Kazunori

    2009-01-01

    We have found recently that heat-treated mineral yeast preparations and water-soluble analogs of vitamin E are potent radiation mitigator to reduce bone marrow death of mice by post-irradiation administration. When administered immediately after whole-body X-irradiation (7.5 Gy), both Zn-yeast and γ-tocopherol dimethylglycine ester (TDMG) significantly increased the viability of mice from 0% (control) to more than 90% (treated). Zn-yeast did not inhibit the tumor-regulation by γ-rays but even sensitize the radiation effect in mice xenografts of HeLa cells. (author)

  8. Reducing radiation exposure during oral I-131 therapy administration

    International Nuclear Information System (INIS)

    Trujillo, J.; Krinsky, S.; Wilson, B.; Teague, E.

    1982-01-01

    A new, closed-system method to reduce air-, direct-, and incidental-contamination during therapeutic administration of oral I-131 was experimentally evaluated on twelve patients. We studied a standard control population using the routine practice of drinking the solution through a straw and compared results with our new technique. Various measurements were performed throughout all phases of dose administration to assess the relative difference of the two approaches. Using the closed system method before and during iodine administration revealed between 100 and 1000 times less activity per millimeter of air sample; whereas, the direct radiation exposure values were higher for the control population. Both the experimental and control methods had similar levels of incidental contamination

  9. One of the great conundrums of the 20th century science - ionizing radiation: Radiation processing and applications in the Czech Lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The article deals with the following topics: Milestones in the early history of radiation and radiation sources (1895-1954); Radiation effects - early observations and further development; Scope of radiation processing; Radiation processing in the Czech Lands (i.e. Bohemia + Moravia = the Czech part of Czechoslovakia or Austria-Hungary till 1918) (radiation sterilization of medical items; radiation processing of cable insulations; radiation preservation of objects of art and historical monuments; radiation modification of semiconductors; radiation synthesis of organic compounds; food irradiation; application of ionizing radiation in agriculture and gardening; radiation regeneration of water wells; radiation degradation of chlorinated biphenyls; radiation coloration of glass for decorative purposes; some other applications; and problems associated with practical radiation processing). An overview of 60 Co gamma irradiators and electron accelerators installed at Czech institutions is presented in the tabular form. (P.A.)

  10. Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during (18)F-fluorodeoxyglucose positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Verma, Shashwat; Kheruka, Subhash Chand; Maurya, Anil Kumar; Kumar, Narvesh; Gambhir, Sanjay; Kumari, Sarita

    2016-01-01

    Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. The radiation level at working distance while administering the radioactivity was found to be 106-170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2-14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25-70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0-5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of 92.85 ± 1.78%. This study shows that good radiation practices are

  11. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  12. CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects

    International Nuclear Information System (INIS)

    Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin

    2013-01-01

    Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode

  13. A programme to reduce down-time and site radiation dose through improvements in control rod design

    International Nuclear Information System (INIS)

    Izatt, J.A.; Scobie, J.

    1985-01-01

    On the UTR-300 reactor at SURRC, it has been found necessary to carry out preventive or remedial maintenance at least once per year on the in-core elements of the control rod assemblies. This has led to reduced availability of the reactor and to significant overall radiation doses to the few long-serving staff members who carry out this work. In an attempt to reduce down-time and radiation dose to staff a radical re-design of the control assemblies was undertaken in-house, and a conversion programme has been underway over the last four years. Details of the design improvements are presented together with a discussion of the operating experience to date. (author)

  14. Development of a Simple Radioactive marker System to Reduce Positioning Errors in Radiation Treatment

    International Nuclear Information System (INIS)

    William H. Miller; Dr. Jatinder Palta

    2007-01-01

    The objective of this research is to implement an inexpensive, quick and simple monitor that provides an accurate indication of proper patient position during the treatment of cancer by external beam X-ray radiation and also checks for any significant changes in patient anatomy. It is believed that this system will significantly reduce the treatment margin, provide an additional, independent quality assurance check of positioning accuracy prior to all treatments and reduce the probability of misadministration of therapeutic dose

  15. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  16. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.

    Science.gov (United States)

    Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-01-01

    Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.

  17. Recent progress of applying mesenchymal stem cells in therapy of urgent radiation damage

    International Nuclear Information System (INIS)

    Liu Jiangong; Guo Wanlong; Zhang Shuxian; Duan Zhikai

    2010-01-01

    At present, Cytokine therapy is the main strategy capable of preventing and reducing the acute radiation syndrome (ARS). With the problem of difficult match and severe graft versus host disease, haemopoietic stem cells can be used to find some effective approaches to treat acute radiation damage. Mesenchymal stem cells are of great therapeutic potential due to their particular characteristics including secretion of hematopoietic cytokine, reconstruction hemopoietic microenvironment, poor-immunogenicity, ease of reception ectogenic gene transfection and expression. This paper is to summarize the studies of biological characteristics of MSC and its application prospects in urgent radiation damage. (authors)

  18. Effect of genes controlling radiation sensitivity on chemical mutagenesis in yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1975-01-01

    Ultraviolet radiation, x radiation, nitrogen mustard, methyl methanesulfonate, and dimethyl sulfate were found to revert all the tester strains with the same efficiency or without any dependence on simple types of base-pair changes, and it was concluded that these mutagens were nonspecific in the types of base-pair changes produced. The cycl-131 tester was used in studies designed to determine the genetic control of mutation induction using a variety of mutagens. The rad 6 and rad g genes greatly reduce the frequency of chemically induced reversion of cycl-131

  19. Southern Great Plains Safety Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  20. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  1. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  2. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review.

    Science.gov (United States)

    Saraiya, Mona; Glanz, Karen; Briss, Peter A; Nichols, Phyllis; White, Cornelia; Das, Debjani; Smith, S Jay; Tannor, Bernice; Hutchinson, Angela B; Wilson, Katherine M; Gandhi, Nisha; Lee, Nancy C; Rimer, Barbara; Coates, Ralph C; Kerner, Jon F; Hiatt, Robert A; Buffler, Patricia; Rochester, Phyllis

    2004-12-01

    The relationship between skin cancer and ultraviolet radiation is well established. Behaviors such as seeking shade, avoiding sun exposure during peak hours of radiation, wearing protective clothing, or some combination of these behaviors can provide protection. Sunscreen use alone is not considered an adequate protection against ultraviolet radiation. This report presents the results of systematic reviews of effectiveness, applicability, other harms or benefits, economic evaluations, and barriers to use of selected interventions to prevent skin cancer by reducing exposure to ultraviolet radiation. The Task Force on Community Preventive Services found that education and policy approaches to increasing sun-protective behaviors were effective when implemented in primary schools and in recreational or tourism settings, but found insufficient evidence to determine effectiveness when implemented in other settings, such as child care centers, secondary schools and colleges, and occupational settings. They also found insufficient evidence to determine the effectiveness of interventions oriented to healthcare settings and providers, media campaigns alone, interventions oriented to parents or caregivers of children, and community-wide multicomponent interventions. The report also provides suggestions for areas for future research.

  3. Microdosimetric constraints on specific adaptation mechanisms to reduce DNA damage caused by ionising radiation

    International Nuclear Information System (INIS)

    Burkart, W.; Heusser, P.; Vijayalaxmi

    1990-01-01

    The protective effect of pre-exposure of lymphocytes to ionising radiation indicates the presence of 'adaptive repair' in mammalian cells. Microdosimetric considerations, however, raise some doubts on the advantage of such a cellular mechanism for specifically reducing the radiation damage caused by environmental exposures. Contrary to most chemicals which endanger the integrity of the mammalian genome, the local dose and dose rate from ionising radiation at the cellular level remain quite high, even at lowest exposures. A single electron or alpha particle passing through a cell nucleus already yields nuclear doses of up to about 3 mGy and 400 mGy, respectively. Macroscopic doses below these nuclear doses from a single event will only reduce the fraction of cell nuclei encountering the passage of a particle but not the dose or dose rate in the affected volume. At environmental doses in the range of 1 to 5 mGy per annum, the time between two consecutive hits in a specific cell nucleus is in the range of months to years. Very low concentrations of bleomycin, a drug with high affinity to DNA, also triggers an adaptive response. This points to a more general stress response mechanism which may benefit the cell even at environmental levels of radioactivity, e.g. by protecting the integrity of DNA from attacks by chemicals, by endogenous radicals, by acids from anoxia, etc. (author)

  4. Arachidonic metabolism and radiation toxicity in cultures of vascular endothelial cells

    International Nuclear Information System (INIS)

    Eldor, A.; Vlodavsky, I.; Fuks, Z.; Matzner, Y.; Rubin, D.B.

    1989-01-01

    The authors conclude that the observed changes in eicosanoid production by vascular endothelial cells exposed to ionizing irradiation may be relevant to the pathogenesis of post-radiation injury in small and large blood vessels. Anomalies of PGI 2 production may lead to thrombosis and accelerated arteriosclerosis which are observed in irradiated vessels. The generation of potent cells may greatly facilitate inflammation in irradiated vessels. The model of irradiated cultured endothelial cells may also be useful for the study of various methods and agents aimed at reducing the radiation induced damage to blood vessels. Evaluation of the capacity of cultured endothelial cells to produce eicosanoids may serve as an appropriate index for the metabolic damage induced by radiation. (author)

  5. Does Ad Hoc Coronary Intervention Reduce Radiation Exposure? – Analysis of 568 Patients

    Energy Technology Data Exchange (ETDEWEB)

    Truffa, Márcio A. M., E-mail: marciotruffa@yahoo.com.br; Alves, Gustavo M.P.; Bernardi, Fernando; Esteves Filho, Antonio; Ribeiro, Expedito; Galon, Micheli Z.; Spadaro, André; Kajita, Luiz J.; Arrieta, Raul; Lemos, Pedro A. [Instituto do Coração - Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP (Brazil)

    2015-11-15

    Advantages and disadvantages of ad hoc percutaneous coronary intervention have been described. However little is known about the radiation exposure of that procedure as compared with the staged intervention. To compare the radiation dose of the ad hoc percutaneous coronary intervention with that of the staged procedure The dose-area product and total Kerma were measured, and the doses of the diagnostic and therapeutic procedures were added. In addition, total fluoroscopic time and number of acquisitions were evaluated. A total of 568 consecutive patients were treated with ad hoc percutaneous coronary intervention (n = 320) or staged percutaneous coronary intervention (n = 248). On admission, the ad hoc group had less hypertension (74.1% vs 81.9%; p = 0.035), dyslipidemia (57.8% vs. 67.7%; p = 0.02) and three-vessel disease (38.8% vs. 50.4%; p = 0.015). The ad hoc group was exposed to significantly lower radiation doses, even after baseline characteristic adjustment between both groups. The ad hoc group was exposed to a total dose-area product of 119.7 ± 70.7 Gycm{sup 2}, while the staged group, to 139.2 ± 75.3 Gycm{sup 2} (p < 0.001). Ad hoc percutaneous coronary intervention reduced radiation exposure as compared with diagnostic and therapeutic procedures performed at two separate times.

  6. Does Ad Hoc Coronary Intervention Reduce Radiation Exposure? – Analysis of 568 Patients

    International Nuclear Information System (INIS)

    Truffa, Márcio A. M.; Alves, Gustavo M.P.; Bernardi, Fernando; Esteves Filho, Antonio; Ribeiro, Expedito; Galon, Micheli Z.; Spadaro, André; Kajita, Luiz J.; Arrieta, Raul; Lemos, Pedro A.

    2015-01-01

    Advantages and disadvantages of ad hoc percutaneous coronary intervention have been described. However little is known about the radiation exposure of that procedure as compared with the staged intervention. To compare the radiation dose of the ad hoc percutaneous coronary intervention with that of the staged procedure The dose-area product and total Kerma were measured, and the doses of the diagnostic and therapeutic procedures were added. In addition, total fluoroscopic time and number of acquisitions were evaluated. A total of 568 consecutive patients were treated with ad hoc percutaneous coronary intervention (n = 320) or staged percutaneous coronary intervention (n = 248). On admission, the ad hoc group had less hypertension (74.1% vs 81.9%; p = 0.035), dyslipidemia (57.8% vs. 67.7%; p = 0.02) and three-vessel disease (38.8% vs. 50.4%; p = 0.015). The ad hoc group was exposed to significantly lower radiation doses, even after baseline characteristic adjustment between both groups. The ad hoc group was exposed to a total dose-area product of 119.7 ± 70.7 Gycm 2 , while the staged group, to 139.2 ± 75.3 Gycm 2 (p < 0.001). Ad hoc percutaneous coronary intervention reduced radiation exposure as compared with diagnostic and therapeutic procedures performed at two separate times

  7. The great wall in the CfA survey: Its origin and imprint on the microwave background radiation

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    1990-01-01

    The Great Wall (GW) found in the latest CfA survey has clearly started out as an aspherical overdense region. We model its evolution after recombination and the imprint its time-dependent gravitational potential leaves on the microwave background radiation (MBR). We approximate GW as an oblate ellipsoid and show that it started at recombination with an almost spherical shape, but with an initial density contrast, δ i , much smaller than it had to be in the spherical model in order to reach the observed GW density contrast of q∝5. The resultant δ i is compatible with the r.m.s. value of δρ/ρ on the GW scale at recombination for models with the n -6 -5 depending on Ω and q. Therefore, MBR observations in that direction can further constrain Ω and the bias factor of the light distribution. (orig.)

  8. ECG movement artefacts can be greatly reduced with the aid of a movement absorbing device

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Wandall, Kirsten; Thorball, Jørgen

    2007-01-01

    Accurate ECG signal analysis can be confounded by electric lead, and/or electrode movements varying in origin from, for example, hiccups, tremor or patient restlessness. ECG signals recorded using either a conventional electrode holder or with the aid of an electrode holder capable of absorbing...... movement artefacts, were measured on a healthy human subject. Results show a greatly improved stability of the ECG signal recorded using an electrode holder capable of absorbing movement artefacts during periods of lead disturbance, and highlight the movement artefacts that develop when the recording lead...... of a conventional ECG electrode holder is tugged or pulled during theperiod of monitoring. It is concluded that the new design of ECG electrode holder will not only enable clearer signal recordings for clinical assessment, but will reduce the ECG artefacts associated with the transportation of patients, and may...

  9. Radiation injury

    International Nuclear Information System (INIS)

    Hubner, K.F.

    1988-01-01

    Radiation accidents and incidents continue to be of great interest and concern to the public. Issues such as the threat of nuclear war, the Chernobyl reactor accident, or reports of sporadic incidences of accidental radiation exposure keep this interest up and maintain a high level of fear among the public. In this climate of real concern and radiation phobia, physicians should not only be prepared to answer questions about acute or late effects of ionizing radiation, but also be able to participate in the initial assessment and management of individuals who have been exposed to ionizing radiation or contaminated with radioactive material. Some of the key facts about radiation injury and its medical treatment are discussed by the author

  10. Effects of radiation quality, intensity, and duration on photosynthesis and growth

    Energy Technology Data Exchange (ETDEWEB)

    Bugbee, B. [Utah State Univ., Logan, UT (United States)

    1994-12-31

    Differences in radiation quality from the six most common electric lamps have little effect on photosynthetic rate. Radiation quality primarily alters growth because of changes in branching or internode elongation, which change radiation absorption. Growth and yield in wheat appear to be insensitive to radiation quality. Growth and yield in soybeans can be slightly increased under high pressure sodium lamps compared to metal halide lamps, in spite of greatly reduced chlorophyll concentrations under HPS lamps. Daily integrated photosynthetic photon flux (mol m{sup -2} d{sup -1}) most directly determines leaf anatomy and growth. Photosynthetic photon flux levels of 800 {mu}mol m{sup -2} s{sup -1} are adequate to simulate field daily-integrated PPF levels for both short and long day plants, but plant canopies can benefit from much higher PPF levels.

  11. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  12. Histomorphologic change of radiation pneumonitis in rat lungs: captopril reduces rat lung injury induced by irradiation

    International Nuclear Information System (INIS)

    Kim, Jin Hee

    1999-01-01

    To assess the histomorphologic changes in the rat lung injury induced by radiation, to determine whether captopril reduces the rat lung injury and to evaluate change in TNF-α and TGF β and rat lung damage by radiation and captopril. Right lungs in male Sprague-Dawley rats were divided irradiation alone (10, 20, 30 Gy) or radiation (same dose with radiation alone group) with captopril (500 mg/L). Radiation alone group were sacrificed at twelve hours and eleven weeks after radiation and radiation with captopril group (captopril group) were sacrificed at eleven weeks after radiation with captopril. We examined the light microscope and electron microscopic features in the groups. In radiation alone group, there were patch parenchymal collapse and consolidation at twelve hours after radiation. The increase of radiation dose shows more prominent the severity and broader the affected areas. Eleven weeks after radiation, the severity and areas of fibrosis had increased in proportion to radiation dose given in the radiation alone group. There was notable decrease of lung fibrosis in captopril group than in radiation alone group. The number of mast cells rapidly increased with increase of radiation dose in radiation alone group and the degree of increase of mast cell number and severity of collagen accumulation more decreased in captopril group than in radiation alone group. In radiation alone group expression of TNF-α and TGF-β] increased according to increase of radiation dose at twelve hours after radiation in both group. At eleven weeks after radiation, expression of TGF- P increased according to increase of radiation dose in radiation group but somewhat decreased in captopril group. In the captopril group the collagen deposition increased but less dense than those of radiation alone group. The severity of perivascular thickening, capillary change, the number and degranulation of mast cells more decreased in the captopril group than in the radiation alone group. It

  13. The work of Jules Horowitz. The great Cea actors

    International Nuclear Information System (INIS)

    Arnaudet, L.; Deloche, R.; Procope, L.

    1999-01-01

    Jules Horowitz contributed to the heart calculation of the first french reactor Zoe. He developed the first experimental reactors, invested himself in the reactors physics and helped with EDF to the realisation of the French electronuclear programme. His work is marked out the building of great research devices: The Laue-Langevin Institute (ILL), The European Source of Synchrotron radiation (ESRF), the great national heavy ions accelerator (GANIL) the superconductor tokamak TORE SUPRA) the Leon Brillouin Laboratory (LLB), the Frederic Joliot hospital service (SHFJ). (N.C.)

  14. A new approach to reduce uncertainties in space radiation cancer risk predictions.

    Directory of Open Access Journals (Sweden)

    Francis A Cucinotta

    Full Text Available The prediction of space radiation induced cancer risk carries large uncertainties with two of the largest uncertainties being radiation quality and dose-rate effects. In risk models the ratio of the quality factor (QF to the dose and dose-rate reduction effectiveness factor (DDREF parameter is used to scale organ doses for cosmic ray proton and high charge and energy (HZE particles to a hazard rate for γ-rays derived from human epidemiology data. In previous work, particle track structure concepts were used to formulate a space radiation QF function that is dependent on particle charge number Z, and kinetic energy per atomic mass unit, E. QF uncertainties where represented by subjective probability distribution functions (PDF for the three QF parameters that described its maximum value and shape parameters for Z and E dependences. Here I report on an analysis of a maximum QF parameter and its uncertainty using mouse tumor induction data. Because experimental data for risks at low doses of γ-rays are highly uncertain which impacts estimates of maximum values of relative biological effectiveness (RBEmax, I developed an alternate QF model, denoted QFγAcute where QFs are defined relative to higher acute γ-ray doses (0.5 to 3 Gy. The alternate model reduces the dependence of risk projections on the DDREF, however a DDREF is still needed for risk estimates for high-energy protons and other primary or secondary sparsely ionizing space radiation components. Risk projections (upper confidence levels (CL for space missions show a reduction of about 40% (CL∼50% using the QFγAcute model compared the QFs based on RBEmax and about 25% (CL∼35% compared to previous estimates. In addition, I discuss how a possible qualitative difference leading to increased tumor lethality for HZE particles compared to low LET radiation and background tumors remains a large uncertainty in risk estimates.

  15. Progress in radiation vulcanization of natural rubber latex

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2000-01-01

    Vulcanization dose defined as the radiation dose at which cross-linked natural rubber in latex has the maximum tensile strength can be reduced by adding carbon tetrachloride as a reaction accelerator. The radiation vulcanization of natural rubber latex was selected as one of regional projects of IAEA in 1989 and a pilot plant was built in Jakarta. The products from it were evaluated during 1983-1985, followed by IAEA decision to support the continued R and D study at Takasaki, JAERI. Various factors to improve the properties of the products have been studied. Several advantages of the process over conventional method, such as absence of N-nitrosoamines, low cytotoxicity, decomposability in the environment, transparency and softness, were confirmed. The technology has been transferred toward commercial application in Thailand, and pilot plants being set up in Indonesia, India, Malaysia and Thailand. Moreover, the process was found to be effective in reducing protein remaining in natural rubber latex products and the initial investment and irradiation cost was found to be greatly reduced by employing low energy electron accelerator. This paper reviews such progress. (S. Ohno)

  16. Ghrelin may reduce radiation-induced mucositis and anorexia in head-neck cancer.

    Science.gov (United States)

    Guney, Yildiz; Ozel Turkcu, Ummuhani; Hicsonmez, Ayse; Nalca Andrieu, Meltem; Kurtman, Cengiz

    2007-01-01

    Body weight loss is common in cancer patients, and is often associated with poor prognosis, it greatly impairs quality of life (QOL). Radiation therapy (RT) is used in head and neck cancers (HNC) either as a primary treatment or as an adjuvant therapy to surgery. Patients with HNC are most susceptible to malnutrition especially due to anorexia, which is aggravated by RT. Multiple pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1beta (IL-1beta), interferon (IFN)-gamma and tumor necrosis factor-alpha(TNF-alpha), have been all associated with the development of both anorexia and oral mucositis. Radiation-induced mucositis occurs in almost all patients, who are treated for HNC, it could also cause weight loss. Ghrelin is a novel 28-amino acid peptide, which up-regulates body weight through appetite control, increase food intake, down-regulate energy expenditure and induces adiposity. Furthermore, ghrelin inhibits pro-inflammatory cytokines such as IL-1alpha, IL-1beta, TNF-alpha which may cause oral mucositis and aneroxia, which are the results of weight loss. Thus weight loss during RT is an early indicator of nutritional decline, we propose that recombinant ghrelin used prophylactically could be useful as an appetite stimulant; and preventive of mucositis because of its anti-inflammatory effect, it might help patients maintain weight over the course of curative RT of the HNC and can improve specific aspects of QOL. This issue warrants further studies.

  17. Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Hirose, T.; Tanigawa, H.; Ando, M.; Kohyama, A.; Katoh, Y.; Narui, M.

    2002-01-01

    The reduced activation ferritic/martensitic steel, RAFs F82H IEA heat has been fatigue-tested at ambient temperature under diametral strain controlled conditions. In order to evaluate the effects of radiation damage and transmutation damage on fatigue characteristics, post-neutron irradiation and post-helium ion implantation fatigue tests were carried out. Fracture surfaces and fatigue crack initiation on the specimen surface were observed by SEM. Low-temperature irradiation caused an increase in stress amplitude and a reduction in fatigue lifetime corresponding to radiation hardening and loss of ductility. Neutron irradiated samples showed brittle fracture surface, and it was significant for large strain tests. On the other hand, helium implantation caused delay of cyclic softening. However, brittle crack initiation and propagation did not depend on the helium concentration profiles

  18. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  19. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    Science.gov (United States)

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Measures taken by the building authorities in order to reduce radiation risks in buildings

    International Nuclear Information System (INIS)

    Tell, Wilhelm

    1980-01-01

    The Swedish radon commission has recommended that the risk of radiation and radon emission from the ground be considered when planning for new settlements, building materials with high radioactivity not be allowed for new buildings, and existing buildings with high levels of radioactivity be traced and improved. Maps of gamma radiation from the ground are being worked out showing areas with levels higher than 30 μR/h. Within such areas buildings should be planned taking the ultimate limits for new buildings into account. Building permits are granted for construction of new structures or extensive renovations if it can be shown that radiation levels within the buildings will be within legal limits: 70 Bq/m 3 for new buildings and 200 Bq/m 3 for existing ones. The radon commission has suggested that buildings with a radon daughter concentration exceeding 400 Bq/m 3 should be found and levels reduced to 200 Bq/m 3

  1. Efficacy of RADPAD® protection drape in reducing radiation exposure to the primary operator during Transcatheter Aortic Valve Implantation (TAVI).

    Science.gov (United States)

    Sharma, Divyesh; Ramsewak, Adesh; Manoharan, Ganesh; Spence, Mark S

    2016-02-01

    The efficacy of RADPAD® (a sterile, lead-free drape) has been demonstrated to reduce the scatter radiation to the primary operator during fluoroscopic procedures. However, the use of the RADPAD® during TAVI procedures has not been studied. Transcatheter aortic valve implantation (TAVI) is now an established treatment for patients with symptomatic severe aortic stenosis who are deemed inoperable or at high risk for conventional surgical aortic valve replacement (AVR). Consequently the radiation exposure to the patient and the interventional team from this procedure has become a matter of interest and importance. Methods to reduce radiation exposure to the interventional team during this procedure should be actively investigated. In this single center prospective study, we determined the radiation dose during this procedure and the efficacy of RADPAD® in reducing the radiation dose to the primary operator. Fifty consecutive patients due to undergo elective TAVI procedures were identified. Patients were randomly assigned to undergo the procedure with or without the use of a RADPAD® drape. There were 25 patients in each group and dosimetry was performed at the left eye level of the primary operator. The dosimeter was commenced at the start of the procedure, and the dose was recorded immediately after the end of the procedure. Fluoroscopy times and DAP were also recorded prospectively. Twenty-five patients underwent transfemoral TAVI using a RADPAD® and 25 with no-RADPAD®. The mean primary operator radiation dose was significantly lower in the RADPAD group at 14.8 mSv vs. 24.3 mSv in the no-RADPAD group (P=0.008). There was no significant difference in fluoroscopy times or dose-area products between the two patient groups. The dose to the primary operator relative to fluoroscopy time (RADPAD: slope=0.325; no RADPAD: slope=1.148; analysis of covariance F=7.47, P=0.009) and dose area product (RADPAD: slope=0.0007; no RADPAD: slope=0.002; analysis of covariance F=7

  2. Radiation Processing of Bio-Polymers for Agriculture Applications. Chapter 21

    Energy Technology Data Exchange (ETDEWEB)

    Quynh, Tran Minh [Hanoi Irradiation Center, Vietnam Atomic Energy Institute (Viet Nam)

    2014-07-15

    Antimicrobial activity of chitosan, a well-known natural polysaccharide has been greatly improved by gamma irradiation. The highest antibacterial activity for E.coli and antifungal activity for Fusarium dimerum Penzig was obtained with chitosan irradiated at about 50–75 kGy. Other chemical properties of chitosan e.g. viscosity, molecular weight, and degree of deacetylation (DD) were also changed by radiation. The number average molecular weight of chitosan significantly reduced from 300 000–100 000 g.mol{sup -1}, whereas its DD slightly increased. A study of the chitosan membrane indicated that radiation treatment strongly influenced its mechanical properties. Both tensile and elongation at break of the irradiated chitosan were reduced with radiation dose. Irradiated chitosan can be applied as a preservative solution for the coating of fresh fruits. Also, antimicrobial packaging films from irradiated chitosan can be produced for ready-to-eat foods. Recent studies on radiation cross-linked cassava starch based hydrogels suggest that superabsorbent materials can absorb not only water but also nutrient solutions containing N, P, and K ions. This can be prepared through gamma radiation using a suitable formulation. Superabsorbent materials, swollen in NPK solution, can be used as slow-release fertilizers and considered as one of the technological advances in agricultural production. (author)

  3. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  4. Approach to reducing the effect of bone—coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    NIShi-Ying; GUPei-Long; 等

    2002-01-01

    The effect of two bone-coal power stations(6MWe) on environment was investigated within the scope of the dose contribution caused by various radionucildes in different ways.It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder(BCC),soot and ash in the catchers.

  5. Approach to reducing the effect of bone-coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of two bone-coal power stations (6 MWe) on environment wasinvestigated within the scope of the dose contribution caused by various radionucildes in different ways. It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder (BCC), soot and ash in the catchers.

  6. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children.

    Science.gov (United States)

    Kim, Hyun Gi; Lee, Ho-Joon; Lee, Seung-Koo; Kim, Hyun Ji; Kim, Myung-Joon

    2017-09-01

    To investigate the quality of images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V), using pediatric head CT protocols. A phantom was scanned at decreasing 20% mA intervals using our standard pediatric head CT protocols. Each study was then reconstructed at 10% ASIR-V intervals. After the phantom study, we reduced mA by 10% in the protocol for ASIR-V and by 30% in the protocol for 3- to 15-year-old patients and applied 40% ASIR-V. Increasing the percentage of ASIR-V resulted in lower noise and higher contrast-to-noise ratio (CNR) and preserved spatial resolution in the phantom study. Compared to a conventional-protocol, reduced-dose protocol with ASIR-V achieved 12.8% to 34.0% of dose reduction and showed images of lower noise (9.22 vs. 10.73, P = 0.043) and higher CNR in different levels (centrum semiovale, 2.14 vs. 1.52, P = 0.003; basal ganglia, 1.46 vs. 1.07, P = 0.001; and cerebellum, 2.18 vs. 1.33, P ASIR-V. Use of ASIR-V allowed a 12.8% to 34.0% dose reduction in each age group with potential to improve image quality. • It is possible to reduce radiation dose and improve image quality with ASIR-V. • We improved noise and CNR and decreased radiation dose. • Sharpness improved with ASIR-V. • Total radiation dose was decreased by 12.8% to 34.0%.

  7. Operator dependency of the radiation exposure in cardiac interventions: feasibility of ultra low dose levels

    International Nuclear Information System (INIS)

    Emre Ozpelit, Mehmet; Ercan, Ertugrul; Pekel, Nihat; Tengiz, Istemihan; Yilmaz, Akar; Ozpelit, Ebru; Ozyurtlu, Ferhat

    2017-01-01

    Introduction: Mean radiation exposure in invasive cardiology varies greatly between different centres and interventionists. The International Commission on Radiological Protection and the EURATOM Council stipulate that, despite reference values, 'All medical exposure for radiodiagnostic purposes shall be kept as low as reasonably achievable' (ALARA). The purpose of this study is to establish the effects of the routine application of ALARA principles and to determine operator and procedure impact on radiation exposure in interventional cardiology. Materials and methods: A total of 240 consecutive cardiac interventional procedures were analysed. Five operators performed the procedures, two of whom were working in accordance with ALARA principles (Group 1 operators) with the remaining three working in a standard manner (Group 2 operators). Radiation exposure levels of these two groups were compared. Results: Total fluoroscopy time and the number of radiographic runs were similar between groups. However, dose area product and cumulative dose were significantly lower in Group 1 when compared with Group 2. Radiation levels of Group 1 were far below even the reference levels in the literature, thus representing an ultra-low-dose radiation exposure in interventional cardiology. Conclusion: By use of simple radiation reducing techniques, ultra-low-dose radiation exposure is feasible in interventional cardiology. Achievability of such levels depends greatly on operator awareness, desire, knowledge and experience of radiation protection. (authors)

  8. External effective radiation dose to workers in the restricted area of the Fukushima Daiichi Nuclear Power Plant during the third year after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi

    2016-01-01

    Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017

  9. Energy and particle transport in the radiative divertor plasmas of DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Allen, S.L.; Brooks, N.H.

    1997-06-01

    It has been argued that divertor energy transport dominated by parallel electron thermal conduction, or q parallel = -kT 5/2 2 dT e /ds parallel, leads to severe localization of the intense radiating region and ultimately limits the fraction of energy flux that can be radiated before striking the divertor target. This is due to the strong T 5/2 e dependence of electron heat conduction which results in very short spatial scales of the T e gradient at high power densities and low temperatures where deuterium and impurities radiate most effectively. However, we have greatly exceeded this constraint on DIII-D with deuterium gas puffing which reduces the peak heat flux to the divertor plate a factor of 5 while distributing the divertor radiation over a long length

  10. Effects of growth reducer and nitrogen fertilization on morphological variables, SPAD index, interception of radiation and productivity of wheat

    Directory of Open Access Journals (Sweden)

    Elvis Felipe Elli

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú, five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1, and application or no application of a growth reducer, with three replications. The following characteristics were evaluated: plant height, SPAD index, leaf area index (LAI, Global Radiation Interception (GRI and grain yield. The Tukey test (p < 0.05 was used for the comparison between the means of cultivar and growth reducer factors, and for a regression analysis to evaluate N levels. Increasing the dose of nitrogen promotes an increase in LAI of plants of wheat crops differently among cultivars, which leads to a greater degree of global radiation interception. At doses higher or equal to 120 Kg ha-1 of nitrogen, there are significant differences in grain yield between treatments with and without the application of the growth reducer. The significant interaction between growth reducer and nitrogen dose, showed that applications of growth reducer increase the GRI at doses above and below 80 Kg ha-1 of nitrogen. Nitrogen rates of 138 and 109 Kg ha-1 are responsible for maximum grain yields of wheat, which is 4235 and 3787 Kg ha-1 with and without the use of growth reducer, respectively.

  11. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  12. Nuclear power and low level radiation hazards

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1979-03-01

    Even in the future, nuclear power is expected to contribute less than 1/10th of the present total population exposure to man-made radiation. By the best estimates available, the current health risks of nuclear power generation appear to be much less than those associated with the major alternative sources of energy, with the exception of natural gas which is about equally safe. Uncertainties concerning the radiation risks from nuclear power, from medical x-rays and from the effects of reduced ventillation to conserve heat appear to be less than those associated with estimates of risks from the use of coal and various other sources of energy. This is in part because of the large amount of effort devoted to studies of radiation effects. The benefits in terms of current life expectancy associated with any of the conventional or unconventional methods of power production appear to greatly outweigh the associated current health hazards. (author)

  13. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  14. Radiation exposure in X-ray examinations of the pelvis

    International Nuclear Information System (INIS)

    Kainberger, F.

    1977-01-01

    The article reports on radiation exposure during X-ray treatment of the pelvis of children. Special attention is paid to genetical radiation exposure. Generally a dose of 100 mR is assumed to be taken up if no adequate shielding is provided. In order to be able to judge the value of a shielding with suitable lead-equivalent values, measurements were carried out on a phantom. These measurements showed that the dosage can be reduced by at least a factor 100 by using a lead shielding. When doing this, the lead equivalent value must be 1 mm. The form of gonad protection also has great importance for the shielding efficiency. (orig.) [de

  15. Radiation biology: a century of hopes and disappointments

    International Nuclear Information System (INIS)

    Singh, B.B.

    1998-01-01

    In the history of science, radiation biology will rank perhaps as the most popular subject to have attracted researchers from many disciplines of basic as well as applied sciences. Apart from the excitement arising in clinics relating to radiation treatment of cancers the tragedies in Hiroshima and Nagasaki brought numerous scientists together to investigate the harmful biological effects of ionizing radiation. It is then radiation biology picked up a great momentum. It started developing in two different directions what may be called basic radiation biology and radiation biology applied to radiotherapy of cancer. While great strides were being made in basic radiation biology trying to understand the biological effects of radiation and mechanisms thereof, clinical aspect remained confined mainly to the medical fraternity where empiricalism became the rule

  16. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  17. Efforts to control radiation build-up in Ringhals

    Energy Technology Data Exchange (ETDEWEB)

    Egner, K.; Aronsson, P.O.; Erixon, O. [Vattenfall AB, Vaeroebacka (Sweden)

    1995-03-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.

  18. Efforts to control radiation build-up in Ringhals

    International Nuclear Information System (INIS)

    Egner, K.; Aronsson, P.O.; Erixon, O.

    1995-01-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up

  19. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  20. Carnosine may reduce lung injury caused by radiation therapy.

    Science.gov (United States)

    Guney, Yildiz; Turkcu, Ummuhani Ozel; Hicsonmez, Ayse; Andrieu, Meltem Nalca; Guney, H Zafer; Bilgihan, Ayse; Kurtman, Cengiz

    2006-01-01

    Ionising radiation is known one of the most effective tools in the therapy of cancer but in many thoracic cancers, the total prescribed dose of radiation that can be safely administered to the target volume is limited by the risk of complications arising in the normal lung tissue. One of the major reasons for cellular injury after radiation is the formation of reactive oxygen species (ROS). Radiation pneumonitis is an acute phase side-effect which generally subsides after a few weeks and is followed by a chronic phase characterized by inflammation and fibrosis, that can develop months or years after irradiation. Carnosine is a dipeptide composed by the amino acids beta-histidine and l-alanine. The exact biological role of carnosine is not totally understood, but several studies have demonstrated that it possesses strong and specific antioxidant properties, protects against radiation damage,and promotes wound healing. The antioxidant mechanism of carnosine is attributed to its chelating effect against metal ions, superoxide dismutase (SOD)-like activity, ROS and free radicals scavenging ability . Either its antioxidant or anti-inflammatuar properties, we propose that carnosine ameliorates irradiation-induced lung injury. Thus, supplementing cancer patients to whom applied radiation therapy with carnosine, may provide an alleviation of the symptoms due to radiation-induced lung injury. This issue warrants further studies.

  1. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. (Colorado State Univ., Fort Collins, CO (USA)); Gotchy, R.L. (Science Applications International Corp., McLean, VA (USA))

    1990-10-01

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.

  2. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    International Nuclear Information System (INIS)

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A.; Gotchy, R.L.

    1990-10-01

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs

  3. Prophylactic Treatment with Adlay Bran Extract Reduces the Risk of Severe Acute Radiation Dermatitis: A Prospective, Randomized, Double-Blind Study

    Directory of Open Access Journals (Sweden)

    Chih-Jen Huang

    2015-01-01

    Full Text Available Acute radiation dermatitis is a frequent adverse effect in patients with breast cancer undergoing radiotherapy, but there are only a small number of studies providing evidence-based interventions for this clinical condition. Adlay is a cereal crop that has been previously shown to have anti-inflammatory and antioxidant properties. In this study, we seek to evaluate the effectiveness of oral prophylactic treatment with adlay bran extract in reducing the risk of severe acute radiation dermatitis. A total of 110 patients with breast cancer undergoing radiotherapy were analyzed. Using a prospective, randomized, double-blind design, 73 patients received oral treatment with adlay bran extract and 37 patients received olive oil (placebo. Treatment was started at the beginning of radiation therapy and continued until the termination of radiation treatment. Our results showed that the occurrence of severe acute radiation dermatitis (RTOG grade 2 or higher was significantly lower in patients treated with oral adlay bran extract compared to placebo (45.2% versus 75.7%, adjusted odds ratio 0.24. No serious adverse effects from adlay bran treatment were noted. In conclusion, prophylactic oral treatment with adlay bran extract reduces the risk of severe acute radiation dermatitis and may have potential use in patients with breast cancer undergoing radiotherapy.

  4. Mortality of tyrophagus putrescentiae (Schrank) females exposed to a high ratio of gamma-irradiated males as an index of radiation impact on sexual vigor of males

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1990-01-01

    A 40 or 60 krad dose of gamma radiation reduce slightly sexual activity of the males but male activity is greatly reduced as the radiation dose increases from 60 to 120 krad. Females of the mold mite, Tyrophagus, putrescentiae (Schrank), molested by males present at a 3:1 or 5:1 ratio live shorter than females kept with one male. The SAG test can be applied to compare sexual activity of males treated with different dosage of gamma irradiation

  5. New sources of radiation

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1979-09-01

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly

  6. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  7. Reducing Anesthesia and Health Care Cost Through Utilization of Child Life Specialists in Pediatric Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael T. [Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center and Jackson Memorial Hospital, Miami, Florida (United States); Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida (United States); Todd, Kimberly E.; Oakley, Heather; Bradley, Julie A.; Rotondo, Ronny L.; Morris, Christopher G.; Klein, Stuart; Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida (United States); Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org [Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida (United States)

    2016-10-01

    Purpose: To analyze the effectiveness of a certified child life specialist (CCLS) in reducing the frequency of daily anesthesia at our institution, and to quantify the potential health care payer cost savings of CCLS utilization in the United States. Methods and Materials: From 2006 to 2014, 738 children (aged ≤21 years) were treated with radiation therapy at our institution. We retrospectively analyzed the frequency of daily anesthesia before and after hiring a CCLS in 2011 after excluding patients aged 0 to 2 and >12 years. In the analyzed cohort of 425 patients the median age was 7.6 years (range, 3-12.9 years). For the pre-CCLS period the overall median age was 7.5 years; for the post-CCLS period the median age was 7.7 years. An average 6-week course of pediatric anesthesia for radiation therapy costs $50,000 in charges to the payer. The average annual cost to employ one CCLS is approximately $50,000. Results: Before employing a CCLS, 69 of 121 children (57%) aged 3 to 12 years required daily anesthesia, including 33 of 53 children (62.3%) aged 5 to 8 years. After employing a CCLS, 124 of 304 children (40.8%) aged 3 to 12 years required daily anesthesia, including only 34 of 118 children (28.8%) aged 5 to 8 years (P<.0001). With a >16% absolute reduction in anesthesia use after employment of a CCLS, the health care payer cost savings was approaching $50,000 per 6 children aged 3 to 12 years treated annually with radiation therapy in our institution. This reduction resulted in a total of only 6 children aged 3 to 12 years required anesthesia to be treated per year at our center to achieve nearly break-even cost savings to the health care payer if the payer were to subsidize the employment expense of a CCLS. Overall, the CCLS intervention can provide an average annualized health care payer cost savings of “$[(anesthesia cost to payer during radiation therapy course/6) − (CCLS expense to payer/N)]” per child (N) treated with radiation

  8. Reducing Anesthesia and Health Care Cost Through Utilization of Child Life Specialists in Pediatric Radiation Oncology.

    Science.gov (United States)

    Scott, Michael T; Todd, Kimberly E; Oakley, Heather; Bradley, Julie A; Rotondo, Ronny L; Morris, Christopher G; Klein, Stuart; Mendenhall, Nancy P; Indelicato, Daniel J

    2016-10-01

    To analyze the effectiveness of a certified child life specialist (CCLS) in reducing the frequency of daily anesthesia at our institution, and to quantify the potential health care payer cost savings of CCLS utilization in the United States. From 2006 to 2014, 738 children (aged ≤21 years) were treated with radiation therapy at our institution. We retrospectively analyzed the frequency of daily anesthesia before and after hiring a CCLS in 2011 after excluding patients aged 0 to 2 and >12 years. In the analyzed cohort of 425 patients the median age was 7.6 years (range, 3-12.9 years). For the pre-CCLS period the overall median age was 7.5 years; for the post-CCLS period the median age was 7.7 years. An average 6-week course of pediatric anesthesia for radiation therapy costs $50,000 in charges to the payer. The average annual cost to employ one CCLS is approximately $50,000. Before employing a CCLS, 69 of 121 children (57%) aged 3 to 12 years required daily anesthesia, including 33 of 53 children (62.3%) aged 5 to 8 years. After employing a CCLS, 124 of 304 children (40.8%) aged 3 to 12 years required daily anesthesia, including only 34 of 118 children (28.8%) aged 5 to 8 years (P16% absolute reduction in anesthesia use after employment of a CCLS, the health care payer cost savings was approaching $50,000 per 6 children aged 3 to 12 years treated annually with radiation therapy in our institution. This reduction resulted in a total of only 6 children aged 3 to 12 years required anesthesia to be treated per year at our center to achieve nearly break-even cost savings to the health care payer if the payer were to subsidize the employment expense of a CCLS. Overall, the CCLS intervention can provide an average annualized health care payer cost savings of "$[(anesthesia cost to payer during radiation therapy course/6) - (CCLS expense to payer/N)]" per child (N) treated with radiation therapy, where N equals the number of children aged 3 to 12

  9. Reducing Anesthesia and Health Care Cost Through Utilization of Child Life Specialists in Pediatric Radiation Oncology

    International Nuclear Information System (INIS)

    Scott, Michael T.; Todd, Kimberly E.; Oakley, Heather; Bradley, Julie A.; Rotondo, Ronny L.; Morris, Christopher G.; Klein, Stuart; Mendenhall, Nancy P.; Indelicato, Daniel J.

    2016-01-01

    Purpose: To analyze the effectiveness of a certified child life specialist (CCLS) in reducing the frequency of daily anesthesia at our institution, and to quantify the potential health care payer cost savings of CCLS utilization in the United States. Methods and Materials: From 2006 to 2014, 738 children (aged ≤21 years) were treated with radiation therapy at our institution. We retrospectively analyzed the frequency of daily anesthesia before and after hiring a CCLS in 2011 after excluding patients aged 0 to 2 and >12 years. In the analyzed cohort of 425 patients the median age was 7.6 years (range, 3-12.9 years). For the pre-CCLS period the overall median age was 7.5 years; for the post-CCLS period the median age was 7.7 years. An average 6-week course of pediatric anesthesia for radiation therapy costs $50,000 in charges to the payer. The average annual cost to employ one CCLS is approximately $50,000. Results: Before employing a CCLS, 69 of 121 children (57%) aged 3 to 12 years required daily anesthesia, including 33 of 53 children (62.3%) aged 5 to 8 years. After employing a CCLS, 124 of 304 children (40.8%) aged 3 to 12 years required daily anesthesia, including only 34 of 118 children (28.8%) aged 5 to 8 years (P 16% absolute reduction in anesthesia use after employment of a CCLS, the health care payer cost savings was approaching $50,000 per 6 children aged 3 to 12 years treated annually with radiation therapy in our institution. This reduction resulted in a total of only 6 children aged 3 to 12 years required anesthesia to be treated per year at our center to achieve nearly break-even cost savings to the health care payer if the payer were to subsidize the employment expense of a CCLS. Overall, the CCLS intervention can provide an average annualized health care payer cost savings of “$[(anesthesia cost to payer during radiation therapy course/6) − (CCLS expense to payer/N)]” per child (N) treated with radiation therapy, where N

  10. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  11. Analysis of technologies and experiences for reducing occupational radiation dose and study for applying to regulations

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun; Park, Moon Soo; Lee, Un Jang; Song, Jae Hyuk; Kim, Byeong Soo; Kim, Chong Uk [Seoul National Univ., Seoul (Korea, Republic of)

    2003-01-15

    To reduce Occupational Radiation Dose (ORD) effectively and enhance the radiological safety, the comprehensive assessment of the experiences to reduce ORD should be made by regulatory body as well as utilities. Hence, the objective of this study is to assess the experiences for reducing ORD from the regulatory viewpoint. With the research objective, the followings are performed in this research; analysis of occupational dose trends at domestic and foreign NPPs, identification of the effective technologies for reducing ORD, examination of the effects of the technologies for reducing ORD, derivation of the regulatory means for implementing he research results. From this study, the regulatory means for effective reduction of ORD are derived. Hence, the results can be utilized as a basic materials for ALARA requirements.

  12. Nonionizing radiation and health

    International Nuclear Information System (INIS)

    Suess, M.J.

    1985-01-01

    While a great deal of work has been done by international bodies to establish permissible levels for ionizing radiation, much less attention has been paid to the nonionizing forms of radiation and their possible health effects. Taking into account that equipment producing such radiation is now widely used both in the house and in industry, the paper presents the possible health effects of ultraviolet, visible, laser, infrared and microwave radiation, of electric and magnetic fields and of the ultrasound waves

  13. The impact of climate change on agriculture and related resources in the Great Plains

    International Nuclear Information System (INIS)

    Easterling, W.E.

    1991-01-01

    The impacts of climate change on water resources and agriculture in the four Great Plains states Missouri, Iowa, Nebraska and Kansas (MINK), using the anomalously hot and dry weather of the 1930s as a model for climate in the year 2030 and a mechanistic crop simulation model known as the Erosion Productivity Impact Calculator (EPIC), are described. EPIC was modified for climate impact analysis by compiling data sets providing detailed descriptions of farms representative of the MINK region, representing the effect of increased carbon dioxide on crop water use and photosynthetic efficiency, and incorporating daily temperature and precipitation data, monthly solar radiation and humidity levels. Technologies assumed to become available include advances in breeding and biotechnology to increase harvest index, boosting of photosynthetic efficiency, and advances in pest management. If no technological adjustment was incorporated, corn yielded 20% less than baseline, soybeans 15% less and sorghum 8% less. Wheat and alfalfa yielded slightly higher. Incorporation of technological advances greatly reduced negative effects of climate change, with yields raised above baseline for every crop but corn

  14. Occupational exposure of medical radiation workers in Lithuania, 1950-2003

    International Nuclear Information System (INIS)

    Samerdokiene, V.; Atkocius, V.; Kurtinaitis, J.; Valuckas, K.P.

    2008-01-01

    This study presents the summary of historical exposures, measurement practice and evolution of the recording of the individual doses of medical radiation workers during 1950-2003 in Lithuania. The aim of this study is to present occupational exposure of medical radiation workers in Lithuania since the earliest appearance period. Data from publications have been used for the earliest two periods prior to 1969; data from the archives of the largest hospitals, for the period 1970-1990 and data from Lithuanian Subdivision of Individual Dosimetry of Radiation Protection Center, for the period 1991-2003. The analysis of the data obtained from personal records allows to conclude that the average annual effective dose of Lithuanian medical radiation workers was greatly reduced in radiology, radiotherapy and nuclear medicine in all occupational categories from 1950 to 2003. During the last period 1991-2003 extremity doses clearly decreased and after 1994 were no longer present in Lithuania. (authors)

  15. Reducing the Harmful Effects of Infrared Radiation on the Skin Using Bicosomes Incorporating β-Carotene.

    Science.gov (United States)

    Fernández, Estibalitz; Fajarí, Lluís; Rodríguez, Gelen; Cócera, Mercedes; Moner, Verónica; Barbosa-Barros, Lucyanna; Kamma-Lorger, Christina S; de la Maza, Alfonso; López, Olga

    2016-01-01

    In this work the effect of infrared (IR) radiation, at temperatures between 25 and 30°C, on the formation of free radicals (FRs) in the skin is studied. Additionally, the influence of IR radiation at high temperatures in the degradation of skin collagen is evaluated. In both experiments the protective effect against IR radiation of phospholipid nanostructures (bicosomes) incorporating β-carotene (Bcb) is also evaluated. The formation of FRs in skin under IR exposure was measured near physiological temperatures (25-30°C) using 5,5-dimethyl-1-pyrroline-N-oxide spin trap and electron paramagnetic resonance (EPR) spectroscopy. The study of the collagen structure was performed by small-angle X-ray scattering using synchrotron radiation. EPR results showed an increase in the hydroxyl radical in the irradiated skin compared to the native skin. The skin collagen was degraded by IR exposure at high temperatures of approximately 65°C. The treatment with Bcb reduced the formation of FRs and kept the structure of collagen. The formation of FRs by IR radiation does not depend on the increase of skin temperature. The decrease of FRs and the preservation of collagen fibers in the skin treated with Bcb indicate the potential of this lipid system to protect skin under IR exposure. © 2016 S. Karger AG, Basel.

  16. The Great London Smog of 1952.

    Science.gov (United States)

    Polivka, Barbara J

    2018-04-01

    : The Great London Smog of December 1952 lasted five days and killed up to 12,000 people. The smog developed primarily because of extensive burning of high-sulfur coal. The health effects were both immediate and long lasting, with a recent study revealing an increased likelihood of childhood asthma development in those exposed to the Great Smog while in utero or during their first year of life. Subsequent pollution legislation-including the U.S. Clean Air Act and its amendments-have demonstrably reduced air pollution and positively impacted health outcomes. With poor air quality events like the Great Smog continuing to occur today, nurses need to be aware of the impact such environmental disasters can have on human health.

  17. Effect of ionizing radiation on reducing the several inhibitors in codling moth Cydia pomonella (L.) medium

    International Nuclear Information System (INIS)

    Mohamad, F. A.

    2008-01-01

    The medium for Codling moth, Cydia pomonella (L) was sterilized using ionizing radiation (0, 5, 15 and 25 KGy) or heat (cooking for 40 minutes.). inhibitors were also added either on the top of the diet or by mixing it with the diet. The results showed that all Codling moth larvae in the ionizing radiation sterilized diet died before reaching the 4th larval instar. Results of using both radiation and cooking for sterilizing the diet gave variable results; those treated with 15 KGy gave significantly more moths with higher weight and more fecundity. The results also showed that increasing the amount of microbial inhibitors in diet negatively affected the number of produced moth and their biological characteristics. Consequently irradiation could be a mean for reducing the amount of chemical inhibitors added to the diet. (author)

  18. Great red spot dependence on solar activity

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1979-01-01

    A new inquiry has been made into the question of whether Jupiter's Great Red Spot shows a solar activity dependence. From 1892 to 1947 a clear correlation was present. A dearth of sightings in the seventeenth century, along with the Maunder Minimum, further supports the relation. An anticorrelation, however, from l948 to l967 removed support for such an effect. The old observations have reexamined and recent observations have also been studied. The author reexamines this difficult question and suggests a possible physical mechanism for a Sun-Jovian weather relation. Prinn and Lewis' conversion reaction of Phosphine gas to triclinic red phosphorous crystals is a reaction dependent upon solar radiation. It may explain the dependence found, as well as the striking appearance of the Great Red Spot in the UV

  19. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  20. Reducing radiation doses to the breast, thyroid and gonads during diagnostic radiography

    International Nuclear Information System (INIS)

    Weatherburn, G.C.

    1983-01-01

    The measurement of doses to the gonads during radiography of the pelvis is discussed. Phantom measurements to estimate doses to the ovaries in antero-posterior (AP) and postero-anterior (PA) projections of the pelvis showed that the dose is 15% of the skin entry dose in the AP projection and 9% in the PA projection. The air gap technique and its applications in reducing radiation doses to the gonads, breast and thyroid is described. A summary of dose reduction factors for these radiosensitive organs achieved by modified radiographic techniques in radiography of the chest, pelvis, spine and skull is given. (U.K.)

  1. Progress in identification of radiation embrittlement mechanisms

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1988-01-01

    This report outlines recent advances in the isolation and understanding of mechanisms behind known composition influences on he radiation embrittlement sensitivity of reactor pressure vessel steels at 288 deg. C. The advances are largely the product of joint investigations by Materials Engineering Associates (MEA) and other laboratories in the U.S. and overseas under cooperative and subcontract arrangements. Specific objectives were: confirmation of the suspect Cu mechanism, identification of the process for the Cu:Ni synergism, and isolation of the P mechanism in radiation sensitivity development. The investigations proceeded with MEA-supplied steels and iron alloys from 4-way split laboratory melts; research tools included Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Ion Microscopy (FIM), Small Angle Neutron Scattering (SANS), Positron Annihilation (PA) and Auger Electron Spectroscopy (AES). Experimental results show that P and Cu enhance the radiation elevation of yield strength and that the associated mechanisms are a radiation-induced precipitation of P or Cu-rich clusters which impede dislocation motion. With high Cu alloys, a Cu phosphide is formed in preference to P precipitates and the P contribution is greatly reduced. Effects of postirradiation annealing and reirradiation are also reported. (author)

  2. Timing of pilocarpine treatment during head and neck radiotherapy: concomitant administration reduces xerostomia better than post-radiation pilocarpine

    International Nuclear Information System (INIS)

    Zimmerman, Robert P.; Mark, Rufus J.; Juillard, Guy F.

    1996-01-01

    Purpose: To study whether oral pilocarpine administration during and three months after head and neck radiotherapy can prevent or reduce the expected post-radiation xerostomia. This regimen was compared to no treatment and to post-radiotherapy pilocarpine administration, which has previously been shown to reduce symptoms of xerostomia in several randomized trials. Methods: Xerostomia assessments were performed using a visual analog scale xerostomia questionnaire that measures oral dryness, oral comfort, difficulty with sleep, speech and eating. Higher scores indicate less xerostomia. All the patients had all major salivary glands in the initial field treated to ≥ 4,500 cGy. The concomitant pilocarpine group received 5 mg pilocarpine q.i.d. beginning on day one of radiotherapy and continuing for 3 months after completion of radiation. The control group had their baseline xerostomia measured prior to receiving pilocarpine. They subsequently took 5 mg pilocarpine t.i.d. for one month at which time they underwent a second xerostomia assessment. Xerostomia scores for each group were averaged and compared using the Student's t-test. Results: Seventeen patients who received pilocarpine during head and neck irradiation were compared to 12 post-radiotherapy patients who had not yet taken pilocarpine and the same patients after taking pilocarpine for one month. The mean intervals between completion of radiation and evaluation of xerostomia were 16 months for the control group and 17 months for the pilocarpine treated groups. The primary tumor sites treated as well as the total tumor doses were equivalent between the groups. Only one of the pilocarpine treated patients was still taking pilocarpine at the time of evaluation. Results are shown. For each component of xerostomia measured as well as the composite of all components, the group that had received pilocarpine during radiation had significantly less xerostomia than the no pilocarpine group (p<0.01 for each). Post

  3. Rotating machinery surveillance system reduces plant downtime and radiation exposure

    International Nuclear Information System (INIS)

    Bohanick, J.S.; Robinson, J.C.; Allen, J.W.

    1988-01-01

    A rotating machinery surveillance system (RMSS) was permanently installed at Grand Gulf nuclear station (GGNS) as part of a program sponsored by the US Department of Energy whose goal was to reduce radiation exposure to power plant personnel resulting from the inspection, maintenance, and repair of rotating machinery. The RMSS was installed at GGNS in 1983 to continuously monitor 173 analog vibration signals from proximity probes mounted on 26 machine trains and ∼450 process data points via a computer data link. Vibration frequency spectra, i.e., the vibration amplitude versus frequency of vibration, and various characterizations of these spectra are the fundamental data collected by the RMSS for performing machinery diagnostics. The RMSS collects vibration frequency spectra on a daily basis for all the monitored rotating equipment and automatically stores the collected spectra for review by the vibration engineer. Vibration spectra automatically stored by the RMSS fall into categories that include the last normal, alarm, minimum and maximum, past three-day data set, baseline, current, and user-saved spectra. During first and second fuel-cycle operation at GGNS, several significant vibration problems were detected by the RMSS. Two of these are presented in this paper: recirculation pumps and turbine-generator bearing degradation. The total reduction in personnel radiation exposure at GGNS from 1985 to 1987 due to the presence of the RMSS was estimated to be in the range from 49 to 54 person-rem

  4. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    Science.gov (United States)

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  5. Potent corticosteroid cream (mometasone furoate) significantly reduces acute radiation dermatitis: results from a double-blind, randomized study

    International Nuclear Information System (INIS)

    Bostroem, Aasa; Lindman, Henrik; Swartling, Carl; Berne, Berit; Bergh, Jonas

    2001-01-01

    Purpose: Radiation-induced dermatitis is a very common side effect of radiation therapy, and may necessitate interruption of the therapy. There is a substantial lack of evidence-based treatments for this condition. The aim of this study was to investigate the effect of mometasone furoate cream (MMF) on radiation dermatitis in a prospective, double-blind, randomized study. Material and methods: The study comprised 49 patients with node-negative breast cancer. They were operated on with sector resection and scheduled for postoperative radiotherapy using photons with identical radiation qualities and dosage to the breast parenchyma. The patients were randomized to receive either MMF or emollient cream. The cream was applied on the irradiated skin twice a week from the start of radiotherapy until the 12th fraction (24 Gy) and thereafter once daily until 3 weeks after completion of radiation. Both groups additionally received non-blinded emollient cream daily. The intensity of the acute radiation dermatitis was evaluated on a weekly basis regarding erythema and pigmentation, using a reflectance spectrophotometer together with visual scoring of the skin reactions. Results: MMF in combination with emollient cream treatment significantly decreased acute radiation dermatitis (P=0.0033) compared with emollient cream alone. There was no significant difference in pigmentation between the two groups. Conclusions: Adding MMF, a potent topical corticosteroid, to an emollient cream is statistically significantly more effective than emollient cream alone in reducing acute radiation dermatitis

  6. Modeling of Solar Radiation Management: A Comparison of Simulations Using Reduced Solar Constant and Stratospheric Sulphate Aerosols

    Science.gov (United States)

    Bala, G.; Kalidindi, S.; Modak, A.; Caldeira, K.

    2014-12-01

    Several climate modelling studies in the past have used reduction in solar constant to simulate the climatic effects of Solar Radiation Management (SRM) geoengineering. This is most likely valid only for space-based mirrors/reflectors but not for SRM methods that rely on stratospheric aerosols. In this study, we use a climate model to evaluate the differences in climate response to SRM by uniform solar constant reduction and stratospheric aerosols. The experiments are designed such that global mean warming from a doubling of atmospheric CO2 concentration (2xCO2) is nearly cancelled in each case. In such a scenario, the residual climate effects are similar when important surface and tropospheric climate variables such as temperature and precipitation are considered. However, there are significant differences in stratospheric temperature response and diffuse and direct radiation reaching the surface. A difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods, with warming in the aerosol scheme and a slight cooling for sunshades. While the global mean surface diffuse radiation increases by ~23% and direct radiation decreases by about 9% in the case of aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 8%) and NPP (~3%) relative to 2xCO2, indicating the negligible effect of the fractional changes in direct/diffuse radiation on the overall plant productivity. Based on our modelling study, we conclude that the climate states produced by a

  7. Reducing radiation doses to the breast, thyroid and gonads during diagnostic radiography

    International Nuclear Information System (INIS)

    Weatherburn, G.C.

    1983-01-01

    The skin entry and exit doses on patients undergoing routine radiographic examinations of areas in which the breast, thyroid and gonads are included in the primary beam were measured using thermoluminescent dosimeters. To obtain further information about patient doses, measurements were also made on a phantom at similar skin positions and at the positions of these organs. Comparisons of the doses to these radiosensitive organs were made for the antero-posterior and postero-anterior projections. In cases where it was found that the doses were reduced by the use of non-conventional relationship between the relative positions of the patient and the film, suggestions are made for the adaptations which would have to be made to X-ray equipment to enable these projections to be taken routinely. Other techniques, such as air gap techniques and thyroid shielding, whereby patient doses can be reduced during routine radiography are also examined. Finally the implications of these results for radiation protection of patients are considered. (author)

  8. ["Great jobs"-also in psychiatry?].

    Science.gov (United States)

    Spiessl, H; Hübner-Liebermann, B

    2003-09-01

    Against the background of a beginning shortage of psychiatrists, results from interviews with 112 employees of an automotive company with the topic "Great Job" are presented to discuss their relevance to psychiatry. The interviews were analysed by means of a qualitative content analysis. Most employees assigned importance to great pay, constructive collaboration with colleagues, and work appealing to personal interests. Further statements particularly relevant to psychiatry were: successful career, flexible working hours, manageable job, work-life balance, well-founded training, no bureaucracy within the company, and personal status in society. The well-known economic restrictions in health care and the still negative attitude towards psychiatry currently reduce the attraction of psychiatry as a profession. From the viewpoint of personnel management, the attractors of a great job revealed in this study are proposed as important clues for the recruitment of medical students for psychiatry and the development of psychiatric staff.

  9. French experience to reduce radiation field build-up and improve nuclear fuel performance

    International Nuclear Information System (INIS)

    Thomazet, J.; Beslu, P.; Noe, M.; Stora, J.P.

    1983-01-01

    Over these last years, considerable information has been obtained on primary coolant chemistry, activity build-up and nuclear fuel behavior. As of December 1982, twenty three 900 MWe type reactors were in operation in France and about 1.3 millions of rods had been loaded in power reactors among which six regions of 17x17 fuel assemblies had completed successfully their third cycle of irradiation with a lead assembly burn-up of 37,000 MWd/MtU. Visual examination shows that crud deposited on fuel clads is mostly thin or inexistent. This result is due to the appropriate B/Li coolant concentration control which is currently applied in French reactors since several years. Correlatively, radiation field build-up is minimized and excessive external corrosion has never been observed. Nevertheless for higher coolant temperature plants, where occurrence of nucleate boiling could increase crud deposition, and for load follow and high burn-up operation, an extensive programme is performed jointly by Commissariat a l'Energie Atomique (CEA), Electricite de France, FRAMATOME and FRAGEMA to reduce even more the radiation field. This programme, described in the paper, includes: loop tests; on site chemical and radiochemical surveys; radiation field measurements; on site fuel examination crud-scrapping, crud analysis and oxide thickness measurements; hot cells examination. Some key results are presented and discussed in this paper. (author)

  10. Leaded eyeglasses substantially reduce radiation exposure of the surgeon's eyes during acquisition of typical fluoroscopic views of the hip and pelvis.

    Science.gov (United States)

    Burns, Sean; Thornton, Raymond; Dauer, Lawrence T; Quinn, Brian; Miodownik, Daniel; Hak, David J

    2013-07-17

    Despite recommendations to do so, few orthopaedists wear leaded glasses when performing operative fluoroscopy. Radiation exposure to the ocular lens causes cataracts, and regulatory limits for maximum annual occupational exposure to the eye continue to be revised downward. Using anthropomorphic patient and surgeon phantoms, radiation dose at the surgeon phantom's lens was measured with and without leaded glasses during fluoroscopic acquisition of sixteen common pelvic and hip views. The magnitude of lens dose reduction from leaded glasses was calculated by dividing the unprotected dose by the dose measured behind leaded glasses. On average, the use of leaded glasses reduced radiation to the surgeon phantom's eye by tenfold, a 90% reduction in dose. However, there was widespread variation in the amount of radiation that reached the phantom surgeon's eye among the various radiographic projections we studied. Without leaded glasses, the dose measured at the surgeon's lens varied more than 250-fold among these sixteen different views. In addition to protecting the surgeon's eye from the deleterious effects of radiation, the use of leaded glasses could permit an orthopaedist to perform fluoroscopic views on up to ten times more patients before reaching the annual dose limit of 20 mSv of radiation to the eye recommended by the International Commission on Radiological Protection. Personal safety and adherence to limits of occupational radiation exposure should compel orthopaedists to wear leaded glasses for fluoroscopic procedures if other protective barriers are not in use. Leaded glasses are a powerful tool for reducing the orthopaedic surgeon's lens exposure to radiation during acquisition of common intraoperative fluoroscopic views.

  11. A conservation paradox in the Great Basin—Altering sagebrush landscapes with fuel breaks to reduce habitat loss from wildfire

    Science.gov (United States)

    Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.

    2018-03-15

    Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks

  12. Summertime Low-Level Jets over the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Stensrud, D.J. [NOAA/ERL/National Severe Storms Lab., Norman, OK (United States); Pfeifer, S. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  13. Who was concerned about radiation, food safety, and natural disasters after the great East Japan earthquake and Fukushima catastrophe? A nationwide cross-sectional survey in 2012.

    Science.gov (United States)

    Sugimoto, Takashi; Shinozaki, Tomohiro; Naruse, Takashi; Miyamoto, Yuki

    2014-01-01

    Disaster-related concerns by sub-populations have not been clarified after the great East Japan earthquake and the Fukushima nuclear power plant incidents. This paper assesses who was concerned about radiation, food safety, and natural disasters among the general population in order to buffer such concerns effectively. The hypothesis that women, parents, and family caregivers were most concerned about radiation, food safety, and natural disaster was tested using a varying-intercept multivariable logistic regression with 5809 responses from a nationwide cross-sectional survey random-sampled in March 2012. Many people were at least occasionally concerned about radiation (53.5%), food safety (47.3%), and about natural disaster (69.5%). Women were more concerned than men about radiation (OR = 1.67; 95% CI = 1.35-2.06), food safety (1.70; 1.38-2.10), and natural disasters (1.74; 1.39-2.19). Parents and family care needs were not significant. Married couples were more concerned about radiation (1.53; 1.33-1.77), food safety (1.38; 1.20-1.59), and natural disasters (1.30; 1.12-1.52). Age, child-cohabitation, college-completion, retirement status, homemaker status, and the house-damage certificate of the last disaster were also associated with at least one concern. Participants from the Kanto region were more concerned about radiation (2.08; 1.58-2.74) and food safety (1.30; 1.07-1.59), which demonstrate similar positive associations to participants from Tohoku where a disaster relief act was invoked (3.36; 2.25-5.01 about radiation, 1.49; 1.08-2.06 about food safety). Sectioning the populations by gender and other demographics will clarify prospective targets for interventions, allow for a better understanding of post-disaster concerns, and help communicate relevant information effectively.

  14. Who was concerned about radiation, food safety, and natural disasters after the great East Japan earthquake and Fukushima catastrophe? A nationwide cross-sectional survey in 2012.

    Directory of Open Access Journals (Sweden)

    Takashi Sugimoto

    Full Text Available BACKGROUND: Disaster-related concerns by sub-populations have not been clarified after the great East Japan earthquake and the Fukushima nuclear power plant incidents. This paper assesses who was concerned about radiation, food safety, and natural disasters among the general population in order to buffer such concerns effectively. METHODS: The hypothesis that women, parents, and family caregivers were most concerned about radiation, food safety, and natural disaster was tested using a varying-intercept multivariable logistic regression with 5809 responses from a nationwide cross-sectional survey random-sampled in March 2012. RESULTS: Many people were at least occasionally concerned about radiation (53.5%, food safety (47.3%, and about natural disaster (69.5%. Women were more concerned than men about radiation (OR = 1.67; 95% CI = 1.35-2.06, food safety (1.70; 1.38-2.10, and natural disasters (1.74; 1.39-2.19. Parents and family care needs were not significant. Married couples were more concerned about radiation (1.53; 1.33-1.77, food safety (1.38; 1.20-1.59, and natural disasters (1.30; 1.12-1.52. Age, child-cohabitation, college-completion, retirement status, homemaker status, and the house-damage certificate of the last disaster were also associated with at least one concern. Participants from the Kanto region were more concerned about radiation (2.08; 1.58-2.74 and food safety (1.30; 1.07-1.59, which demonstrate similar positive associations to participants from Tohoku where a disaster relief act was invoked (3.36; 2.25-5.01 about radiation, 1.49; 1.08-2.06 about food safety. CONCLUSIONS: Sectioning the populations by gender and other demographics will clarify prospective targets for interventions, allow for a better understanding of post-disaster concerns, and help communicate relevant information effectively.

  15. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  16. Health management of radiation workers

    International Nuclear Information System (INIS)

    Kunugita, Naoki; Igari, Kazuyuki

    2013-01-01

    People in Japan have expressed great anxiety about possible radiation and radioactivity after the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company's (TEPCO), due to the great earthquake and tsunami in eastern Japan on 11 March 2011. A large number of workers were engaged in response and recovery operations, and they were possibly exposed to high doses of radiation as compared to the general population. In the accident at the Chernobyl Nuclear Power Plant in 1986, high doses of radiation to 134 plant staff and emergency personnel resulted in acute radiation syndrome (ARS), which proved fatal for 28 of them. In the Fukushima accident, six workers were exposed to more than 250 mSv of radiation during the initial response phase, but no one showed ARS. It is necessary to continue registration of radiation doses for all workers who were exposed to radiation to facilitate suitable healthcare management in the future. In addition to radiation exposure, a group of workers were also exposed to other health hazards. Frequent occurrence of heat disorders has been a concern for the workers wearing protective clothing with poor ventilation. A comprehensive program to prevent heat illness was implemented by TEPCO under the guidance of the Ministry of Health, Labour, and Welfare. It is important to provide effective systems not only for prevention of radiation exposure but also for general management of other health risks including heat disorders and infection. (author)

  17. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    1981-02-01

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP) [de

  18. Radiation problems of Fukushima. Little exposure of residents

    International Nuclear Information System (INIS)

    Togasawa, Hidetoshi

    2012-01-01

    More than one and half year passed after Fukushima nuclear accident, radiation hazards, especially due to internal irradiation, were still public concern of people living within Fukushima prefecture and Tokyo metropolitan area. However according to several investigations, internal exposure was greatly lower than the level of health hazards due to internal radiation. In August 2012, Fukushima prefecture published internal dose rate of 26 persons was greater than 1 mSv (max 3 mSv) and others than 1 mSv based on whole body counters test results for 63366 residents after June 2011. Appropriate disclosure of exposure dose and related risks was required for risk communication. Target of internal exposure dose rate less than 1 mSv/year was almost attained and people with rather higher dose should be individually checked to reduce exposure. (T. Tanaka)

  19. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  20. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    Science.gov (United States)

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    procedures with and without Clarity were not significantly different. For all cases, procedure radiation dose to the patient and the primary and assistant operators were significantly decreased in the Clarity group by 60% compared with the non-Clarity group. By procedure type, fluorography dose rates decreased from 44% for fenestrated endovascular repair and up to 70% with lower extremity interventions. Fluoroscopy dose rates also significantly decreased, from about 37% to 47%, depending on procedure type. The AlluraClarity system reduces the patient and primary operator's radiation dose by more than half during CEPs. This feature appears to be an effective tool in lowering the radiation dose while maintaining image quality. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    Energy Technology Data Exchange (ETDEWEB)

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R., E-mail: akennedy@mail.med.upenn.edu

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  2. Has the great recession and its aftermath reduced traffic fatalities?

    Science.gov (United States)

    Noland, Robert B; Zhou, Yuhan

    2017-01-01

    An analysis of state-level data from 1984 to 2014 provides evidence on the relationship between economic recessions and US traffic fatalities. While there are large reductions associated with decreases in household median income, other policy variables tend to have additional and in some cases, larger effects. An increase in the inequality of the income distribution, measured by the Gini index, has reduced traffic fatalities. Graduated licensing policies, cell phone laws, and motorcycle helmet requirements are all associated with reductions in fatalities. Other factors include a proxy for medical technology, and access to emergency medical services (based on the percent of vehicle miles traveled in rural areas); reductions in the latter accounted for a substantial reduction in fatalities and is likely another indicator of reduced economic activity. Changes in the road network, mainly increases in the percent of collector roads has increased fatalities. Population growth is associated with increased traffic fatalities and changes in age cohorts has a small negative effect. Overall, results suggest that there has been a beneficial impact on traffic fatalities from reduced economic activity, but various policies adopted by the states have also reduced traffic fatalities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  4. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  5. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B. [Department of Energy, New York, NY (United States)

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  6. Decontamination reduces radiation anxiety and improves subjective well-being after the Fukushima accident

    International Nuclear Information System (INIS)

    Murakami, Michio; Harada, Shigeki; Oki, Taikan

    2017-01-01

    Since the 2011 Fukushima accident, rebuilding society to protect against anxiety and improve feelings of well-being has grown in importance. A questionnaire was carried out among residents of Marumori Town, Igu County, Miyagi Prefecture, to evaluate the effects of radiation-related countermeasures implemented by the town to reduce residents' anxiety and improve their subjective well-being (response rate: 31%; valid responses: n = 174). Further, to propose effective countermeasures regarding town planning for the improvement in subjective well-being, we analyzed associations between residents' sense of attachment to the town and subjective well-being, and then identified primary factors behind their sense of attachment. Marumori Town, located about 50 km to the northwest of the Daiichi Nuclear Power Station, is a good site for evaluating the effects of countermeasures taken by the town itself to fight anxiety, because there have been limited surveys and professional medical support, and mitigation efforts were primarily initiated by the town. The results suggested that decontamination evaluations were associated with a reduction in anxiety after the accident, which contributed to an increase in residents' subjective well-being. On the other hand, the evaluation of items related to human interactions in the community and the natural environment was found as a primary factor of sense of attachment toward the town, which contributed to an increase of residents' subjective well-being. This is the first study to quantitatively measure the effects of radiation-related countermeasures on reducing anxiety and to propose an effective policy approach for improving subjective well-being. (author)

  7. The Great Recession was not so Great

    NARCIS (Netherlands)

    van Ours, J.C.

    2015-01-01

    The Great Recession is characterized by a GDP-decline that was unprecedented in the past decades. This paper discusses the implications of the Great Recession analyzing labor market data from 20 OECD countries. Comparing the Great Recession with the 1980s recession it is concluded that there is a

  8. History of measures taken to reduce radiation exposure at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Kondou, Masashi; Takagi, Nobuyuki; Yabushita, Kazuo; Dekijima, Makoto

    2009-01-01

    Hamaoka Nuclear Power Station currently has five reactors, Units 1 to 5. Units 1 and 2 halted commercial operation in January 2009 and are now being prepared for decommissioning. Units 3 to 5 are operating at the rated thermal output with the gross electrical output of 3504 MWe. Hamaoka Nuclear Power Station has been operating for about 30 years since Unit 1 started up in 1976. Various measures have been taken to control water chemistry: for controlling SCC in the core internals and structural materials, hydrogen injection and noble metal injection were implemented; and to reduce radiation exposure for workers, condensate filter demineralizers were added, hollow fiber filters and pleated filters were installed in the condensate cleanup system, and zinc injection was performed. This paper describes measures taken at Hamaoka to reduce exposure in terms of water chemistry and techniques to monitor ion impurities in the reactor water. (author)

  9. Ambient radiation dose reduction within a newly remodeled Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Lai, Y.C.; Chen, Y.W.; Huang, Y.F.

    2008-01-01

    Full text: Ambient radiation levels at the patient waiting areas have been greatly reduced after remodeling of our Nuclear Medicine Department (NMD) based on the ALARA consideration. Complete ambient radiation monitoring of our NMD before remodeling had been characterized and published earlier by the same authors elsewhere. The NMD outpatients, with an initial dose of up to 740 MBq (20 mCi) per case, may wait around and incidentally congest in one place that could cause an unexpected higher exposure level in public access areas. In this new surveillance study after remodeling, the ambient radiation time-profile, peak dose rates and daily doses have been re-evaluated by using high sensitivity, digital survey dosimeters. As a preliminary result, with our newly improved facility in operation, we have demonstrated the NMD waiting room average daily dose has dropped from about 3.0 μSv to 0.42 μSv during most of busy days in comparison. The hourly peak dose rate detected in patient waiting areas has also reduced to a factor of more than two, from maximum dose rate of 40.4 μSv/h to 15.4 μSv/h, during one worst case scenario. The great reduction of the environment dose was achieved mainly by using larger room space with thicker lead wall, from previous 2-mm to new 5-mm in lead thickness, and by increasing patient waiting rooms/areas with less chairs available in each seating location. Other NMD administrative control measure of our dose reduction program has also been emphasized in better patient routing, scheduling and less waiting time for the diagnostic patients. (author)

  10. A custom-made mouthpiece incorporating tongue depressors and elevators to reduce radiation-induced tongue mucositis during carbon-ion radiation therapy for head and neck cancer.

    Science.gov (United States)

    Ikawa, Hiroaki; Koto, Masashi; Ebner, Daniel K; Takagi, Ryo; Hayashi, Kazuhiko; Tsuji, Hiroshi; Kamada, Tadashi

    We introduce a custom-made mouthpiece for carbon-ion radiation therapy for head and neck malignancy. The mouthpiece incorporates either a tongue depressor or elevator depending on tumor location. The risk of tongue mucositis may be reduced without compromising therapeutic efficacy through mouthpiece shaping. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  12. Radiation application contributing to welfare of the nation

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Tanaka, Ryuichi

    2005-01-01

    Ionizing radiation has been widely applied in the fields of industry, agriculture, and medicine. Now, radiation application offers great benefit to people in various ways improve quality of life, such as sterilization of disposable medical equipment, semiconductors, radiographic testing and radial tire in industry, food irradiation, sterile insect technique (SIT), mutation breeding (rice etc.) and radioisotope utilization in agriculture, diagnostic imaging, prostate cancer, FDG-PET, medical equipment, radioisotopes, radio pharmacy and contrast media in medicine. However, the benefit has not been so far estimated economically in Japan. In the present study, the concept of economic scale' was introduced as an economic measure indicating the magnitude of the market created by products manufactured by the utilization of radiation. The total economic scale of radiation application in Japan was evaluated 71b$(billion dollars, 1$=121yen) for the fiscal year of 1997. This quantification of the benefit of radiation applications will greatly contribute to radiation education and risk communication for general public. (author)

  13. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  14. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  15. Synchrotron radiation facilities for chemical applications

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1995-01-01

    Synchrotron radiation (SR) research is of great importance in understanding radiation chemistry, physics, and biology. It is also clearly recognized in the international chemical community that chemical applications of SR are greatly advanced and divided into 1) Molecular Spectroscopy and Dynamics Studies-Gases, Surfaces, and Condensed Matter- , 2) Radiation Chemistry and Photochemistry, 3) X-ray Structural and XAFS Studies-Crystals, Surfaces, and Liquids- , 4) Analytical Chemistry, and 5) Synthesis or R and D of New Materials. In this paper, a survey is given of recent advances in the application of SR to the chemistry of excitation and ionization of molecules, i.e., SR chemistry, in the wavelength region between near-ultraviolet and hard X-rays. The topics will be chosen from those obtained at some leading SR facilities. (J.P.N.)

  16. Impact of Gamma Radiation Processing to Improve the Hygienic Quality of some Chicken Products

    International Nuclear Information System (INIS)

    Mohamed, W.S.; El-Mossalami, I.I.; Nosier, S.M.

    2009-01-01

    For food to be entirely safe from the microbiological viewpoint, it must need to contain the least possible counts of microorganisms of hygienic importance. This investigation aims to study the possible use of gamma radiation for bacterial decontamination of chicken products which are produced in Egypt. One hundred and twenty samples of frozen chicken kofta and burgers (60 each) were purchased from retail markets at Cairo Governorate. They were surveyed for the hygienic quality as well as the effect of gamma radiation (dose levels of 1, 2 and 3 kGy) on the bacterial population, chemical and sensory quality of these products. The results indicated that the total aerobic bacterial counts (APC) ranged from 106 to 107 cfu/g in the examined samples. Moreover, some samples were contaminated with food borne pathogens such as Listeria species and Salmonella species. Gamma irradiation greatly reduced the microbial density of the studied food samples. The microbial reduction increased as the dose level of irradiation increase, whereas irradiation of chicken products at 3 kGy dose reduced aerobic counts and eliminated Salmonella and Listeria species, also it proved to be of great importance in increasing the safety and acceptability of ready to eat frozen chicken products with no adverse effect on their chemical or sensory quality

  17. Building up the radiation protection infrastructure in Estonia

    International Nuclear Information System (INIS)

    Lust, Merle; Muru, Karin

    2008-01-01

    This paper will provide a timeline overview of the of radiation protection infrastructure following the 1999 declaration of independence. In Estonia, an independent competent authority was inaugurated in 1996 and the first Radiation Act was approved by Parliament the following year, in 1997. This paper will address several important factors and the means which promoted development. International cooperation was and remains an essential factor worthy of discussion. For example participation in International Atomic Energy Agency technical co-operation programme and co-operation with neighbouring countries greatly facilitated greatly the development. Political choices and the long term goal of accession to the European Union had great importance to the process also. Today, the Republic of Estonia is member of European Union and has built up a well functioning radiation protection system according the international standards and requirements. This paper is intended to share the experience and to facilitate the learning process. (author)

  18. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  19. Comparative evaluation of oxycort ointment and Peruvian balm in the treatment of radiation skin injuries

    International Nuclear Information System (INIS)

    Nikulin, A.A.; Krylova, E.A.

    1980-01-01

    A comparison of regeneration effect of Peruvian balm and oxycort ointment is made in experiments on 192 white rats on the model of radiation skin ulcers. Found is a pronounced regenerating and bactericidal action of balm, i.e. the curing time has been reduced greatly (up to 26-30 days against 60 day in control), and tissue respiration increased several times in comparison with the oxycort ointment treatment

  20. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  1. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  2. Long-term efficacy of a mini-course in radiation-reducing techniques in invasive cardiology

    International Nuclear Information System (INIS)

    Kuon, E.; Empen, K.; Hummel, A.; Doerr, M.; Reffelmann, T.; Felix, S.B.; Weitmann, K.; Hoffmann, W.; Staudt, A.

    2013-01-01

    Purpose: To validate the long-term efficacy of a 90-min. educational mini-course in less-irradiating cardiac interventional techniques. Materials and Methods: Before, two months after, and two years after the mini-course (periods I, II, and III), we analyzed the following radiation dose parameters for ten coronary angiographies (CA), performed by each of 7 cardiologists: total dose-area product (DAP), radiographic and fluoroscopic DAP fractions, number of radiographic frames and runs, and fluoroscopy time. Results: The median patient DAP for periods I, II and III was 31.4, 15.8 and 8.5 Gy x cm 2 , respectively. The long-term effect was related to shorter median fluoroscopy times (180, 172, and 120 s), shorter (57, 52, and 45) and fewer (12, 12, and 10) radiographic runs, consistent collimation and restriction to an adequate image quality. Both radiographic DAP/frame (28.7, 17.0, and 18.4 mGy x cm 2 ) and fluoroscopic DAP/second (45.7, 24.2, and 10.0 mGy x cm 2 ) decreased significantly. The multivariate linear regression analysis confirmed the increasing efficacy of the mini-course itself (-44.6 and -60.7 %), and revealed a decreasing influence of the interventionalist's experience (-8.6 % and -4.9 % per 1,000 CAs, lifelong performed until the mini-course). The number of CAs performed after the mini-course did not influence the long-term DAP results. Conclusion: The presented educational mini-course allows a significant, long-lasting, and apparently ongoing reduction of patient radiation exposure due to CA. A self-surveillant documentation of relevant radiation parameters is well suited to monitor and improve each operator's individual long-term radiation-reducing efforts. (orig.)

  3. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  4. An evaluation of early countermeasures to reduce the risk of internal radiation exposure after the Fukushima nuclear incident in Japan.

    Science.gov (United States)

    Nomura, Shuhei; Tsubokura, Masaharu; Gilmour, Stuart; Hayano, Ryugo S; Watanabe, Yuni N; Kami, Masahiro; Kanazawa, Yukio; Oikawa, Tomoyoshi

    2016-05-01

    After a radiation-release incident, intake of radionuclides in the initial stage immediately following the incident may be the major contributor to total internal radiation exposure for individuals in affected areas. However, evaluation of early internal contamination risk is greatly lacking. This study assessed the relationship between initial stage evacuation/indoor sheltering and internal radiation contamination levels 4 months after the 2011 Fukushima nuclear incident in Japan and estimated potential pathways of the contamination. The study population comprised 525 participants in the internal radiation screening program at Minamisoma Municipal General Hospital, 23 km north of the Fukushima nuclear plant. The analysed dataset included the results of a screening performed in July 2011, 4 months after the incident, and of a questionnaire on early-incident response behaviours, such as sheltering indoors and evacuations, completed by participants. Association between such early countermeasures and internal contamination levels of cesium-134 were assessed using Tobit multiple regression analyses. Our study shows that individuals who evacuated to areas outside Fukushima Prefecture had similar contamination levels of cesium-134 to individuals who stayed in Fukushima (relative risk: 0.86; 95% confidence interval: 0.74-0.99). Time spent outdoors had no significant relationship with contamination levels. The effects of inhalation from radiological plumes released from the nuclear plant on total internal radiation contamination might be so low as to be undetectable by the whole-body counting unit used to examine participants. Given the apparent limited effectiveness of evacuation and indoor sheltering on internal contamination, the decision to implement such early responses to a radiation-release incident should be made by carefully balancing their potential benefits and health risks. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  5. Development and demonstration of techniques for reducing occupational radiation doses during refueling outages. Tasks 7A/7B. Advanced outage management and radiation exposure control

    International Nuclear Information System (INIS)

    1985-03-01

    Objectives of Tasks 7A and 7B were to develop and demonstrate computer based systems to assist plant management and staff in utilizing information more effectively to reduce occupational exposures received as a result of refueling outages, and to shorten the duration of the outage. The Advanced Outage Management (AOM) Tool (Task 7A) is an automated outage planning system specifically designed to meet the needs of nuclear plant outage management. The primary objective of the AOM tool is to provide a computerized system that can manipulate the information typically associated with outage planning and scheduling to furnish reports and schedules that more accurately project the future course of the outage. The Radiation Exposure Control (REC) Tool (Task 7B) is a computerized personnel radiation exposure accounting and management system designed to enable nuclear plant management to project and monitor total personnel radiation exposure on a real-time basis. The two systems were designed to operate on the same computer system and interface through a common database that enables information sharing between plant organizations not typically interfaced. This interfacing provides outage planners with a means of incorporating occupational radiation exposure as a factor for making decisions on the course of an outage

  6. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  7. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  8. The advances in radiation processing technology and some suggestion

    International Nuclear Information System (INIS)

    Wu Jilan; Wei Genshuan; Ha Hongfei

    1992-01-01

    Radiation processing technology has been made great advances in the last decade especially in the developed countries. According to the conservative evaluation, the total sales of radiation processing products approached about 2-3 billion U.S. dollar in 1981, there after, the processing capacity at least doubles. Now, the intensities of 60 Co in use for radiation processing are (5.55-7.40) x 10 18 Bq and there are about 600 sets of electron accelerators for radiation processing. The total sales of radiation processing products are supposed to be over 10 billion U.S. dollar in 1989. However, there are only several fields commercialized. In great scale, such as radiation crosslinked heat shrinkable materials, radiation crosslinked electric cables and wires, and radiation sterilization of medical articles. In China, the radiation processing technology has been developed rapidly in the past years, but the processing capacity is still lower in comparing with developed countries. We suggest that much attention should be devoted to the training of the workers, technicians and managers. The basic theoretical and new technological researches are the keys for developing radiation processing technology at high speed in our country

  9. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  10. Oxygenation as a driver of the Great Ordovician Biodiversification Event

    Science.gov (United States)

    Edwards, Cole T.; Saltzman, Matthew R.; Royer, Dana L.; Fike, David A.

    2017-12-01

    The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. A complementary role for oxygenation of subsurface environments has been inferred based on the increasing abundance of skeletal carbonate, but direct constraints on atmospheric O2 levels remain elusive. Here, we use high-resolution paired bulk carbonate and organic carbon isotope records to determine the changes in isotopic fractionation between these phases throughout the Ordovician radiation. These results can be used to reconstruct atmospheric O2 levels based on the O2-dependent fractionation of carbon isotopes by photosynthesis. We find a strong temporal link between the Great Ordovician Biodiversification Event and rising O2 concentrations, a pattern that is corroborated by O2 models that use traditional carbon-sulfur mass balance. We conclude that that oxygen levels probably played an important role in regulating early Palaeozoic biodiversity levels, even after the Cambrian Explosion.

  11. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  12. Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment

    International Nuclear Information System (INIS)

    Jung, Jin Wook; Han, Eun Ok

    2011-01-01

    Our purpose is to specify behavior and environmental factors aimed at reducing the exposed dosage caused by PET-CT and to develop radiation safety management guidelines adequate for domestic circumstances. We have used a multistep-multimethod as the methodological approach to design and to carry out the research both in quality and quantity, including an analysis on previous studies, professional consultations and a survey. The survey includes responses from 139 practitioners in charged of 109 PET-CTs installed throughout Korea(reported by the Korean Society of Nuclear Medicine, 2010). The research use 156 questions using Cronbach's α (alpha) coefficients which were: 0.818 for 'the necessity of setting and installing the radiation protective environment'; 0.916 for 'the necessity of radiation protection', 'setting and installing the radiation protective environment'; and 0.885 for 'radiation protection'. The check list, derived from the radiation safety management guidelines focused on behavior and environment, was composed of 20 items for the radiation protective environment: including 5 items for the patient; 4 items for the guardian; 3 items for the radiologist; and 8 items applied to everyone involved; for a total of 26 items for the radiation protective behavior including: 12 items for the patient; 1 item for the guardian, 7 items for the radiologist; and 6 items applied to everyone involved. The specific check list is shown in (Table 5-6). Since our country has no safety management guidelines of its own to reduce the exposed dosage caused by PET-CTs, we believe the guidelines developed through this study means great deal to the field as it is not only appropriate for domestic circumstances, but also contains specific check lists for each target who may be exposed to radiation in regards to behavior and environment.

  13. Protective prostheses during radiation therapy

    International Nuclear Information System (INIS)

    Poole, T.S.; Flaxman, N.A.

    1986-01-01

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens

  14. Basic radiation oncology

    International Nuclear Information System (INIS)

    Beyzadeoglu, M. M.; Ebruli, C.

    2008-01-01

    Basic Radiation Oncology is an all-in-one book. It is an up-to-date bedside oriented book integrating the radiation physics, radiobiology and clinical radiation oncology. It includes the essentials of all aspects of radiation oncology with more than 300 practical illustrations, black and white and color figures. The layout and presentation is very practical and enriched with many pearl boxes. Key studies particularly randomized ones are also included at the end of each clinical chapter. Basic knowledge of all high-tech radiation teletherapy units such as tomotherapy, cyberknife, and proton therapy are also given. The first 2 sections review concepts that are crucial in radiation physics and radiobiology. The remaining 11 chapters describe treatment regimens for main cancer sites and tumor types. Basic Radiation Oncology will greatly help meeting the needs for a practical and bedside oriented oncology book for residents, fellows, and clinicians of Radiation, Medical and Surgical Oncology as well as medical students, physicians and medical physicists interested in Clinical Oncology. English Edition of the book Temel Radyasyon Onkolojisi is being published by Springer Heidelberg this year with updated 2009 AJCC Staging as Basic Radiation Oncology

  15. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    Science.gov (United States)

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  16. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  17. An introduction to radiation induced degradation of biological molecules in aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1991-01-01

    Radiation chemistry of aqueous systems is the chemistry of H, OH, e aq - , H 3 O + and H 2 O * formed when a solute in aqueous solutions is exposed to ionising radiation. The pulse radiolysis technique has helped in the production, the detection and understanding of the reactions of primary species with solutes. A great deal of data on radiation biochemical studies e.g. degradation of DNA, its constituents and their protection, radiation protection and sensitisation, generation of superoxide ion and their reactions has already been reported but a great deal still needs to be done for the understanding of radiation biology. (author). 12 refs

  18. Reducing radiation induced emesis in abdominal radiotherapy

    International Nuclear Information System (INIS)

    Griffin, K.

    1994-01-01

    In patients with seminoma testes, a comparison was made between radiation induced emesis suffered by patients receiving 'dogleg' radiotherapy with those suffered by patients who received para-aortic radiotherapy. The same comparisons were made between the effects suffered by those patients who received the anti-emetic, Ondansetron, and those suffered by patients who received conventional anti-emetics. (UK)

  19. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  20. Development and demonstration of surveillance and diagnostics of rotating machinery for reducing radiation exposure to nuclear power plant personnel: Appendices: Final report

    International Nuclear Information System (INIS)

    Allen, J.W.; Bohanick, J.S.

    1988-01-01

    This program was designed to reduce radiation exposure to power plant personnel resulting from inspection, maintenance, and repair of rotating equipment. The new rotating machinery monitoring system for this program was installed at GGNS during August 1983. The following nine appendices are presented: signals monitored at GGNS; definition of characterized spectral values; instructions for alignment and balance programs; machine diagrams; FFT program; software module descriptions; sample radiation survey forms used for exposure study; radiation exposure compared to other plants; and a technical section instruction for the vibration monitoring program at GGNS

  1. Radiative processes in gauge theories

    International Nuclear Information System (INIS)

    Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu

    1982-01-01

    It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)

  2. Long-term efficacy of a mini-course in radiation-reducing techniques in invasive cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Kuon, E. [Klinik Fraenkische Schweiz, Ebermannstadt (Germany). Abt. fuer Kardiologie; Empen, K.; Hummel, A.; Doerr, M.; Reffelmann, T.; Felix, S.B. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Abt. fuer Innere Medizin B; Weitmann, K.; Hoffmann, W. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Inst. fuer Versorgungsmedizin; Staudt, A. [Helios Kliniken, Schwerin (Germany). Abt. fuer Kardiologie und Angiologie

    2013-08-15

    Purpose: To validate the long-term efficacy of a 90-min. educational mini-course in less-irradiating cardiac interventional techniques. Materials and Methods: Before, two months after, and two years after the mini-course (periods I, II, and III), we analyzed the following radiation dose parameters for ten coronary angiographies (CA), performed by each of 7 cardiologists: total dose-area product (DAP), radiographic and fluoroscopic DAP fractions, number of radiographic frames and runs, and fluoroscopy time. Results: The median patient DAP for periods I, II and III was 31.4, 15.8 and 8.5 Gy x cm{sup 2}, respectively. The long-term effect was related to shorter median fluoroscopy times (180, 172, and 120 s), shorter (57, 52, and 45) and fewer (12, 12, and 10) radiographic runs, consistent collimation and restriction to an adequate image quality. Both radiographic DAP/frame (28.7, 17.0, and 18.4 mGy x cm{sup 2}) and fluoroscopic DAP/second (45.7, 24.2, and 10.0 mGy x cm{sup 2}) decreased significantly. The multivariate linear regression analysis confirmed the increasing efficacy of the mini-course itself (-44.6 and -60.7 %), and revealed a decreasing influence of the interventionalist's experience (-8.6 % and -4.9 % per 1,000 CAs, lifelong performed until the mini-course). The number of CAs performed after the mini-course did not influence the long-term DAP results. Conclusion: The presented educational mini-course allows a significant, long-lasting, and apparently ongoing reduction of patient radiation exposure due to CA. A self-surveillant documentation of relevant radiation parameters is well suited to monitor and improve each operator's individual long-term radiation-reducing efforts. (orig.)

  3. Relative efficacy for radiation reducing methods in scoliotic patients

    International Nuclear Information System (INIS)

    Aikenhead, J.; Triano, J.; Baker, J.

    1989-01-01

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-ray Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue

  4. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  5. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  6. Controlling Radiation Degradation of Natural Polymers for Industrial and Agricultural application

    International Nuclear Information System (INIS)

    Hegazy, E.A.; AbdEl-Rehim, H

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2O2 to natural polymers such as chitosan and Na-alginate during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated chitosan, and Na-alginate may be used as food additive or benefited in agricultural purposes. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper application. (author)

  7. Ionizing radiation-induced phosphorylation of RPA p34 is deficient in ataxia telangiectasia and reduced in aged normal fibroblasts

    International Nuclear Information System (INIS)

    Xinbo Cheng; Nge Cheong; Ya Wang; Iliakis, George

    1996-01-01

    Replication protein A (RPA, also called human single stranded DNA binding protein, hSSB) is a trimeric, multifunctional protein complex involved in DNA replication, DNA repair and recombination. Phosphorylation of RPA p34 subunit is observed after exposure of cells to radiation and other DNA damaging agents, which implicates the protein not only in repair but also in the regulation of replication on damaged DNA template. Here, we show that the phosphorylation observed in RPA p34 after exposure to ionizing radiation, X- or γ-rays, is reduced and occurs later in primary fibroblasts from patients suffering from ataxia telangiectasia (AT), as compared to normal fibroblasts. We also show that in primary normal human fibroblasts, radiation-induced phosphorylation of RPA p34 is 'age'-dependent and decreases significantly as cultures senesce. Radiation-induced phosphorylation of RPA p34 is nearly absent in non-cycling cells, while the expression of p21 cip1/waf1/sdi1 remains inducible. The results demonstrate a growth-stage and culture-age dependency in radiation-induced RPA p34 phosphorylation, and suggest the operation of a signal transduction pathway that is inactivated in senescing or quiescent fibroblasts and defective in AT cells

  8. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression

    Directory of Open Access Journals (Sweden)

    T. K. Charles

    2017-03-01

    Full Text Available Control of coherent synchrotron radiation (CSR-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS truncates the head and tail current spikes which greatly improves free electron laser (FEL performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns, which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.

  9. NPP physical protection and information security as necessary conditions for reducing nuclear and radiation accident risks

    International Nuclear Information System (INIS)

    Pogosov, O.Yu.; Derevyanko, O.V.

    2017-01-01

    The paper focuses on the fact that nuclear failures and incidents can lead to radioactive contamination of NPP premises. Nuclear and radiation hazard may be caused by malefactors in technological processes when applying computers or inadequate control in case of insufficient level of information security.The researchers performed analysis of factors for reducing risks of nuclear and radiation accidents at NPPs considering specific conditions related to information security of NPP physical protection systems. The paper considers connection of heterogeneous factors that may increase the risk of NPP accidents, possibilities and ways to improve adequate modelling of security of information with limited access directly related to the functioning of automated set of engineering and technical means for NPP physical protection. Within the overall Hutchinson formalization, it is proposed to include additional functional dependencies on indicators specific for NPPs into analysis algorithms.

  10. Radiation doses from dental radiography at private practioneers

    Energy Technology Data Exchange (ETDEWEB)

    Hylthen, J A

    1975-10-01

    This investigation was made in January 1975 together with a seminar group from the faculty of odontology in Stockholm. Every four private practising dentists in Stockholm and its environs were selected by haphazard to get an enquiry equipment etc. Every forty private practising dentists were then selected by haphazard to get a visit. 32 x-ray plants were investigated. The radiation doses showed a great spreading. The mean value of the radiation doses to the irradiated organs had been reduced about 5 times compared to a similar investigation, which was made in 1960. The use of long metal tubes and high-speed film gave the lowest dose values, while a short cone of bakelite and a low-speed film gave the highest dose values. Fluctuations in the dose values seemed also to depend on the technique. The reasons for this may be variations in the settings of the instruments and in the dark room technique.

  11. Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, K.R.; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2005-01-01

    , transmitting λ > 400 nm) were used to reduce UV-B radiation and UV-B+A respectively. A UV transparent film (Teflon, transmitting λ > 280 nm) and no film were used as controls. Field measurements showed that the plants under Teflon, Mylar and Lexan received app. 91%, 39% and 17% of the ambient UV-B irradiance...

  12. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  13. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    Energy Technology Data Exchange (ETDEWEB)

    Splitt, M.E. [Univ. of Oklahoma, Norman, OK (United States); Wesely, M.L. [Argonne National Lab., IL (United States)

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  14. The great east Japan earthquake and radiation exposure problem in Fukushima

    International Nuclear Information System (INIS)

    Otani, Koji; Konno, Shinichi; Shishido, Hiroaki

    2012-01-01

    Described are actions taken by Fukushima Medical University (FMU) and its Department of Orthopedic Surgery (DOS) after the Quake Disaster (Mar. 11, 2011), and present state, at about 1 year later, of Fukushima Prefecture suffering from the Fukushima Daiichi Power Plant (FDPP) radiation problem. Firstly described are the roles played by FMU as a backup medical supporting facility and by DOS therein according to the following time frame. During several days after the Quake, 35 DMAT (Disaster Medical Assistant Team) consisting from 180 professionals gathered in FMU. The number of emergent outpatients within 3 days after the quake was 168, and 10 patients involving 4 with trauma underwent 11 operations by DOS. Within the next 1 week after, FMU tentatively received 175 patients transported from evacuation area localizing at 30 km distance from FDPP. At later than 2 weeks after, FMU re-started the routine medicare of outpatients in its all departments (Mar. 28), when high grade DMAT and local family medicare team started to visit refuges and isolated patients, respectively. Numbers of patients with the disaster-related trauma needed for hospitalization in 3 DOS related facilities having >1,000 beds in the Prefecture were 18-38, 10-25, 5-9 and 3-8, in the order of respective months from March to June. Second, FMU activities against radiation exposure started with visit of 4 possibly exposed residents on Mar. 12, with voluntary cooperation of many medical students. Medical training held in Sep. 2010 was quite useful for the rapid action of FMU to the Disaster, which made personnel recognize the importance of such education. Problems of external and internal exposure of low dose radiation are the future task, for which follow-up of health survey of 2,020 thousands Prefectural residents is to be continued for >30 years onward. At present, restoration of medicare seems difficult to recover to the level before the Disaster as exemplified by the decrease of hospital doctors

  15. Can Angiotensin-Converting Enzyme Inhibitors Reduce the Incidence, Severity, and Duration of Radiation Proctitis?

    International Nuclear Information System (INIS)

    Alashkham, Abduelmenem; Paterson, Catherine; Rauchhaus, Petra; Nabi, Ghulam

    2016-01-01

    significantly less likely to have high-grade proctitis after radical radiation therapy with neoadjuvant or adjuvant hormone therapy (P<.001). The intake of ACEIs was significantly associated with a reduced risk of radiation-induced proctitis and also with acceleration of its resolution.

  16. Can Angiotensin-Converting Enzyme Inhibitors Reduce the Incidence, Severity, and Duration of Radiation Proctitis?

    Energy Technology Data Exchange (ETDEWEB)

    Alashkham, Abduelmenem, E-mail: alashkham@yahoo.com [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom); Paterson, Catherine [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom); Rauchhaus, Petra [Tayside Clinical Trials Unit, School of Medicine, University of Dundee, Scotland (United Kingdom); Nabi, Ghulam [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom)

    2016-01-01

    significantly less likely to have high-grade proctitis after radical radiation therapy with neoadjuvant or adjuvant hormone therapy (P<.001). The intake of ACEIs was significantly associated with a reduced risk of radiation-induced proctitis and also with acceleration of its resolution.

  17. Effects of growth reducer and nitrogen fertilization on morphological variables, SPAD index, interception of radiation and productivity of wheat

    OpenAIRE

    Elvis Felipe Elli; Braulio Otomar Caron; Sandro Luis Petter Medeiros; Elder Eloy; Gean Charles Monteiro; Denise Schmidt

    2015-01-01

    ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú), five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1), and application or no application of a growth reducer, with three replications. The following characteri...

  18. Reducing operator radiation exposure during cardiac resynchronization therapy.

    Science.gov (United States)

    Brambilla, Marco; Occhetta, Eraldo; Ronconi, Martina; Plebani, Laura; Carriero, Alessandro; Marino, Paolo

    2010-12-01

    To quantify the reduction in equivalent dose at operator's hand that can be achieved by placement of a radiation-absorbing drape (RADPAD) during long-lasting cardiac resynchronization therapy (CRT) procedures. This is a prospective observational study that included 22 consecutive patients with drug-refractory heart failure who underwent implantation of a CRT device. The cases were randomly assigned to Group A (11 cases), performed without RADPAD, and to Group B (11 cases), performed using RADPAD. Dose equivalent at the examiner's hand was measured as H(p)(0.07) and as a time-adjusted H(p)(0.07) rate (mGy/min) with a direct reading dosimeter. The mean fluoroscopy time was 20.8 ± 7.7 min and the mean dose area product (DAP) was 118.6 ± 45.3 Gy cm(2). No significant differences were found between body mass index, fluoroscopy time, and DAP between patients examined with or without RADPAD. The correlation between the fluoroscopy time and the DAP was high (R(2) = 0.94, P RADPAD at the finger and hand were H(p)(0.07) = 1.27 ± 0.47 mGy per procedure and H(p)(0.07) rate = 0.057 ± 0.011 mGy/min, respectively. The dosage was reduced with the RADPAD to H(p)(0.07) = 0.48 ± 0.20 (P RADPAD. The use of the RADPAD in CRT devices implantation will make unlikely the necessity of limiting the yearly number of implants for high volume operators.

  19. Radiation-induced erectile dysfunction: Recent advances and future directions

    Directory of Open Access Journals (Sweden)

    Javed Mahmood, PhD

    2016-07-01

    Full Text Available Prostate cancer is one of the most prevalent cancers and the second leading cause of cancer-related deaths in men in the United States. A large number of patients undergo radiation therapy (RT as a standard care of treatment; however, RT causes erectile dysfunction (radiation-induced erectile dysfunction; RiED because of late side effects after RT that significantly affects quality of life of prostate cancer patients. Within 5 years of RT, approximately 50% of patients could develop RiED. Based on the past and current research findings and number of publications from our group, the precise mechanism of RiED is under exploration in detail. Recent investigations have shown prostate RT induces significant morphologic arterial damage with aberrant alterations in internal pudendal arterial tone. Prostatic RT also reduces motor function in the cavernous nerve which may attribute to axonal degeneration may contributing to RiED. Furthermore, the advances in radiogenomics such as radiation induced somatic mutation identification, copy number variation and genome-wide association studies has significantly facilitated identification of biomarkers that could be used to monitoring radiation-induced late toxicity and damage to the nerves; thus, genomic- and proteomic-based biomarkers could greatly improve treatment and minimize arterial tissue and nerve damage. Further, advanced technologies such as proton beam therapy that precisely target tumor and significantly reduce off-target damage to vital organs and healthy tissues. In this review, we summarize recent advances in RiED research and novel treatment modalities for RiED. We also discuss the possible molecular mechanism involved in the development of RiED in prostate cancer patients. Further, we discuss various readily available methods as well as novel strategies such as stem cell therapies, shockwave therapy, nerve grafting with tissue engineering, and nutritional supplementations might be used to

  20. Advances in radiation grafting

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.A.; Kamal, H.; Kandeel, K.A.

    2001-01-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed

  1. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  2. Radiation therapy for neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Robert Petrarca

    2011-01-01

    Full Text Available Robert Petrarca, Timothy L JacksonDepartment of Ophthalmology, King’s College Hospital NHS Foundation Trust, London, UKAbstract: Antivascular endothelial growth factor (anti-VEGF therapies represent the standard of care for most patients presenting with neovascular (wet age-related macular degeneration (neovascular AMD. Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET. Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002, with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections.Keywords: wet age-related macular degeneration, neovascular, radiation therapy, epimacular brachytherapy, stereotactic radiosurgery, anti-VEGF

  3. Effects of Microwave Radiation on Oil Recovery

    Science.gov (United States)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  4. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  5. Influence of rare earth elements on radiation defect formation in silicon

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that efficiency of form and kinetics annealing of radiation defects influence greatly presence of initial in controlling electrically active or inactive impurities, their concentration and position in a lattice of a semiconductor. From this point of view of impurities of group of rare earths elements (REE) are of great interest, they interact with primary radiation defects creating electrically passive complexes such as . Thus they increase radiation stability of silicon. The purpose of the given work was the investigation of effect of irradiation by γ-quanta 60 Co properties of silicon doped REE-by samarium, gadolinium and erbium. The doping of silicon was carried out by growth process. Concentration of REE - samarium, gadolinium and erbium in silicon according to neutron-activation analysis equaled 10 14 /5·10 18 cm 2 . Silicon doped by phosphorus - 15/50 Ωcm were used as control samples. The results of investigations were obtained from DLTS (deep level transient spectroscopy) measurements, Hall effect and electrical measurements on definition of a resistivity, lifetime of minority carriers of a charge and optically active of concentrations of oxygen and carbon. The optical recharge by the infrared light emitting diode (P=10 mV, λ=0,95 μm) was used for investigation of deep levels (DL) situated in lower half of band gap. In control samples irradiated by the γ-quanta 60 Co with a dose 10 16 / 5·10 18 cm -2 formation DL was found in band, the parameters of which are well-known: A-, E-centers etc. Depending on a dose of an effect of irradiate in an energy spectrum of radiation defects in Si of essential changes, except for concentration is not observed. The deep levels concentration the E c -0,17 eV and E c -0,4 eV in Si is essentially reduced with respect control samples. The comparison the dose of associations of observable levels in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction

  6. Quantitative interpretation of great lakes remote sensing data

    International Nuclear Information System (INIS)

    Shook, D.F.; Salzman, J.; Svehla, R.A.; Gedney, R.T.

    1980-01-01

    Remote sensing has been applied in the past to the surveillance of Great Lakes water quality, but it has been only partially successful because of the completely empirical approach taken in relating the multispectral scanning data at visible and near-infrared wavelengths to water parameters. Any remote sensing approach using water color information must take into account (1) the existence of many different organic and inorganic species throughtout the Greak Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial (inter- and interlake as well as vertical) variations in types and concentrations of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which clearly show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported

  7. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  8. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  9. Improving patient follow-up in interventional radiology and radiation-based acts. To reduce the risk of deterministic effects

    International Nuclear Information System (INIS)

    Etard, Cecile; Aubert, Bernard; Lafont, Marielle; Mougniot, Sandrine; Rousse, Carole; Bey, Eric; Cassagnes, Lucie; Guersen, Joel; Ducou Le Pointe, Hubert; Elhadad, Simon; Georges, Jean-Louis; Nonent, Michel; Paisant-Thouveny, Francine; Salvat, Cecile; Vidal, Vincent; Chauvet, Bruno; Riu, Jean-Luc; Voix, Fabien; Bar, Olivier; Le Du, Dominique; Maccia, Carlo; Lacombe, Pascal; Mertz, Luc; Valery, Charles

    2014-04-01

    After having presented an example of adverse reaction to interventional radiology (a case of a iatrogenic radiodermatitis), this report first presents the context which creates a risk situation. It describes risks related to the use of ionizing radiations, identifies risk factors and how to make procedures safer, and indicates actions aimed at reducing risks (in a preventive way, in recovery, by attenuation)

  10. Effect of the gamma radiation in the metabolic activity of the apical meristem of asparagus (Asparagus officinalis)

    International Nuclear Information System (INIS)

    Sanchez E, A.; Orozco A, J.A.; Troncoso R, R.; Ojeda C, A.J.; Mercado R, J.N.; Gardea B, A.; Tiznado H, M.E.; Melendrez A, R.

    2007-01-01

    The asparagus (Asparagus officinalis) is an agricultural product whose production generates a great quantity of wages as well as foreign currencies for the country because a great part of its production is exported to international markets. In direct reason to the high metabolic activity of the apical meristem, this product it possesses a short shelf life under good conditions of commercialization. Due to the above mentioned, the present work had as objective to evaluate the effect of the gamma radiation in the metabolic activity of the apical meristem of turions of asparagus during the postharvest. Turions of asparagus variety Brock of standard quality was treated with gamma radiation to absorbed dose of 1.0, 1.5, 2.0, 2.5 and 3.0 kGy using an irradiator of 60 Co and stored in one controlled temperature camera maintained at 2 C during 8 days. During the experiment, the camera stayed in darkness and under conditions of high relative humidity by means of the water aspersion. Immediately before the one treatment and after 1, 2, 4 and 8 days of storage, the asparagus were sampled to evaluate the breathing speed (VRCG) by means of gas chromatography and scanning differential calorimetry (VRCDB), ethylene production (PE) by means of gas chromatography and production of metabolic heat of the apical meristem of the asparagus by means of scanning differential calorimetry (Q). Its were not found effects due to the gamma radiation in the variables of VRCG, VRCDB and Q. However, for the PE case, it was found that the doses of 1.5 and 2.5 reduced the PE from the first day of storage, while the 3 kGy dose achievement to eliminate completely the ethylene production from the first day of storage. It was concluded that the gamma radiation at the used levels in the present experiment doesn't reduce the metabolic activity of the apical meristem of the turion of asparagus although it can to improve the postharvest quality from the asparagus when reducing the ethylene production

  11. Radiation injuries and recovery

    International Nuclear Information System (INIS)

    Pauly, H.

    1974-01-01

    In memory of Prof. Dr. Langendorff, a survey and a cross-section are given of the development of radiobiology during the last 40 years. The importance of radiobiology is shown using several examples. The mechanisms and effects of radiation on man, animals and plants are discussed. Effects of radiation and radiolesious are explained down ot the molecular field, and their importance is discussed quantitatively with stochastic considerations. Stress is laid upon recovering from radiolesious. It is tried to explain recovery quantitatively in all its several sorts. Using all these deliberations, the author also tries to give a wide spectrum for radiation protection. These fundamental deliberations and works of Prof. Dr. Langendorff are guidelines of great importance also for radiation protection in connection with the protection of the civil population. (GSE) [de

  12. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  13. IAEA fundamental standards for protection against radiation

    International Nuclear Information System (INIS)

    1981-01-01

    The Governor's Counsel of the IAEA has just approved the revision of existing norms, previously prepared in cooperation with the ILO, WHO and OECD. The revised norms represent a great advance in the efforts to reduce risks for which there is no threshold value. A further initiative of the IAEA is the program of radiation protection standards for nuclear power stations. They form the first international instructions for a normalised basis of safety in nuclear power stations. The need for exchange of information was emphasised at the International Conference in Stockholm in 1980. The existing safety norms were considered adequate at the time. The IAEA activities in the field of standards, advice and technical help, exchange of information and training and emergency planning are also mentioned. (Auth.)

  14. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections.

    Science.gov (United States)

    Napolitano, Nathanael A; Mahapatra, Tanmay; Tang, Weiming

    2015-12-01

    Health care-acquired infections (HAIs) constitute an increasing threat for patients worldwide. Potential contributors of HAIs include environmental surfaces in health care settings, where ultraviolet-C radiation (UV-C) is commonly used for disinfection. This UV-C intervention-based pilot study was conducted in a hospital setting to identify any change in the incidence of HAIs before and after UV-C intervention, and to determine the effectiveness of UV-C in reducing pathogens. In a hospital in Culver City, CA, during 2012-2013, bactericidal doses of UV-C radiation (254 nm) were delivered through a UV-C-based mobile environmental decontamination unit. The UV-C dosing technology and expertise of the specifically trained personnel were provided together as a dedicated service model by a contracted company. The incidence of HAIs before and after the intervention period were determined and compared. The dedicated service model dramatically reduced HAIs (incidence difference, 1.3/1000 patient-days, a 34.2% reduction). Reductions in the total number and incidence proportions (28.8%) of HAIs were observed after increasing and maintaining the coverage of UV-C treatments. The dedicated service model was found to be effective in decreasing the incidence of HAIs, which could reduce disease morbidity and mortality in hospitalized patients. This model provides a continuously monitored and frequently UV-C-treated patient environment. This approach to UV-C disinfection was associated with a decreased incidence of HAIs. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Disinfecting wounds with radiation

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    2002-01-01

    Infection with clostridium bacteria, which live in the soil, is most often associated with war wounds, car accidents, complicated abortions, etc. The incidence is highest in areas with poor access to proper wound care. Such infections lead to gas gangrene, a deadly disease that spreads very quickly in the body and causes rapid death. Present-day treatment consists of administering antibiotics and surgical removal of dead, damaged and infected tissue. Amputation is usually necessary to control the spread of the infection, which can advance at the rate of six inches per hour. Before the 1940s, this disease was treated successfully with low doses (50 rad) of radiation (X-rays) in the area of infection. A review of 364 cases treated in this manner, from 1928 until 1940, indicated that patient mortality would be reduced from 50 percent (or higher) to ∼5 percent if patients were treated reasonably early and with the correct technique. X-ray therapy stopped the infection without the need for amputation to control its spread. Low-dose irradiation (LDI) therapy, given immediately, acted as a prophylaxis to prevent the onset of gas gangrene. This is but one example of the extensive use of radiation treatment of many types of infections, before the advent of antibiotics. Low doses are inadequate to kill invading bacteria directly, however, they will stimulate our defences to destroy the infection. The observed beneficial effects are consistent with the large amount of scientific evidence of radiation hormesis - the stimulation of an organism's own defences by low doses of radiation (to destroy invaders and heal wounds). In view of the ineffectiveness of antibiotics in many cases and the evolution of antibiotic-resistant strains of bacteria, physicians should start to use LDI therapies again. Many patients would benefit greatly. (author)

  16. Studies on application of radiation and radioisotopes

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Lee, Ji Bok; Lee, Yeong Iil; Jin, Joon Ha; Beon, Myeong Uh; Park, Kyeong Bae; Han, Heon Soo; Jeong, Yong Sam; Uh, Jong Seop; Kang, Kyeong Cheol; Cho, Han Ok; Song, Hui Seop; Yoon, Byeong Mok; Jeon, Byeong Jin; Park, Hong Sik; Kim, Jae Seong; Jeong, Un Soo; Baek, Sam Tae; Cho, Seong Won; Jeon, Yeong Keon; Kim, Joon Yeon; Kwon, Joong Ho; Kim, Ki Yeop; Yang, Jae Seung; No, Yeong Chang; Lee, Yeong Keun; Shin, Byeong Cheol; Park, Sang Joon; Hong, Kwang Pyo; Cho, Seung Yeon; Kang, Iil Joon; Cho, Seong Ki; Jeong, Yeong Joo; Park, Chun Deuk; Lee, Yeong Koo; Seo, Chun Ha; Han, Kwang Hui; Shin, Hyeon Young; Kim, Jong Kuk; Park, Soon Chul; Shin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek; Park, Eung Uh; Kim, Dong Soo; Jeon, Sang Soo

    1993-05-01

    With the completion of construction of KMRR, the facility and technology of radiation application will be greatly improved. This study was performed as follows; (1) Studies on the production and application of radioisotopes. (2) The development of radiation processing technology. (3) The application of Irradiation techniques for food preservation and process improvement. (4) Studies on the radiation application for the development of genetic resources (5) Development of the radioisotope (RI) production facilities for Korea Multipurpose Research Reactor (KMRR)

  17. Particle identification via transition radiation and detectors

    International Nuclear Information System (INIS)

    Egorytchev, V.; Saveliev, V.; Aplin, S.J.

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high-energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions - neutrino experiments (NOMAD), and ideal condition for the use of transition radiation detectors in flying and space high-energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high-energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results

  18. Particle identification via transition radiation and detectors

    CERN Document Server

    Egorytchev, V; Aplin, S J

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high- energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions-neutrino experiments (NOMAD), and the ideal condition for the use of transition radiation detectors in flying and space high- energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high- energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results. (12 refs).

  19. New scanning technique using Adaptive Statistical Iterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT.

    Science.gov (United States)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-06-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  20. Radiation Processing of Natural Polymers for Industrial Applications

    International Nuclear Information System (INIS)

    Hegazy, E.A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxy-methylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper

  1. Radiation in buildings

    International Nuclear Information System (INIS)

    1981-01-01

    The report presents facts about radiation, its origin and risks. It is stated that the natural radiation is dependent on the bedrock. Various control methods and ways to reduce high radiation levels are described. The information is based upon present-day knowledge of the inconvenience about radon. (G.B.)

  2. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  3. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  4. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  5. Wavelet Denoising of Mobile Radiation Data

    International Nuclear Information System (INIS)

    Campbell, D.B.

    2008-01-01

    The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems

  6. Reducing Radiation Dose in Adult Head CT using Iterative Reconstruction - A Clinical Study in 177 Patients.

    Science.gov (United States)

    Kaul, D; Kahn, J; Huizing, L; Wiener, E; Grupp, U; Böning, G; Ghadjar, P; Renz, D M; Streitparth, F

    2016-02-01

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n = 71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n = 86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n = 74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n = 20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n = 20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up. ASIR may reduce radiation significantly while maintaining adequate image quality. cCT protocol with 20 % ASIR and 40 %ASIR/60 %FBP blending is adequate for everyday clinical use. cCT protocol with 30 % ASIR and 50 %ASIR/50 %FBP blending is adequate for follow-up imaging © Georg Thieme Verlag KG Stuttgart · New York.

  7. Radiation and humankind

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y [Department of Radiation Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Yamashita, S [Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki (Japan); Watanabe, M [Division of Radiation Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Tomonaga, M [Department of Hematology, Atomic Bomb Disease Institute, Nagasaki (Japan)

    2003-11-01

    This volume is a compilation of 38 papers presented at the First Nagasaki Symposium of the International Consortium for Medical Care of Hibakusha and Radiation Life Science held in Japan on 21 and 22 February 2003. The use of radiation has extended to various fields including medicine, agriculture, science and engineering, and atomic energy has come to comprise a significant portion of the electric power generated in several advanced countries. The effects of radiation on human health have been investigated in atomic bomb survivors for more than half a century, and the knowledge thus obtained has greatly enriched our understanding. The Chernobyl accident, however, indicated that exposure to low doses of radiation affects human health in a way different from that observed in atomic bomb survivors. Recognizing the importance of research on low dose or low dose rate radiation, the above event was launched as a 21st Century COE Program with the aim to create an international base for studies on the health effects of low dose or low dose rate radiation from the viewpoint of epidemiology, molecular epidemiology and radiation biology. More than 100 scientists, including 18 scientists from seven countries overseas, participated in the symposium and satellite meetings and engaged in intensive discussions in the above field.

  8. Radiation and humankind

    International Nuclear Information System (INIS)

    Shibata, Y.; Yamashita, S.; Watanabe, M.; Tomonaga, M.

    2003-01-01

    This volume is a compilation of 38 papers presented at the First Nagasaki Symposium of the International Consortium for Medical Care of Hibakusha and Radiation Life Science held in Japan on 21 and 22 February 2003. The use of radiation has extended to various fields including medicine, agriculture, science and engineering, and atomic energy has come to comprise a significant portion of the electric power generated in several advanced countries. The effects of radiation on human health have been investigated in atomic bomb survivors for more than half a century, and the knowledge thus obtained has greatly enriched our understanding. The Chernobyl accident, however, indicated that exposure to low doses of radiation affects human health in a way different from that observed in atomic bomb survivors. Recognizing the importance of research on low dose or low dose rate radiation, the above event was launched as a 21st Century COE Program with the aim to create an international base for studies on the health effects of low dose or low dose rate radiation from the viewpoint of epidemiology, molecular epidemiology and radiation biology. More than 100 scientists, including 18 scientists from seven countries overseas, participated in the symposium and satellite meetings and engaged in intensive discussions in the above field

  9. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-01-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  10. UV radiation hazards

    International Nuclear Information System (INIS)

    Henderson, A.R.

    1987-01-01

    Exposure to ultraviolet radiation (UVR) is, for most people, a daily occurrence. Significant quantities of ultraviolet are present in sunlight, and this environmental exposure usually greatly exceeds that necessary for vitamin D production, the only certain benefit of UVR. In addition, occupational exposure to artificial sources of UVR is commonly encountered in commerce, industry and medicine. Exposure to UVR can present a hazard, principally to the eyes and exposed areas of the skin. The potential for any given source of UVR to cause photobiological damage depends on the spectral composition of the incident radiation, the geometry of optical coupling into the tissues at risk, the spectral sensitivity to damage of the irradiated tissue, the total accumulated exposure, and the action of any biological repair processes. In the ultraviolet region the photobiological interactions of concern are mainly photochemical. Hazard analysis and radiation protection require an appropriate framework of radiation measurement for the quantitative assessment of exposure and for the specification of safe exposure limits

  11. Enhancement of radiation induced oxidative stress in tumour cells by EGCG

    International Nuclear Information System (INIS)

    Das, U.; Das, T.; Sengupta, A.; Biswas, S.; Dey, S.; Chakraborty, A.

    2017-01-01

    In view of the fact that radiotherapy fails in the later stages of cancer due to the radioresistant tumor cells, it is most important in radiobiology to enhance the oxidative damage of the tumor cells by using a tumor selective cytotoxic agent. The increase in radiosensitivity is important both for optimizing radiation dose for tumors and for designing strategies to improve the therapeutic ratio. Amount and time of treatment of radiation (IR), epigallocatechin gallate (EGCG) and epicatechin (EC) were determined using MTT assay. Biochemical assay, Flow cytometry and immune blots were employed to elucidate the enhanced sensitization of EC and EGCG along with IR in hepatocellular carcinoma cells (HepG2). The effects were more effective in killing the HepG2 cells compared to only irradiation. It was observed that the ROS generation was significantly increased in combination group (IR+EGCG/EC) over the IR group. Lower reduced glutathione content, higher TBARS and decreased catalase activity in combination group provided additive support. Combination treatment caused cell cycle arrest at G2/M phase. Mitochondrial membrane potential was greatly reduced and the percentage of apoptotic population increased in combination group compared to IR alone. Moreover, the higher expression of p53 and activation of caspase 3 in combination group over the IR alone indicated EC and EGCG along with ionizing radiation increase the oxidative stressed condition in HepG2 cell that leads the apoptosis of the cells. The novel use of this combination of radiation and tea polyphenol will remain an effective radiotherapeutic strategy. (author)

  12. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  13. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  14. Preconcentration of a low-grade uranium ore yielding tailings of greatly reduced environmental concerns. Part V

    International Nuclear Information System (INIS)

    Raicevic, D.; Raicevic, M.

    1980-11-01

    The low-grade ore sample used for this investigation contained 0.057 percent uranium with uranothorite as the major uranium-bearing mineral and a small amount of brannerite, occurring in the quartz-sericite matrix of a conglomerate. The preconcentration procedures, consisting of pyrite flotation with or without flotation of radioactive minerals, followed by high intensity wet magnetic treatment of the sized flotation tailings, produced pyrite and radioactive concentrates of acceptable uranium grades ranging from 0.1 to 0.135 percent uranium. The combined concentrates comprised 37 to 49 percent of the ore by weight with the following combined recoveries: 95.6 to 97.9 percent of the uranium; 94.7 to 96.3 percent of the radium; 97.8 to 99.3 percent of the thorium over 98 percent of the pyrite. The preconcentration tailings produced comprised between 51 and 63 percent of the ore by weight and contained from: 0.0022 to 0.0037 percent U; 12 to 17 pCi/g Ra; 0.002 to 0.004 percent Th less than 0.03 percent S. Because these tailings are practically pyrite-free, they should not generate acidic conditions. Due to their low radium content, their radionuclide hazards are greatly reduced. These preconcentration tailings therefore, could be suitable for surface disposal, mine backfill, revegetation or other uses

  15. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  16. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  17. A plan of radiation work market on the web

    International Nuclear Information System (INIS)

    Nakagawa, Haruo; Chino, Koichi

    2002-01-01

    In Japan there are many kinds of radiation facilities, and a great number of radiation employees are engaged in plant repairing. It is therefore, very important to strive for employee controls, radiation controls, health examinations and data control. Furthermore, it is necessary to establish a total data management system that processes numerous amounts of data concerning radiation employees. The present paper proposes the establishment of a radiation work market on the web using a total data management system. The system will include radiation employee control information service for members who are planning new employment contracts. (author)

  18. Radiation protection topsy-turvy

    International Nuclear Information System (INIS)

    Sumner, D.

    1991-01-01

    Considerable attention, and money, is directed at reducing public exposure to radiation from nuclear installations, much less attention is paid to the levels of exposure from medical sources. The approximate doses from medical sources are given and ways that the doses can be reduce (eg carbon fibre grids, rare earth screens, better working procedures) are discussed. The case for spending money to reduce levels of radiation exposure in medicine is argued. (author)

  19. Radiation dose during tomography of the petrous bone. Experimental investigations with film dosimetry on an Alderson phantom

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, S.

    1988-06-01

    Using filmdosimetry and an Alderson skull phantom, the iso-dose distribution during tomography of the petrous bone was investigated. We were particularly concerned with the radiation dose to the lens of the eye, the critical organ in the skull, and to the inner ear, using different types of examination and various positions of the skull. The choice of suitable film material and standardisation against TLD measurements is crucial for the accuracy of film dosimetry, allowing for correction of film blackening in relation to varying energies. Tomography of the petrous bone in the prone position produced a reduction in radiation dose to the eye to only 1 to 4% of the dose incident on the occiput. In this way, and using high definition screen and grinds, it is possible to obtain optimal tomographic images despite drastic reduction of the scattered radiation to the eye. Radiation dose to the inner ear is greatly below any significant somatic dose, irrespective of projection or technique. Special measures to reduce radiation to the inner ear are neither effective nor sensible.

  20. Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE)

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Jehnichen, D.; Pompe, G.; Lunkwitz, K.

    2001-01-01

    The effect of electron beams on poly(tetrafluoroethylene) (PTFE) at elevated temperatures above the melting point on oxygen-free conditions has been studied using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), Fourier-transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and tensile test. The investigations have shown that the chemical structure and several properties of PTFE are greatly altered by the irradiation. DSC and WAXS indicate that the crystallinity of the PTFE irradiated with high doses is reduced. CF 3 side groups and branched structures are assumed to hinder the crystallization. TGA has shown that the thermal stability of the radiation-modified PTFE is considerably lower than that of unirradiated PTFE

  1. New scanning technique using Adaptive Statistical lterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT

    International Nuclear Information System (INIS)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-01-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550mA (450–600) vs. 650mA (500–711.25) (median (interquartile range)), respectively, P<0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29mSv (2.84–6.02) vs. 5.84mSv (3.88–8.39) (median (interquartile range)), respectively, P<0.001. Although ASIR was associated with increased image noise compared with FBP (39.93±10.22 vs. 37.63±18.79 (mean ±standard deviation), respectively, P<001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality.

  2. Cancer Trials Ireland (ICORG) 06-34: A multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer.

    Science.gov (United States)

    McDermott, Ronan L; Armstrong, John G; Thirion, Pierre; Dunne, Mary; Finn, Marie; Small, Cormac; Byrne, Mary; O'Shea, Carmel; O'Sullivan, Lydia; Shannon, Aoife; Kelly, Emma; Hacking, Dayle J

    2018-05-01

    Cancer Trials Ireland (ICORG) 06-34: A multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer. NCT01176487. Trials of radiation therapy for the palliation of intra-thoracic symptoms from locally advanced non-small cell lung cancer (NSCLC) have concentrated on optimising fractionation and dose schedules. In these trials, the rates of oesophagitis induced by this "palliative" therapy have been unacceptably high. In contrast, this non-randomised, single-arm trial was designed to assess if more technically advanced treatment techniques would result in equivalent symptom relief and reduce the side-effect of symptomatic oesophagitis. Thirty-five evaluable patients with symptomatic locally advanced or metastatic NSCLC were treated using a three-dimensional conformal technique (3-DCRT) and standardised dose regimens of 39 Gy in 13 fractions, 20 Gy in 5 fractions or 17 Gy in 2 fractions. Treatment plans sought to minimise oesophageal dose. Oesophagitis was recorded during treatment, at two weeks, one month and three months following radiation therapy and 3-6 monthly thereafter. Mean dose to the irradiated oesophagus was calculated for all treatment plans. Five patients (14%) had experienced grade 2 oesophagitis or dysphagia or both during treatment and 2 other patients had these side effects at the 2-week follow-up. At follow-up of one month after therapy, there was no grade two or higher oesophagitis or dysphagia reported. 22 patients were eligible for assessment of late toxicity. Five of these patients reported oesophagitis or dysphagia (one had grade 3 dysphagia, two had grade 2 oesophagitis, one of whom also had grade 2 dysphagia). Quality of Life (QoL) data at baseline and at 1-month follow up were available for 20 patients. At 1-month post radiation therapy, these patients had slightly less trouble taking a short walk, less shortness of breath, did not feel as weak, had

  3. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  4. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  5. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  6. Artificial Intelligence in Medicine and Radiation Oncology.

    Science.gov (United States)

    Weidlich, Vincent; Weidlich, Georg A

    2018-04-13

    Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.

  7. Hawking radiation

    Science.gov (United States)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  8. Disinfestation of agricultural products with electron beams and their radiation tolerance

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1996-01-01

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, 'FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  9. Effect of combined 5-fluorouracil and radiation on murine hematopoietic tissue

    International Nuclear Information System (INIS)

    Nielsen, O.S.; Overgaard, J.; Von der Maase, H.

    1988-01-01

    The interaction of 5-fluorouracil (5-FU) and radiation in hematopoietic tissue was assessed as the survival of hematopoietic stem cells (CFUs) by means of the spleen colony assay. 5-FU was given intraperitoneally in the dose range 50-500 mg/kg body weight. In this dose range, stem cell survival decreased exponentially as a function of 5-FU dose. After 150 mg/kg of 5-FU alone, the stem cell survival rapidly decreased, reaching a minimum after 1-2 days. A similar regeneration was observed after 0.75 Gy radiation alone 5-FU given 15 min before whole-body irradiation resulted in a pronounced reduction in stem cell survival due to an increase in the slope of the radiation survival curve by a factor of 2.1. After combined 5-FU and radiation, the survival rapidly decreased to a minimum at day 1, and it showed only a slight increase within the next 7 days. After this delay, the stem cells regenerated with a doubling time of about 30 h, reaching pretreatment values on day 15. The delayed stem cell regeneration was not seen following 3.5 Gy radiation alone or 225 mg/kg 5-FU alone, which resulted in the same nadir of CFUs survival as found after the combined treatment. Thus, 5-FU greatly enhances the hematopoietic damage after radiation by reducing the number of surviving stem cells and delaying the stem cell regeneration. 24 refs.; 6 figs.; 1 table

  10. Future directions in radiation oncology

    International Nuclear Information System (INIS)

    Peters, L.

    1996-01-01

    Full text: Cancer treatment has evolved progressively over the years as a joint result of improvements in technology and better understanding of the biological responses of neoplastic and normal cells to cytotoxic agents. Although major therapeutic 'breakthroughs' are unlikely absent the discovery of exploitable fundamental differences between cancer cells and their normal homologs, further incremental improvements in cancer treatment results can confidently be expected as we apply existing knowledge better and take advantage of new research insights. Areas in which I can foresee significant improvements (in approximate chronological order) are as follows: better physical radiation dose distributions; more effective radiation and chemoradiation protocols based on radiobiological principles; more rational use of radiation adjuvants based on biologic criteria; use of novel targets and vectors for systemic radionuclide therapy; use of genetic markers of radiosensitivity to determine radiation dose tolerances; and use of radiation as a modulator of therapeutic gene expression. Radiation research has contributed greatly to the efficacy of radiation oncology as it is now practised but has even greater potential for the future

  11. Moderate solar geoengineering greatly reduces the largest changes in climate whilst modestly increasing the changes in climate over a small fraction of the Earth

    Science.gov (United States)

    Irvine, P. J.; Keith, D.; He, J.; Vecchi, G.; Horowitz, L. W.

    2017-12-01

    Whilst solar geoengineering reduces global temperature it cannot perfectly offset the climate effects of elevated CO2 concentrations. Solar geoengineering has been shown to have a greater effect on the global hydrological cycle than CO2 and substantial differences in regional precipitation relative to a scenario without elevated CO2­ concentrations have been noted. In this study we evaluate a moderate scenario of solar geoengineering, one which offsets 50% of the forcing from elevated CO2 concentrations, using a 25 Km resolution global climate model and verify these results using the Geoengineering model Intercomparison project ensemble. We calculate the fraction of regions that would be better or worse off after solar geoengineering deployment, defining those which see greater absolute change as worse off and vice versa. We find that 51% of the land area would be statistically significantly better off for precipitation, 33% for Precipitation minus evaporation (P-E), and that less than 3% would be worse off for precipitation, and 1% for P-E. We find that the fraction of the land area experiencing the largest changes in climate, defined as the upper quartile of the CO2 minus control anomaly, is greatly reduced for precipitation, P-E and 5-day maximum precipitation, and eliminated for mean and max annual temperature. The regions which are made worse off in precipitation or P-E by solar geoengineering typically saw relatively little to no CO2 induced climate change and see relatively little to moderate change in the solar geoengineering scenario. There is little overlap between the regions made worse off in terms of precipitation and P-E. In fact, whilst precipitation is reduced in almost all regions made worse off by solar geoengineering, P-E is increased in the majority of regions made worse off. Overall, we find that for each variable considered solar geoengineering greatly reduces the fraction of the world experiencing relatively large change and that those

  12. Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

    Directory of Open Access Journals (Sweden)

    Mehnati P.

    2017-09-01

    Full Text Available Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the female breast and lung doses using split and standard protocols in chest CT scanning. Materials and Methods: The sliced chest and breast female phantoms were used. CT exams were performed using a single-slice (SS- and a 16 multi-slice (MS- CT scanner at 100 kVp and 120 kVp. Two different protocols, including standard and split protocols, were selected for scanning. The breast and lung doses were measured using thermo-luminescence dosimeters which were inserted into different layers of the chest and breast phantoms. The differences in breast and lung radiation doses in two protocols were studied in two scanners, analyzed by SPSS software and compared by t-test. Results: Breast dose by split scanning technique reduced 11% and 31% in SS- and MS- CT. Also, the radiation dose of lung tissue in this method decreased 18% and 54% in SS- and MS- CT, respectively. Moreover, there was a significant difference (p< 0.0001 in the breast and lung radiation doses between standard and split scanning protocols. Conclusion: The application of a split scan technique instead of standard protocol has a considerable potential to reduce breast and lung doses in SS- and MS- CT scanners. If split scanning protocol is associated with an optimum kV and MSCT, the maximum dose decline will be provided.

  13. Change of the NADPH depending superoxide producing and ferri hemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character

    International Nuclear Information System (INIS)

    Melkonyan, L.G.; Simonyan, R.M.; Simonyan, M.A.; Sekoyan, E.S.

    2009-01-01

    After the X radiation, UVA radiation and ultrasound radiation of new isoforms of cytochrome cyt b 5 58 from rats erythrocyte membranes - EM (cyt b 5 58III) and from spleen cell membranes (SCM) in vitro, as well as after the radiation of EM ex vivo, the suppression of both NADPH depending O 2 - producing and ferrihemoglobin (ferriHb)-reducing activities of cyt b 5 58 from EM and SCM in homogeneous (in solution) and heterogeneous phases (in EM and SCM) at various scopes takes place. These changes are associated with the destabilization of EM and SCM, conditioned by the change of the aggregation degree of these hemoproteins in EM and SCM, hemoproteins as a result of the influence of the hydrogen peroxide formed during radiolysis and photolysis of the water medium. After He-Ne laser radiation of the cyt b 5 58 from EM and SCM in vitro an increase of the NADPH depending O 2 - producing and ferriHb-reducing activities of the cyt b 5 58 from EM and SCM in homogenous and heterogeneous phases (in membranes) takes place. It is supposed that the suppression (by X-, UVA- and US-radiation) and the stimulation (by He-Ne laser radiation) of the immune system activity and the oxygen homeostasis are associated with the corresponding decrease and increase of the NADPH depending O 2 - producing and ferriHb-reducings activity of the new isoforms of cyt b 5 58 from EM and SCM in homogeneous and heterogeneous phases

  14. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  15. Effect of radiation environment on radiation use efficiency and growth of sunflower

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1997-01-01

    The level of incident radiation and the proportion of radiation that is diffuse affects radiation use efficiency (RUE) in crops. However, the degree of this effect, and its importance to growth and yield of sunflower (Helianthus annuus L.) have not been established. A field experiment was conducted to investigate the effects of radiation environment on RUE, growth, and yield of sunflower. A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and was exposed to three distinct radiation environments. In two treatments, the level of incident radiation was reduced by 14 and 20% by suspending two different types of polyethylene plastic films well above the crop. In addition to the reductions in incident radiation, the proportion of radiation that was diffuse was increased by about 14% in these treatments. Lower incident radiation and increased proportion of diffuse radiation had no effect on total biomass, phenology, leaf area, and the canopy light extinction coefficient (k = 0.89). However, yield was reduced in shaded treatments due to smaller grain size and lower harvest index. Although crop RUE measured over the entire crop cycle (1.25 g/MJ) did not differ significantly among treatments, there was a trend where RUE compensated for less intercepted incident radiation. Theoretical derivations of the response of RUE to different levels of incident radiation supported this finding. Shaded sunflower crops have the ability to produce biomass similar to unshaded crops by increasing RUE, but have lower harvest indices

  16. Acute radiation syndrome (ARS – treatment of the reduced host defense

    Directory of Open Access Journals (Sweden)

    Heslet L

    2012-01-01

    Full Text Available Lars Heslet1, Christiane Bay2, Steen Nepper-Christensen31Serendex ApS, Gentofte; 2University of Copenhagen, Medical Faculty, Copenhagen; 3Department of Head and Neck Surgery, Otorhinolaryngology, Køge University Hospital, Køge, DenmarkBackground: The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS. The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF] in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes.Methods: Review of the current literature.Results: The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS.Recommendation: Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least ~2 Gy by prompt dosing of 250–400 µg GM-CSF/m2 or 5 µg/kg G-CSF administered systemically and concomitant inhalation of

  17. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  18. Great Apes

    Science.gov (United States)

    Sleeman, Jonathan M.; Cerveny, Shannon

    2014-01-01

    Anesthesia of great apes is often necessary to conduct diagnostic analysis, provide therapeutics, facilitate surgical procedures, and enable transport and translocation for conservation purposes. Due to the stress of remote delivery injection of anesthetic agents, recent studies have focused on oral delivery and/or transmucosal absorption of preanesthetic and anesthetic agents. Maintenance of the airway and provision of oxygen is an important aspect of anesthesia in great ape species. The provision of analgesia is an important aspect of the anesthesia protocol for any procedure involving painful stimuli. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are often administered alone, or in combination to provide multi-modal analgesia. There is increasing conservation management of in situ great ape populations, which has resulted in the development of field anesthesia techniques for free-living great apes for the purposes of translocation, reintroduction into the wild, and clinical interventions.

  19. Corrosion product behaviour in the Loviisa nuclear power plant primary coolant: measures taken to lower radiation levels by modified shutdown procedures

    International Nuclear Information System (INIS)

    Jaernstroem, R.T.

    1983-01-01

    The primary circuit chemistry of the Loviisa nuclear power plant differs in some respects from the concepts commonly used in PWRs. In general, Loviisa 1, which is now in its sixth cycle, and Loviisa 2, which is in its second refuelling and maintenance shutdown (October 1982), are very clean compared with several other PWRs and it seems to be possible to keep the radiation levels low and even reduce them by using correct chemistry during operation; the shutdown conditions seem to have great influence on this matter. These modified shutdown conditions and their influence on radiation levels, dose rates and radwaste buildup are discussed. (author)

  20. Evaluation and management of acute radiation dermatitis

    International Nuclear Information System (INIS)

    Modesto, A.; Faivre, J.C.; Granel-Brocard, F.; Tao, Y.G.; Pointreau, Y.

    2012-01-01

    Acute radiation dermatitis remains one of the most commonly observed side effect during radiation therapy leading to complication such as superinfection or treatment disruption. Its management is characterized by a great heterogeneity. Few strategies have demonstrated a benefit in preventing radiation dermatitis, which relies mostly on decreasing dose delivered to the skin and skin care practices. Simple emollients and use of topical steroids can be useful in early stages. The singularity of the skin toxicity seen with cetuximab and radiotherapy warrants a specific grading system and distinctive clinical treatment with use of antibiotics. (authors)

  1. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  2. Momentum distribution at great depths when electron axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.Kh.; Tuguz, F.K.

    1989-01-01

    The electron distribution in momenta during axial channeling in thick monocrystals in great depths is estimated. The estimate was carried out with respect to the fact that due to diffusion the angular momentum of the electron can change only in a limited region of phase space and that multiple scattering only takes place on thermal oscillations of nuclei of the crystal lattice. It is shown that in thick monocrystals the distribution in momenta can be considered uniform on the greater part of the way of channeled electrons which can simplity the qualitative consideration of spectral-angular characteristics forming during this radiation

  3. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    preparing 90Y-Zevalin were measured. CONCLUSIONS. Good laboratory practice is important to keep radiation doses low. To reduce bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead...

  4. Prophylactic vesical instillations with 0.2% chondroitin sulfate may reduce symptoms of acute radiation cystitis in patients undergoing radiotherapy for gynecological malignancies

    NARCIS (Netherlands)

    Hazewinkel, M.H.; Stalpers, L.J.A.; Dijkgraaf, M.G.; Roovers, J.P.W.R.

    2011-01-01

    We studied the feasibility and efficacy of intravesical instillations with 40 ml chondroitin sulfate 0.2% solution to prevent or reduce acute radiation cystitis in women undergoing pelvic radiotherapy. In a comparative pilot study in 20 patients, half of the patients received instillations.

  5. Possibility of radiation application to sludge treatment in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course, heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by ..gamma.. irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which dose the coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it does not require high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost.

  6. Possibility of radiation application to sludge treatment in Japan

    International Nuclear Information System (INIS)

    Takehisa, Masaaki

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewerage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by γ irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it is not required to keep high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost. (Wakatsuki, Y.)

  7. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  8. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  9. Estimation of Solar Radiation using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Slamet Suprayogi

    2004-01-01

    Full Text Available The solar radiation is the most important fator affeccting evapotranspiration, the mechanism of transporting the vapor from the water surface has also a great effect. The main objectives of this study were to investigate the potential of using Artificial Neural Network (ANN to predict solar radiation related to temperature. The three-layer backpropagation were developed, trained, and tested to forecast solar radiation for Ciriung sub Cachment. Result revealed that the ANN were able to well learn the events they were trained to recognize. Moreover, they were capable of effecctively generalize their training by predicting solar radiation for sets unseen cases.

  10. Investigation of the relationship between knowledge concerning radiation and the level of anxiety toward radiation in student nurses

    International Nuclear Information System (INIS)

    Kunugita, Naoki

    2008-01-01

    In the medical fields, the use of radiation is indispensable in diagnosis, radiotherapy, nuclear medicine and various other areas. On the other hand, great anxiety is often felt due to the misunderstanding of radiation, and this anxiety is seen in not only patients but also nurses. In this study, a questionnaire survey about knowledge of radiation and the level of anxiety was carried out in student nurses for three years from 2005 to 2007. The questionnaire included the level of anxiety about radiation and 12 basic question items concerning radiation. The results showed that the student with poor knowledge about radiation showed high anxiety. After a series of lectures concerning radiation, the acquisition of knowledge and a decrease in anxiety were observed in the students. However, it was still shown that people with scarce knowledge concerning radiation still had high anxiety at the end of the lectures. In conclusion, it was shown that education about radiation is necessary to decrease anxiety about radiation among nurses in medical care. (author)

  11. Radiation pneumonitis and fibrosis

    International Nuclear Information System (INIS)

    Shopova, V.; Salovsky, P.; Dancheva, V.

    2001-01-01

    The likelihood of toxic pulmonary lesions development as the result of radiation therapy for pulmonary carcinoma and breast cancer is discussed. Two possible forms of radiation induced changes are described, namely: classical radiation pneumonitis (RP) terminating with lung fibrosis circumscribed in the radiation zone, and sporadic RP giving rise to bilateral lymphatic alveolitis and manifestations outside the irradiation field. Attention is called to the fact that chemotherapy augments the risk of toxic lung damage occurrence. A number of markers for early RP diagnosis, including lactate dehydrogenase activity, KL-6, procollagen III, transforming growth factor β, C-reactive protein and partial oxygen pressure are listed. Therapeutic possibilities in coping with RP and pulmonary fibrosis are assayed. Apart from the standard therapeutic approach using corticosteroids and azatioprin, ideas are set forth concerning the application of some antioxidants, angiotensin converting enzyme inhibitors and γ-interferon. It is pointed out that radiation pneumonitis and pulmonary fibrosis treatment has an essential practical bearing on life expectancy and quality of life in a great number of cancer patients. (author)

  12. Efficacy of the RADPAD Protection Drape in Reducing Operators' Radiation Exposure in the Catheterization Laboratory: A Sham-Controlled Randomized Trial.

    Science.gov (United States)

    Vlastra, Wieneke; Delewi, Ronak; Sjauw, Krischan D; Beijk, Marcel A; Claessen, Bimmer E; Streekstra, Geert J; Bekker, Robbert J; van Hattum, Juliette C; Wykrzykowska, Joanna J; Vis, Marije M; Koch, Karel T; de Winter, Robbert J; Piek, Jan J; Henriques, José P S

    2017-11-01

    Interventional cardiologists are increasingly exposed to radiation-induced diseases like cataract and the stochastic risk of left-sided brain tumors. The RADPAD is a sterile, disposable, lead-free shield placed on the patient with the aim to minimize operator-received scatter radiation. The objective of the trial was to examine the RADPAD's efficacy in a real-world situation. In the current, double-blind, sham-controlled, all-comer trial, patients undergoing diagnostic catheterization or percutaneous coronary interventions were randomized in a 1:1:1 ratio to a radiation absorbing shield (RADPAD), standard treatment (NOPAD), or a sham shield (SHAMPAD). The sham shield allowed testing for shield-induced radiation behavior. The primary outcome was the difference in relative exposure of the primary operator between the RADPAD and NOPAD arms and was defined as the ratio between operator's exposure (E in µSv) and patient exposure (dose area product in mGy·cm 2 ), measured per procedure. A total of 766 consecutive coronary procedures were randomized to the use of RADPAD (N=255), NOPAD (N=255), or SHAMPAD (N=256). The use of RADPAD was associated with a 20% reduction in relative operator exposure compared with that of NOPAD ( P =0.01) and a 44% relative exposure reduction compared with the use of a SHAMPAD ( P RADPAD radiation shield reduced operator radiation exposure compared with procedures with NOPAD or SHAMPAD. This study supports the routine use of RADPAD in the catheterization laboratory. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03139968. © 2017 American Heart Association, Inc.

  13. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  14. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    Science.gov (United States)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide

  15. REDUCING THE IMPACT OF RADIATION FACTORS IN AREAS WITH HIGH LEVEL OF RISK

    Directory of Open Access Journals (Sweden)

    D. A. Zaredinov

    2015-01-01

    Full Text Available The article is devoted to the modern problems of radioecology. The study reveals the problems of radioecological situation in some regions of the Republic of Uzbekistan. The main attention of the authors is paid to the ecologically hazardous objects in the uranium mining industry. The characteristics of wastes from uranium mining and stages of development of the mining industry are described. The historical background of the accumulation of the wastes in dumps, the ore-bearing rocks, and other off-balance ores is given. The practical experience and directions radio-ecological safety are generalized, achieving improvements of the environmental quality in areas with high risk. In conclusion, the authors recommend carrying out some measures to reduce an impact of the radiation factor on human health and to stabilize the radioecological situation at the studied regions.

  16. Using the BERT concept to promote public understanding of radiation

    International Nuclear Information System (INIS)

    Ng, Kwan-Hoong; Cameron, J.R.

    2001-01-01

    Radiation phobia can be greatly decreased if the simple BERT (Background Equivalent Radiation Time) concept is used to explain the dose to all diagnostic radiology patients. It converts the radiation dose to an equivalent period of natural background radiation. It is understandable, it does not mention risk, and it educates the patient that human-made radiation is the same as the background radiation which gives them most of their annual dose. Medical physicists should provide each clinical x-ray unit with a table that gives the BERT value for various procedures and patient sizes and educate the radiologists and radiographers how to use the BERT approach for relieving radiation anxiety. (author)

  17. [Effective Techniques to Reduce Radiation Exposure to Medical Staff during Assist of X-ray Computed Tomography Examination].

    Science.gov (United States)

    Miyajima, Ryuichi; Fujibuchi, Toshioh; Miyachi, Yusuke; Tateishi, Satoshi; Uno, Yoshinori; Amakawa, Kazutoshi; Ohura, Hiroki; Orita, Shinichi

    2018-01-01

    Medical staffs like radiological technologists, doctors, and nurses are at an increased risk of exposure to radiation while assisting the patient in a position or monitor contrast medium injection during computed tomography (CT). However, methods to protect medical staff from radiation exposure and protocols for using radiological protection equipment have not been standardized and differ among hospitals. In this study, the distribution of scattered X-rays in a CT room was measured by placing electronic personal dosimeters in locations where medical staff stands beside the CT scanner gantry while assisting the patient and the exposure dose was measured. Moreover, we evaluated non-uniform exposure and revealed effective techniques to reduce the exposure dose to medical staff during CT. The dose of the scattered X-rays was the lowest at the gantry and at the examination table during both head and abdominal CT. The dose was the highest at the trunk of the upper body of the operator corresponding to a height of 130 cm during head CT and at the head corresponding to a height of 150 cm during abdominal CT. The maximum dose to the crystalline lens was approximately 600 μSv during head CT. We found that the use of volumetric CT scanning and X-ray protective goggles, and face direction toward the gantry reduced the exposure dose, particularly to the crystalline lens, for which lower equivalent dose during CT scan has been recently recommended in the International Commission on Radiological Protection Publication 118.

  18. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    Science.gov (United States)

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15

  19. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  20. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  1. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  2. Containing and discarding method for radiation contaminated materials and radiation contaminated material containing composite member

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A container for high level radiation contaminated materials is loaded in an outer container in a state of forming a gap between the outer container and a container wall, low level radiation contaminated materials are filled to the gap between the container of the radiation contaminated materials and the container wall, and then the outer container is sealed. In addition, the thickness of the layer of the low level radiation contaminated materials is made substantially uniform. Then, since radiation rays from the container of the radiation contaminated materials are decayed by the layer of the low level radiation contaminated materials at the periphery of the container and the level of the radiation rays emitted from the outer container is extremely reduced than in a case where the entire amount of high level radiation contaminated materials are filled, the level is suppressed to an extent somewhat higher than the level in the case where the entire amount of the low level radiation contaminated materials are filled. Accordingly, the management corresponds to that for the low level radiation contaminated materials, and the steps for the management and the entire volume thereof are reduced than in a case where the high level radiation contaminated materials and the low level radiation contaminated materials are sealed separately. (N.H.)

  3. Ionizing radiation and water reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Sampa, Maria Helena de Oliveira; Oikawa, Hiroshi; Silveira, Carlos Gaia da; Duarte, Celina Lopes; Cherbakian, Eloisa Helena

    2002-01-01

    The aim of the present paper is to point out the possibility of including ionizing radiation for wastewater treatment and reuse. Radiation processing is an efficient technology which can be useful for water reuse once the process can reduce not only the biological contamination but also organic substances, promoting an important acute toxicity removal from aquatic resources. Final secondary effluents from three different wastewater treatment plant were submitted to electron beam radiation and the process efficacy was evaluated. Concerning disinfection, relatively low radiation doses (2,0 - 4,0 kGy) accounted for 4 to 6 cycle log reduction for total coliforms. When radiation was applied for general wastewater improvement related to the chemical contamination, radiation process reduced from 78% up to 100% the total acute toxicity, measured for crustaceans, D. similis, and for V. fiscehri bacteria. (author)

  4. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    International Nuclear Information System (INIS)

    Broderick, Maria; Leech, Michelle; Coffey, Mary

    2009-01-01

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  5. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Directory of Open Access Journals (Sweden)

    Coffey Mary

    2009-02-01

    Full Text Available Abstract Intensity Modulated Radiation Therapy (IMRT is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct

  6. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Maria; Leech, Michelle; Coffey, Mary [Division of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland (United Kingdom)

    2009-02-16

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  7. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  8. Radiation dermatitis : report of 3 cases

    International Nuclear Information System (INIS)

    Yoon, Sei Chul; Bahk, Yong Whee; Shinn, Kyung Sub; Kim, Choon Yul; Cho, Baek Kee; Wee, Sung Shin

    1986-01-01

    It has just passed 90 years since the discovery of X-ray by W.C. Roentgen in 1895. Not only in the medicine but also in the industry, have great utilization of ionizing radiation increased since the beginning of this century. There were also many known its hazards in spite of astonishable profits and contributions for mankind's welfare. Authors experienced 3 cases of radiation dermatitis which developed during gamma radiograms for nondestructive testing of pipelines with Ir-192. We tried to calculate the supposed exposure doses in each case, discuss the working situation and review of literatures to see the systemic and local effects of radiation.

  9. Radiation destruction of vitamin A in lipid solvents

    International Nuclear Information System (INIS)

    Snauwaert, F.; Maes, E.; Tobback, P.; Bhushan, B.

    1978-01-01

    The radiation response of vitamin A alcohol and its acetate derivative was compared in different lipid solvents. In all the solvents vitamin A alcohol exhibited a much higher radiation sensitivity than its ester counterpart. The nature of the solvent and the initial concentration was found to have a great influence on the extent of radiation degradation of vitamin A alcohol. In contrast to a high radiolability in non-polar solvents, vitamin A alcohol exhibited a remarkable stability in isopropanol. In addition, in isopropanol the G(-) relationship with radiation dose showed a reverse trend to that observed for other solvents. A thin-layer chromatographic procedure was developed for separation of the radiation degradation products. (author)

  10. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  11. Technological significances to reduce the material problems. Feasibility of heat flux reduction

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Shimada, Michiya.

    1994-01-01

    For a divertor plate in a fusion power reactor, a high temperature coolant must be used for heat removal to keep thermal efficiency high. It makes the temperature and thermal stress of wall materials higher than the design limits. Issues of the coolant itself, e.g. burnout of high temperature water, will also become a serious problem. Sputtering erosion of the surface material will be a great concern of its lifetime. Therefore, it is necessary to reduce the heat and particle loads to the divertor plate technologically. The feasibility of some technological methods of heat reduction, such as separatrix sweeping, is discussed. As one of the most promising ideas, the methods of radiative cooling of the divertor plasma are summarized based on the recent results of large tokamaks. The feasibility of remote radiative cooling and gas divertor is discussed. The ideas are considered in recent design studies of tokamak power reactors and experimental reactors. By way of example, conceptual designs of divertor plate for the steady state tokamak power reactor are described. (author)

  12. Assessment of Radiation Background Variation for Moving Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Laboratory; Rennie, John Alan [Los Alamos National Laboratory; Toevs, James Waldo [Los Alamos National Laboratory; Wallace, Darrin J. [Los Alamos National Laboratory; Abhold, Mark Edward [Los Alamos National Laboratory

    2015-07-13

    The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more information for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.

  13. Ionizing radiation and cancer prevention

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation in unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. 9 refs., 1 fig., 5 tabs

  14. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  15. Perception of low dose radiation risks among radiation researchers in Korea.

    Science.gov (United States)

    Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects perception of radiation exposure.

  16. Perception of low dose radiation risks among radiation researchers in Korea

    Science.gov (United States)

    Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects risk perception of radiation exposure. PMID:28166286

  17. Radiation processing of natural polymers for industrial and agricultural applications

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.; Diaa, D.A.; El-Barbary, A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great efforts should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxymethylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na/PAAm gels in urine are acceptable for diaper

  18. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    Science.gov (United States)

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  19. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Lambert, J.D.; Maxcy, R.B.

    1984-01-01

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10 0 C, at 0-5 0 C, and at 30 +/- 10 0 C. Irradiation at -30 0 C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D 10 value for C. jejuni was 32 Krad, which was less than D 10 values commonly reported for salmonellae. 20 references, 4 figures

  20. Radiolabeling optimization and reduced staff radiation exposure for high-dose 90Y-ibritumomab tiuxetan (HD-Zevalin)

    International Nuclear Information System (INIS)

    Papi, Stefano; Martano, Luigi; Garaboldi, Lucia; Rossi, Annalisa; Cremonesi, Marta; Grana, Chiara Maria; Paolucci, Daniele; Sansovini, Maddalena; Paganelli, Giovanni; Chinol, Marco

    2010-01-01

    Introduction: 90 Y-Zevalin labeling may cause severe finger radiation exposure, especially in high-dose protocols (HD-Zevalin), where up to 7.4 GBq could be injected. In this work, we optimized the labeling of HD-Zevalin with special regard to simplicity, speed, safety and radiation protection. Methods: Factors influencing labeling outcome (activity, specific activity, time, final volume, stability) were studied separately. The critical steps of a standard radiolabeling procedure were optimized to reduce finger exposure, developing an alternative labeling procedure and including a different 90 Y supplier. Finger doses were monitored by thermoluminescent dosimeters at each fingertip under anti-X gloves, considering both absolute values and values after normalization to 1.48 GBq. Results: Labeling of 90 Y-Zevalin was safe and reproducible up to 7.4 GBq with a simple and single-step procedure offering good stability for several hours. Radiolabeling specific activity was found critical, being kept at 740 MBq.mg -1 . Radiochemical purity values ≥98% were routinely achieved. The alternative procedure allowed a sensible reduction of finger dose, due to both the different 90 Y vial and the handling. Finger exposure was reduced from 6.6±4.3 to 3.1±0.8 mSv/1.48 GBq in the case of the original 90 Y vial and from 1.5±0.9 to 0.3±0.1 mSv/1.48 GBq using a shielded 90 Y vial. Conclusions: HD-Zevalin can be prepared in a safe and reproducible way, giving high radiochemical purity values, good stability and low finger exposure. This study may improve the safety of nuclear medicine professionals involved in the preparation of Zevalin.

  1. Possibilities of reducing radiation doses in spinograms of adolescents by means of most intensifying screens and compensating screens

    Energy Technology Data Exchange (ETDEWEB)

    Pollaehne, W; Brandt, G A [Staedtisches Klinikum Berlin-Buch (German Democratic Republic)

    1980-01-01

    Most intensifying screens based on CaWO/sub 4/ and LaOBr/sub 2/ or combinations of them were used in radiography of both the thoracic and the lumbar parts of the spines of adolescents. The results obtained were compared with those achieved by means of screens usually used for spinograms. Radiation exposure was reduced, on an average by 30-40%, when most intensifying screens were used, the image quality being the same. The introduction of high-speed superscreens is pressingly recommended.

  2. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  3. Applying Ionizing Radiation for the Treatment of Sewage Sludge for Reuse

    International Nuclear Information System (INIS)

    Elammari, M.; Mashai, M.; Dehmani, K.; Abokhabta, S.; Akrim, M.

    2004-01-01

    The increased waste production by human activities world wide raised the problem of how to get red of this waste which cause undesirable impact on human and the surrounding environment. Sewage sludge generally contains high concentrations of pathogens even after digestion or after treating with other conventional methods. This paper brings to light the radiation treatment of sludge by ionizing radiation as a simple and reliable process for sludge disinfection and also the effect of Gamma radiation on sludge characteristics and heavy metals which exist in the sludge. Samples of moist sludge were brought from Elhadba Elkhadra waste water treatment plant, the main sewage water treatment plant in the City of Tripoli; they were collected in sterile plastic bags from different locations. Samples were then irradiated using gamma irradiator at Tajura Research Centre with a dose rate of 10 Gy/min, using a Co60 Gamma irradiator. They received a dose ranged between 0 -5 kGy with an increment of 1 kGy. Microorganisms are damaged when exposed to gamma radiation and the extent of damage is proportional to the radiation dose absorbed by the organism. Gamma irradiation greatly reduced the pathogen density in the investigated samples, as the 5 kGy dose was sufficient to terminate the total bacterial count for all microorganisms. A 3 kGy was only needed to demolish Enterobacter ease, Total coliform and Fecal coliform, whereas spore forming needed a dose of 4 kGy for complete elimination. (authors)

  4. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  5. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  6. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  7. Radiation Effects in Paediatric radiography

    International Nuclear Information System (INIS)

    Mutwasi, O.

    2006-01-01

    Diagnostic imaging has evolved from single technique to a field which we have a choice from many modalities. Some without radiation. Radiation producing modalities include plain films (low dose), Fluoroscopy (mid range dose), Computed tomography (high dose). Radiography dose can significantly be influenced in plain radiography by varying speed of screens, cassette construction and type of radiography. E.g. digital or computed. In computed or digital radiography we are no longer able to tell h igh dose b y the quality of images. The final image is by great extend a product of post processing algorithms. It's for this reasons that the basic understanding of the sensitivity and specifying of various types of examinations and of specifically radiation effects is mandatory for a paediatric imager

  8. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  9. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  10. Meeting Radiation Protection Requirements and Reducing Spacecraft Mass - A Multifunctional Materials Approach

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Reddell, Brandon; Rojdev, Kristina; Franklin, Jennifer

    2010-01-01

    Both crew and radio-sensitive systems, especially electronics must be protected from the effects of the space radiation environment. One method of mitigating this radiation exposure is to use passive-shielding materials. In previous vehicle designs such as the International Space Station (ISS), materials such as aluminum and polyethylene have been used as parasitic shielding to protect crew and electronics from exposure, but these designs add mass and decrease the amount of usable volume inside the vehicle. Thus, it is of interest to understand whether structural materials can also be designed to provide the radiation shielding capability needed for crew and electronics, while still providing weight savings and increased useable volume when compared against previous vehicle shielding designs. In this paper, we present calculations and analysis using the HZETRN (deterministic) and FLUKA (Monte Carlo) codes to investigate the radiation mitigation properties of these structural shielding materials, which includes graded-Z and composite materials. This work is also a follow-on to an earlier paper, that compared computational results for three radiation transport codes, HZETRN, HETC, and FLUKA, using the Feb. 1956 solar particle event (SPE) spectrum. In the following analysis, we consider the October 1989 Ground Level Enhanced (GLE) SPE as the input source term based on the Band function fitting method. Using HZETRN and FLUKA, parametric absorbed doses at the center of a hemispherical structure on the lunar surface are calculated for various thicknesses of graded-Z layups and an all-aluminum structure. HZETRN and FLUKA calculations are compared and are in reasonable (18% to 27%) agreement. Both codes are in agreement with respect to the predicted shielding material performance trends. The results from both HZETRN and FLUKA are analyzed and the radiation protection properties and potential weight savings of various materials and materials lay-ups are compared.

  11. Microbiological analysis of peach palm in natura submitted to 60Co radiation

    International Nuclear Information System (INIS)

    Silva, Priscila V.; Araujo, Michel M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna Lucia C.H.; Hojeije, Khalil Y.

    2009-01-01

    The palm tree (Bactris gasipaes Kunth) is a species with high potential benefits, because of the nutritional value of its fruits that could be used both in human and animals feeding and mainly for peach palm extraction. It represents a great source of dietary fiber and a moderate source of magnesium and iron. Food irradiation is a worldwide technology that aims to improve the product quality, in order to eliminate diverse microorganisms that can spoil the food. Radiation processing, in the recommended doses, causes very few chemical alterations and nutritional losses in foods, being considered insignificant and/or similar to other food treatments. The objective of this study was to evaluate the effect of irradiation on microbiological counts of mesophilic aerobic in the peach palm in natura. Samples were irradiated with 1.0 and 1.5 kGy using a 60 Co multipurpose irradiator. Radiation treatment appeared to be a useful alternative to reduce microbial contamination in the samples analyzed. (author)

  12. Reduced recurrence of late hemorrhagic radiation cystitis by WF10 therapy in cervical cancer patients

    International Nuclear Information System (INIS)

    Veerasarn, Vutisiri; Khorprasert, Chonlakiet; Lorvidhaya, Vicharn; Sangruchi, Supatra; Tantivatana, Thanatip; Narkwong, Ladawan; Kongthanarat, Yongyut; Chitapanarux, Imjai; Tesavibul, Chanawat; Panichevaluk, Apichart; Puribhat, Sirisak; Sangkittipaiboon, Somphob; Sookpreedee, Lak; Lertsanguansinchai, Prasert; Phromratanapongse, Pramook; Rungpoka, Poonkiat; Trithratipvikul, Supamitr; Lojanapiwat, Bannakij; Ruangdilokrat, Sathit; Ngampanprasert, Pichai

    2004-01-01

    Background and purpose: To evaluate the efficacy and the safety of WF10 as adjunct to standard treatment in the management of late hemorrhagic radiation cystitis compared to standard treatment alone. Patients and methods: Cervical cancer patients with Grade 2 or 3 late hemorrhagic radiation cystitis, were randomized and treated with WF10 0.5 ml/kg body weight, diluted in physiological saline or 5% dextrose water 250 ml, intravenous infusions over 2 h on 5 consecutive days, every 3 weeks for 2 cycles plus standard treatment (WF10 group) or standard treatment alone (control group). Fifty patients in each group were evaluated by questioning; urinalysis and cystoscopy during a 1 year follow up. Results: At week 7, 37 patients (74%) in the WF10 group and 32 patients (64%) in the control group showed complete resolution in objective hematuria (P=0.28). Significantly lower use of antibiotics (P=0.002) and antispasmodics (P<0.001) was found in the WF10 group. Among the responders, 24 patients (77%) in the control group experienced recurrent objective hematuria, whereas in the WF10 group only 17 patients (47%) experienced a recurrence (P=0.01). Recurrence of objective hematuria occurred significantly faster in the control group as evidenced by Kaplan-Meier and log-rank statistics (P=0.004), suggesting a long-term effect of WF10. Cystoscopy, at the end of the treatment period and after the one year follow up showed overall improvement without significant difference between two groups. No severe toxicity was monitored. Conclusions: WF10 therapy is a safe, non-invasive and convenient method in the management of late hemorrhagic radiation cystitis. WF10 therapy, as adjunct to standard treatment, has significantly reduced recurrence of objective hematuria, compared to standard treatment alone, during a one year follow up

  13. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  14. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  15. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  16. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  17. Natural and artificial radioactivity in Great Bratislava

    International Nuclear Information System (INIS)

    Lanc, J.

    1997-01-01

    The results of the aviation measurement of the gamma-radiation are presented in the form of the maps of iso-lines of the concentration of the natural radioactive elements (potassium, uranium, thorium) and artificial radionuclides (cesium-137, cesium-134). From the obtained dates the maps of dose rate of the gamma-radiation in the air are calculated, of the dose equivalent rate and the map of the fraction of the dose equivalent rate from the natural elements potassium, uranium, thorium. The natural radioactivity of the minerals in the Great Bratislava region, especially for the extreme low values of the contain of the thorium, does not amount the average values of the radioactivity of the Earth crust. The area activity of cesium-137 are in the range 2 - 10 kBq.m -2 and cesium-134 is 1 - 2.5 kBq.m -2 . From the point of view of the summary level of the external irradiation from the Earth surface the measured zone as relative even is evaluated, in the range 10-100 nSv.h -1 . The total average level of the dose rate of the external irradiation of man (inclusively from the cosmic radiation 40-50 nSv.h -1 ) in the conditions of Bratislava is 100 nSv.h -1 . The contribution of external component of the irradiation is 40-100 nSv.h -1 (0.1-0.3 mSv.y -1 ). The dose equivalent commitment of internal component from the cesium-137 is for the all age category of the population under the level negligible risk 0.01 mSv.y -1 [sk

  18. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  19. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced

    Directory of Open Access Journals (Sweden)

    Hellevik Turid

    2012-04-01

    Full Text Available Abstract Background Cancer-Associated Fibroblasts (CAFs are significant components of solid malignancies and play central roles in cancer sustainability, invasion and metastasis. In this study we have investigated the invasive capacity and matrix remodelling properties of human lung CAFs after exposure to ablative doses of ionizing radiation (AIR, equivalent to single fractions delivered by stereotactic ablative radiotherapy (SART for medically inoperable stage-I/II non-small-cell lung cancers. Methods CAFs were isolated from lung tumour specimens from 16 donors. Initially, intrinsic radiosensitivity was evaluated by checking viability and extent of DNA-damage response (DDR at different radiation doses. The migrative and invasive capacities of CAFs were thereafter determined after a sub-lethal single radiation dose of 18 Gy. To ascertain the mechanisms behind the altered invasive capacity of cells, expression of matrix metalloproteinases (MMPs and their endogenous inhibitors (TIMPs were measured in the conditioned media several days post-irradiation, along with expression of cell surface integrins and dynamics of focal contacts by vinculin-staining. Results Exposing CAFs to 1 × 18 Gy resulted in a potent induction of multiple nuclear DDR foci (> 9/cell with little resolution after 120 h, induced premature cellular senescence and inhibition of the proliferative, migrative and invasive capacity. AIR promoted MMP-3 and inhibited MMP-1 appearance to some extent, but did not affect expression of other major MMPs. Furthermore, surface expression of integrins α2, β1 and α5 was consistently enhanced, and a dramatic augmentation and redistribution of focal contacts was observed. Conclusions Our data indicate that ablative doses of radiation exert advantageous inhibitory effects on the proliferative, migratory and invasive capacity of lung CAFs. The reduced motility of irradiated CAFs might be a consequence of stabilized focal contacts via integrins.

  20. Ionizing radiation from tobacco

    International Nuclear Information System (INIS)

    Westin, J.B.

    1987-01-01

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed

  1. Preserving food with radiation

    International Nuclear Information System (INIS)

    Thomas, A.C

    1978-01-01

    Food irradiation is becoming an increasingly more important method of food preservataion. The irradiation process and its advangages are briefly described, and its use in the preservation of poultry and various kinds of fruits is discussed. Fruit export is hampered by restrictions due to infestation. Radiation disinfestation will therefore be of great advantage and may lead to a growth in export markets

  2. Nutritional and metabolic changes due the abdominal radiation: experimental study

    International Nuclear Information System (INIS)

    Mucerino, Donato R.; Waitzberg, Dan L.; Campos, Fabio G. de; Melo Auricchio, Maria T. de; Gama-Rodrigues, Joaquim J.; Lima-Goncalves, Ernesto L.

    1995-01-01

    In this study the effects on nutritional status and energetic metabolism due the abdominal irradiation were analysed. Adult male wistar rats (48), were divided in two groups Control (C) and radiated (R). The rats were maintained all time in metabolic cages. the study was done in two periods: period 1 begun at 0 day, were rats adapted to cages and oral diet, had food and water ad libitum. At the day four indirect calorimetric measurements were performed (calorimetry 1). At period 2, group R rats abdominal radiation at a 300 c Gy/day rate, for 5 consecutive days, and group C started a pair-feeding process linked individually to R rats and suffered application to simulated-irradiation. Two other calorimetric measurements (II,III) were performing during period 2. After radiation the last calorimetry was performed (IV). At sacrifice (day 14) blood was collected for determination of hemoglobin, hematocrit, albumin and transferrin. There were no statistical differences among groups C and R during period 1 (p < 0.05). Great reduction in food intake and weight variation were found in period 2, but weight loss was significantly higher in R rats. Nitrogen balance decrease in period 2, but without difference among the groups (p < 0.05). Serum albumin was significantly lower in R rats. Respiratory quotient decreased in both groups during period 2, but rats kept it lower (p < 0.05). The energy expenditure level decreased after radiation in group R. During period 2 total substrate oxidation decreased in R rats. Radiation decrease glucose and protein oxidation. In conclusion, in this study's conditions, radiation produced malnutrition by reducing food intake by bringing weight loss, hypoalbuminemia and decrease nitrogen balance. Radiation was also responsible for a reduction of metabolism, by promoting the fall of energy expenditure. These changes are not only due the anorexia, undoubtful a main factor. (author)

  3. Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation.

    Science.gov (United States)

    Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai

    2014-10-01

    To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    Science.gov (United States)

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P ASIR levels of ≥40% (P ASIR levels ≥60% (P ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  5. Radiation Risk Associated with Low Doses of Ionizing Radiation: Irrational Fear or Real Danger

    International Nuclear Information System (INIS)

    Reshetin, V.

    2007-01-01

    The established worldwide practice of protecting people from radiation based on the assessments of radiation risk received in the researches carried out earlier costs hundreds of billions of dollars a year to implement. In the opinion of the well-known experts, the maintenance of the existing radiation protection regulations or moreover acceptance of more tough regulations can influence the development of nuclear power engineering. The accepted practice of assessment of human health risk from radiation may also significantly affect our perception of threats of radiation terrorism. In this work, the critical analysis of publications on the assessment of the effects of small doses of radiation on human health is carried out. In our analysis, we especially emphasize the data on cancer mortality among survivors of the atomic bombing of Hiroshima and Nagasaki who received instantaneous radiation doses of less than 200 mSv including the data on leukemia and solid cancer, as well as epidemiological studies in the regions of India and China with high level of natural radiation. Since the investigations of radiation risk is a base for formulating modern radiation protection regulations, their reliability and validity are of great importance. As follows from the analysis, the subsequent, during three decades, toughening of radiation protection regulations has already led to exceedingly prohibitive standards and impractical recommendations the science-based validity of which can cause serious doubts. Now, a number of world-wide known scientists and authoritative international organizations call for revision of these standards and of the radiation safety concept itself. (author)

  6. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    Ohtomo, K.

    1976-01-01

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  7. Synthesis and characterization of Ho3+ doped hafnium oxide TLD for radiation dosimeter

    International Nuclear Information System (INIS)

    Sekar, Nandakumar; Ganesan, Bharanidharan; Sahib, Hajee Reyaz Ali; Aruna, Prakasarao; Ganesan, Singaravelu; Thamilkumar, P.; Rai, R.R.

    2017-01-01

    Cancer is a dreaded disease which is treated by Radiotherapy, Chemotherapy and Surgery. Radiotherapy plays a vital role in treatment of cancer and recently measurements of invivo radiation dosimetric in patient is of great interest due to high dose gradients in advanced technology like IMRT, IGRT etc. Hence, for the last few decades, a great degree of interest has been shown for the hafnium oxide for radiation dosimetric applications, due to its high dielectric constant, wide band gap and better interface properties such as chemical stability, conduction band offset and thermodynamic stability. In the present study, Synthesis and characterization of Ho 3+ doped Hafnium oxide were carried out and its applications towards radiation dosimeter were investigated

  8. Low temperature experiments in radiation biophysics

    International Nuclear Information System (INIS)

    Moan, J.

    1977-01-01

    The reasons for performing experiments in radiation biophysics at low temperatures, whereby electron spectra may be studied, are explained. The phenomenon of phosphorescence spectra observed in frozen aqueous solutions of tryptophan and adenosine is also described. Free radicals play an important part in biological radiation effects and may be studied by ESR spectroscopy. An ESR spectrum of T 1 bacteriophages irradiated dry at 130K is illustrated and discussed. Hydrogen atoms, which give lines on the spectrum, are believed to be those radiation products causing most biological damage in a dry system. Low temperature experiments are of great help in explaining the significance of direct and indirect effects. This is illustrated for the case of trypsin. (JIW)

  9. Chernobyl accident: Causes, consequences and problems of radiation measurements

    International Nuclear Information System (INIS)

    Kortov, V.; Ustyantsev, Yu.

    2013-01-01

    General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described

  10. Electromagnetic and radiation environments: effects on pacemakers

    International Nuclear Information System (INIS)

    Mouton, J.; Trochet, R.; Vicrey, J.; Sauvage, M.; Chauvenet, B.; Ostrovski, A.; Leroy, E.; Haug, R.; Dodinot, B.; Joffre, F.

    1999-01-01

    Nowadays, medical care development allows many people to share the benefits of implanted pacemakers (PM). PM can be perturbed and even fall in complete breakdowns in an electromagnetic and radiation environment. A stimuli-dependent patient can thus be seriously in danger. This article presents the effect of ionizing radiation from either a cobalt-60 source or from a linear accelerator (Saturne 43) on 12 pacemakers. It seems that technological progress make electronic circuits more sensitive to the cumulated dose of radiation. This survey shows that pacemakers have great difficulties to sustain ionizing radiation doses that are commonly delivered to patients during therapies. Usually perturbed functioning appears suddenly and means a strong shift of stimuli that might lead to heart failure

  11. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    Science.gov (United States)

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  12. Monitoring and forecasting of radiation hazard from great solar energetic particle events by using on-line one-min neutron monitor and satellite data

    International Nuclear Information System (INIS)

    Dorman, L. I.

    2007-01-01

    The method of automatically determining the start of great solar energetic particle (SEP) events are described on the basis of cosmic ray (CR) one-min observations by neutron monitors in real-time scale. It is shown that the probabilities of false alarms and missed triggers are negligible. After the start of SEP event, it is automatically determined by the method of coupling functions the SEP energy spectrum and flux for each minute of observations. By solving the inverse problem during few first minutes of SEP event, diffusion coefficient in the interplanetary space, source function on the Sun, and time of ejection of SEP into solar wind are determined. For extending obtained results into small energy range we use also available from Internet the satellite one-min CR data. This make possible to give forecast of space-time variation of SEP for more than 2 days and estimate expected radiation dose for satellite and aircraft. With each new minute of observations, the quality of forecast increased, and after ∼30 min became near 100%. (authors)

  13. Advanced methodologies of evaluating the radiation sources and ionising radiation shieldings for reducing the irradiation in nuclear field personnel

    International Nuclear Information System (INIS)

    Pantazi, D.; Mateescu, S.; Stanciu, M.

    2003-01-01

    One of the technical measures of protection against ionizing radiations is the radiation shielding. The process of implementing modern and efficient methods of evaluating the radiation shielding implies advanced calculation methods. That means using from simpler 1-D or 2-D computing codes such as MicroShield or QAD up to systems of codes such as SCALE (containing several independent modules) or the Monte Carlo multipurpose and many particles, MCNP, transport code. The main objective of this work is to present the Monte Carlo based evaluation of the dose rates from the CANDU type spent fuel all along the path of its handling up to intermediate storage. These values will be then compared with the values obtained from calculations with different computing programs. To obtain this objective two problems were approached: - establishing geometrical models according to the definition used by MCNP code so that the characteristics of CANDU type nuclear fuel are taking into account; - checking the validity of the proposed models by comparing the MCNP results with those obtained with other computing codes specific for shielding evaluation and radiation dose calculation

  14. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    International Nuclear Information System (INIS)

    Mahesh, M; Gingold, E; Jones, A

    2014-01-01

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose

  15. The effect of carbohydrates and lipids on the radiation-induced aggregation of proteins

    International Nuclear Information System (INIS)

    Delincee, H.; Jakubick, V.

    1977-01-01

    Myoglobin, ovalbumin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, simulating a model food. Gel chromatography revealed the induction of protein aggregates, the formation of which depended strongly on protein concentration. The addition of carbohydrates (trehalose, starch) greatly reduced the amount of radiation-induced aggregates, whereas the addition of lipids (sunflower oil) had practically no effect on aggregate formation. However, if both carbohydrates and lipids were added, the decrease in aggregation caused by the carbohydrate addition was counteracted by the addition of the lipid; as increasing amounts of lipid were added, the effect of carbohydrate addition became smaller. (author)

  16. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  17. Bolus effect to reduce skin dose of the caontralateral breast during breast cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of); Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiology, Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of)

    2017-06-15

    The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge 15 degrees were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

  18. Code of practice against radiation hazards at PINSTECH

    International Nuclear Information System (INIS)

    Mubarak, M.A.; Javed, M.; Ahmad, S.

    1982-10-01

    It is the radiation safety policy of PAEC/PINSTECH that all radiation exposure should be kept as low as reasonably achievable (ALARA). A code of practice against radiation hazards at PINSTECH was written in 1972 which regulated the conduct of radiation work at PINSTECH. Since the radiation work at PINSTECH has greatly increased, it was considered necessary to revise the code so as to incorporate the new concepts in this field as well as to help meet the present requirements of radiation protection. The procedures set forth in this code are mandatory and in no case should any of them be deviated except under an emergency situation which may be handled according to procedures laid down in a separate manual ''Emergency Procedures at PARR-PINSTECH'' (PINSTECH/HP--19). All those supervising or performing any kind of radiation work are required to study and adhere to these procedures. Copy of this code should be kept in every radiation laboratory for ready reference. (author)

  19. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  20. Radiation education in school

    International Nuclear Information System (INIS)

    Shishido, Teruko; Higashijima, Emiko; Hisajima, Michihiro

    2005-01-01

    Part of goals of general education of physics is to provide students for basic knowledge on radiation. This includes understanding of both its risks and benefits. Students should know how to protect and defence from radiation but they should not overwhelm the risk of radiation. Sometimes, students think that atomic power is so terrible and frightening that they keep away from use of atomic power. Basic knowledge about risks of radiation will reduce the excessive reaction or anxiety coming from radiation. It also makes people understand other possible risks and benefits of radiation accompanied by modern scientific technologies such as nuclear technologies. We believe that the radiation education is an essential requisite for the peaceful usage of nuclear energy and radiation technology for the future. (author)

  1. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  2. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  3. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  4. High vulnerability of the developing brain to ionizing radiation

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1991-01-01

    The developing mammalian brain is highly susceptible to environmental teratogenic insults, because of its long-lasting sensitive period extending from the beginning of embryonic organogenesis to the postnatal infantile period, the great vulnerability of undifferentiated neural cells to wide range of environmental agents including ionizing radiation, and the lack of further reproductive capacity of neurons. Disturbances in the production of neurons, and their migration to the cerebral and cerebellar cortices, give rise to malformations of the brain, such as an absent corpus callosum, disorganized cortical architecture, abnormal fissuring of the cerebral and cerebellar hemispheres, heterotopic cortical gray matter, ectopic cerebellar granule cells, microcephaly, etc. The critical developmental stage for the induction of histogenetic disorders of the cerebral cortex in humans is 8 weeks of pregnancy and following some weeks. This corresponds to day 13 of pregnancy for mice and day 15 for rats, i.e., the ventricular cells of fetal telencephalon are most susceptible to radiation-induced cell death in this stage of development. The lowest doses of X- and gamma-radiations which induce detectable biological effects in rats and mice are around 0.02 Gy in increasing acute cell death. Reduced brain weight and abnormal dendritic arborization are induced by 0.25 Gy and more. Histological abnormalities are produced by 0.5 Gy and more, and microcephaly and cerebellar malformations are by 1 Gy and more. (author)

  5. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  6. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  7. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  8. Diverse applications of radiation chemistry

    International Nuclear Information System (INIS)

    Cooper, R.

    1998-01-01

    Radiation chemistry began as early radiotherapists needed a reliable and appropriate dosimeter. The iron sulphate dosimeter, using ferrous iron in sulphuric acid and oxidation by irradiation, was a nasty brew of chemicals but it was sensitive, reliable and conveniently had the same density as human tissue. Water irradiation chemistry studies were driven by the need to understand the fundamental processes in radiotherapy; to control the corrosion problems in the cooling/ heat exchange systems of nuclear reactors and to find stable solvents and reagents for use in spent fuel element processing. The electrical and mechanical stability of materials in high radiation fields stimulated the attention of radiation chemists to the study of defects in solids. The coupled use of radiation and Electron Spin Resonance (ESR) enabled the identity of defect structures to be probed. This research led to the development of the sensitive Thermoluminescent Dosimeters, TLD's and a technique for dating of archaeological pottery artefacts. Radiation chemistry in the area of medicine is very active with fundamental studies of the mechanism of DNA strand breakage and the development of radiation sensitisers and protectors for therapeutic purposes. The major area of polymer radiation chemistry is one which Australia commands great international respect

  9. Microbiological analysis of peach palm in natura submitted to {sup 60}Co radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila V.; Araujo, Michel M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: priscilavsilva@gmail.com, e-mail: villavic@ipen.br; Hojeije, Khalil Y. [Floresta Industria e Comercio Ltda., Sao Paulo, SP (Brazil)

    2009-07-01

    The palm tree (Bactris gasipaes Kunth) is a species with high potential benefits, because of the nutritional value of its fruits that could be used both in human and animals feeding and mainly for peach palm extraction. It represents a great source of dietary fiber and a moderate source of magnesium and iron. Food irradiation is a worldwide technology that aims to improve the product quality, in order to eliminate diverse microorganisms that can spoil the food. Radiation processing, in the recommended doses, causes very few chemical alterations and nutritional losses in foods, being considered insignificant and/or similar to other food treatments. The objective of this study was to evaluate the effect of irradiation on microbiological counts of mesophilic aerobic in the peach palm in natura. Samples were irradiated with 1.0 and 1.5 kGy using a {sup 60}Co multipurpose irradiator. Radiation treatment appeared to be a useful alternative to reduce microbial contamination in the samples analyzed. (author)

  10. Simultaneous adjuvant radiation therapy and chemotherapy in high-risk breast cancer--toxicity and dose modification: a trans-tasman radiation oncology group multi-institution study

    International Nuclear Information System (INIS)

    Denham, James W.; Hamilton, Christopher S.; Christie, David; O'Brien, Maree; Bonaventura, Antonino; Stewart, John F.; Ackland, Stephen P.; Lamb, David S.; Spry, Nigel A.; Dady, Peter; Atkinson, Christopher H.; Wynne, Christopher; Joseph, David J.

    1995-01-01

    Purpose: To establish the toxicity profile of simultaneously administered postoperative radiation therapy and CMF chemotherapy as a prelude to a randomized controlled study addressing the sequencing of the two modalities. Methods and Materials: One hundred and thirty eight breast cancer patients at high risk of locoregional, as well as systemic relapse, who were referred to three centers in Australia and New Zealand were treated with postoperative radiation therapy and chemotherapy simultaneously. Acute toxicity and dose modifications in these patients were compared with 83 patients treated over the same time frame with chemotherapy alone. In a separate study the long-term radiation and surgical effects in 24 patients treated simultaneously with radiation therapy and chemotherapy at Newcastle (Australia) following conservative surgery were compared with 23 matched patients treated at Newcastle with radiation therapy alone. Results: Myelotoxicity was increased in patients treated simultaneously with radiation therapy and chemotherapy. The effect was not great, but may have contributed to chemotherapy dose reductions. Lymphopenia was observed to be the largest factor in total white cell depressions caused by the simultaneous administration of radiation therapy. Postsurgical appearances were found to so dominate long-term treatment effects on the treated breast that the effect of radiation therapy dose and additional chemotherapy was difficult to detect. Conclusion: Studies addressing the sequencing of radiation therapy and chemotherapy will necessarily be large because adverse effects from administering the two modalities simultaneously are not great. The present study has endorsed the importance in future studies of stratification according to the extent and type of surgery and adherence to a single strict policy of chemotherapy dose modification

  11. Radiation protection: precedents, principles and practices - a regulatory viewpoint

    International Nuclear Information System (INIS)

    Jennekens, J.H.

    1986-06-01

    Radiation protection in its broadest sense is a multidisciplinary human function exemplifying in all meaningful respects the innate ability of dedicated persons to apply with both general and specialized expertise knowledge derived from a great many scientific and technical fields. The aim of this address is to outline from a regulatory viewpoint the precedents, principles and practices of radiation protection, a very essential human function

  12. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  13. Effects of a new bifunctional psoralen, 4,4',5'-trimethylazapsoralen and ultraviolet-A radiation on murine dendritic epidermal cells.

    Science.gov (United States)

    Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L

    1990-06-01

    Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.

  14. The Integrated Radiation Mapper Assistant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, R.E.; Tripp, L.R. [Odetics, Inc., Anaheim, CA (United States)

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout the room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.

  15. Verification of radiation exposure using lead shields

    International Nuclear Information System (INIS)

    Hayashida, Keiichi; Yamamoto, Kenyu; Azuma, Masami

    2016-01-01

    A long time use of radiation during IVR (intervention radiology) treatment leads up to an increased exposure on IVR operator. In order to prepare good environment for the operator to work without worry about exposure, the authors examined exposure reduction with the shields attached to the angiography instrument, i. e. lead curtain and lead glass. In this study, the lumber spine phantom was radiated using the instrument and the radiation leaked outside with and without shields was measured by the ionization chamber type survey meter. The meter was placed at the position which was considered to be that for IVR operator, and changed vertically 20-100 cm above X-ray focus by 10 cm interval. The radiation at the position of 80 cm above X-ray focus was maximum without shield and was hardly reduced with lead curtain. However, it was reduced with lead curtain plus lead glass. Similar reduction effects were observed at the position of 90-100 cm above X-ray focus. On the other hand, the radiation at the position of 70 cm above X-ray focus was not reduced with either shield, because that position corresponded to the gap between lead curtain and lead glass. The radiation at the position of 20-60 cm above X-ray focus was reduced with lead curtain, even if without lead glass. These results show that lead curtain and lead glass attached to the instrument can reduce the radiation exposure on IVR operator. Using these shields is considered to be one of good means for IVR operator to work safely. (author)

  16. Radiation and risk

    International Nuclear Information System (INIS)

    Jacobi, W.

    1983-01-01

    From the beginnings of the peaceful utilization of nuclear energy, the principles of prevention and optimization have greatly limited the emission of radioactive substances. In this way, the radiation exposure associated with emissions from nuclear power plants during normal operation has been kept low compared with natural radiation exposure and its variance. This also applies to the local public in the vicinities of such plants. The present health hazard to the public arising from ionizing radiation is only a small fraction of the man-made risk to which the public is exposed in this country. This is also due to the fact that radiation protection employs the principle of prevention, which has been laid down in legal regulations. In this respect, the concepts and criteria developed in radiation protection for evaluation, limitation and optimization may be useful examples to other areas of safety at work and environmental protection. The acceptance of nuclear power is decisively influenced by the remaining residual risk of accidents. Extremely careful inspection and supervision of the technical safety of such plants is indispensable to prevent major accidents. The German Risk Study for Nuclear Power Plants has made an important contribution to this end. It is being continued. However, risk research must always be accompanied by risk comparison to allow numerical risk data to be evaluated properly and important features to be distinguished from unimportant ones. (orig.) [de

  17. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  18. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  19. Minimizing radiation exposure during percutaneous nephrolithotomy.

    Science.gov (United States)

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  20. Radiation treatment of foodstuffs

    International Nuclear Information System (INIS)

    Luther, T.; Huebner, G.

    1990-10-01

    In addition to fundamental demands on radiation and safety engineering of irradiation facilities, the necessity arises to optimize irradiation conditions by using facilities to capacity and thus reducing irradiation costs. The following subjects are dealt with in detail: rehabilitation of a pilot plant for radiation treatment of onions; examination of radiation resistance of components and equipment parts of food irradiation facilities; chemical dosimetry; relative measurement of the intensity of radioactive sources; thermo- and chemiluminescence to prove irradiation of foodstuffs; radiation induced sprout inhibition of potatoes; laboratory tests of delayed maturation of tomatoes; radiation treatment of strawberries; radiation treatment of forage; radiation induced sprout inhibition of acid-treated onions; radiation treatment of starch and potatoe products; radiation treatment of cosmetics; the universal radiation source UNI 88/26 for gamma irradiation facilities; microbiological aspects of food irradiation, and introduction of chicken irradiation on an industrial scale. (BBR) [de

  1. Degradation of polylactic acid (Pla) at different doses of gamma radiation

    International Nuclear Information System (INIS)

    Castillo R, Y.

    2015-01-01

    The excessive use of polymers such as polyethylene (PET), polystyrene (Ps) and recently the polylactic acid (Pla) that take more than 20 years to degrade, have caused great pollution in the environment. In this study the effects of gamma radiation in the Pla to different doses were studied, in order to reduce the degradation time of this polymer. The changes in physico-chemical structure of Pla during radiation were studied by thermo-gravimetric/Mass analysis; differential scanning calorimetry; scanning electron microscopy; X-ray dispersive analysis; infrared spectroscopy; X-ray diffraction and mechanical tests of hardness, elasticity and deformation. With scanning electron microscopy, the morphology of the Pla surface unirradiated was observed, in which an apparently smooth surface was observed, after changes that had the Pla when irradiated also was observed, where the effects of radiation were observed in form of scratch, agglomeration and small fractures. By X-ray dispersive analysis was determined and verified the elemental chemical composition of the Pla; as expected the tests showed only carbon, oxygen and hydrogen. With thermo-gravimetric/Mass analysis the decomposition temperatures of Pla were determined, identifying that the degradation compounds are CO, CO 2 and CH 4 . With infrared spectrometry the major peaks of Pla were observed before and after being irradiated with increasing of radiation dose the intensity of the bands decreased. Also by X-ray diffraction was observed that the polymer is an amorphous material. The mechanical tests indicate that the values of each of the tests decrease significantly with increasing the radiation dose. (Author)

  2. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  3. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J M; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  4. Development of radiation fusion biotechnology

    International Nuclear Information System (INIS)

    Jung, Uhee; Lee, Ju Woon; Park, Sang Hyun

    2012-04-01

    Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready to eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. Development of modulators against degenerative aging using radiation fusion technology - Selection of 20 kinds of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling (fractionated irradiation of total 5Gy, a lapse of 4 months or more - Selection of effective aging modulating substances by screening of 800 natural substances - Development of 1 multi-functional and high-efficacy aging modulator by combination of effective substances and evaluation by in vivo models Development of biochips and kits using RI detection technology for life science - Establishment of kinase substrate interaction analysis using RI detection technique (More than 100 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing. - Establishment of multi-channel type Lab on a chip (LOC) using

  5. Development of radiation fusion biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Uhee; Lee, Ju Woon; Park, Sang Hyun

    2012-04-15

    Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready to eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. Development of modulators against degenerative aging using radiation fusion technology - Selection of 20 kinds of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling (fractionated irradiation of total 5Gy, a lapse of 4 months or more - Selection of effective aging modulating substances by screening of 800 natural substances - Development of 1 multi-functional and high-efficacy aging modulator by combination of effective substances and evaluation by in vivo models Development of biochips and kits using RI detection technology for life science - Establishment of kinase substrate interaction analysis using RI detection technique (More than 100 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing. - Establishment of multi-channel type Lab on a chip (LOC) using

  6. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [The Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Allegheny General Hospital, Department of Radiology, Pittsburgh, PA (United States); Ceschin, Rafael C.; Clayton, Barbara L.; Sutcavage, Tom; Tadros, Sameh S.; Panigrahy, Ashok [The Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States)

    2011-09-15

    The use of the adaptive statistical iterative reconstruction (ASIR) algorithm has been shown to reduce radiation doses in adults undergoing abdominal CT studies while preserving image quality. To our knowledge, no studies have been done to validate the use of ASIR in children. To retrospectively evaluate differences in radiation dose and image quality in pediatric CT abdominal studies utilizing 40% ASIR compared with filtered-back projection (FBP). Eleven patients (mean age 8.5 years, range 2-17 years) had separate 40% ASIR and FBP enhanced abdominal CT studies on different days between July 2009 and October 2010. The ASIR studies utilized a 38% mA reduction in addition to our pediatric protocol mAs. Study volume CT dose indexes (CTDI{sub vol}) and dose-length products (DLP) were recorded. A consistent representative image was obtained from each study. The images were independently evaluated by two radiologists in a blinded manner for diagnostic utility, image sharpness and image noise. The average CTDI{sub vol} and DLP for the 40% ASIR studies were 4.25 mGy and 185.04 mGy-cm, compared with 6.75 mGy and 275.79 mGy-cm for the FBP studies, representing 37% and 33% reductions in both, respectively. The radiologists' assessments of subjective image quality did not demonstrate any significant differences between the ASIR and FBP images. In our experience, the use of 40% ASIR with a 38% decrease in mA lowers the radiation dose for children undergoing enhanced abdominal examinations by an average of 33%, while maintaining diagnostically acceptable images. (orig.)

  7. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study

    International Nuclear Information System (INIS)

    Vorona, Gregory A.; Ceschin, Rafael C.; Clayton, Barbara L.; Sutcavage, Tom; Tadros, Sameh S.; Panigrahy, Ashok

    2011-01-01

    The use of the adaptive statistical iterative reconstruction (ASIR) algorithm has been shown to reduce radiation doses in adults undergoing abdominal CT studies while preserving image quality. To our knowledge, no studies have been done to validate the use of ASIR in children. To retrospectively evaluate differences in radiation dose and image quality in pediatric CT abdominal studies utilizing 40% ASIR compared with filtered-back projection (FBP). Eleven patients (mean age 8.5 years, range 2-17 years) had separate 40% ASIR and FBP enhanced abdominal CT studies on different days between July 2009 and October 2010. The ASIR studies utilized a 38% mA reduction in addition to our pediatric protocol mAs. Study volume CT dose indexes (CTDI vol ) and dose-length products (DLP) were recorded. A consistent representative image was obtained from each study. The images were independently evaluated by two radiologists in a blinded manner for diagnostic utility, image sharpness and image noise. The average CTDI vol and DLP for the 40% ASIR studies were 4.25 mGy and 185.04 mGy-cm, compared with 6.75 mGy and 275.79 mGy-cm for the FBP studies, representing 37% and 33% reductions in both, respectively. The radiologists' assessments of subjective image quality did not demonstrate any significant differences between the ASIR and FBP images. In our experience, the use of 40% ASIR with a 38% decrease in mA lowers the radiation dose for children undergoing enhanced abdominal examinations by an average of 33%, while maintaining diagnostically acceptable images. (orig.)

  8. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  9. Hospital Capital Investment During the Great Recession.

    Science.gov (United States)

    Choi, Sung

    2017-01-01

    Hospital capital investment is important for acquiring and maintaining technology and equipment needed to provide health care. Reduction in capital investment by a hospital has negative implications for patient outcomes. Most hospitals rely on debt and internal cash flow to fund capital investment. The great recession may have made it difficult for hospitals to borrow, thus reducing their capital investment. I investigated the impact of the great recession on capital investment made by California hospitals. Modeling how hospital capital investment may have been liquidity constrained during the recession is a novel contribution to the literature. I estimated the model with California Office of Statewide Health Planning and Development data and system generalized method of moments. Findings suggest that not-for-profit and public hospitals were liquidity constrained during the recession. Comparing the changes in hospital capital investment between 2006 and 2009 showed that hospitals used cash flow to increase capital investment by $2.45 million, other things equal.

  10. Hospital Capital Investment During the Great Recession

    Science.gov (United States)

    Choi, Sung

    2017-01-01

    Hospital capital investment is important for acquiring and maintaining technology and equipment needed to provide health care. Reduction in capital investment by a hospital has negative implications for patient outcomes. Most hospitals rely on debt and internal cash flow to fund capital investment. The great recession may have made it difficult for hospitals to borrow, thus reducing their capital investment. I investigated the impact of the great recession on capital investment made by California hospitals. Modeling how hospital capital investment may have been liquidity constrained during the recession is a novel contribution to the literature. I estimated the model with California Office of Statewide Health Planning and Development data and system generalized method of moments. Findings suggest that not-for-profit and public hospitals were liquidity constrained during the recession. Comparing the changes in hospital capital investment between 2006 and 2009 showed that hospitals used cash flow to increase capital investment by $2.45 million, other things equal. PMID:28617202

  11. Reduced H3K27me3 expression in radiation-associated angiosarcoma of the breast

    DEFF Research Database (Denmark)

    Mentzel, Thomas; Kiss, Katalin

    2018-01-01

    The diagnosis of radiation-associated angiosarcoma is challenging and there are overlapping clinicopathological features between radiation-associated benign, atypical and malignant vascular lesions. It has been shown convincingly, that the majority of radiation-associated angiosarcomas are charac...

  12. Effects of gamma radiation on the adult stage of bed bug Cimex lectularius L. (Hemiptera, cimicidae)

    International Nuclear Information System (INIS)

    Younes, M. W. F.; Emara, T. E. A.

    1993-01-01

    The effects of gamma radiation doses ranging between 1 and 30 krad on the adult stage of Cimex lectularius L., were studied. The effects of irradiation on the different biological aspects of C. lectularius L., were taken in consideration. Adult irradiation affected clearly the egg production, fertility and longevity of both sexes at different mating combinations. Females were more sensitive to the sterilizing effects of gamma radiation than males, the complete sterility of both sexes in parent generation (P 1 ) being achieved at 20 and 30 krad, respectively. The nymphal duration of first generation (F 1 ) nymphs was greatly prolonged at all employed dosages. Our results indicated that the percent emergence of adults were reduced progressively at the dose was increased in F 1 generation. The results of matings between F 1 generation and individuals that had no history of radiation showed that in C. lectularius L., the genetic damage transmitted to F 1 generation resulted in a greater incidence of sterility and in a reduction in the average number of eggs laid per females. (author)

  13. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  14. Radiation embrittlement of metals and alloys

    International Nuclear Information System (INIS)

    Wechsler, M.S.

    1975-01-01

    Three types of radiation embrittlement are identified: (1) radiation embrittlement in nominally ductile metals, (2) radiation embrittlement in metals that undergo a ductile-brittle transition, and (3) high-temperature grain boundary embrittlement. This paper deals with type (1) and, more briefly, type (2) radiation embrittlement. Radiation embrittlement in nominally ductile metals is characterized by the premature onset of plastic instability, which causes a sharp decrease in the macroscopic plastic strain that the material can sustain before necking (uniform strain) and breaking (fracture strain). Dislocation channeling seems to be largely responsible and experimental results are reviewed. The origin of dislocation channeling is discussed. Irradiated metals that exhibit a ductile-brittle transition show an increase in the transition temperature but the nature of the transition (shear to cleavage fracture) does not appear to be greatly altered. A key factor is the temperature dependence of yielding and how it is affected upon irradiation. Impurities exert an influence on the stability of radiation-produced defect clusters and thus can alter the amount of radiation embrittlement experienced upon irradiation at somewhat elevated temperatures. In general, radiation embrittlement appears to stem mostly from changes in plastic properties (particularly in the trend toward more dynamic and inhomogeneous plastic deformation) rather than from changes in the inherent fracture process. 63 references, 10 figures

  15. Medical applications of synchrotron radiation. Ch. 10

    International Nuclear Information System (INIS)

    Giacomini, J.C.; Gordon, H.J.

    1991-01-01

    Synchrotron radiation has a number of properties which make it uniquely suited for medical diagnostic imaging. The radiation is intense and can be readily monochromatized. With these highly intense, mono-chromatized X-ray beams, iodine K-edge di-chromatography can yield images which greatly enhance the visualization of iodine containing structures. As this technology continues to improve, the possibility of performing diagnostic cardiac, neuroradiological, and other vascular examinations with minimally invasive peripheral venous injections of iodinated contrast agent becomes increasingly practical. (author). 10 refs.; 6 figs

  16. Activities on calibration of radiation protection instruments in Indonesia

    International Nuclear Information System (INIS)

    Trijoko, S.

    1995-01-01

    As the use of the ionizing radiation emitted by radionuclides or produced by modern machines in Indonesia has increased significantly in the past two decades, the demand for radiation protection measures has also grown up very rapidly. In the mind of Indonesian people, ionizing radiation is always associated with atomic bombs. Indonesian government has set up National Atomic Energy Agency (BATAN) through the Act No. 31/1964. The BATAN has responsibility in the research and development, implementation and inspection of the safe use of ionizing radiation for peaceful purposes, and always put a great concern on radiation protection matter. The Center for Standardization and Radiation Safety Research (CSRSR) has been founded to implement research and services in the fields of radiation safety, standardization, dosimetry, radiation health, as well as the application of nuclear techniques to medicine. In order to provide the national reference in terms of radiation dosimetry and calibration, the Secondary Standard Dosimetry Laboratory was completely set up in Jakarta by 1984. As available facilities, radiation instruments and radiation sources are described. Calibration and personal monitoring services are reported. (K.I.)

  17. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  19. Development of radiation hard CMOS active pixel sensors for HL-LHC

    International Nuclear Information System (INIS)

    Pernegger, Heinz

    2016-01-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  20. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  1. Radiation in dental practice: awareness, protection and recommendations.

    Science.gov (United States)

    Praveen, B N; Shubhasini, A R; Bhanushree, R; Sumsum, P S; Sushma, C N

    2013-01-01

    Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel.

  2. Increased UV-B radiation reduces N2-fixation in tropical leguminous crops

    International Nuclear Information System (INIS)

    Anupa Singh

    1997-01-01

    Net photosynthesis, leaf area, biomass, and number, size and activity of nodules were examined in three leguminous plants subjected under field conditions to supplemental UV-B radiation equivalent to a 15% ozone depletion at 25 degrees N latitude. Enhanced UV-B radiation adversely affected the net photosynthetic rate, growth characteristics and nodule activity in all three species. Maximum reduction in net photosynthesis occurred in Phaseolus mungo cv. Pant U-30, whereas the greatest reduction in nitrogenase activity occurred in Vigna radiata. (author)

  3. Development and demonstration of surveillance and diagnostics of rotating machinery for reducing radiation exposure to nuclear power plant personnel: Final report

    International Nuclear Information System (INIS)

    Allen, J.W.; Bohanick, J.S.

    1988-01-01

    This program was designed to reduce radiation exposure to power plant personnel resulting from inspection, maintenance, and repair of rotating equipment. The new rotating machinery monitoring system for this program was installed at GGNS during August 1983. This document provides a functional description of the hardware and software that comprise the system and discusses the application of the monitoring system to achieving overall program goals. The analyses of the monitored rotating machinery during the plant startup phase and after the plant's first fuel cycle are presented in addition to the radiation dose reduction which occurred as a direct and indirect result of the RMSS. The dose reduction program at GGNS is reviewed and recommendations made to incorporate this program with the RMSS. 28 refs., 64 figs., 43 tabs

  4. The liquid droplet radiator: Status of development

    Science.gov (United States)

    Persson, J.

    1991-12-01

    The ever greater amounts of power to be dissipated onboard future spacecraft, together with their limited external dimensions, will make it increasingly difficult to use conventional radiator technology without imposing a severe mass penalty. Hunting for lightweight alternatives to current heat rejection systems has become a matter of growing urgency, which explains the great interest that the Liquid Droplet Radiator (LDR) has attracted. Tradeoff analyses indicate that an LDR may be as much as an order of magnitude lighter than a comparable conventional radiator. A literature study examining the progress of the LDR research and some of its possible applications is reviewed. An investigation of the LDR heat rejection capability is presented.

  5. Atmospheric Ionizing Radiation and the High Speed Civil Transport. Chapter 1

    Science.gov (United States)

    Maiden, D. L.; Wilson, J. W.; Jones, I. W.; Goldhagen, P.

    2003-01-01

    occurs during flight at HSCT altitudes then passengers and crew may greatly exceed allowable limits unless means are available to reduce exposures.

  6. Histological investigations on the effect of zytostatica, ionizing radiation and a radioprotective substance on spleen, lung, lymphatic nodes, bone marrow, skin and muscles on rats under drugs suitable for gynacological cancer therapy

    International Nuclear Information System (INIS)

    Maeueler, R.

    1980-01-01

    The effects of radiation, zytostatica and on radiation protective substance on the organs: spleen, lung, lymphatic nodes, skin and muscles of the rat were examined. High-voltage gamma radiation, zytostatica cyclophosphamide, podophyllinic acid ethyl hydrazide and VM26, as well as N-acetyl homocystein thiol actone were applied as radioprotective substance in several combinations. The doses were adapted to those commonly used in human medicine. The different combinations are compared regarding side effects, as well as advantages and disadvantages of different doses. Podophyllinic acid ethyl hydrazide is found to be well suited as zytostatic substance for combination therapy. The histologically detectable side effects on the organs examined by adding N-acetyl homocystein thiol actone were not greatly reduced compared to the sole or combined application of radiation and cytostatica therapy. (orig.) [de

  7. Optimising motivation and reducing burnout for radiation oncology trainees: A framework using self-determination theory.

    Science.gov (United States)

    Poulsen, Michael; Poulsen, Anne A

    2018-05-02

    Radiation oncology trainees in Australia and New Zealand have relatively high levels of emotional exhaustion and depersonalisation which are core components of burnout. The stresses of a demanding clinical load, studying for exams as well as family commitments are all contributing factors. Self-Deter mination Theory (SDT) provides a framework for optimising motivation which may be intrinsic or extrinsic. The three core components of SDT are competence, relatedness and autonomy. These factors should be addressed at a college level, Institutional and a personal level if the best outcomes are to be achieved. An environment that supports the individual's experience of competency, relatedness and autonomy will foster motivation and work engagement which in turn will improve performance, energy, resilience and creativity and reduce levels of burnout. © 2018 The Royal Australian and New Zealand College of Radiologists.

  8. Closure of laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy or radiation damage of cranial nerve after radiotherapy of nasopharyngeal carcinoma.

    Science.gov (United States)

    Qu, Shenhong; Su, Zhengzhong; He, Xiaoguang; Li, Min; Li, Tianying

    2006-09-01

    Closure of the laryngotracheal cavity and tracheostomy is especially suitable for intractable aspiration secondary to radiation encephalopathy or damage of cranial nerve after radiation for nasopharyngeal carcinoma (NPC). To investigate the clinical value, technique, indications and contraindications of closure of the laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy (REP) or radiation damage of cranial nerve after radiotherapy of NPC. Thirty patients, suffering from intractable aspiration secondary to radiotherapy for nasopharyngeal carcinoma, were treated with closure of the laryngotracheal cavity and tracheostomy and were observed for at least 1 year. Intractable aspiration and dyspnea were completely eradicated in all patients. The quality of their life was greatly improved.

  9. Radiation-induced G/sub 2/-arrest is reduced by inhibitors of poly(adenosine diphosphoribose) synthetase

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Experiments are in progress to test whether poly(adenosine diphosphoribose) synthesis is required for the induction of G/sub 2/-arrest in growing mammalian cells following X-irradiation. A variety of poly(ADPR) synthetase inhibitors have been tested to determine: 1) whether addition of an inhibitor to X-irradiated CHO cells reduces G/sub 2/-arrest; 2) whether compounds structurally similar to poly-(ADPR) synthetase inhibitors but inactive against this enzyme affect radiation-induced G/sub 2/-arrest and 3) whether the concentration dependence for poly(ADPR) synthetase inhibition matches that for G/sub 2/-arrest reduction. G/sub 2/-arrest was measured in X-irradiated (1.5 Gy) CHO cells using the mitotic cell selection technique. Poly(ADPR) synthetase activity was measured in permeabilized cells by /sup 3/H-NAD incorporation. The synthetase inhibitors used were 3-aminobenzamide, benzamide, nicotinamide, 4-acetyl pyridine, caffeine and theophylline. The inactive compounds used were 3-aminobenzoic acid, benzoic acid, nicotinic acid, adenine, adenosine and 3'-deoxyadenosine. Inhibitors of poly(ADPR) synthetase reduced G/sub 2/-arrest while related compounds which produced no enzyme inhibition did not. The concentration dependencies for G/sub 2/-arrest reduction and enzyme inhibition were similar only for methyl xanthines. Further analysis awaits the determination of intracellular drug concentrations

  10. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  11. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  12. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  13. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  14. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  15. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  16. Passive-solar directional-radiating cooling system

    Science.gov (United States)

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  17. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  18. Pretreatment of low dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells.

    Science.gov (United States)

    Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y

    1997-06-01

    Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  19. Influence of Gamma Radiation on the Treatment of Sulfate Reducing Bacteria in the Injection Water Used for the Enhanced Oil Recovery

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.; Ramzi, M.; Farag, R.M.

    2014-01-01

    The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method

  20. Pathomorphologic observation on treatment of radiation-induced lung damage in rats with

    International Nuclear Information System (INIS)

    Ye Jiangfeng; Qi Haowen; Zhao Feng; Fan Fengyun; Shi Mei; Zhao Yiling; Meng Yulin

    2004-01-01

    Objective: To inquire into the means of preventing lung damage induced by thoracic irradiation. Methods: SD rats were divided randomly into 3 groups: normal control, irradiated control (Group IC) and irradiated and fluvastatin (Flu)-treated group (Group F). The later two groups of rats were irradiated with X-rays at a dose of 20 Gy thoracically. Beginning from the seventh day before irradiation the rats in the Group F were treated with Flu at a dose of 20 mg per day by garaging until the end of the experiment. Animals from each group were sacrificed on days 5, 15, 30, 60 respectively after irradiation. Sections of lung were examined with light microscopy, electron microscopy and morphometry. Results: The rats in the Group IC suffered from typical radiation pneumonitis (P<0.01). Electron microscopy indicated type II pneumonocytes and capillary endothelial cells were injured in rats of Group IC on days 30, 60. There were increase of collagen and a great quantity of mast cells in irradiated control rats. In rats of the Group F there was slight reaction in the lung. Conclusion: Fluvastatin could reduce radiation pneumonitis and inhibit increase of collagen. The treatment and prevention of radiation-induced lung injury in rats with fluvastatin is effective

  1. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  2. Clutch size and parental effort in the Great Tit Parus major

    NARCIS (Netherlands)

    Verhulst, S.; Tinbergen, J.M.

    1997-01-01

    We experimentally reduced clutch size of Great Tits Parus major to investigate the effects on parental care (including Daily Energy Expenditure, DEE, measured with doubly labelled water), and the relationship between DEE and the residual reproductive value. The length of a working day was not

  3. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5

    International Nuclear Information System (INIS)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.

    1984-01-01

    The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction

  4. Some human-related problems in radiation protection

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo

    1980-01-01

    Radiation protection includes both human and source-related problems. The human problems have not only medical but also social aspects, such as labor management. Special attention should be paid to the fact that the subject of radiation protection is not a human being as living thing but as member of society. ICRP recommended that conditions of work can be divided into two classed, working condition A and B, according to annual exposure. This application is of great value to radiation protection practice. Nevertheless the legal regulations do not adopt it yet. The present condition of the medical surveillance of radiation workers is not appropriate from the scientific standpoint. This is the difficult problem which is caused by the delay of the legal application of ICRP recommendation. Compensation for occupational radiation hazards should be overlooked. This problem have been investigated by an authorized committee, but a number of unsolved problems still remain. (author)

  5. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  6. Process for reducing radioactive contamination in phosphogypsum

    International Nuclear Information System (INIS)

    Palmer, J.W.; Gaynor, J.C.

    1983-01-01

    In a process for reducing radioactive contamination of phosphogypsum, anhydrite crystals are obtained through dehydration of the phosphogypsum in strong sulfuric acid: a portion of the anhydrite crystals is converted to subtantially radiation free gypsum by crystallizing out on radiation free gypsum seed crystals. These coarse radiation free gypsum crystals are then separated from the small anhydrite crystal relics containing substantially all of the radioactive contamination

  7. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  8. Anisotropy of the cosmic blackbody radiation.

    Science.gov (United States)

    Wilkinson, D T

    1986-06-20

    The universe is filled with thermal radiation having a current temperature of 2.75 K. Originating in the very early universe, this radiation furnishes strong evidence that the Big Bang cosmology best describes our expanding universe from an incredibly hot, compacted early stage until now. The model can be used to extrapolate our physics backward in time to predict events whose effects might be observable in the 2.75 K radiation today. The spectrum and isotropy are being studied with sophisticated microwave radiometers on the ground, in balloons, and in satellites. The results are as predicted by the simple theory: the spectrum is that of a blackbody (to a few percent) and the radiation is isotropic (to 0.01 percent) except for a local effect due to our motion through the radiation. However, a problem is emerging. Primordial fluctuations in the mass density, which later became the great clusters of galaxies that we see today, should have left an imprint on the 2.75 K radiation-bumpiness on the sky at angular scales of about 10 arc minutes. They have not yet been seen.

  9. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  10. A computerized total-radiation management system for Shikoku Electric Power's Ikata nuclear-power plant

    International Nuclear Information System (INIS)

    Hirao, Toshiyuki; Sakakihara, Tetsuro; Tanabe, Shozo; Kano, Mamoru; Hoshi, Jun-ichi.

    1985-01-01

    This system allows on-line, real-time radiation management at nuclear-power plants. It increases management precision, decreases management workloads, and saves labor in operations that previously required specialized technicians to expend great amounts of time and effort on radiation management at facilities and their environments, environmental radiation evaluation, and control of radioactive waste. The article outlines the already installed system. (author)

  11. Current status of the South African research program on the radiation preservation of subtropical fruits

    International Nuclear Information System (INIS)

    Thomas, A.C.; Brodrick, H.T.

    1977-05-01

    In July 1976, the Atomic Energy Board (AEB) entered into a Research Agreement with the International Atomic Energy Agency (IAEA). This was done at the invitation of the Agency, as part of its function of coordinating research programs and assisting in broadening the contact of scientific investigators with similar interests. The relevant AEB research project is that involving radiation preservation of subtropical fruits, which forms part of the IAEA's coordinated program on Technological and Economic Feasibility of Food Irradiation. The report describes the results of several season's research carried out at the AEB in conjunction with the Citrus and Subtropical Fruit Research Institute, Nelspruit, on the radiation treatment of subtropical fruits. A commercial feasibility study for mango processing is summarised and plans for pilot-plant operation are described. Equally promising results have been obtained with respect to disease control and delayed senescence in papayas. Disease in litchis was also markedly reduced by irradiation treatment, but work on this fruit is still at an early stage. In the case of avocados, a greatly reduced dose, with a mild heat treatment, produced delayed ripening without significant adverse effects, and results in a shelf-life extention of about six days. The results obtained show that the irradiation of subtropical fruits holds considerable promise in terms of reduced losses, better fruit quality, improved distribution and large-scale exports [af

  12. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J.M.; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  13. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  14. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Science.gov (United States)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  15. Influence of gamma radiation on grapes color during storage period

    International Nuclear Information System (INIS)

    Santillo, Amanda G.; Rogovschi, Vladimir D.; Araujo, Michel M.; Silva, Priscila V.; Silveira, Ana P.M.; Villavicencio, Anna L.C.H.

    2009-01-01

    In general food contains some components that are very sensible to irradiation processing and if radiation dose is higher, can cause some harmful transformation in taste, odor and flavor in these foods, present in very lower concentrations, regulating their appearance and nutritious value. The ionizing radiation application in order to preserve and disinfect food is used for the reduction of pathogenic microorganisms, extending the shelf life and reducing the loss of crops during storage of the product. The genus Vitis is the main representative of the Vitaceae family due to the nutritional importance of the grape (Vitis vinifera L.), widely consumed 'in natura'. The V. vinifera produces a fruit of great nutritional value to humans. The quality and acceptance of products are associated with sensory parameters such as color, which is the primary criterion for acceptance by the consumer. Anthocyanins are generally unstable when exposed to sources of ionizing radiation. The flavonoids are largely distributed in nature and are responsible for most of blue, purple and all shades of red colors. In vines, these compounds are responsible for the color of the grape skin and are also found in the flesh of some varieties of grapes. The objective of this study is to analyze the effects of gamma radiation on color of grapes at different days of storage. The irradiation will be in 60 Co source at doses of 0 and 4.5 kGy. The samples will be stored at room and refrigerated temperature for 21 days. The evaluation of color will be analyzed through 'L', 'a' and 'b' parameters. (author)

  16. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  17. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  18. Radiation Synthesis of Nanoparticles

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Jamaliah Sharif; Nik Ghazali Nik Salleh; Dahlan Mohd; Kamaruddin Hashim

    2011-01-01

    Radiation processing of nano materials is one of the many applications of ionising radiation. It has the advantages of cold process, fast, homogeneous and clean processing without using chemicals, heat and no release of any volatile organic compounds. Hence, radiation processing can be categorised as a green process. The applications of ionising radiation for materials processing are well established and commercialized by way of crosslinking, grafting, curing and degradation. However, the materials use, condition of processing and the end products varies and radiation processing is continue to be developed for various applications in industry, agriculture, health care and environment. The new and emerging development of nano materials has also being incorporated in radiation processing whereby we can see the convergence of radiation and nano technology, to take advantages of the inherent properties of nano size particles. Nowadays many works are being carried out on radiation processing of nano materials. The incorporation of such nanoparticles in polymeric materials will render specific properties that find several advantages compare to conventional composites such as increase heat resistant, improve abrasion and scratch resistant and enhance mechanical properties. In recent years, polymer/clay nano composites has attracted the interest of industry because of its major improvements in physical and mechanical properties, heat stability, reduce flammability and provide enhanced barrier properties at low clay contents. In many applications, crosslinking of polymer matrix is necessary that can further improved the mechanical and physical properties of the composites. Similar research has been extended to electron beam crosslinking of electromagnetic nano composites which comprise of high volume fraction of inorganic fillers in elastomeric matrix. The effect of radiation on inorganic fillers is believed to has influence on the overall radiation crosslinking of the

  19. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...... radiation on the nanoscale. Here, we present the underlying physical principles of radiation nanofocusing in metallic nanostructures, overview recent progress and major developments, and consider future directions and potential applications of this subfield of nano-optics....

  20. Radiation protection of glutathion-deficient cells by thiol-containing compounds

    International Nuclear Information System (INIS)

    Ehdgren, M.; Modig, Kh.; Revez, L.

    1983-01-01

    Results of the experiments on the effect of aminothiols (under conditions of hypoxia and in the air) on radiation injury of glutathion-deficient human fibroblasts (criterionthe number of single-strand breaks in DNA) have been interpreted in the following way protection with eddogenous and exogenous aminothiols takes place to a great extent due to repair of radiation induced radicals by means of hydrogen loss by SH-group under conditions of competition with oxygen which registers the radiation injury. Repair of in uries formed under aeration conditions is accelerated by endogenoUs and exogenous aminothiols

  1. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  2. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  3. Intervention in emergency situations involving radiation exposure (1990)

    International Nuclear Information System (INIS)

    1992-01-01

    This document covers radiation protection aspects arising in emergency situations. It does not cover the measures necessary to reduce the health consequences of radiation exposure, i.e. the medical care of exposed individuals, nor does it cover psychological problems arising from the exposure of individuals or of a population. These problems may arise from anxiety about possible late effects of radiation exposure and from any actions implemented to reduce exposure. Even though radiation exposure levels may be low and insignificant, these problems must be taken into account in determining any action to be implemented to reduce radiation exposure. The primary concern of this document is with exposure in areas which are close to the source and in the period immediately after a source is out of control. It outlines the principles which can be used for planning and implementing countermeasures for protection of the public. 24 refs., 13 tabs

  4. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities

    International Nuclear Information System (INIS)

    Coleman, C Norman; Parker, Gerald W

    2009-01-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  5. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C Norman [Office of Preparedness and Emergency Response, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States); Parker, Gerald W [Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States)

    2009-06-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  6. A fixed energetic ceiling to parental effort in the great tit?

    NARCIS (Netherlands)

    Tinbergen, J.M.; Verhulst, S.

    1. To elucidate the links between avian brood size, parental effort and parental investment, we measured daily energy expenditure (DEEfem), condition (residuals of mass on tarsus) and feeding rate in female great tits Parus major L. rearing broods in which the number of young was either reduced,

  7. A fixed energetic ceiling to parental effort in the great tit?

    NARCIS (Netherlands)

    Tinbergen, J.M.; Verhulst, S.

    2000-01-01

    1. To elucidate the links between avian brood size, parental effort and parental investment, we measured daily energy expenditure (DEEfem), condition (residuals of mass on tarsus) and feeding rate in female great tits Parus major L. rearing broods in which the number of young was either reduced,

  8. Risks for radiation workers

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The following topics are discussed: recommendations of the International Commission on Radiological Protection; methods for determining dose limits to workers; use of data from survivors of Hiroshima and Nagasaki for estimating risk factors; use of data from survivors of nuclear explosions in Marshall Islands, uranium miners, and patients exposed to diagnostic and therapeutic radiation; risk factors for radioinduced malignancies; evidence that risk factors for persons exposed to partial-body radiation and Japanese survivors are too low; greater resistance of A-bomb survivors to radiation; and radiation doses received by U.K. medical workers and by U.K. fuel reprocessing workers. It is suggested that the dose limit for radiation workers should be reduced by a factor of 5

  9. The new radiation protection ordinance and its consequences in radiation therapy

    International Nuclear Information System (INIS)

    Wucherer, M.; Schmidt, T.

    2002-01-01

    The new radiation protection ordinance (StrlSchV) entails a number of additional or changed instructions. They require that personnel exposed to radiation at work be reclassified, or that personnel not exposed to radiation at work be classified as personnel exposed to radiation at work, that local dosage measurements be taken particularly in radiation therapy, in order to insure that the radiation protection areas prevailing to date can be maintained, that generally accessible areas be examined to determine whether with persons not exposed to radiation in the course of work, in the case of their prolonged presence there, 1 mSv per year is not exceeded, that instructions be put in writing, that at regular 5-year intervals the proficiency of physicians, specialists in medical physics and MTRAs be brought up to date and, that medical positions for radiooncologists be established. The stricter requirements in radiation protection are inevitably connected with greater expenditures and higher costs. These results of the new radiation protection ordinance are in direct opposition to the financial possibilities that are being restricted through budgeting and pressure on hospitals and practices to reduce costs. (orig.) [de

  10. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass

    DEFF Research Database (Denmark)

    Rinnan, R.; Keinänen, M.M.; Kasurinen, A.

    2005-01-01

    We assessed the effects of ambient solar ultraviolet (UV) radiation on below-ground parameters in an arctic heath in north-eastern Greenland. We hypothesized that the current UV fluxes would reduce root biomass and mycorrhizal colonization and that these changes would lead to lower soil microbial...... biomass and altered microbial community composition. These hypotheses were tested on cored soil samples from a UV reduction experiment with three filter treatments (Mylar, 60% UV-B reduction; Lexan, up to 90% UV-B reduction+UV-A reduction; UV transparent Teflon, filter control) and an open control...... treatment in two study sites after 3 years' manipulation. Reduction of both UV-A and UV-B radiation caused over 30% increase in the root biomass of Vaccinium uliginosum, which was the dominant plant species. UV reduction had contrasting effects on ericoid mycorrhizal colonization of V. uliginosum roots...

  11. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Beard, Matthew C.; Johnson, Justin C. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States)

    2016-06-01

    Highlights: • Photoluminescence and transient absorption are used to probe PbS QD films. • Cation-exchanged PbS QDs show room-temperature PL emission. • Bimolecular recombination is shown for the first time in coupled, PbS QD films. - Abstract: Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  12. Radiation and Anti-Cancer Vaccines: A Winning Combination.

    Science.gov (United States)

    Cadena, Alexandra; Cushman, Taylor R; Anderson, Clark; Barsoumian, Hampartsoum B; Welsh, James W; Cortez, Maria Angelica

    2018-01-30

    The emerging combination of radiation therapy with vaccines is a promising new treatment plan in the fight against cancer. While many cancer vaccines such as MUC1, p53 CpG oligodeoxynucleotide, and SOX2 may be great candidates for antitumor vaccination, there still remain many investigations to be done into possible vaccine combinations. One fruitful partnership that has emerged are anti-tumor vaccines in combination with radiation. Radiation therapy was previously thought to be only a tool for directly or indirectly damaging DNA and therefore causing cancer cell death. Now, with much preclinical and clinical data, radiation has taken on the role of an in situ vaccine. With both cancer vaccines and radiation at our disposal, more and more studies are looking to combining vaccine types such as toll-like receptors, viral components, dendritic-cell-based, and subunit vaccines with radiation. While the outcomes of these combinatory efforts are promising, there is still much work to be covered. This review sheds light on the current state of affairs in cancer vaccines and how radiation will bring its story into the future.

  13. Radiation education in Bangladesh: status need and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Bakht, Delawar [Titas Gas Transmission and Distribution Co. Ltd., Dhaka (Bangladesh)

    1999-09-01

    Since the emergence of Bangladesh as an independent state, the provisions of radiation education and training have expanded greatly. Still then, since it is a developing country with high population growth rate, low literacy level and located thousands of miles away from the developed ones, it is difficult to transfer and disseminate knowledge, particularly about the subject of radiation at a speed and spread as required to meet the challenge of future. So, not only professional training but also institutional and formal academic knowledge and skill development is essential in the process of acquisition and transfer of such knowledge. Accordingly the courses on radiation and radioactivity including risk perception in general have to be vigorously pursued for the sake of safety and attaining basic concepts about health effects of different levels of radiation. (author)

  14. Radiation education in Bangladesh: status need and opportunities

    International Nuclear Information System (INIS)

    Bakht, Delawar

    1999-01-01

    Since the emergence of Bangladesh as an independent state, the provisions of radiation education and training have expanded greatly. Still then, since it is a developing country with high population growth rate, low literacy level and located thousands of miles away from the developed ones, it is difficult to transfer and disseminate knowledge, particularly about the subject of radiation at a speed and spread as required to meet the challenge of future. So, not only professional training but also institutional and formal academic knowledge and skill development is essential in the process of acquisition and transfer of such knowledge. Accordingly the courses on radiation and radioactivity including risk perception in general have to be vigorously pursued for the sake of safety and attaining basic concepts about health effects of different levels of radiation. (author)

  15. Radiation safety needs for the resurgent uranium mining industry

    International Nuclear Information System (INIS)

    Waggitt, Peter

    2008-01-01

    Full text: After many years in the economic doldrums the world's uranium industry is undergoing a renaissance. The recent rapid price increase for the product and the anticipated market shortfalls in supply of yellowcake have are responsible for this. There is now a rush of new activity: abandoned mines from a previous era are being re-examined for their potential to be re-opened; planning for exploitation of known but undeveloped uranium deposits is proceeding at a rapid pace in many countries new to uranium mining; and finally worldwide exploration activity for uranium is expanding at a great rate with more than 400 companies now claiming to be involved in the uranium mining market. All of there activities have significant implications the radiation protection profession. At every stage of the uranium production cycle, from exploration to mining and processing through to remediation there are requirements for proper radiation protection procedures and regulation. The long period of reduced activity in uranium mining has meant that few young people have been joining the industry over the past 20 years. There is now a shortage of trained and experienced radiation protection professionals associated with the mining industry that cannot be overcome overnight. The paper discusses the development of this situation and the various strategies that are being put in place around the world to improve the situation. In particular the International Atomic Energy Agency has been working with radiation protection authorities and uranium mining industry representatives from around the world to address the issue. The latest developments in this project will be described and the future plans described. (author)

  16. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kmetko, Jan [Kenyon College, Gambier, OH 43022 (United States); Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Kenyon College, Gambier, OH 43022 (United States)

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  17. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    International Nuclear Information System (INIS)

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions

  18. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  19. Study on modification of radiation effects in mammalian fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kiyoto; Kawamata, Akitoshi; Goto, Toshifumi (Asahi Univ., Hozumi, Gifu (Japan). School of Dentistry) (and others)

    1990-10-01

    In searches for the potential application of mouse whole-embryo culture, combined effects of x radiation and cadmium or hyperthermia were examined with cultures of 8-day and 11-day mouse embryos. Combination of x radiation and cadmium had synergistic action on both in vitro and in vivo teratogenesis of mouse embryos. When irradiation was given 30 minutes before and after the administration of cadmium in 11-day mouse embryos, interaction factor values for cleft palate were 8.53 and 9.09, respectively. This revealed that the order of giving radiation and cadmium was independent of synergistic action. When low doses of radiation was combined with non-teratogenic hyperthermia, synergistic action occurred in vitro. This was more noticeable when combined with lower doses of x radiation. Low doses of x radiation are of great concern to human embryos or fetuses who may sustain potential exposures to them. (N.K.) 96 refs.

  20. Study on modification of radiation effects in mammalian fetuses

    International Nuclear Information System (INIS)

    Nakajima, Kiyoto; Kawamata, Akitoshi; Goto, Toshifumi

    1990-01-01

    In searches for the potential application of mouse whole-embryo culture, combined effects of x radiation and cadmium or hyperthermia were examined with cultures of 8-day and 11-day mouse embryos. Combination of x radiation and cadmium had synergistic action on both in vitro and in vivo teratogenesis of mouse embryos. When irradiation was given 30 minutes before and after the administration of cadmium in 11-day mouse embryos, interaction factor values for cleft palate were 8.53 and 9.09, respectively. This revealed that the order of giving radiation and cadmium was independent of synergistic action. When low doses of radiation was combined with non-teratogenic hyperthermia, synergistic action occurred in vitro. This was more noticeable when combined with lower doses of x radiation. Low doses of x radiation are of great concern to human embryos or fetuses who may sustain potential exposures to them. (N.K.) 96 refs