WorldWideScience

Sample records for greatly disrupt workflow

  1. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  2. ADVANCED APPROACH TO PRODUCTION WORKFLOW COMPOSITION ON ENGINEERING KNOWLEDGE PORTALS

    OpenAIRE

    Novogrudska, Rina; Kot, Tatyana; Globa, Larisa; Schill, Alexander

    2016-01-01

    Background. In the environment of engineering knowledge portals great amount of partial workflows is concentrated. Such workflows are composed into general workflow aiming to perform real complex production task. Characteristics of partial workflows and general workflow structure are not studied enough, that affects the impossibility of general production workflowdynamic composition.Objective. Creating an approach to the general production workflow dynamic composition based on the partial wor...

  3. ERROR HANDLING IN INTEGRATION WORKFLOWS

    Directory of Open Access Journals (Sweden)

    Alexey M. Nazarenko

    2017-01-01

    Full Text Available Simulation experiments performed while solving multidisciplinary engineering and scientific problems require joint usage of multiple software tools. Further, when following a preset plan of experiment or searching for optimum solu- tions, the same sequence of calculations is run multiple times with various simulation parameters, input data, or conditions while overall workflow does not change. Automation of simulations like these requires implementing of a workflow where tool execution and data exchange is usually controlled by a special type of software, an integration environment or plat- form. The result is an integration workflow (a platform-dependent implementation of some computing workflow which, in the context of automation, is a composition of weakly coupled (in terms of communication intensity typical subtasks. These compositions can then be decomposed back into a few workflow patterns (types of subtasks interaction. The pat- terns, in their turn, can be interpreted as higher level subtasks.This paper considers execution control and data exchange rules that should be imposed by the integration envi- ronment in the case of an error encountered by some integrated software tool. An error is defined as any abnormal behavior of a tool that invalidates its result data thus disrupting the data flow within the integration workflow. The main requirementto the error handling mechanism implemented by the integration environment is to prevent abnormal termination of theentire workflow in case of missing intermediate results data. Error handling rules are formulated on the basic pattern level and on the level of a composite task that can combine several basic patterns as next level subtasks. The cases where workflow behavior may be different, depending on user's purposes, when an error takes place, and possible error handling op- tions that can be specified by the user are also noted in the work.

  4. Collaborative e-Science Experiments and Scientific Workflows

    NARCIS (Netherlands)

    Belloum, A.; Inda, M.A.; Vasunin, D.; Korkhov, V.; Zhao, Z.; Rauwerda, H.; Breit, T.M.; Bubak, M.; Hertzberger, L.O.

    2011-01-01

    Recent advances in Internet and grid technologies have greatly enhanced scientific experiments' life cycle. In addition to compute- and data-intensive tasks, large-scale collaborations involving geographically distributed scientists and e-infrastructure are now possible. Scientific workflows, which

  5. Automated data reduction workflows for astronomy. The ESO Reflex environment

    Science.gov (United States)

    Freudling, W.; Romaniello, M.; Bramich, D. M.; Ballester, P.; Forchi, V.; García-Dabló, C. E.; Moehler, S.; Neeser, M. J.

    2013-11-01

    Context. Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims: The efficiency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods: The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results: Automated workflows can greatly increase the efficiency of astronomical data reduction. In Reflex, workflows can be run non-interactively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions: Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow

  6. Examining daily activity routines of older adults using workflow.

    Science.gov (United States)

    Chung, Jane; Ozkaynak, Mustafa; Demiris, George

    2017-07-01

    We evaluated the value of workflow analysis supported by a novel visualization technique to better understand the daily routines of older adults and highlight their patterns of daily activities and normal variability in physical functions. We used a self-reported activity diary to obtain data from six community-dwelling older adults for 14 consecutive days. Workflow for daily routine was analyzed using the EventFlow tool, which aggregates workflow information to highlight patterns and variabilities. A total of 1453 events were included in the data analysis. To demonstrate the patterns and variability of each individual's daily activities, participant activity workflows were visualized and compared. The workflow analysis revealed great variability in activity types, regularity, frequency, duration, and timing of performing certain activities across individuals. Also, when workflow approach was applied to spatial information of activities, the analysis revealed the ability to provide meaningful data on individuals' mobility in different levels of life spaces from home to community. Results suggest that using workflows to characterize the daily activities of older adults will be helpful for clinicians and researchers in understanding their daily routines and preparing education and prevention strategies tailored to each individual's activity level. This tool also has the potential to be integrated into consumer informatics technologies, such as patient portals or personal health records, so that consumers may be encouraged to become actively involved in monitoring and managing their health. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Impact of workflow on the use of the Surgical Safety Checklist: a qualitative study.

    Science.gov (United States)

    Gillespie, Brigid M; Marshall, Andrea P; Gardiner, Therese; Lavin, Joanne; Withers, Teresa K

    2016-11-01

    Regardless of the benefits associated of the Surgical Safety Checklist, adherence across its three phases remains inconsistent. The aim of this study was to systematically identify issues around workflow that impact on surgical teams' ability to use the Surgical Safety Checklist in a large tertiary facility in Queensland, Australia. Observational audit of 10 surgical teams and 33 semi-structured interviews with 70 participants from nursing, medicine and the community were conducted. Data were collected during 2014-2015. Inductive and deductive approaches were used to analyse field observations and interview transcripts. The domain, impact of workflow on checklist utilization, was identified. Within this domain, seven categories illustrated the causal conditions which determined the ways in which workflow influenced checklist use. These categories included: 'busy doing the task'; 'clashing task priorities'; 'being pressured, running out of time'; 'adapting processes to work patterns'; 'doubling up on work'; 'a domino effect, leading to delays' and 'reality of the workflow'. One of the greatest systemic challenges to checklist use in surgery is workflow. Process changes in the way that surgical safety checklists are used need to incorporate the temporal demands of the workflow. Any changes made must ensure the process is reliable, is easily embedded into existing work routines and is not disruptive. © 2016 Royal Australasian College of Surgeons.

  8. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  9. Towards an Intelligent Workflow Designer based on the Reuse of Workflow Patterns

    NARCIS (Netherlands)

    Iochpe, Cirano; Chiao, Carolina; Hess, Guillermo; Nascimento, Gleison; Thom, Lucinéia; Reichert, Manfred

    2007-01-01

    In order to perform process-aware information systems we need sophisticated methods and concepts for designing and modeling processes. Recently, research on workflow patterns has emerged in order to increase the reuse of recurring workflow structures. However, current workflow modeling tools do not

  10. Data Workflow - A Workflow Model for Continuous Data Processing

    NARCIS (Netherlands)

    Wombacher, Andreas

    2010-01-01

    Online data or streaming data are getting more and more important for enterprise information systems, e.g. by integrating sensor data and workflows. The continuous flow of data provided e.g. by sensors requires new workflow models addressing the data perspective of these applications, since

  11. Workflow in Almaraz NPP

    International Nuclear Information System (INIS)

    Gonzalez Crego, E.; Martin Lopez-Suevos, C.

    2000-01-01

    Almaraz NPP decided to incorporate Workflow into its information system in response to the need to provide exhaustive follow-up and monitoring of each phase of the different procedures it manages. Oracle's Workflow was chosen for this purpose and it was integrated with previously developed applications. The objectives to be met in the incorporation of Workflow were as follows: Strict monitoring of procedures and processes. Detection of bottlenecks in the flow of information. Notification of those affected by pending tasks. Flexible allocation of tasks to user groups. Improved monitoring of management procedures. Improved communication. Similarly, special care was taken to: Integrate workflow processes with existing control panels. Synchronize workflow with installation procedures. Ensure that the system reflects use of paper forms. At present the Corrective Maintenance Request module is being operated using Workflow and the Work Orders and Notice of Order modules are about to follow suit. (Author)

  12. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    Science.gov (United States)

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  13. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  14. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  15. RABIX: AN OPEN-SOURCE WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND INTEROPERABILITY OF WORKFLOW DESCRIPTIONS.

    Science.gov (United States)

    Kaushik, Gaurav; Ivkovic, Sinisa; Simonovic, Janko; Tijanic, Nebojsa; Davis-Dusenbery, Brandi; Kural, Deniz

    2017-01-01

    As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow engines which interpret the specification and enable additional features, such as error logging, file organization, optim1izations to computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix Executor, an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of workflow descriptions.

  16. Progress in digital color workflow understanding in the International Color Consortium (ICC) Workflow WG

    Science.gov (United States)

    McCarthy, Ann

    2006-01-01

    The ICC Workflow WG serves as the bridge between ICC color management technologies and use of those technologies in real world color production applications. ICC color management is applicable to and is used in a wide range of color systems, from highly specialized digital cinema color special effects to high volume publications printing to home photography. The ICC Workflow WG works to align ICC technologies so that the color management needs of these diverse use case systems are addressed in an open, platform independent manner. This report provides a high level summary of the ICC Workflow WG objectives and work to date, focusing on the ways in which workflow can impact image quality and color systems performance. The 'ICC Workflow Primitives' and 'ICC Workflow Patterns and Dimensions' workflow models are covered in some detail. Consider the questions, "How much of dissatisfaction with color management today is the result of 'the wrong color transformation at the wrong time' and 'I can't get to the right conversion at the right point in my work process'?" Put another way, consider how image quality through a workflow can be negatively affected when the coordination and control level of the color management system is not sufficient.

  17. Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator

    Directory of Open Access Journals (Sweden)

    Thoraval Samuel

    2005-04-01

    Full Text Available Abstract Background Computational methods for problem solving need to interleave information access and algorithm execution in a problem-specific workflow. The structures of these workflows are defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them. Despite the proliferation of GUIs (Graphic User Interfaces in bioinformatics, only some of them provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and components in bioinformatics has been reported. Results We present a set of syntactic components and algebraic operators capable of representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional statements, and management of suspend/resume tasks have traditionally been implemented on an ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and parameterize them as generic re-usable components. To illustrate how these operations can be orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the definition of a pipeline, parameterization of its component methods, and storage of metadata in XML formats. This implementation goes beyond the macro capacities currently in PISE. As the entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of methods, parameters and results can be reproduced or shared among users. Availability: http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive, ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/ (download. Conclusion From our meta-analysis we have identified syntactic structures and algebraic operators common to many workflows in bioinformatics. The workflow components and algebraic operators can be assimilated into re-usable software components. GPIPE, a prototype implementation of this framework, provides a GUI builder to facilitate the generation of workflows and integration of heterogeneous

  18. Insightful Workflow For Grid Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles Earl

    2008-10-09

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  19. Querying Workflow Logs

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2018-01-01

    Full Text Available A business process or workflow is an assembly of tasks that accomplishes a business goal. Business process management is the study of the design, configuration/implementation, enactment and monitoring, analysis, and re-design of workflows. The traditional methodology for the re-design and improvement of workflows relies on the well-known sequence of extract, transform, and load (ETL, data/process warehousing, and online analytical processing (OLAP tools. In this paper, we study the ad hoc queryiny of process enactments for (data-centric business processes, bypassing the traditional methodology for more flexibility in querying. We develop an algebraic query language based on “incident patterns” with four operators inspired from Business Process Model and Notation (BPMN representation, allowing the user to formulate ad hoc queries directly over workflow logs. A formal semantics of this query language, a preliminary query evaluation algorithm, and a group of elementary properties of the operators are provided.

  20. Watchdog - a workflow management system for the distributed analysis of large-scale experimental data.

    Science.gov (United States)

    Kluge, Michael; Friedel, Caroline C

    2018-03-13

    The development of high-throughput experimental technologies, such as next-generation sequencing, have led to new challenges for handling, analyzing and integrating the resulting large and diverse datasets. Bioinformatical analysis of these data commonly requires a number of mutually dependent steps applied to numerous samples for multiple conditions and replicates. To support these analyses, a number of workflow management systems (WMSs) have been developed to allow automated execution of corresponding analysis workflows. Major advantages of WMSs are the easy reproducibility of results as well as the reusability of workflows or their components. In this article, we present Watchdog, a WMS for the automated analysis of large-scale experimental data. Main features include straightforward processing of replicate data, support for distributed computer systems, customizable error detection and manual intervention into workflow execution. Watchdog is implemented in Java and thus platform-independent and allows easy sharing of workflows and corresponding program modules. It provides a graphical user interface (GUI) for workflow construction using pre-defined modules as well as a helper script for creating new module definitions. Execution of workflows is possible using either the GUI or a command-line interface and a web-interface is provided for monitoring the execution status and intervening in case of errors. To illustrate its potentials on a real-life example, a comprehensive workflow and modules for the analysis of RNA-seq experiments were implemented and are provided with the software in addition to simple test examples. Watchdog is a powerful and flexible WMS for the analysis of large-scale high-throughput experiments. We believe it will greatly benefit both users with and without programming skills who want to develop and apply bioinformatical workflows with reasonable overhead. The software, example workflows and a comprehensive documentation are freely

  1. Office 2010 Workflow Developing Collaborative Solutions

    CERN Document Server

    Mann, David; Enterprises, Creative

    2010-01-01

    Workflow is the glue that binds information worker processes, users, and artifacts. Without workflow, information workers are just islands of data and potential. Office 2010 Workflow details how to implement workflow in SharePoint 2010 and the client Microsoft Office 2010 suite to help information workers share data, enforce processes and business rules, and work more efficiently together or solo. This book covers everything you need to know-from what workflow is all about to creating new activities; from the SharePoint Designer to Visual Studio 2010; from out-of-the-box workflows to state mac

  2. DEWEY: the DICOM-enabled workflow engine system.

    Science.gov (United States)

    Erickson, Bradley J; Langer, Steve G; Blezek, Daniel J; Ryan, William J; French, Todd L

    2014-06-01

    Workflow is a widely used term to describe the sequence of steps to accomplish a task. The use of workflow technology in medicine and medical imaging in particular is limited. In this article, we describe the application of a workflow engine to improve workflow in a radiology department. We implemented a DICOM-enabled workflow engine system in our department. We designed it in a way to allow for scalability, reliability, and flexibility. We implemented several workflows, including one that replaced an existing manual workflow and measured the number of examinations prepared in time without and with the workflow system. The system significantly increased the number of examinations prepared in time for clinical review compared to human effort. It also met the design goals defined at its outset. Workflow engines appear to have value as ways to efficiently assure that complex workflows are completed in a timely fashion.

  3. A method to mine workflows from provenance for assisting scientific workflow composition

    NARCIS (Netherlands)

    Zeng, R.; He, X.; Aalst, van der W.M.P.

    2011-01-01

    Scientific workflows have recently emerged as a new paradigm for representing and managing complex distributed scientific computations and are used to accelerate the pace of scientific discovery. In many disciplines, individual workflows are large and complicated due to the large quantities of data

  4. The provider perspective: investigating the effect of the Electronic Patient-Reported Outcome (ePRO) mobile application and portal on primary care provider workflow.

    Science.gov (United States)

    Hans, Parminder K; Gray, Carolyn Steele; Gill, Ashlinder; Tiessen, James

    2018-03-01

    Aim This qualitative study investigates how the Electronic Patient-Reported Outcome (ePRO) mobile application and portal system, designed to capture patient-reported measures to support self-management, affected primary care provider workflows. The Canadian health system is facing an ageing population that is living with chronic disease. Disruptive innovations like mobile health technologies can help to support health system transformation needed to better meet the multifaceted needs of the complex care patient. However, there are challenges with implementing these technologies in primary care settings, in particular the effect on primary care provider workflows. Over a six-week period interdisciplinary primary care providers (n=6) and their complex care patients (n=12), used the ePRO mobile application and portal to collaboratively goal-set, manage care plans, and support self-management using patient-reported measures. Secondary thematic analysis of focus groups, training sessions, and issue tracker reports captured user experiences at a Toronto area Family Health Team from October 2014 to January 2015. Findings Key issues raised by providers included: liability concerns associated with remote monitoring, increased documentation activities due to a lack of interoperability between the app and the electronic patient record, increased provider anxiety with regard to the potential for the app to disrupt and infringe upon appointment time, and increased demands for patient engagement. Primary care providers reported the app helped to focus care plans and to begin a collaborative conversation on goal-setting. However, throughout our investigation we found a high level of provider resistance evidenced by consistent attempts to shift the app towards fitting with existing workflows rather than adapting much of their behaviour. As health systems seek innovative and disruptive models to better serve this complex patient population, provider change resistance will need to

  5. On Lifecycle Constraints of Artifact-Centric Workflows

    Science.gov (United States)

    Kucukoguz, Esra; Su, Jianwen

    Data plays a fundamental role in modeling and management of business processes and workflows. Among the recent "data-aware" workflow models, artifact-centric models are particularly interesting. (Business) artifacts are the key data entities that are used in workflows and can reflect both the business logic and the execution states of a running workflow. The notion of artifacts succinctly captures the fluidity aspect of data during workflow executions. However, much of the technical dimension concerning artifacts in workflows is not well understood. In this paper, we study a key concept of an artifact "lifecycle". In particular, we allow declarative specifications/constraints of artifact lifecycle in the spirit of DecSerFlow, and formulate the notion of lifecycle as the set of all possible paths an artifact can navigate through. We investigate two technical problems: (Compliance) does a given workflow (schema) contain only lifecycle allowed by a constraint? And (automated construction) from a given lifecycle specification (constraint), is it possible to construct a "compliant" workflow? The study is based on a new formal variant of artifact-centric workflow model called "ArtiNets" and two classes of lifecycle constraints named "regular" and "counting" constraints. We present a range of technical results concerning compliance and automated construction, including: (1) compliance is decidable when workflow is atomic or constraints are regular, (2) for each constraint, we can always construct a workflow that satisfies the constraint, and (3) sufficient conditions where atomic workflows can be constructed.

  6. Perti Net-Based Workflow Access Control Model

    Institute of Scientific and Technical Information of China (English)

    陈卓; 骆婷; 石磊; 洪帆

    2004-01-01

    Access control is an important protection mechanism for information systems. This paper shows how to make access control in workflow system. We give a workflow access control model (WACM) based on several current access control models. The model supports roles assignment and dynamic authorization. The paper defines the workflow using Petri net. It firstly gives the definition and description of the workflow, and then analyzes the architecture of the workflow access control model (WACM). Finally, an example of an e-commerce workflow access control model is discussed in detail.

  7. From Requirements via Colored Workflow Nets to an Implementation in Several Workflow Systems

    DEFF Research Database (Denmark)

    Mans, Ronnie S:; van der Aalst, Wil M.P.; Bakker, Piet J.M.

    2007-01-01

    care process of the Academic Medical Center (AMC) hospital is used as reference process. The process consists of hundreds of activities. These have been modeled and analyzed using an EUC and a CWN. Moreover, based on the CWN, the process has been implemented using four different workflow systems......Care organizations, such as hospitals, need to support complex and dynamic workflows. More- over, many disciplines are involved. This makes it important to avoid the typical disconnect between requirements and the actual implementation of the system. This paper proposes an approach where...... an Executable Use Case (EUC) and Colored Workflow Net (CWN) are used to close the gap between the given requirements specification and the realization of these requirements with the help of a workflow system. This paper describes a large case study where the diagnostic tra jectory of the gynaecological oncology...

  8. Omics Informatics: From Scattered Individual Software Tools to Integrated Workflow Management Systems.

    Science.gov (United States)

    Ma, Tianle; Zhang, Aidong

    2017-01-01

    Omic data analyses pose great informatics challenges. As an emerging subfield of bioinformatics, omics informatics focuses on analyzing multi-omic data efficiently and effectively, and is gaining momentum. There are two underlying trends in the expansion of omics informatics landscape: the explosion of scattered individual omics informatics tools with each of which focuses on a specific task in both single- and multi- omic settings, and the fast-evolving integrated software platforms such as workflow management systems that can assemble multiple tools into pipelines and streamline integrative analysis for complicated tasks. In this survey, we give a holistic view of omics informatics, from scattered individual informatics tools to integrated workflow management systems. We not only outline the landscape and challenges of omics informatics, but also sample a number of widely used and cutting-edge algorithms in omics data analysis to give readers a fine-grained view. We survey various workflow management systems (WMSs), classify them into three levels of WMSs from simple software toolkits to integrated multi-omic analytical platforms, and point out the emerging needs for developing intelligent workflow management systems. We also discuss the challenges, strategies and some existing work in systematic evaluation of omics informatics tools. We conclude by providing future perspectives of emerging fields and new frontiers in omics informatics.

  9. Constructing Workflows from Script Applications

    Directory of Open Access Journals (Sweden)

    Mikołaj Baranowski

    2012-01-01

    Full Text Available For programming and executing complex applications on grid infrastructures, scientific workflows have been proposed as convenient high-level alternative to solutions based on general-purpose programming languages, APIs and scripts. GridSpace is a collaborative programming and execution environment, which is based on a scripting approach and it extends Ruby language with a high-level API for invoking operations on remote resources. In this paper we describe a tool which enables to convert the GridSpace application source code into a workflow representation which, in turn, may be used for scheduling, provenance, or visualization. We describe how we addressed the issues of analyzing Ruby source code, resolving variable and method dependencies, as well as building workflow representation. The solutions to these problems have been developed and they were evaluated by testing them on complex grid application workflows such as CyberShake, Epigenomics and Montage. Evaluation is enriched by representing typical workflow control flow patterns.

  10. Dynamic reusable workflows for ocean science

    Science.gov (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  11. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2016-10-01

    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  12. Order Entry Protocols Are an Amenable Target for Workflow Automation.

    Science.gov (United States)

    Tudor, James; Klochko, Chad; Patel, Milind; Siegal, Daniel

    2018-04-21

    Order entry protocol selection of advanced imaging studies is labor-intensive, can disrupt workflow, and may displace staff from more valuable tasks. The aim of this study was to explore and compare the behaviors of radiologic technologists and radiologists when determining protocol to identify opportunities for workflow automation. A data set of over 273,000 cross-sectional examination orders from four hospitals within our health system was created. From this data set, we isolated the 12 most frequently requested examinations, which represent almost 50% of the entirety of advanced imaging volume. Intergroup comparisons were made between behavior of radiologic technologists and radiologists or residents when determining protocol. Frequencies of changes were calculated. Common parameters of changed examinations were identified. The overall change rate for both radiologists and residents (4%) is very low and comparable to the overall change rate of radiologic technologists (1%). The change rates for the 12 most ordered examinations were calculated and compared individually. Most examinations that underwent change involved a patient with a low estimated glomerular filtration rate, a patient with a contrast allergy, or a provider ordering a general examination but in fact wanting an organ-specific protocol or an angiographic study. Order entry protocol selection of the most frequently ordered advanced imaging examinations was rarely a value-added activity because these examinations are rarely changed. Changes follow predictable patterns that make order entry protocol selection of most radiology orders for advanced imaging amenable to workflow automation. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. Snakemake-a scalable bioinformatics workflow engine

    NARCIS (Netherlands)

    J. Köster (Johannes); S. Rahmann (Sven)

    2012-01-01

    textabstractSnakemake is a workflow engine that provides a readable Python-based workflow definition language and a powerful execution environment that scales from single-core workstations to compute clusters without modifying the workflow. It is the first system to support the use of automatically

  14. Multidetector-row CT: economics and workflow

    International Nuclear Information System (INIS)

    Pottala, K.M.; Kalra, M.K.; Saini, S.; Ouellette, K.; Sahani, D.; Thrall, J.H.

    2005-01-01

    With rapid evolution of multidetector-row CT (MDCT) technology and applications, several factors such ad technology upgrade and turf battles for sharing cost and profitability affect MDCT workflow and economics. MDCT workflow optimization can enhance productivity and reduce unit costs as well as increase profitability, in spite of decrease in reimbursement rates. Strategies for workflow management include standardization, automation, and constant assessment of various steps involved in MDCT operations. In this review article, we describe issues related to MDCT economics and workflow. (orig.)

  15. Integration of services into workflow applications

    CERN Document Server

    Czarnul, Pawel

    2015-01-01

    Describing state-of-the-art solutions in distributed system architectures, Integration of Services into Workflow Applications presents a concise approach to the integration of loosely coupled services into workflow applications. It discusses key challenges related to the integration of distributed systems and proposes solutions, both in terms of theoretical aspects such as models and workflow scheduling algorithms, and technical solutions such as software tools and APIs.The book provides an in-depth look at workflow scheduling and proposes a way to integrate several different types of services

  16. A Formal Framework for Workflow Analysis

    Science.gov (United States)

    Cravo, Glória

    2010-09-01

    In this paper we provide a new formal framework to model and analyse workflows. A workflow is the formal definition of a business process that consists in the execution of tasks in order to achieve a certain objective. In our work we describe a workflow as a graph whose vertices represent tasks and the arcs are associated to workflow transitions. Each task has associated an input/output logic operator. This logic operator can be the logical AND (•), the OR (⊗), or the XOR -exclusive-or—(⊕). Moreover, we introduce algebraic concepts in order to completely describe completely the structure of workflows. We also introduce the concept of logical termination. Finally, we provide a necessary and sufficient condition for this property to hold.

  17. Ferret Workflow Anomaly Detection System

    National Research Council Canada - National Science Library

    Smith, Timothy J; Bryant, Stephany

    2005-01-01

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits...

  18. Unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in the outpatient pharmacy.

    Science.gov (United States)

    Nanji, Karen C; Rothschild, Jeffrey M; Boehne, Jennifer J; Keohane, Carol A; Ash, Joan S; Poon, Eric G

    2014-01-01

    Electronic prescribing systems have often been promoted as a tool for reducing medication errors and adverse drug events. Recent evidence has revealed that adoption of electronic prescribing systems can lead to unintended consequences such as the introduction of new errors. The purpose of this study is to identify and characterize the unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in an outpatient pharmacy. A multidisciplinary team conducted direct observations of workflow in an independent pharmacy and semi-structured interviews with pharmacy staff members about their perceptions of the unrealized potential and residual consequences of electronic prescribing systems. We used qualitative methods to iteratively analyze text data using a grounded theory approach, and derive a list of major themes and subthemes related to the unrealized potential and residual consequences of electronic prescribing. We identified the following five themes: Communication, workflow disruption, cost, technology, and opportunity for new errors. These contained 26 unique subthemes representing different facets of our observations and the pharmacy staff's perceptions of the unrealized potential and residual consequences of electronic prescribing. We offer targeted solutions to improve electronic prescribing systems by addressing the unrealized potential and residual consequences that we identified. These recommendations may be applied not only to improve staff perceptions of electronic prescribing systems but also to improve the design and/or selection of these systems in order to optimize communication and workflow within pharmacies while minimizing both cost and the potential for the introduction of new errors.

  19. Radiology information system: a workflow-based approach

    International Nuclear Information System (INIS)

    Zhang, Jinyan; Lu, Xudong; Nie, Hongchao; Huang, Zhengxing; Aalst, W.M.P. van der

    2009-01-01

    Introducing workflow management technology in healthcare seems to be prospective in dealing with the problem that the current healthcare Information Systems cannot provide sufficient support for the process management, although several challenges still exist. The purpose of this paper is to study the method of developing workflow-based information system in radiology department as a use case. First, a workflow model of typical radiology process was established. Second, based on the model, the system could be designed and implemented as a group of loosely coupled components. Each component corresponded to one task in the process and could be assembled by the workflow management system. The legacy systems could be taken as special components, which also corresponded to the tasks and were integrated through transferring non-work- flow-aware interfaces to the standard ones. Finally, a workflow dashboard was designed and implemented to provide an integral view of radiology processes. The workflow-based Radiology Information System was deployed in the radiology department of Zhejiang Chinese Medicine Hospital in China. The results showed that it could be adjusted flexibly in response to the needs of changing process, and enhance the process management in the department. It can also provide a more workflow-aware integration method, comparing with other methods such as IHE-based ones. The workflow-based approach is a new method of developing radiology information system with more flexibility, more functionalities of process management and more workflow-aware integration. The work of this paper is an initial endeavor for introducing workflow management technology in healthcare. (orig.)

  20. Accelerating the scientific exploration process with scientific workflows

    International Nuclear Information System (INIS)

    Altintas, Ilkay; Barney, Oscar; Cheng, Zhengang; Critchlow, Terence; Ludaescher, Bertram; Parker, Steve; Shoshani, Arie; Vouk, Mladen

    2006-01-01

    Although an increasing amount of middleware has emerged in the last few years to achieve remote data access, distributed job execution, and data management, orchestrating these technologies with minimal overhead still remains a difficult task for scientists. Scientific workflow systems improve this situation by creating interfaces to a variety of technologies and automating the execution and monitoring of the workflows. Workflow systems provide domain-independent customizable interfaces and tools that combine different tools and technologies along with efficient methods for using them. As simulations and experiments move into the petascale regime, the orchestration of long running data and compute intensive tasks is becoming a major requirement for the successful steering and completion of scientific investigations. A scientific workflow is the process of combining data and processes into a configurable, structured set of steps that implement semi-automated computational solutions of a scientific problem. Kepler is a cross-project collaboration, co-founded by the SciDAC Scientific Data Management (SDM) Center, whose purpose is to develop a domain-independent scientific workflow system. It provides a workflow environment in which scientists design and execute scientific workflows by specifying the desired sequence of computational actions and the appropriate data flow, including required data transformations, between these steps. Currently deployed workflows range from local analytical pipelines to distributed, high-performance and high-throughput applications, which can be both data- and compute-intensive. The scientific workflow approach offers a number of advantages over traditional scripting-based approaches, including ease of configuration, improved reusability and maintenance of workflows and components (called actors), automated provenance management, 'smart' re-running of different versions of workflow instances, on-the-fly updateable parameters, monitoring

  1. Biowep: a workflow enactment portal for bioinformatics applications.

    Science.gov (United States)

    Romano, Paolo; Bartocci, Ezio; Bertolini, Guglielmo; De Paoli, Flavio; Marra, Domenico; Mauri, Giancarlo; Merelli, Emanuela; Milanesi, Luciano

    2007-03-08

    The huge amount of biological information, its distribution over the Internet and the heterogeneity of available software tools makes the adoption of new data integration and analysis network tools a necessity in bioinformatics. ICT standards and tools, like Web Services and Workflow Management Systems (WMS), can support the creation and deployment of such systems. Many Web Services are already available and some WMS have been proposed. They assume that researchers know which bioinformatics resources can be reached through a programmatic interface and that they are skilled in programming and building workflows. Therefore, they are not viable to the majority of unskilled researchers. A portal enabling these to take profit from new technologies is still missing. We designed biowep, a web based client application that allows for the selection and execution of a set of predefined workflows. The system is available on-line. Biowep architecture includes a Workflow Manager, a User Interface and a Workflow Executor. The task of the Workflow Manager is the creation and annotation of workflows. These can be created by using either the Taverna Workbench or BioWMS. Enactment of workflows is carried out by FreeFluo for Taverna workflows and by BioAgent/Hermes, a mobile agent-based middleware, for BioWMS ones. Main workflows' processing steps are annotated on the basis of their input and output, elaboration type and application domain by using a classification of bioinformatics data and tasks. The interface supports users authentication and profiling. Workflows can be selected on the basis of users' profiles and can be searched through their annotations. Results can be saved. We developed a web system that support the selection and execution of predefined workflows, thus simplifying access for all researchers. The implementation of Web Services allowing specialized software to interact with an exhaustive set of biomedical databases and analysis software and the creation of

  2. Biowep: a workflow enactment portal for bioinformatics applications

    Directory of Open Access Journals (Sweden)

    Romano Paolo

    2007-03-01

    Full Text Available Abstract Background The huge amount of biological information, its distribution over the Internet and the heterogeneity of available software tools makes the adoption of new data integration and analysis network tools a necessity in bioinformatics. ICT standards and tools, like Web Services and Workflow Management Systems (WMS, can support the creation and deployment of such systems. Many Web Services are already available and some WMS have been proposed. They assume that researchers know which bioinformatics resources can be reached through a programmatic interface and that they are skilled in programming and building workflows. Therefore, they are not viable to the majority of unskilled researchers. A portal enabling these to take profit from new technologies is still missing. Results We designed biowep, a web based client application that allows for the selection and execution of a set of predefined workflows. The system is available on-line. Biowep architecture includes a Workflow Manager, a User Interface and a Workflow Executor. The task of the Workflow Manager is the creation and annotation of workflows. These can be created by using either the Taverna Workbench or BioWMS. Enactment of workflows is carried out by FreeFluo for Taverna workflows and by BioAgent/Hermes, a mobile agent-based middleware, for BioWMS ones. Main workflows' processing steps are annotated on the basis of their input and output, elaboration type and application domain by using a classification of bioinformatics data and tasks. The interface supports users authentication and profiling. Workflows can be selected on the basis of users' profiles and can be searched through their annotations. Results can be saved. Conclusion We developed a web system that support the selection and execution of predefined workflows, thus simplifying access for all researchers. The implementation of Web Services allowing specialized software to interact with an exhaustive set of biomedical

  3. Workflow Support for Advanced Grid-Enabled Computing

    OpenAIRE

    Xu, Fenglian; Eres, M.H.; Tao, Feng; Cox, Simon J.

    2004-01-01

    The Geodise project brings computer scientists and engineer's skills together to build up a service-oriented computing environmnet for engineers to perform complicated computations in a distributed system. The workflow tool is a front GUI to provide a full life cycle of workflow functions for Grid-enabled computing. The full life cycle of workflow functions have been enhanced based our initial research and development. The life cycle starts with a composition of a workflow, followed by an ins...

  4. ATLAS Grid Workflow Performance Optimization

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment grid workflow system manages routinely 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG. At this scale small improvements in the software and computing performance and workflows can lead to significant resource usage gains. ATLAS is reviewing together with CERN IT experts several typical simulation and data processing workloads for potential performance improvements in terms of memory and CPU usage, disk and network I/O. All ATLAS production and analysis grid jobs are instrumented to collect many performance metrics for detailed statistical studies using modern data analytics tools like ElasticSearch and Kibana. This presentation will review and explain the performance gains of several ATLAS simulation and data processing workflows and present analytics studies of the ATLAS grid workflows.

  5. Behavioral technique for workflow abstraction and matching

    NARCIS (Netherlands)

    Klai, K.; Ould Ahmed M'bareck, N.; Tata, S.; Dustdar, S.; Fiadeiro, J.L.; Sheth, A.

    2006-01-01

    This work is in line with the CoopFlow approach dedicated for workflow advertisement, interconnection, and cooperation in virtual organizations. In order to advertise workflows into a registry, we present in this paper a novel method to abstract behaviors of workflows into symbolic observation

  6. A performance study of grid workflow engines

    NARCIS (Netherlands)

    Stratan, C.; Iosup, A.; Epema, D.H.J.

    2008-01-01

    To benefit from grids, scientists require grid workflow engines that automatically manage the execution of inter-related jobs on the grid infrastructure. So far, the workflows community has focused on scheduling algorithms and on interface tools. Thus, while several grid workflow engines have been

  7. The Impact of Operating Room Layout on Circulating Nurse's Work Patterns and Flow Disruptions: A Behavioral Mapping Study.

    Science.gov (United States)

    Bayramzadeh, Sara; Joseph, Anjali; San, Dee; Khoshkenar, Amin; Taaffe, Kevin; Jafarifiroozabadi, Roxana; Neyens, David M

    2018-01-01

    To assess how the adjacencies of functionally different areas within operating rooms (ORs) can influence the circulating nurse's (CN) workflow patterns and disruptions. The CN plays a significant role in promoting patient safety during surgical procedures by observing, monitoring, and managing potential threats at and around the surgical field. Their work requires constant movement to different parts of the OR to support team members. The layout of the OR and crowded and cluttered environment might impact the CN's workflow and cause disruptions during the surgery. A convenience sample of 25 surgeries were video recorded and thematically coded for CN's activities, locations, and flow disruptions. The OR layout was categorized into transitional zones and functional zones (workstations, supply zones, support zones, and sterile areas around the surgical table). CN's activities were classified into patient-, equipment-, material-, and information-related activities. Flow disruptions included those related to environmental hazards and layout. The CN traveled through multiple zones during 91% of the activities. The CN's workstation acted as a main hub from which the CN made frequent trips to both sides of the surgical table, the foot of the OR table, supply zones, and support zones. Transitional zones accounted for 58.3% of all flow disruption that the CN was involved in whereas 28% occurred in areas surrounding the OR bed. The similarity of the movement and flow disruption patterns, despite variations in OR layout, highlighted the adjacencies required between major zones that CNs regularly visit. These optimum adjacencies should be considered while designing ORs such that they are more efficient and safer.

  8. Workflow Management in CLARIN-DK

    DEFF Research Database (Denmark)

    Jongejan, Bart

    2013-01-01

    The CLARIN-DK infrastructure is not only a repository of resources, but also a place where users can analyse, annotate, reformat and potentially even translate resources, using tools that are integrated in the infrastructure as web services. In many cases a single tool does not produce the desired...... with the features that describe her goal, because the workflow manager not only executes chains of tools in a workflow, but also takes care of autonomously devising workflows that serve the user’s intention, given the tools that currently are integrated in the infrastructure as web services. To do this...

  9. Multilevel Workflow System in the ATLAS Experiment

    CERN Document Server

    Borodin, M; The ATLAS collaboration; Golubkov, D; Klimentov, A; Maeno, T; Vaniachine, A

    2015-01-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs...

  10. CMS Distributed Computing Workflow Experience

    CERN Document Server

    Haas, Jeffrey David

    2010-01-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simul...

  11. From Requirements via Colored Workflow Nets to an Implementation in Several Workflow Systems

    DEFF Research Database (Denmark)

    Mans, Ronny S.; van der Aalst, Willibrordus Martinus Pancratius; Molemann, A.J.

    2007-01-01

    Care organizations, such as hospitals, need to support complex and dynamic workflows. More- over, many disciplines are involved. This makes it important to avoid the typical disconnect between requirements and the actual implementation of the system. This paper proposes an approach where an Execu......Care organizations, such as hospitals, need to support complex and dynamic workflows. More- over, many disciplines are involved. This makes it important to avoid the typical disconnect between requirements and the actual implementation of the system. This paper proposes an approach where...... an Executable Use Case (EUC) and Colored Care organizations, such as hospitals, need to support complex and dynamic workflows. Moreover, many disciplines are involved. This makes it important to avoid the typical disconnect between requirements and the actual implementation of the system. This paper proposes...

  12. The PBase Scientific Workflow Provenance Repository

    Directory of Open Access Journals (Sweden)

    Víctor Cuevas-Vicenttín

    2014-10-01

    Full Text Available Scientific workflows and their supporting systems are becoming increasingly popular for compute-intensive and data-intensive scientific experiments. The advantages scientific workflows offer include rapid and easy workflow design, software and data reuse, scalable execution, sharing and collaboration, and other advantages that altogether facilitate “reproducible science”. In this context, provenance – information about the origin, context, derivation, ownership, or history of some artifact – plays a key role, since scientists are interested in examining and auditing the results of scientific experiments. However, in order to perform such analyses on scientific results as part of extended research collaborations, an adequate environment and tools are required. Concretely, the need arises for a repository that will facilitate the sharing of scientific workflows and their associated execution traces in an interoperable manner, also enabling querying and visualization. Furthermore, such functionality should be supported while taking performance and scalability into account. With this purpose in mind, we introduce PBase: a scientific workflow provenance repository implementing the ProvONE proposed standard, which extends the emerging W3C PROV standard for provenance data with workflow specific concepts. PBase is built on the Neo4j graph database, thus offering capabilities such as declarative and efficient querying. Our experiences demonstrate the power gained by supporting various types of queries for provenance data. In addition, PBase is equipped with a user friendly interface tailored for the visualization of scientific workflow provenance data, making the specification of queries and the interpretation of their results easier and more effective.

  13. Digital workflows in contemporary orthodontics

    Directory of Open Access Journals (Sweden)

    Lars R Christensen

    2017-01-01

    Full Text Available Digital workflows are now increasingly possible in orthodontic practice. Workflows designed to improve the customization of orthodontic appliances are now available through laboratories and orthodontic manufacturing facilities in many parts of the world. These now have the potential to improve certain aspects of patient care.

  14. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  15. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  16. Responsive web design workflow

    OpenAIRE

    LAAK, TIMO

    2013-01-01

    Responsive Web Design Workflow is a literature review about Responsive Web Design, a web standards based modern web design paradigm. The goals of this research were to define what responsive web design is, determine its importance in building modern websites and describe a workflow for responsive web design projects. Responsive web design is a paradigm to create adaptive websites, which respond to the properties of the media that is used to render them. The three key elements of responsi...

  17. Pro WF Windows Workflow in NET 40

    CERN Document Server

    Bukovics, Bruce

    2010-01-01

    Windows Workflow Foundation (WF) is a revolutionary part of the .NET 4 Framework that allows you to orchestrate human and system interactions as a series of workflows that can be easily mapped, analyzed, adjusted, and implemented. As business problems become more complex, the need for workflow-based solutions has never been more evident. WF provides a simple and consistent way to model and implement complex problems. As a developer, you focus on developing the business logic for individual workflow tasks. The runtime handles the execution of those tasks after they have been composed into a wor

  18. Patient-centered care requires a patient-oriented workflow model.

    Science.gov (United States)

    Ozkaynak, Mustafa; Brennan, Patricia Flatley; Hanauer, David A; Johnson, Sharon; Aarts, Jos; Zheng, Kai; Haque, Saira N

    2013-06-01

    Effective design of health information technology (HIT) for patient-centered care requires consideration of workflow from the patient's perspective, termed 'patient-oriented workflow.' This approach organizes the building blocks of work around the patients who are moving through the care system. Patient-oriented workflow complements the more familiar clinician-oriented workflow approaches, and offers several advantages, including the ability to capture simultaneous, cooperative work, which is essential in care delivery. Patient-oriented workflow models can also provide an understanding of healthcare work taking place in various formal and informal health settings in an integrated manner. We present two cases demonstrating the potential value of patient-oriented workflow models. Significant theoretical, methodological, and practical challenges must be met to ensure adoption of patient-oriented workflow models. Patient-oriented workflow models define meaningful system boundaries and can lead to HIT implementations that are more consistent with cooperative work and its emergent features.

  19. Using Mobile Agents to Implement Workflow System

    Institute of Scientific and Technical Information of China (English)

    LI Jie; LIU Xian-xing; GUO Zheng-wei

    2004-01-01

    Current workflow management systems usually adopt the existing technologies such as TCP/IP-based Web technologies and CORBA as well to fulfill the bottom communications.Very often it has been considered only from a theoretical point of view, mainly for the lack of concrete possibilities to execute with elasticity.MAT (Mobile Agent Technology) represents a very attractive approach to the distributed control of computer networks and a valid alternative to the implementation of strategies for workflow system.This paper mainly focuses on improving the performance of workflow system by using MAT.Firstly, the performances of workflow systems based on both CORBA and mobile agent are summarized and analyzed; Secondly, the performance contrast is presented by introducing the mathematic model of each kind of data interaction process respectively.Last, a mobile agent-based workflow system named MAWMS is presented and described in detail.

  20. Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.

    Science.gov (United States)

    Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa

    2012-05-04

    Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a

  1. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    Directory of Open Access Journals (Sweden)

    Abouelhoda Mohamed

    2012-05-01

    Full Text Available Abstract Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub- workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and

  2. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    Science.gov (United States)

    2012-01-01

    Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system

  3. DISRUPTIVE TECHNOLOGIES: AN EXPANDED VIEW

    OpenAIRE

    JAMES M. UTTERBACK; HAPPY J. ACEE

    2005-01-01

    The term "disruptive technology" as coined by Christensen (1997, The Innovator's Dilemma; How New Technologies Cause Great Firms to Fail. Harvard Business School Press) refers to a new technology having lower cost and performance measured by traditional criteria, but having higher ancillary performance. Christensen finds that disruptive technologies may enter and expand emerging market niches, improving with time and ultimately attacking established products in their traditional markets. This...

  4. Wildfire: distributed, Grid-enabled workflow construction and execution

    Directory of Open Access Journals (Sweden)

    Issac Praveen

    2005-03-01

    Full Text Available Abstract Background We observe two trends in bioinformatics: (i analyses are increasing in complexity, often requiring several applications to be run as a workflow; and (ii multiple CPU clusters and Grids are available to more scientists. The traditional solution to the problem of running workflows across multiple CPUs required programming, often in a scripting language such as perl. Programming places such solutions beyond the reach of many bioinformatics consumers. Results We present Wildfire, a graphical user interface for constructing and running workflows. Wildfire borrows user interface features from Jemboss and adds a drag-and-drop interface allowing the user to compose EMBOSS (and other programs into workflows. For execution, Wildfire uses GEL, the underlying workflow execution engine, which can exploit available parallelism on multiple CPU machines including Beowulf-class clusters and Grids. Conclusion Wildfire simplifies the tasks of constructing and executing bioinformatics workflows.

  5. Database Support for Workflow Management: The WIDE Project

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Pernici, B; Sánchez, G.; Unknown, [Unknown

    1999-01-01

    Database Support for Workflow Management: The WIDE Project presents the results of the ESPRIT WIDE project on advanced database support for workflow management. The book discusses the state of the art in combining database management and workflow management technology, especially in the areas of

  6. Contracts for Cross-Organizational Workflow Management

    NARCIS (Netherlands)

    Koetsier, M.J.; Grefen, P.W.P.J.; Vonk, J.

    1999-01-01

    Nowadays, many organizations form dynamic partnerships to deal effectively with market requirements. As companies use automated workflow systems to control their processes, a way of linking workflow processes in different organizations is useful in turning the co-operating companies into a seamless

  7. Workflow Patterns for Business Process Modeling

    NARCIS (Netherlands)

    Thom, Lucineia Heloisa; Lochpe, Cirano; Reichert, M.U.

    For its reuse advantages, workflow patterns (e.g., control flow patterns, data patterns, resource patterns) are increasingly attracting the interest of both researchers and vendors. Frequently, business process or workflow models can be assembeled out of a set of recurrent process fragments (or

  8. Implementing Workflow Reconfiguration in WS-BPEL

    DEFF Research Database (Denmark)

    Mazzara, Manuel; Dragoni, Nicola; Zhou, Mu

    2012-01-01

    This paper investigates the problem of dynamic reconfiguration by means of a workflow-based case study used for discussion. We state the requirements on a system implementing the workflow and its reconfiguration, and we describe the system’s design in BPMN. WS-BPEL, a language that would not natu......This paper investigates the problem of dynamic reconfiguration by means of a workflow-based case study used for discussion. We state the requirements on a system implementing the workflow and its reconfiguration, and we describe the system’s design in BPMN. WS-BPEL, a language that would...... not naturally support dynamic change, is used as a target for implementation. The WS-BPEL recovery framework is here exploited to implement the reconfiguration using principles derived from previous research in process algebra and two mappings from BPMN to WS-BPEL are presented, one automatic and only mostly...

  9. Integrated workflows for spiking neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Ján eAntolík

    2013-12-01

    Full Text Available The increasing availability of computational resources is enabling more detailed, realistic modelling in computational neuroscience, resulting in a shift towards more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeller's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modellers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity.To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualisation into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organised configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualisation stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modelling studies by relieving the user from manual handling of the flow of metadata between the individual

  10. Evaluation of Workflow Management Systems - A Meta Model Approach

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    1998-11-01

    Full Text Available The automated enactment of processes through the use of workflow management systems enables the outsourcing of the control flow from application systems. By now a large number of systems, that follow different workflow paradigms, are available. This leads to the problem of selecting the appropriate workflow management system for a given situation. In this paper we outline the benefits of a meta model approach for the evaluation and comparison of different workflow management systems. After a general introduction on the topic of meta modeling the meta models of the workflow management systems WorkParty (Siemens Nixdorf and FlowMark (IBM are compared as an example. These product specific meta models can be generalized to meta reference models, which helps to specify a workflow methodology. Exemplary, an organisational reference meta model is presented, which helps users in specifying their requirements for a workflow management system.

  11. Multilevel Workflow System in the ATLAS Experiment

    International Nuclear Information System (INIS)

    Borodin, M; De, K; Navarro, J Garcia; Golubkov, D; Klimentov, A; Maeno, T; Vaniachine, A

    2015-01-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs are executed across more than a hundred distributed computing sites by PanDA - the ATLAS job-level workload management system. On the outer level, the Database Engine for Tasks (DEfT) empowers production managers with templated workflow definitions. On the next level, the Job Execution and Definition Interface (JEDI) is integrated with PanDA to provide dynamic job definition tailored to the sites capabilities. We report on scaling up the production system to accommodate a growing number of requirements from main ATLAS areas: Trigger, Physics and Data Preparation. (paper)

  12. Workflow User Interfaces Patterns

    Directory of Open Access Journals (Sweden)

    Jean Vanderdonckt

    2012-03-01

    Full Text Available Este trabajo presenta una colección de patrones de diseño de interfaces de usuario para sistemas de información para el flujo de trabajo; la colección incluye cuarenta y tres patrones clasificados en siete categorías identificados a partir de la lógica del ciclo de vida de la tarea sobre la base de la oferta y la asignación de tareas a los responsables de realizarlas (i. e. recursos humanos durante el flujo de trabajo. Cada patrón de la interfaz de usuario de flujo de trabajo (WUIP, por sus siglas en inglés se caracteriza por las propiedades expresadas en el lenguaje PLML para expresar patrones y complementado por otros atributos y modelos que se adjuntan a dicho modelo: la interfaz de usuario abstracta y el modelo de tareas correspondiente. Estos modelos se especifican en un lenguaje de descripción de interfaces de usuario. Todos los WUIPs se almacenan en una biblioteca y se pueden recuperar a través de un editor de flujo de trabajo que vincula a cada patrón de asignación de trabajo a su WUIP correspondiente.A collection of user interface design patterns for workflow information systems is presented that contains forty three resource patterns classified in seven categories. These categories and their corresponding patterns have been logically identified from the task life cycle based on offering and allocation operations. Each Workflow User Interface Pattern (WUIP is characterized by properties expressed in the PLML markup language for expressing patterns and augmented by additional attributes and models attached to the pattern: the abstract user interface and the corresponding task model. These models are specified in a User Interface Description Language. All WUIPs are stored in a library and can be retrieved within a workflow editor that links each workflow pattern to its corresponding WUIP, thus giving rise to a user interface for each workflow pattern.

  13. Optimal resource assignment in workflows for maximizing cooperation

    NARCIS (Netherlands)

    Kumar, Akhil; Dijkman, R.M.; Song, Minseok; Daniel, Fl.; Wang, J.; Weber, B.

    2013-01-01

    A workflow is a team process since many actors work on various tasks to complete an instance. Resource management in such workflows deals with assignment of tasks to workers or actors. In team formation, it is necessary to ensure that members of a team are compatible with each other. When a workflow

  14. Performing Workflows in Pervasive Environments Based on Context Specifications

    OpenAIRE

    Xiping Liu; Jianxin Chen

    2010-01-01

    The workflow performance consists of the performance of activities and transitions between activities. Along with the fast development of varied computing devices, activities in workflows and transitions between activities could be performed in pervasive ways, whichcauses that the workflow performance need to migrate from traditional computing environments to pervasive environments. To perform workflows in pervasive environments needs to take account of the context information which affects b...

  15. CMS distributed computing workflow experience

    Science.gov (United States)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D.; Prosper, Harrison B.; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao, Junhui; Pin, Arnaud; Schul, Nicolas; De Lentdecker, Gilles; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey; Barge, Derek; Lahiff, Andrew

    2011-12-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  16. CMS distributed computing workflow experience

    International Nuclear Information System (INIS)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D; Prosper, Harrison B; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao Junhui; Pin, Arnaud; Schul, Nicolas; Lentdecker, Gilles De; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey

    2011-01-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  17. Verifying generalized soundness for workflow nets

    NARCIS (Netherlands)

    Hee, van K.M.; Oanea, O.I.; Sidorova, N.; Voorhoeve, M.; Virbitskaite, I.; Voronkov, A.

    2007-01-01

    We improve the decision procedure from [10] for the problem of generalized soundness of workflow nets. A workflow net is generalized sound iff every marking reachable from an initial marking with k tokens on the initial place terminates properly, i.e. it can reach a marking with k tokens on the

  18. Worklist handling in workflow-enabled radiological application systems

    Science.gov (United States)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim; von Berg, Jens

    2000-05-01

    For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.

  19. A virtual radiation therapy workflow training simulation

    International Nuclear Information System (INIS)

    Bridge, P.; Crowe, S.B.; Gibson, G.; Ellemor, N.J.; Hargrave, C.; Carmichael, M.

    2016-01-01

    Aim: Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method: Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results: Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion: Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment

  20. Design, Modelling and Analysis of a Workflow Reconfiguration

    DEFF Research Database (Denmark)

    Mazzara, Manuel; Abouzaid, Faisal; Dragoni, Nicola

    2011-01-01

    This paper describes a case study involving the reconfiguration of an office workflow. We state the requirements on a system implementing the workflow and its reconfiguration, and describe the system’s design in BPMN. We then use an asynchronous pi-calculus and Web.1 to model the design and to ve......This paper describes a case study involving the reconfiguration of an office workflow. We state the requirements on a system implementing the workflow and its reconfiguration, and describe the system’s design in BPMN. We then use an asynchronous pi-calculus and Web.1 to model the design...

  1. Similarity measures for scientific workflows

    OpenAIRE

    Starlinger, Johannes

    2016-01-01

    In Laufe der letzten zehn Jahre haben Scientific Workflows als Werkzeug zur Erstellung von reproduzierbaren, datenverarbeitenden in-silico Experimenten an Aufmerksamkeit gewonnen, in die sowohl lokale Skripte und Anwendungen, als auch Web-Services eingebunden werden können. Über spezialisierte Online-Bibliotheken, sogenannte Repositories, können solche Workflows veröffentlicht und wiederverwendet werden. Mit zunehmender Größe dieser Repositories werden Ähnlichkeitsmaße für Scientific Workfl...

  2. Enabling Structured Exploration of Workflow Performance Variability in Extreme-Scale Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin; Stephan, Eric G.; Raju, Bibi; Altintas, Ilkay; Elsethagen, Todd O.; Krishnamoorthy, Sriram

    2015-11-15

    Workflows are taking an Workflows are taking an increasingly important role in orchestrating complex scientific processes in extreme scale and highly heterogeneous environments. However, to date we cannot reliably predict, understand, and optimize workflow performance. Sources of performance variability and in particular the interdependencies of workflow design, execution environment and system architecture are not well understood. While there is a rich portfolio of tools for performance analysis, modeling and prediction for single applications in homogenous computing environments, these are not applicable to workflows, due to the number and heterogeneity of the involved workflow and system components and their strong interdependencies. In this paper, we investigate workflow performance goals and identify factors that could have a relevant impact. Based on our analysis, we propose a new workflow performance provenance ontology, the Open Provenance Model-based WorkFlow Performance Provenance, or OPM-WFPP, that will enable the empirical study of workflow performance characteristics and variability including complex source attribution.

  3. Comparison of Resource Platform Selection Approaches for Scientific Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Ramakrishnan, Lavanya

    2010-03-05

    Cloud computing is increasingly considered as an additional computational resource platform for scientific workflows. The cloud offers opportunity to scale-out applications from desktops and local cluster resources. At the same time, it can eliminate the challenges of restricted software environments and queue delays in shared high performance computing environments. Choosing from these diverse resource platforms for a workflow execution poses a challenge for many scientists. Scientists are often faced with deciding resource platform selection trade-offs with limited information on the actual workflows. While many workflow planning methods have explored task scheduling onto different resources, these methods often require fine-scale characterization of the workflow that is onerous for a scientist. In this position paper, we describe our early exploratory work into using blackbox characteristics to do a cost-benefit analysis across of using cloud platforms. We use only very limited high-level information on the workflow length, width, and data sizes. The length and width are indicative of the workflow duration and parallelism. The data size characterizes the IO requirements. We compare the effectiveness of this approach to other resource selection models using two exemplar scientific workflows scheduled on desktops, local clusters, HPC centers, and clouds. Early results suggest that the blackbox model often makes the same resource selections as a more fine-grained whitebox model. We believe the simplicity of the blackbox model can help inform a scientist on the applicability of cloud computing resources even before porting an existing workflow.

  4. Customized workflow development and data modularization concepts for RNA-Sequencing and metatranscriptome experiments.

    Science.gov (United States)

    Lott, Steffen C; Wolfien, Markus; Riege, Konstantin; Bagnacani, Andrea; Wolkenhauer, Olaf; Hoffmann, Steve; Hess, Wolfgang R

    2017-11-10

    RNA-Sequencing (RNA-Seq) has become a widely used approach to study quantitative and qualitative aspects of transcriptome data. The variety of RNA-Seq protocols, experimental study designs and the characteristic properties of the organisms under investigation greatly affect downstream and comparative analyses. In this review, we aim to explain the impact of structured pre-selection, classification and integration of best-performing tools within modularized data analysis workflows and ready-to-use computing infrastructures towards experimental data analyses. We highlight examples for workflows and use cases that are presented for pro-, eukaryotic and mixed dual RNA-Seq (meta-transcriptomics) experiments. In addition, we are summarizing the expertise of the laboratories participating in the project consortium "Structured Analysis and Integration of RNA-Seq experiments" (de.STAIR) and its integration with the Galaxy-workbench of the RNA Bioinformatics Center (RBC). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Quantitative analysis of probabilistic BPMN workflows

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2012-01-01

    We present a framework for modelling and analysis of realworld business workflows. We present a formalised core subset of the Business Process Modelling and Notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... of events, reward-based properties and best- and worst- case scenarios. We develop a simple example of medical workflow and demonstrate the utility of this analysis in accurate provisioning of drug stocks. Finally, we suggest a path to building upon these techniques to cover the entire BPMN language, allow...... for more complex annotations and ultimately to automatically synthesise workflows by composing predefined sub-processes, in order to achieve a configuration that is optimal for parameters of interest....

  6. LabelFlow Framework for Annotating Workflow Provenance

    Directory of Open Access Journals (Sweden)

    Pinar Alper

    2018-02-01

    Full Text Available Scientists routinely analyse and share data for others to use. Successful data (reuse relies on having metadata describing the context of analysis of data. In many disciplines the creation of contextual metadata is referred to as reporting. One method of implementing analyses is with workflows. A stand-out feature of workflows is their ability to record provenance from executions. Provenance is useful when analyses are executed with changing parameters (changing contexts and results need to be traced to respective parameters. In this paper we investigate whether provenance can be exploited to support reporting. Specifically; we outline a case-study based on a real-world workflow and set of reporting queries. We observe that provenance, as collected from workflow executions, is of limited use for reporting, as it supports queries partially. We identify that this is due to the generic nature of provenance, its lack of domain-specific contextual metadata. We observe that the required information is available in implicit form, embedded in data. We describe LabelFlow, a framework comprised of four Labelling Operators for decorating provenance with domain-specific Labels. LabelFlow can be instantiated for a domain by plugging it with domain-specific metadata extractors. We provide a tool that takes as input a workflow, and produces as output a Labelling Pipeline for that workflow, comprised of Labelling Operators. We revisit the case-study and show how Labels provide a more complete implementation of reporting queries.

  7. Provenance-based refresh in data-oriented workflows

    KAUST Repository

    Ikeda, Robert; Salihoglu, Semih; Widom, Jennifer

    2011-01-01

    We consider a general workflow setting in which input data sets are processed by a graph of transformations to produce output results. Our goal is to perform efficient selective refresh of elements in the output data, i.e., compute the latest values of specific output elements when the input data may have changed. We explore how data provenance can be used to enable efficient refresh. Our approach is based on capturing one-level data provenance at each transformation when the workflow is run initially. Then at refresh time provenance is used to determine (transitively) which input elements are responsible for given output elements, and the workflow is rerun only on that portion of the data needed for refresh. Our contributions are to formalize the problem setting and the problem itself, to specify properties of transformations and provenance that are required for efficient refresh, and to provide algorithms that apply to a wide class of transformations and workflows. We have built a prototype system supporting the features and algorithms presented in the paper. We report preliminary experimental results on the overhead of provenance capture, and on the crossover point between selective refresh and full workflow recomputation. © 2011 ACM.

  8. COSMOS: Python library for massively parallel workflows.

    Science.gov (United States)

    Gafni, Erik; Luquette, Lovelace J; Lancaster, Alex K; Hawkins, Jared B; Jung, Jae-Yoon; Souilmi, Yassine; Wall, Dennis P; Tonellato, Peter J

    2014-10-15

    Efficient workflows to shepherd clinically generated genomic data through the multiple stages of a next-generation sequencing pipeline are of critical importance in translational biomedical science. Here we present COSMOS, a Python library for workflow management that allows formal description of pipelines and partitioning of jobs. In addition, it includes a user interface for tracking the progress of jobs, abstraction of the queuing system and fine-grained control over the workflow. Workflows can be created on traditional computing clusters as well as cloud-based services. Source code is available for academic non-commercial research purposes. Links to code and documentation are provided at http://lpm.hms.harvard.edu and http://wall-lab.stanford.edu. dpwall@stanford.edu or peter_tonellato@hms.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  10. WS-VLAM: A GT4 based workflow management system

    NARCIS (Netherlands)

    Wibisono, A.; Vasyunin, D.; Korkhov, V.; Zhao, Z.; Belloum, A.; de Laat, C.; Adriaans, P.; Hertzberger, B.

    2007-01-01

    Generic Grid middleware, e.g., Globus Toolkit 4 (GT4), provides basic services for scientific workflow management systems to discover, store and integrate workflow components. Using the state of the art Grid services can advance the functionality of workflow engine in orchestrating distributed Grid

  11. Modelling and analysis of workflow for lean supply chains

    Science.gov (United States)

    Ma, Jinping; Wang, Kanliang; Xu, Lida

    2011-11-01

    Cross-organisational workflow systems are a component of enterprise information systems which support collaborative business process among organisations in supply chain. Currently, the majority of workflow systems is developed in perspectives of information modelling without considering actual requirements of supply chain management. In this article, we focus on the modelling and analysis of the cross-organisational workflow systems in the context of lean supply chain (LSC) using Petri nets. First, the article describes the assumed conditions of cross-organisation workflow net according to the idea of LSC and then discusses the standardisation of collaborating business process between organisations in the context of LSC. Second, the concept of labelled time Petri nets (LTPNs) is defined through combining labelled Petri nets with time Petri nets, and the concept of labelled time workflow nets (LTWNs) is also defined based on LTPNs. Cross-organisational labelled time workflow nets (CLTWNs) is then defined based on LTWNs. Third, the article proposes the notion of OR-silent CLTWNS and a verifying approach to the soundness of LTWNs and CLTWNs. Finally, this article illustrates how to use the proposed method by a simple example. The purpose of this research is to establish a formal method of modelling and analysis of workflow systems for LSC. This study initiates a new perspective of research on cross-organisational workflow management and promotes operation management of LSC in real world settings.

  12. Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.

    Science.gov (United States)

    Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor

    2016-01-01

    In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.

  13. Design Tools and Workflows for Braided Structures

    DEFF Research Database (Denmark)

    Vestartas, Petras; Heinrich, Mary Katherine; Zwierzycki, Mateusz

    2017-01-01

    and merits of our method, demonstrated though four example design and analysis workflows. The workflows frame specific aspects of enquiry for the ongoing research project flora robotica. These include modelling target geometries, automatically producing instructions for fabrication, conducting structural...

  14. Business and scientific workflows a web service-oriented approach

    CERN Document Server

    Tan, Wei

    2013-01-01

    Focuses on how to use web service computing and service-based workflow technologies to develop timely, effective workflows for both business and scientific fields Utilizing web computing and Service-Oriented Architecture (SOA), Business and Scientific Workflows: A Web Service-Oriented Approach focuses on how to design, analyze, and deploy web service-based workflows for both business and scientific applications in many areas of healthcare and biomedicine. It also discusses and presents the recent research and development results. This informative reference features app

  15. Implementing bioinformatic workflows within the bioextract server

    Science.gov (United States)

    Computational workflows in bioinformatics are becoming increasingly important in the achievement of scientific advances. These workflows typically require the integrated use of multiple, distributed data sources and analytic tools. The BioExtract Server (http://bioextract.org) is a distributed servi...

  16. Federated Database Services for Wind Tunnel Experiment Workflows

    Directory of Open Access Journals (Sweden)

    A. Paventhan

    2006-01-01

    Full Text Available Enabling the full life cycle of scientific and engineering workflows requires robust middleware and services that support effective data management, near-realtime data movement and custom data processing. Many existing solutions exploit the database as a passive metadata catalog. In this paper, we present an approach that makes use of federation of databases to host data-centric wind tunnel application workflows. The user is able to compose customized application workflows based on database services. We provide a reference implementation that leverages typical business tools and technologies: Microsoft SQL Server for database services and Windows Workflow Foundation for workflow services. The application data and user's code are both hosted in federated databases. With the growing interest in XML Web Services in scientific Grids, and with databases beginning to support native XML types and XML Web services, we can expect the role of databases in scientific computation to grow in importance.

  17. Analysing scientific workflows: Why workflows not only connect web services

    NARCIS (Netherlands)

    Wassink, I.; van der Vet, P.E.; Wolstencroft, K.; Neerincx, P.B.T.; Roos, M.; Rauwerda, H.; Breit, T.M.; Zhang, L.J.

    2009-01-01

    Life science workflow systems are developed to help life scientists to conveniently connect various programs and web services. In practice however, much time is spent on data conversion, because web services provided by different organisations use different data formats. We have analysed all the

  18. Analysing scientific workflows: why workflows not only connect web services

    NARCIS (Netherlands)

    Wassink, I.; van der Vet, P.E.; Wolstencroft, K.; Neerincx, P.B.T.; Roos, M.; Rauwerda, H.; Breit, T.M.; Zhang, LJ.

    2009-01-01

    Life science workflow systems are developed to help life scientists to conveniently connect various programs and web services. In practice however, much time is spent on data conversion, because web services provided by different organisations use different data formats. We have analysed all the

  19. A Model of Workflow Composition for Emergency Management

    Science.gov (United States)

    Xin, Chen; Bin-ge, Cui; Feng, Zhang; Xue-hui, Xu; Shan-shan, Fu

    The common-used workflow technology is not flexible enough in dealing with concurrent emergency situations. The paper proposes a novel model for defining emergency plans, in which workflow segments appear as a constituent part. A formal abstraction, which contains four operations, is defined to compose workflow segments under constraint rule. The software system of the business process resources construction and composition is implemented and integrated into Emergency Plan Management Application System.

  20. Workflow Fault Tree Generation Through Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2014-01-01

    We present a framework for the automated generation of fault trees from models of realworld process workflows, expressed in a formalised subset of the popular Business Process Modelling and Notation (BPMN) language. To capture uncertainty and unreliability in workflows, we extend this formalism...

  1. Resonant Tidal Disruption in Galactic Nuclei

    OpenAIRE

    Rauch, Kevin P.; Ingalls, Brian

    1997-01-01

    It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulat...

  2. Workflows for microarray data processing in the Kepler environment

    Science.gov (United States)

    2012-01-01

    Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or

  3. Workflows for microarray data processing in the Kepler environment

    Directory of Open Access Journals (Sweden)

    Stropp Thomas

    2012-05-01

    Full Text Available Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data and therefore are close to

  4. Workflows for microarray data processing in the Kepler environment.

    Science.gov (United States)

    Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark

    2012-05-17

    Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R

  5. Conventions and workflows for using Situs

    International Nuclear Information System (INIS)

    Wriggers, Willy

    2012-01-01

    Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs to be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed

  6. Building and documenting workflows with python-based snakemake

    OpenAIRE

    Köster, Johannes; Rahmann, Sven

    2012-01-01

    textabstractSnakemake is a novel workflow engine with a simple Python-derived workflow definition language and an optimizing execution environment. It is the first system that supports multiple named wildcards (or variables) in input and output filenames of each rule definition. It also allows to write human-readable workflows that document themselves. We have found Snakemake especially useful for building high-throughput sequencing data analysis pipelines and present examples from this area....

  7. Concurrency & Asynchrony in Declarative Workflows

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2015-01-01

    of concurrency in DCR Graphs admits asynchronous execution of declarative workflows both conceptually and by reporting on a prototype implementation of a distributed declarative workflow engine. Both the theoretical development and the implementation is supported by an extended example; moreover, the theoretical....... In this paper, we pro- pose a notion of concurrency for declarative process models, formulated in the context of Dynamic Condition Response (DCR) graphs, and exploiting the so-called “true concurrency” semantics of Labelled Asynchronous Transition Systems. We demonstrate how this semantic underpinning...

  8. Improving adherence to the Epic Beacon ambulatory workflow.

    Science.gov (United States)

    Chackunkal, Ellen; Dhanapal Vogel, Vishnuprabha; Grycki, Meredith; Kostoff, Diana

    2017-06-01

    Computerized physician order entry has been shown to significantly improve chemotherapy safety by reducing the number of prescribing errors. Epic's Beacon Oncology Information System of computerized physician order entry and electronic medication administration was implemented in Henry Ford Health System's ambulatory oncology infusion centers on 9 November 2013. Since that time, compliance to the infusion workflow had not been assessed. The objective of this study was to optimize the current workflow and improve the compliance to this workflow in the ambulatory oncology setting. This study was a retrospective, quasi-experimental study which analyzed the composite workflow compliance rate of patient encounters from 9 to 23 November 2014. Based on this analysis, an intervention was identified and implemented in February 2015 to improve workflow compliance. The primary endpoint was to compare the composite compliance rate to the Beacon workflow before and after a pharmacy-initiated intervention. The intervention, which was education of infusion center staff, was initiated by ambulatory-based, oncology pharmacists and implemented by a multi-disciplinary team of pharmacists and nurses. The composite compliance rate was then reassessed for patient encounters from 2 to 13 March 2015 in order to analyze the effects of the determined intervention on compliance. The initial analysis in November 2014 revealed a composite compliance rate of 38%, and data analysis after the intervention revealed a statistically significant increase in the composite compliance rate to 83% ( p < 0.001). This study supports a pharmacist-initiated educational intervention can improve compliance to an ambulatory, oncology infusion workflow.

  9. The standard-based open workflow system in GeoBrain (Invited)

    Science.gov (United States)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial

  10. Make disruptive technological change happen - The case of additive manufacturing

    DEFF Research Database (Denmark)

    Maresch, Daniela; Gartner, Johannes

    2018-01-01

    Disruptive technological change can contribute to a more abundant world. However, potentially disruptive technologies often struggle to significantly influence practice. One prominent example is additive manufacturing (AM). Although AM is often regarded as the next great technological revolution...

  11. Deploying and sharing U-Compare workflows as web services.

    Science.gov (United States)

    Kontonatsios, Georgios; Korkontzelos, Ioannis; Kolluru, Balakrishna; Thompson, Paul; Ananiadou, Sophia

    2013-02-18

    U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare's components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform.

  12. A standard-enabled workflow for synthetic biology

    KAUST Repository

    Myers, Chris J.

    2017-06-15

    A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications.

  13. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  14. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  15. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  16. Agreement Workflow Tool (AWT)

    Data.gov (United States)

    Social Security Administration — The Agreement Workflow Tool (AWT) is a role-based Intranet application used for processing SSA's Reimbursable Agreements according to SSA's standards. AWT provides...

  17. Scientific Workflow Management in Proteomics

    Science.gov (United States)

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  18. Kronos: a workflow assembler for genome analytics and informatics

    Science.gov (United States)

    Taghiyar, M. Jafar; Rosner, Jamie; Grewal, Diljot; Grande, Bruno M.; Aniba, Radhouane; Grewal, Jasleen; Boutros, Paul C.; Morin, Ryan D.

    2017-01-01

    Abstract Background: The field of next-generation sequencing informatics has matured to a point where algorithmic advances in sequence alignment and individual feature detection methods have stabilized. Practical and robust implementation of complex analytical workflows (where such tools are structured into “best practices” for automated analysis of next-generation sequencing datasets) still requires significant programming investment and expertise. Results: We present Kronos, a software platform for facilitating the development and execution of modular, auditable, and distributable bioinformatics workflows. Kronos obviates the need for explicit coding of workflows by compiling a text configuration file into executable Python applications. Making analysis modules would still require programming. The framework of each workflow includes a run manager to execute the encoded workflows locally (or on a cluster or cloud), parallelize tasks, and log all runtime events. The resulting workflows are highly modular and configurable by construction, facilitating flexible and extensible meta-applications that can be modified easily through configuration file editing. The workflows are fully encoded for ease of distribution and can be instantiated on external systems, a step toward reproducible research and comparative analyses. We introduce a framework for building Kronos components that function as shareable, modular nodes in Kronos workflows. Conclusions: The Kronos platform provides a standard framework for developers to implement custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped with both Docker and Amazon Web Services Machine Images. It is free, open source, and available through the Python Package Index and at https://github.com/jtaghiyar/kronos. PMID:28655203

  19. A Tool Supporting Collaborative Data Analytics Workflow Design and Management

    Science.gov (United States)

    Zhang, J.; Bao, Q.; Lee, T. J.

    2016-12-01

    Collaborative experiment design could significantly enhance the sharing and adoption of the data analytics algorithms and models emerged in Earth science. Existing data-oriented workflow tools, however, are not suitable to support collaborative design of such a workflow, to name a few, to support real-time co-design; to track how a workflow evolves over time based on changing designs contributed by multiple Earth scientists; and to capture and retrieve collaboration knowledge on workflow design (discussions that lead to a design). To address the aforementioned challenges, we have designed and developed a technique supporting collaborative data-oriented workflow composition and management, as a key component toward supporting big data collaboration through the Internet. Reproducibility and scalability are two major targets demanding fundamental infrastructural support. One outcome of the project os a software tool, supporting an elastic number of groups of Earth scientists to collaboratively design and compose data analytics workflows through the Internet. Instead of recreating the wheel, we have extended an existing workflow tool VisTrails into an online collaborative environment as a proof of concept.

  20. On the Support of Scientific Workflows over Pub/Sub Brokers

    Directory of Open Access Journals (Sweden)

    Edwin Cedeño

    2013-08-01

    Full Text Available The execution of scientific workflows is gaining importance as more computing resources are available in the form of grid environments. The Publish/Subscribe paradigm offers well-proven solutions for sustaining distributed scenarios while maintaining the high level of task decoupling required by scientific workflows. In this paper, we propose a new model for supporting scientific workflows that improves the dissemination of control events. The proposed solution is based on the mapping of workflow tasks to the underlying Pub/Sub event layer, and the definition of interfaces and procedures for execution on brokers. In this paper we also analyze the strengths and weaknesses of current solutions that are based on existing message exchange models for scientific workflows. Finally, we explain how our model improves the information dissemination, event filtering, task decoupling and the monitoring of scientific workflows.

  1. On the support of scientific workflows over Pub/Sub brokers.

    Science.gov (United States)

    Morales, Augusto; Robles, Tomas; Alcarria, Ramon; Cedeño, Edwin

    2013-08-20

    The execution of scientific workflows is gaining importance as more computing resources are available in the form of grid environments. The Publish/Subscribe paradigm offers well-proven solutions for sustaining distributed scenarios while maintaining the high level of task decoupling required by scientific workflows. In this paper, we propose a new model for supporting scientific workflows that improves the dissemination of control events. The proposed solution is based on the mapping of workflow tasks to the underlying Pub/Sub event layer, and the definition of interfaces and procedures for execution on brokers. In this paper we also analyze the strengths and weaknesses of current solutions that are based on existing message exchange models for scientific workflows. Finally, we explain how our model improves the information dissemination, event filtering, task decoupling and the monitoring of scientific workflows.

  2. Declarative Modelling and Safe Distribution of Healthcare Workflows

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs

    2012-01-01

    We present a formal technique for safe distribution of workflow processes described declaratively as Nested Condition Response (NCR) Graphs and apply the technique to a distributed healthcare workflow. Concretely, we provide a method to synthesize from a NCR Graph and any distribution of its events......-organizational case management. The contributions of this paper is to adapt the technique to allow for nested processes and milestones and to apply it to a healthcare workflow identified in a previous field study at danish hospitals....

  3. Workflow Lexicons in Healthcare: Validation of the SWIM Lexicon.

    Science.gov (United States)

    Meenan, Chris; Erickson, Bradley; Knight, Nancy; Fossett, Jewel; Olsen, Elizabeth; Mohod, Prerna; Chen, Joseph; Langer, Steve G

    2017-06-01

    For clinical departments seeking to successfully navigate the challenges of modern health reform, obtaining access to operational and clinical data to establish and sustain goals for improving quality is essential. More broadly, health delivery organizations are also seeking to understand performance across multiple facilities and often across multiple electronic medical record (EMR) systems. Interpreting operational data across multiple vendor systems can be challenging, as various manufacturers may describe different departmental workflow steps in different ways and sometimes even within a single vendor's installed customer base. In 2012, The Society for Imaging Informatics in Medicine (SIIM) recognized the need for better quality and performance data standards and formed SIIM's Workflow Initiative for Medicine (SWIM), an initiative designed to consistently describe workflow steps in radiology departments as well as defining operational quality metrics. The SWIM lexicon was published as a working model to describe operational workflow steps and quality measures. We measured the prevalence of the SWIM lexicon workflow steps in both academic and community radiology environments using real-world patient observations and correlated that information with automatically captured workflow steps from our clinical information systems. Our goal was to measure frequency of occurrence of workflow steps identified by the SWIM lexicon in a real-world clinical setting, as well as to correlate how accurately departmental information systems captured patient flow through our health facility.

  4. Integrating configuration workflows with project management system

    International Nuclear Information System (INIS)

    Nilsen, Dimitri; Weber, Pavel

    2014-01-01

    The complexity of the heterogeneous computing resources, services and recurring infrastructure changes at the GridKa WLCG Tier-1 computing center require a structured approach to configuration management and optimization of interplay between functional components of the whole system. A set of tools deployed at GridKa, including Puppet, Redmine, Foreman, SVN and Icinga, provides the administrative environment giving the possibility to define and develop configuration workflows, reduce the administrative effort and improve sustainable operation of the whole computing center. In this presentation we discuss the developed configuration scenarios implemented at GridKa, which we use for host installation, service deployment, change management procedures, service retirement etc. The integration of Puppet with a project management tool like Redmine provides us with the opportunity to track problem issues, organize tasks and automate these workflows. The interaction between Puppet and Redmine results in automatic updates of the issues related to the executed workflow performed by different system components. The extensive configuration workflows require collaboration and interaction between different departments like network, security, production etc. at GridKa. Redmine plugins developed at GridKa and integrated in its administrative environment provide an effective way of collaboration within the GridKa team. We present the structural overview of the software components, their connections, communication protocols and show a few working examples of the workflows and their automation.

  5. Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms

    Science.gov (United States)

    Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel

    2017-01-01

    With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237

  6. Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.

    Science.gov (United States)

    Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel

    2014-01-01

    With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.

  7. Workflow Dynamics and the Imaging Value Chain: Quantifying the Effect of Designating a Nonimage-Interpretive Task Workflow.

    Science.gov (United States)

    Lee, Matthew H; Schemmel, Andrew J; Pooler, B Dustin; Hanley, Taylor; Kennedy, Tabassum A; Field, Aaron S; Wiegmann, Douglas; Yu, John-Paul J

    To assess the impact of separate non-image interpretive task and image-interpretive task workflows in an academic neuroradiology practice. A prospective, randomized, observational investigation of a centralized academic neuroradiology reading room was performed. The primary reading room fellow was observed over a one-month period using a time-and-motion methodology, recording frequency and duration of tasks performed. Tasks were categorized into separate image interpretive and non-image interpretive workflows. Post-intervention observation of the primary fellow was repeated following the implementation of a consult assistant responsible for non-image interpretive tasks. Pre- and post-intervention data were compared. Following separation of image-interpretive and non-image interpretive workflows, time spent on image-interpretive tasks by the primary fellow increased from 53.8% to 73.2% while non-image interpretive tasks decreased from 20.4% to 4.4%. Mean time duration of image interpretation nearly doubled, from 05:44 to 11:01 (p = 0.002). Decreases in specific non-image interpretive tasks, including phone calls/paging (2.86/hr versus 0.80/hr), in-room consultations (1.36/hr versus 0.80/hr), and protocoling (0.99/hr versus 0.10/hr), were observed. The consult assistant experienced 29.4 task switching events per hour. Rates of specific non-image interpretive tasks for the CA were 6.41/hr for phone calls/paging, 3.60/hr for in-room consultations, and 3.83/hr for protocoling. Separating responsibilities into NIT and IIT workflows substantially increased image interpretation time and decreased TSEs for the primary fellow. Consolidation of NITs into a separate workflow may allow for more efficient task completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The myth of standardized workflow in primary care.

    Science.gov (United States)

    Holman, G Talley; Beasley, John W; Karsh, Ben-Tzion; Stone, Jamie A; Smith, Paul D; Wetterneck, Tosha B

    2016-01-01

    Primary care efficiency and quality are essential for the nation's health. The demands on primary care physicians (PCPs) are increasing as healthcare becomes more complex. A more complete understanding of PCP workflow variation is needed to guide future healthcare redesigns. This analysis evaluates workflow variation in terms of the sequence of tasks performed during patient visits. Two patient visits from 10 PCPs from 10 different United States Midwestern primary care clinics were analyzed to determine physician workflow. Tasks and the progressive sequence of those tasks were observed, documented, and coded by task category using a PCP task list. Variations in the sequence and prevalence of tasks at each stage of the primary care visit were assessed considering the physician, the patient, the visit's progression, and the presence of an electronic health record (EHR) at the clinic. PCP workflow during patient visits varies significantly, even for an individual physician, with no single or even common workflow pattern being present. The prevalence of specific tasks shifts significantly as primary care visits progress to their conclusion but, notably, PCPs collect patient information throughout the visit. PCP workflows were unpredictable during face-to-face patient visits. Workflow emerges as the result of a "dance" between physician and patient as their separate agendas are addressed, a side effect of patient-centered practice. Future healthcare redesigns should support a wide variety of task sequences to deliver high-quality primary care. The development of tools such as electronic health records must be based on the realities of primary care visits if they are to successfully support a PCP's mental and physical work, resulting in effective, safe, and efficient primary care. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A standard-enabled workflow for synthetic biology.

    Science.gov (United States)

    Myers, Chris J; Beal, Jacob; Gorochowski, Thomas E; Kuwahara, Hiroyuki; Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Nguyen, Tramy; Oberortner, Ernst; Samineni, Meher; Wipat, Anil; Zhang, Michael; Zundel, Zach

    2017-06-15

    A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Scientific workflows as productivity tools for drug discovery.

    Science.gov (United States)

    Shon, John; Ohkawa, Hitomi; Hammer, Juergen

    2008-05-01

    Large pharmaceutical companies annually invest tens to hundreds of millions of US dollars in research informatics to support their early drug discovery processes. Traditionally, most of these investments are designed to increase the efficiency of drug discovery. The introduction of do-it-yourself scientific workflow platforms has enabled research informatics organizations to shift their efforts toward scientific innovation, ultimately resulting in a possible increase in return on their investments. Unlike the handling of most scientific data and application integration approaches, researchers apply scientific workflows to in silico experimentation and exploration, leading to scientific discoveries that lie beyond automation and integration. This review highlights some key requirements for scientific workflow environments in the pharmaceutical industry that are necessary for increasing research productivity. Examples of the application of scientific workflows in research and a summary of recent platform advances are also provided.

  11. A three-level atomicity model for decentralized workflow management systems

    Science.gov (United States)

    Ben-Shaul, Israel Z.; Heineman, George T.

    1996-12-01

    A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.

  12. Distributed Workflow Service Composition Based on CTR Technology

    Science.gov (United States)

    Feng, Zhilin; Ye, Yanming

    Recently, WS-BPEL has gradually become the basis of a standard for web service description and composition. However, WS-BPEL cannot efficiently describe distributed workflow services for lacking of special expressive power and formal semantics. This paper presents a novel method for modeling distributed workflow service composition with Concurrent TRansaction logic (CTR). The syntactic structure of WS-BPEL and CTR are analyzed, and new rules of mapping WS-BPEL into CTR are given. A case study is put forward to show that the proposed method is appropriate for modeling workflow business services under distributed environments.

  13. What is needed for effective open access workflows?

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Institutions and funders are pushing forward open access with ever new guidelines and policies. Since institutional repositories are important maintainers of green open access, they should support easy and fast workflows for researchers and libraries to release publications. Based on the requirements specification of researchers, libraries and publishers, possible supporting software extensions are discussed. How does a typical workflow look like? What has to be considered by the researchers and by the editors in the library before releasing a green open access publication? Where and how can software support and improve existing workflows?

  14. wft4galaxy: a workflow testing tool for galaxy.

    Science.gov (United States)

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  15. Two-Layer Transaction Management for Workflow Management Applications

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Vonk, J.; Boertjes, E.M.; Apers, Peter M.G.

    Workflow management applications require advanced transaction management that is not offered by traditional database systems. For this reason, a number of extended transaction models has been proposed in the past. None of these models seems completely adequate, though, because workflow management

  16. The MPO system for automatic workflow documentation

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G.; Coviello, E.N.; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Greenwald, M. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lee, X. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Romosan, A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schissel, D.P., E-mail: schissel@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Shoshani, A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stillerman, J.; Wright, J. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wu, K.J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-11-15

    Highlights: • Data model, infrastructure, and tools for data tracking, cataloging, and integration. • Automatically document workflow and data provenance in the widest sense. • Fusion Science as test bed but the system’s framework and data model is quite general. - Abstract: Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for critical applications. However, it is not the mere existence of data that is important, but our ability to make use of it. Experience has shown that when metadata is better organized and more complete, the underlying data becomes more useful. Traditionally, capturing the steps of scientific workflows and metadata was the role of the lab notebook, but the digital era has resulted instead in the fragmentation of data, processing, and annotation. This paper presents the Metadata, Provenance, and Ontology (MPO) System, the software that can automate the documentation of scientific workflows and associated information. Based on recorded metadata, it provides explicit information about the relationships among the elements of workflows in notebook form augmented with directed acyclic graphs. A set of web-based graphical navigation tools and Application Programming Interface (API) have been created for searching and browsing, as well as programmatically accessing the workflows and data. We describe the MPO concepts and its software architecture. We also report the current status of the software as well as the initial deployment experience.

  17. The MPO system for automatic workflow documentation

    International Nuclear Information System (INIS)

    Abla, G.; Coviello, E.N.; Flanagan, S.M.; Greenwald, M.; Lee, X.; Romosan, A.; Schissel, D.P.; Shoshani, A.; Stillerman, J.; Wright, J.; Wu, K.J.

    2016-01-01

    Highlights: • Data model, infrastructure, and tools for data tracking, cataloging, and integration. • Automatically document workflow and data provenance in the widest sense. • Fusion Science as test bed but the system’s framework and data model is quite general. - Abstract: Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for critical applications. However, it is not the mere existence of data that is important, but our ability to make use of it. Experience has shown that when metadata is better organized and more complete, the underlying data becomes more useful. Traditionally, capturing the steps of scientific workflows and metadata was the role of the lab notebook, but the digital era has resulted instead in the fragmentation of data, processing, and annotation. This paper presents the Metadata, Provenance, and Ontology (MPO) System, the software that can automate the documentation of scientific workflows and associated information. Based on recorded metadata, it provides explicit information about the relationships among the elements of workflows in notebook form augmented with directed acyclic graphs. A set of web-based graphical navigation tools and Application Programming Interface (API) have been created for searching and browsing, as well as programmatically accessing the workflows and data. We describe the MPO concepts and its software architecture. We also report the current status of the software as well as the initial deployment experience.

  18. VLAM-G: Interactive Data Driven Workflow Engine for Grid-Enabled Resources

    Directory of Open Access Journals (Sweden)

    Vladimir Korkhov

    2007-01-01

    Full Text Available Grid brings the power of many computers to scientists. However, the development of Grid-enabled applications requires knowledge about Grid infrastructure and low-level API to Grid services. In turn, workflow management systems provide a high-level environment for rapid prototyping of experimental computing systems. Coupling Grid and workflow paradigms is important for the scientific community: it makes the power of the Grid easily available to the end user. The paradigm of data driven workflow execution is one of the ways to enable distributed workflow on the Grid. The work presented in this paper is carried out in the context of the Virtual Laboratory for e-Science project. We present the VLAM-G workflow management system and its core component: the Run-Time System (RTS. The RTS is a dataflow driven workflow engine which utilizes Grid resources, hiding the complexity of the Grid from a scientist. Special attention is paid to the concept of dataflow and direct data streaming between distributed workflow components. We present the architecture and components of the RTS, describe the features of VLAM-G workflow execution, and evaluate the system by performance measurements and a real life use case.

  19. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  20. Reasoning about repairability of workflows at design time

    NARCIS (Netherlands)

    Tagni, Gaston; Ten Teije, Annette; Van Harmelen, Frank

    2009-01-01

    This paper describes an approach for reasoning about the repairability of workflows at design time. We propose a heuristic-based analysis of a workflow that aims at evaluating its definition, considering different design aspects and characteristics that affect its repairability (called repairability

  1. Distributed Global Transaction Support for Workflow Management Applications

    NARCIS (Netherlands)

    Vonk, J.; Grefen, P.W.P.J.; Boertjes, E.M.; Apers, Peter M.G.

    Workflow management systems require advanced transaction support to cope with their inherently long-running processes. The recent trend to distribute workflow executions requires an even more advanced transaction support system that is able to handle distribution. This paper presents a model as well

  2. Decaf: Decoupled Dataflows for In Situ High-Performance Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, M.; Peterka, T.

    2017-07-31

    Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steering based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.

  3. Schedule-Aware Workflow Management Systems

    Science.gov (United States)

    Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.

    Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.

  4. Building and documenting workflows with python-based snakemake

    NARCIS (Netherlands)

    J. Köster (Johannes); S. Rahmann (Sven)

    2012-01-01

    textabstractSnakemake is a novel workflow engine with a simple Python-derived workflow definition language and an optimizing execution environment. It is the first system that supports multiple named wildcards (or variables) in input and output filenames of each rule definition. It also allows to

  5. Support for Taverna workflows in the VPH-Share cloud platform.

    Science.gov (United States)

    Kasztelnik, Marek; Coto, Ernesto; Bubak, Marian; Malawski, Maciej; Nowakowski, Piotr; Arenas, Juan; Saglimbeni, Alfredo; Testi, Debora; Frangi, Alejandro F

    2017-07-01

    To address the increasing need for collaborative endeavours within the Virtual Physiological Human (VPH) community, the VPH-Share collaborative cloud platform allows researchers to expose and share sequences of complex biomedical processing tasks in the form of computational workflows. The Taverna Workflow System is a very popular tool for orchestrating complex biomedical & bioinformatics processing tasks in the VPH community. This paper describes the VPH-Share components that support the building and execution of Taverna workflows, and explains how they interact with other VPH-Share components to improve the capabilities of the VPH-Share platform. Taverna workflow support is delivered by the Atmosphere cloud management platform and the VPH-Share Taverna plugin. These components are explained in detail, along with the two main procedures that were developed to enable this seamless integration: workflow composition and execution. 1) Seamless integration of VPH-Share with other components and systems. 2) Extended range of different tools for workflows. 3) Successful integration of scientific workflows from other VPH projects. 4) Execution speed improvement for medical applications. The presented workflow integration provides VPH-Share users with a wide range of different possibilities to compose and execute workflows, such as desktop or online composition, online batch execution, multithreading, remote execution, etc. The specific advantages of each supported tool are presented, as are the roles of Atmosphere and the VPH-Share plugin within the VPH-Share project. The combination of the VPH-Share plugin and Atmosphere engenders the VPH-Share infrastructure with far more flexible, powerful and usable capabilities for the VPH-Share community. As both components can continue to evolve and improve independently, we acknowledge that further improvements are still to be developed and will be described. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Kepler Workflow Tool for Reproducible AMBER GPU Molecular Dynamics.

    Science.gov (United States)

    Purawat, Shweta; Ieong, Pek U; Malmstrom, Robert D; Chan, Garrett J; Yeung, Alan K; Walker, Ross C; Altintas, Ilkay; Amaro, Rommie E

    2017-06-20

    With the drive toward high throughput molecular dynamics (MD) simulations involving ever-greater numbers of simulation replicates run for longer, biologically relevant timescales (microseconds), the need for improved computational methods that facilitate fully automated MD workflows gains more importance. Here we report the development of an automated workflow tool to perform AMBER GPU MD simulations. Our workflow tool capitalizes on the capabilities of the Kepler platform to deliver a flexible, intuitive, and user-friendly environment and the AMBER GPU code for a robust and high-performance simulation engine. Additionally, the workflow tool reduces user input time by automating repetitive processes and facilitates access to GPU clusters, whose high-performance processing power makes simulations of large numerical scale possible. The presented workflow tool facilitates the management and deployment of large sets of MD simulations on heterogeneous computing resources. The workflow tool also performs systematic analysis on the simulation outputs and enhances simulation reproducibility, execution scalability, and MD method development including benchmarking and validation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Logical provenance in data-oriented workflows?

    KAUST Repository

    Ikeda, R.

    2013-04-01

    We consider the problem of defining, generating, and tracing provenance in data-oriented workflows, in which input data sets are processed by a graph of transformations to produce output results. We first give a new general definition of provenance for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations\\' provenance to the workflow provenance. We describe a simple logical-provenance specification language consisting of attribute mappings and filters. We provide an algorithm for provenance tracing in workflows where logical provenance for each transformation is specified using our language. We consider logical provenance in the relational setting, observing that for a class of Select-Project-Join (SPJ) transformations, logical provenance specifications encode minimal provenance. We have built a prototype system supporting the features and algorithms presented in the paper, and we report a few preliminary experimental results. © 2013 IEEE.

  8. Impact of CGNS on CFD Workflow

    Science.gov (United States)

    Poinot, M.; Rumsey, C. L.; Mani, M.

    2004-01-01

    CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.

  9. Detecting dissonance in clinical and research workflow for translational psychiatric registries.

    Science.gov (United States)

    Cofiel, Luciana; Bassi, Débora U; Ray, Ryan Kumar; Pietrobon, Ricardo; Brentani, Helena

    2013-01-01

    The interplay between the workflow for clinical tasks and research data collection is often overlooked, ultimately making it ineffective. To the best of our knowledge, no previous studies have developed standards that allow for the comparison of workflow models derived from clinical and research tasks toward the improvement of data collection processes. In this study we used the term dissonance for the occurrences where there was a discord between clinical and research workflows. We developed workflow models for a translational research study in psychiatry and the clinic where its data collection was carried out. After identifying points of dissonance between clinical and research models we derived a corresponding classification system that ultimately enabled us to re-engineer the data collection workflow. We considered (1) the number of patients approached for enrollment and (2) the number of patients enrolled in the study as indicators of efficiency in research workflow. We also recorded the number of dissonances before and after the workflow modification. We identified 22 episodes of dissonance across 6 dissonance categories: actor, communication, information, artifact, time, and space. We were able to eliminate 18 episodes of dissonance and increase the number of patients approached and enrolled in research study trough workflow modification. The classification developed in this study is useful for guiding the identification of dissonances and reveal modifications required to align the workflow of data collection and the clinical setting. The methodology described in this study can be used by researchers to standardize data collection process.

  10. Text mining meets workflow: linking U-Compare with Taverna

    Science.gov (United States)

    Kano, Yoshinobu; Dobson, Paul; Nakanishi, Mio; Tsujii, Jun'ichi; Ananiadou, Sophia

    2010-01-01

    Summary: Text mining from the biomedical literature is of increasing importance, yet it is not easy for the bioinformatics community to create and run text mining workflows due to the lack of accessibility and interoperability of the text mining resources. The U-Compare system provides a wide range of bio text mining resources in a highly interoperable workflow environment where workflows can very easily be created, executed, evaluated and visualized without coding. We have linked U-Compare to Taverna, a generic workflow system, to expose text mining functionality to the bioinformatics community. Availability: http://u-compare.org/taverna.html, http://u-compare.org Contact: kano@is.s.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20709690

  11. Distributed execution of aggregated multi domain workflows using an agent framework

    NARCIS (Netherlands)

    Zhao, Z.; Belloum, A.; de Laat, C.; Adriaans, P.; Hertzberger, B.; Zhang, L.J.; Watson, T.J.; Yang, J.; Hung, P.C.K.

    2007-01-01

    In e-Science, meaningful experiment processes and workflow engines emerge as important scientific resources. A complex experiment often involves services and processes developed in different scientific domains. Aggregating different workflows into one meta workflow avoids unnecessary rewriting of

  12. Integrating prediction, provenance, and optimization into high energy workflows

    Energy Technology Data Exchange (ETDEWEB)

    Schram, M.; Bansal, V.; Friese, R. D.; Tallent, N. R.; Yin, J.; Barker, K. J.; Stephan, E.; Halappanavar, M.; Kerbyson, D. J.

    2017-10-01

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  13. The P2P approach to interorganizational workflows

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Weske, M.H.; Dittrich, K.R.; Geppert, A.; Norrie, M.C.

    2001-01-01

    This paper describes in an informal way the Public-To-Private (P2P) approach to interorganizational workflows, which is based on a notion of inheritance. The approach consists of three steps: (1) create a common understanding of the interorganizational workflow by specifying a shared public

  14. Open source workflow : a viable direction for BPM?

    NARCIS (Netherlands)

    Wohed, P.; Russell, N.C.; Hofstede, ter A.H.M.; Andersson, B.; Aalst, van der W.M.P.; Bellahsène, Z.; Léonard, M.

    2008-01-01

    With the growing interest in open source software in general and business process management and workflow systems in particular, it is worthwhile investigating the state of open source workflow management. The plethora of these offerings (recent surveys such as [4,6], each contain more than 30 such

  15. Privacy-aware workflow management

    NARCIS (Netherlands)

    Alhaqbani, B.; Adams, M.; Fidge, C.J.; Hofstede, ter A.H.M.; Glykas, M.

    2013-01-01

    Information security policies play an important role in achieving information security. Confidentiality, Integrity, and Availability are classic information security goals attained by enforcing appropriate security policies. Workflow Management Systems (WfMSs) also benefit from inclusion of these

  16. Verification of Timed Healthcare Workflows Using Component Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Bertolini, Cristiano; Liu, Zhiming; Srba, Jiri

    2013-01-01

    Workflows in modern healthcare systems are becoming increasingly complex and their execution involves concurrency and sharing of resources. The definition, analysis and management of collaborative healthcare workflows requires abstract model notations with a precisely defined semantics and a supp......Workflows in modern healthcare systems are becoming increasingly complex and their execution involves concurrency and sharing of resources. The definition, analysis and management of collaborative healthcare workflows requires abstract model notations with a precisely defined semantics...

  17. Data intensive ATLAS workflows in the Cloud

    CERN Document Server

    Rzehorz, Gerhard Ferdinand; The ATLAS collaboration

    2016-01-01

    This contribution reports on the feasibility of executing data intensive workflows on Cloud infrastructures. In order to assess this, the metric ETC = Events/Time/Cost is formed, which quantifies the different workflow and infrastructure configurations that are tested against each other. In these tests ATLAS reconstruction Jobs are run, examining the effects of overcommitting (more parallel processes running than CPU cores available), scheduling (staggered execution) and scaling (number of cores). The desirability of commissioning storage in the cloud is evaluated, in conjunction with a simple analytical model of the system, and correlated with questions about the network bandwidth, caches and what kind of storage to utilise. In the end a cost/benefit evaluation of different infrastructure configurations and workflows is undertaken, with the goal to find the maximum of the ETC value

  18. Data intensive ATLAS workflows in the Cloud

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00396985; The ATLAS collaboration; Keeble, Oliver; Quadt, Arnulf; Kawamura, Gen

    2017-01-01

    This contribution reports on the feasibility of executing data intensive workflows on Cloud infrastructures. In order to assess this, the metric ETC = Events/Time/Cost is formed, which quantifies the different workflow and infrastructure configurations that are tested against each other. In these tests ATLAS reconstruction Jobs are run, examining the effects of overcommitting (more parallel processes running than CPU cores available), scheduling (staggered execution) and scaling (number of cores). The desirability of commissioning storage in the Cloud is evaluated, in conjunction with a simple analytical model of the system, and correlated with questions about the network bandwidth, caches and what kind of storage to utilise. In the end a cost/benefit evaluation of different infrastructure configurations and workflows is undertaken, with the goal to find the maximum of the ETC value.

  19. Quantitative workflow based on NN for weighting criteria in landfill suitability mapping

    Science.gov (United States)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Alkhasawneh, Mutasem Sh.; Aziz, Hamidi Abdul

    2017-10-01

    Our study aims to introduce a new quantitative workflow that integrates neural networks (NNs) and multi criteria decision analysis (MCDA). Existing MCDA workflows reveal a number of drawbacks, because of the reliance on human knowledge in the weighting stage. Thus, new workflow presented to form suitability maps at the regional scale for solid waste planning based on NNs. A feed-forward neural network employed in the workflow. A total of 34 criteria were pre-processed to establish the input dataset for NN modelling. The final learned network used to acquire the weights of the criteria. Accuracies of 95.2% and 93.2% achieved for the training dataset and testing dataset, respectively. The workflow was found to be capable of reducing human interference to generate highly reliable maps. The proposed workflow reveals the applicability of NN in generating landfill suitability maps and the feasibility of integrating them with existing MCDA workflows.

  20. Quantitative analysis of probabilistic BPMN workflows

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2012-01-01

    We present a framework for modelling and analysis of realworld business workflows. We present a formalised core subset of the Business Process Modelling and Notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... of events, reward-based properties and best- and worst- case scenarios. We develop a simple example of medical workflow and demonstrate the utility of this analysis in accurate provisioning of drug stocks. Finally, we suggest a path to building upon these techniques to cover the entire BPMN language, allow...

  1. Climate Data Analytics Workflow Management

    Science.gov (United States)

    Zhang, J.; Lee, S.; Pan, L.; Mattmann, C. A.; Lee, T. J.

    2016-12-01

    In this project we aim to pave a novel path to create a sustainable building block toward Earth science big data analytics and knowledge sharing. Closely studying how Earth scientists conduct data analytics research in their daily work, we have developed a provenance model to record their activities, and to develop a technology to automatically generate workflows for scientists from the provenance. On top of it, we have built the prototype of a data-centric provenance repository, and establish a PDSW (People, Data, Service, Workflow) knowledge network to support workflow recommendation. To ensure the scalability and performance of the expected recommendation system, we have leveraged the Apache OODT system technology. The community-approved, metrics-based performance evaluation web-service will allow a user to select a metric from the list of several community-approved metrics and to evaluate model performance using the metric as well as the reference dataset. This service will facilitate the use of reference datasets that are generated in support of the model-data intercomparison projects such as Obs4MIPs and Ana4MIPs. The data-centric repository infrastructure will allow us to catch richer provenance to further facilitate knowledge sharing and scientific collaboration in the Earth science community. This project is part of Apache incubator CMDA project.

  2. Contract-Based Transaction Management in Cross-Organizational Workflow Management

    NARCIS (Netherlands)

    Grefen, P.W.P.J.

    Cross-organizational workflow management is an essential ingredient for process integration in virtual enterprises. To obtain cross-organizational workflow processes with robust semantics, these processes should be supported by highlevel cross-organizational transaction management. In this context,

  3. Exploring Dental Providers' Workflow in an Electronic Dental Record Environment.

    Science.gov (United States)

    Schwei, Kelsey M; Cooper, Ryan; Mahnke, Andrea N; Ye, Zhan; Acharya, Amit

    2016-01-01

    A workflow is defined as a predefined set of work steps and partial ordering of these steps in any environment to achieve the expected outcome. Few studies have investigated the workflow of providers in a dental office. It is important to understand the interaction of dental providers with the existing technologies at point of care to assess breakdown in the workflow which could contribute to better technology designs. The study objective was to assess electronic dental record (EDR) workflows using time and motion methodology in order to identify breakdowns and opportunities for process improvement. A time and motion methodology was used to study the human-computer interaction and workflow of dental providers with an EDR in four dental centers at a large healthcare organization. A data collection tool was developed to capture the workflow of dental providers and staff while they interacted with an EDR during initial, planned, and emergency patient visits, and at the front desk. Qualitative and quantitative analysis was conducted on the observational data. Breakdowns in workflow were identified while posting charges, viewing radiographs, e-prescribing, and interacting with patient scheduler. EDR interaction time was significantly different between dentists and dental assistants (6:20 min vs. 10:57 min, p = 0.013) and between dentists and dental hygienists (6:20 min vs. 9:36 min, p = 0.003). On average, a dentist spent far less time than dental assistants and dental hygienists in data recording within the EDR.

  4. Web-video-mining-supported workflow modeling for laparoscopic surgeries.

    Science.gov (United States)

    Liu, Rui; Zhang, Xiaoli; Zhang, Hao

    2016-11-01

    As quality assurance is of strong concern in advanced surgeries, intelligent surgical systems are expected to have knowledge such as the knowledge of the surgical workflow model (SWM) to support their intuitive cooperation with surgeons. For generating a robust and reliable SWM, a large amount of training data is required. However, training data collected by physically recording surgery operations is often limited and data collection is time-consuming and labor-intensive, severely influencing knowledge scalability of the surgical systems. The objective of this research is to solve the knowledge scalability problem in surgical workflow modeling with a low cost and labor efficient way. A novel web-video-mining-supported surgical workflow modeling (webSWM) method is developed. A novel video quality analysis method based on topic analysis and sentiment analysis techniques is developed to select high-quality videos from abundant and noisy web videos. A statistical learning method is then used to build the workflow model based on the selected videos. To test the effectiveness of the webSWM method, 250 web videos were mined to generate a surgical workflow for the robotic cholecystectomy surgery. The generated workflow was evaluated by 4 web-retrieved videos and 4 operation-room-recorded videos, respectively. The evaluation results (video selection consistency n-index ≥0.60; surgical workflow matching degree ≥0.84) proved the effectiveness of the webSWM method in generating robust and reliable SWM knowledge by mining web videos. With the webSWM method, abundant web videos were selected and a reliable SWM was modeled in a short time with low labor cost. Satisfied performances in mining web videos and learning surgery-related knowledge show that the webSWM method is promising in scaling knowledge for intelligent surgical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Optimization

    Directory of Open Access Journals (Sweden)

    Maciej Malawski

    2015-01-01

    Full Text Available This paper presents a cost optimization model for scheduling scientific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL and allows us to minimize the cost of workflow execution under deadline constraints. We present results obtained using our model and the benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that require resource planning for scientific workflows and their ensembles.

  6. Application of Workflow Technology for Big Data Analysis Service

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2018-04-01

    Full Text Available This study presents a lightweight representational state transfer-based cloud workflow system to construct a big data intelligent software-as-a-service (SaaS platform. The system supports the dynamic construction and operation of an intelligent data analysis application, and realizes rapid development and flexible deployment of the business analysis process that can improve the interaction and response time of the process. The proposed system integrates offline-batch and online-streaming analysis models that allow users to conduct batch and streaming computing simultaneously. Users can rend cloud capabilities and customize a set of big data analysis applications in the form of workflow processes. This study elucidates the architecture and application modeling, customization, dynamic construction, and scheduling of a cloud workflow system. A chain workflow foundation mechanism is proposed to combine several analysis components into a chain component that can promote efficiency. Four practical application cases are provided to verify the analysis capability of the system. Experimental results show that the proposed system can support multiple users in accessing the system concurrently and effectively uses data analysis algorithms. The proposed SaaS workflow system has been used in network operators and has achieved good results.

  7. The impact of electronic medical record systems on outpatient workflows: a longitudinal evaluation of its workflow effects.

    Science.gov (United States)

    Vishwanath, Arun; Singh, Sandeep Rajan; Winkelstein, Peter

    2010-11-01

    The promise of the electronic medical record (EMR) lies in its ability to reduce the costs of health care delivery and improve the overall quality of care--a promise that is realized through major changes in workflows within the health care organization. Yet little systematic information exists about the workflow effects of EMRs. Moreover, some of the research to-date points to reduced satisfaction among physicians after implementation of the EMR and increased time, i.e., negative workflow effects. A better understanding of the impact of the EMR on workflows is, hence, vital to understanding what the technology really does offer that is new and unique. (i) To empirically develop a physician centric conceptual model of the workflow effects of EMRs; (ii) To use the model to understand the antecedents to the physicians' workflow expectation from the new EMR; (iii) To track physicians' satisfaction overtime, 3 months and 20 months after implementation of the EMR; (iv) To explore the impact of technology learning curves on physicians' reported satisfaction levels. The current research uses the mixed-method technique of concept mapping to empirically develop the conceptual model of an EMR's workflow effects. The model is then used within a controlled study to track physician expectations from a new EMR system as well as their assessments of the EMR's performance 3 months and 20 months after implementation. The research tracks the actual implementation of a new EMR within the outpatient clinics of a large northeastern research hospital. The pre-implementation survey netted 20 physician responses; post-implementation Time 1 survey netted 22 responses, and Time 2 survey netted 26 physician responses. The implementation of the actual EMR served as the intervention. Since the study was conducted within the same setting and tracked a homogenous group of respondents, the overall study design ensured against extraneous influences on the results. Outcome measures were derived

  8. A practical workflow for making anatomical atlases for biological research.

    Science.gov (United States)

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  9. Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    OpenAIRE

    Zhou, Jiantao; Sun, Chaoxin; Fu, Weina; Liu, Jing; Jia, Lei; Tan, Hongyan

    2014-01-01

    This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow.

  10. A Workflow to Improve the Alignment of Prostate Imaging with Whole-mount Histopathology.

    Science.gov (United States)

    Yamamoto, Hidekazu; Nir, Dror; Vyas, Lona; Chang, Richard T; Popert, Rick; Cahill, Declan; Challacombe, Ben; Dasgupta, Prokar; Chandra, Ashish

    2014-08-01

    Evaluation of prostate imaging tests against whole-mount histology specimens requires accurate alignment between radiologic and histologic data sets. Misalignment results in false-positive and -negative zones as assessed by imaging. We describe a workflow for three-dimensional alignment of prostate imaging data against whole-mount prostatectomy reference specimens and assess its performance against a standard workflow. Ethical approval was granted. Patients underwent motorized transrectal ultrasound (Prostate Histoscanning) to generate a three-dimensional image of the prostate before radical prostatectomy. The test workflow incorporated steps for axial alignment between imaging and histology, size adjustments following formalin fixation, and use of custom-made parallel cutters and digital caliper instruments. The control workflow comprised freehand cutting and assumed homogeneous block thicknesses at the same relative angles between pathology and imaging sections. Thirty radical prostatectomy specimens were histologically and radiologically processed, either by an alignment-optimized workflow (n = 20) or a control workflow (n = 10). The optimized workflow generated tissue blocks of heterogeneous thicknesses but with no significant drifting in the cutting plane. The control workflow resulted in significantly nonparallel blocks, accurately matching only one out of four histology blocks to their respective imaging data. The image-to-histology alignment accuracy was 20% greater in the optimized workflow (P alignment was observed in the optimized workflow. Evaluation of prostate imaging biomarkers using whole-mount histology references should include a test-to-reference spatial alignment workflow. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  11. Text mining for the biocuration workflow.

    Science.gov (United States)

    Hirschman, Lynette; Burns, Gully A P C; Krallinger, Martin; Arighi, Cecilia; Cohen, K Bretonnel; Valencia, Alfonso; Wu, Cathy H; Chatr-Aryamontri, Andrew; Dowell, Karen G; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G

    2012-01-01

    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.

  12. Workflow management: an overview

    NARCIS (Netherlands)

    Ouyang, C.; Adams, M.; Wynn, M.T.; Hofstede, ter A.H.M.; Brocke, vom J.; Rosemann, M.

    2010-01-01

    Workflow management has its origin in the office automation systems of the seventies, but it is not until fairly recently that conceptual and technological breakthroughs have led to its widespread adoption. In fact, nowadays, processawareness has become an accepted and integral part of various types

  13. A history-tracing XML-based provenance framework for workflows

    NARCIS (Netherlands)

    Gerhards, M; Belloum, A.; Berretz, F.; Sander, V.; Skorupa, S.

    2010-01-01

    The importance of validating and reproducing the outcome of computational processes is fundamental to many application domains. Assuring the provenance of workflows will likely become even more important with respect to the incorporation of human tasks to standard workflows by emerging standards

  14. Conceptual framework and architecture for service mediating workflow management

    NARCIS (Netherlands)

    Hu, Jinmin; Grefen, P.W.P.J.

    2003-01-01

    This paper proposes a three-layer workflow concept framework to realize workflow enactment flexibility by dynamically binding activities to their implementations at run time. A service mediating layer is added to bridge business process definition and its implementation. Based on this framework, we

  15. Exploring Dental Providers’ Workflow in an Electronic Dental Record Environment

    Science.gov (United States)

    Schwei, Kelsey M; Cooper, Ryan; Mahnke, Andrea N.; Ye, Zhan

    2016-01-01

    Summary Background A workflow is defined as a predefined set of work steps and partial ordering of these steps in any environment to achieve the expected outcome. Few studies have investigated the workflow of providers in a dental office. It is important to understand the interaction of dental providers with the existing technologies at point of care to assess breakdown in the workflow which could contribute to better technology designs. Objective The study objective was to assess electronic dental record (EDR) workflows using time and motion methodology in order to identify breakdowns and opportunities for process improvement. Methods A time and motion methodology was used to study the human-computer interaction and workflow of dental providers with an EDR in four dental centers at a large healthcare organization. A data collection tool was developed to capture the workflow of dental providers and staff while they interacted with an EDR during initial, planned, and emergency patient visits, and at the front desk. Qualitative and quantitative analysis was conducted on the observational data. Results Breakdowns in workflow were identified while posting charges, viewing radiographs, e-prescribing, and interacting with patient scheduler. EDR interaction time was significantly different between dentists and dental assistants (6:20 min vs. 10:57 min, p = 0.013) and between dentists and dental hygienists (6:20 min vs. 9:36 min, p = 0.003). Conclusions On average, a dentist spent far less time than dental assistants and dental hygienists in data recording within the EDR. PMID:27437058

  16. LQCD workflow execution framework: Models, provenance and fault-tolerance

    International Nuclear Information System (INIS)

    Piccoli, Luciano; Simone, James N; Kowalkowlski, James B; Dubey, Abhishek

    2010-01-01

    Large computing clusters used for scientific processing suffer from systemic failures when operated over long continuous periods for executing workflows. Diagnosing job problems and faults leading to eventual failures in this complex environment is difficult, specifically when the success of an entire workflow might be affected by a single job failure. In this paper, we introduce a model-based, hierarchical, reliable execution framework that encompass workflow specification, data provenance, execution tracking and online monitoring of each workflow task, also referred to as participants. The sequence of participants is described in an abstract parameterized view, which is translated into a concrete data dependency based sequence of participants with defined arguments. As participants belonging to a workflow are mapped onto machines and executed, periodic and on-demand monitoring of vital health parameters on allocated nodes is enabled according to pre-specified rules. These rules specify conditions that must be true pre-execution, during execution and post-execution. Monitoring information for each participant is propagated upwards through the reflex and healing architecture, which consists of a hierarchical network of decentralized fault management entities, called reflex engines. They are instantiated as state machines or timed automatons that change state and initiate reflexive mitigation action(s) upon occurrence of certain faults. We describe how this cluster reliability framework is combined with the workflow execution framework using formal rules and actions specified within a structure of first order predicate logic that enables a dynamic management design that reduces manual administrative workload, and increases cluster-productivity.

  17. It's All About the Data: Workflow Systems and Weather

    Science.gov (United States)

    Plale, B.

    2009-05-01

    Digital data is fueling new advances in the computational sciences, particularly geospatial research as environmental sensing grows more practical through reduced technology costs, broader network coverage, and better instruments. e-Science research (i.e., cyberinfrastructure research) has responded to data intensive computing with tools, systems, and frameworks that support computationally oriented activities such as modeling, analysis, and data mining. Workflow systems support execution of sequences of tasks on behalf of a scientist. These systems, such as Taverna, Apache ODE, and Kepler, when built as part of a larger cyberinfrastructure framework, give the scientist tools to construct task graphs of execution sequences, often through a visual interface for connecting task boxes together with arcs representing control flow or data flow. Unlike business processing workflows, scientific workflows expose a high degree of detail and control during configuration and execution. Data-driven science imposes unique needs on workflow frameworks. Our research is focused on two issues. The first is the support for workflow-driven analysis over all kinds of data sets, including real time streaming data and locally owned and hosted data. The second is the essential role metadata/provenance collection plays in data driven science, for discovery, determining quality, for science reproducibility, and for long-term preservation. The research has been conducted over the last 6 years in the context of cyberinfrastructure for mesoscale weather research carried out as part of the Linked Environments for Atmospheric Discovery (LEAD) project. LEAD has pioneered new approaches for integrating complex weather data, assimilation, modeling, mining, and cyberinfrastructure systems. Workflow systems have the potential to generate huge volumes of data. Without some form of automated metadata capture, either metadata description becomes largely a manual task that is difficult if not impossible

  18. Workflow automation based on OSI job transfer and manipulation

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Joosten, Stef M.M.; Guareis de farias, Cléver

    1999-01-01

    This paper shows that Workflow Management Systems (WFMS) and a data communication standard called Job Transfer and Manipulation (JTM) are built on the same concepts, even though different words are used. The paper analyses the correspondence of workflow concepts and JTM concepts. Besides, the

  19. Dynamic Service Selection in Workflows Using Performance Data

    Directory of Open Access Journals (Sweden)

    David W. Walker

    2007-01-01

    Full Text Available An approach to dynamic workflow management and optimisation using near-realtime performance data is presented. Strategies are discussed for choosing an optimal service (based on user-specified criteria from several semantically equivalent Web services. Such an approach may involve finding "similar" services, by first pruning the set of discovered services based on service metadata, and subsequently selecting an optimal service based on performance data. The current implementation of the prototype workflow framework is described, and demonstrated with a simple workflow. Performance results are presented that show the performance benefits of dynamic service selection. A statistical analysis based on the first order statistic is used to investigate the likely improvement in service response time arising from dynamic service selection.

  20. On Secure Workflow Decentralisation on the Internet

    Directory of Open Access Journals (Sweden)

    Petteri Kaskenpalo

    2010-06-01

    Full Text Available Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment.

  1. XML schemas for common bioinformatic data types and their application in workflow systems.

    Science.gov (United States)

    Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert

    2006-11-06

    Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data--therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at http://bioschemas.sourceforge.net, the BioDOM library can be obtained at http://biodom.sourceforge.net. The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios.

  2. XML schemas for common bioinformatic data types and their application in workflow systems

    Science.gov (United States)

    Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert

    2006-01-01

    Background Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data – therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Results Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at , the BioDOM library can be obtained at . Conclusion The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios. PMID:17087823

  3. "Intelligent" tools for workflow process redesign : a research agenda

    NARCIS (Netherlands)

    Netjes, M.; Vanderfeesten, I.T.P.; Reijers, H.A.; Bussler, C.; Haller, A.

    2006-01-01

    Although much attention is being paid to business processes during the past decades, the design of business processes and particularly workflow processes is still more art than science. In this workshop paper, we present our view on modeling methods for workflow processes and introduce our research

  4. When Workflow Management Systems and Logging Systems Meet: Analyzing Large-Scale Execution Traces

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, Daniel

    2008-07-31

    This poster shows the benefits of integrating a workflow management system with logging and log mining capabilities. By combing two existing, mature technologies: Pegasus-WMS and Netlogger, we are able to efficiently process execution logs of earthquake science workflows consisting of hundreds of thousands to one million tasks. In particular we show results of processing logs of CyberShake, a workflow application running on the TeraGrid. Client-side tools allow scientists to quickly gather statistics about a workflow run and find out which tasks executed, where they were executed, what was their runtime, etc. These statistics can be used to understand the performance characteristics of a workflow and help tune the execution parameters of the workflow management system. This poster shows the scalability of the system presenting results of uploading task execution records into the system and by showing results of querying the system for overall workflow performance information.

  5. The Diabetic Retinopathy Screening Workflow

    Science.gov (United States)

    Bolster, Nigel M.; Giardini, Mario E.; Bastawrous, Andrew

    2015-01-01

    Complications of diabetes mellitus, namely diabetic retinopathy and diabetic maculopathy, are the leading cause of blindness in working aged people. Sufferers can avoid blindness if identified early via retinal imaging. Systematic screening of the diabetic population has been shown to greatly reduce the prevalence and incidence of blindness within the population. Many national screening programs have digital fundus photography as their basis. In the past 5 years several techniques and adapters have been developed that allow digital fundus photography to be performed using smartphones. We review recent progress in smartphone-based fundus imaging and discuss its potential for integration into national systematic diabetic retinopathy screening programs. Some systems have produced promising initial results with respect to their agreement with reference standards. However further multisite trialling of such systems’ use within implementable screening workflows is required if an evidence base strong enough to affect policy change is to be established. If this were to occur national diabetic retinopathy screening would, for the first time, become possible in low- and middle-income settings where cost and availability of trained eye care personnel are currently key barriers to implementation. As diabetes prevalence and incidence is increasing sharply in these settings, the impact on global blindness could be profound. PMID:26596630

  6. Data intensive ATLAS workflows in the Cloud

    CERN Document Server

    Rzehorz, Gerhard Ferdinand; The ATLAS collaboration

    2018-01-01

    From 2025 onwards, the ATLAS collaboration at the Large Hadron Collider (LHC) at CERN will experience a massive increase in data quantity as well as complexity. Including mitigating factors, the prevalent computing power by that time will only fulfil one tenth of the requirement. This contribution will focus on Cloud computing as an approach to help overcome this challenge by providing flexible hardware that can be configured to the specific needs of a workflow. Experience with Cloud computing exists, but there is a large uncertainty if and to which degree it can be able to reduce the burden by 2025. In order to understand and quantify the benefits of Cloud computing, the "Workflow and Infrastructure Model" was created. It estimates the viability of Cloud computing by combining different inputs from the workflow side with infrastructure specifications. The model delivers metrics that enable the comparison of different Cloud configurations as well as different Cloud offerings with each other. A wide range of r...

  7. Elastic Scheduling of Scientific Workflows under Deadline Constraints in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Nazia Anwar

    2018-01-01

    Full Text Available Scientific workflow applications are collections of several structured activities and fine-grained computational tasks. Scientific workflow scheduling in cloud computing is a challenging research topic due to its distinctive features. In cloud environments, it has become critical to perform efficient task scheduling resulting in reduced scheduling overhead, minimized cost and maximized resource utilization while still meeting the user-specified overall deadline. This paper proposes a strategy, Dynamic Scheduling of Bag of Tasks based workflows (DSB, for scheduling scientific workflows with the aim to minimize financial cost of leasing Virtual Machines (VMs under a user-defined deadline constraint. The proposed model groups the workflow into Bag of Tasks (BoTs based on data dependency and priority constraints and thereafter optimizes the allocation and scheduling of BoTs on elastic, heterogeneous and dynamically provisioned cloud resources called VMs in order to attain the proposed method’s objectives. The proposed approach considers pay-as-you-go Infrastructure as a Service (IaaS clouds having inherent features such as elasticity, abundance, heterogeneity and VM provisioning delays. A trace-based simulation using benchmark scientific workflows representing real world applications, demonstrates a significant reduction in workflow computation cost while the workflow deadline is met. The results validate that the proposed model produces better success rates to meet deadlines and cost efficiencies in comparison to adapted state-of-the-art algorithms for similar problems.

  8. Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2010-01-01

    We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....

  9. Design decisions in workflow management and quality of work.

    NARCIS (Netherlands)

    Waal, B.M.E. de; Batenburg, R.

    2009-01-01

    In this paper, the design and implementation of a workflow management (WFM) system in a large Dutch social insurance organisation is described. The effect of workflow design decisions on the quality of work is explored theoretically and empirically, using the model of Zur Mühlen as a frame of

  10. Job life cycle management libraries for CMS workflow management projects

    International Nuclear Information System (INIS)

    Lingen, Frank van; Wilkinson, Rick; Evans, Dave; Foulkes, Stephen; Afaq, Anzar; Vaandering, Eric; Ryu, Seangchan

    2010-01-01

    Scientific analysis and simulation requires the processing and generation of millions of data samples. These tasks are often comprised of multiple smaller tasks divided over multiple (computing) sites. This paper discusses the Compact Muon Solenoid (CMS) workflow infrastructure, and specifically the Python based workflow library which is used for so called task lifecycle management. The CMS workflow infrastructure consists of three layers: high level specification of the various tasks based on input/output data sets, life cycle management of task instances derived from the high level specification and execution management. The workflow library is the result of a convergence of three CMS sub projects that respectively deal with scientific analysis, simulation and real time data aggregation from the experiment. This will reduce duplication and hence development and maintenance costs.

  11. Automated evolutionary restructuring of workflows to minimise errors via stochastic model checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper presents a framework for the automated restructuring of workflows that allows one to minimise the impact of errors on a production workflow. The framework allows for the modelling of workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN) language...

  12. Incorporating Workflow Interference in Facility Layout Design: The Quartic Assignment Problem

    OpenAIRE

    Wen-Chyuan Chiang; Panagiotis Kouvelis; Timothy L. Urban

    2002-01-01

    Although many authors have noted the importance of minimizing workflow interference in facility layout design, traditional layout research tends to focus on minimizing the distance-based transportation cost. This paper formalizes the concept of workflow interference from a facility layout perspective. A model, formulated as a quartic assignment problem, is developed that explicitly considers the interference of workflow. Optimal and heuristic solution methodologies are developed and evaluated.

  13. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    Science.gov (United States)

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We

  14. Provenance-Based Debugging and Drill-Down in Data-Oriented Workflows

    KAUST Repository

    Ikeda, Robert; Cho, Junsang; Fang, Charlie; Salihoglu, Semih; Torikai, Satoshi; Widom, Jennifer

    2012-01-01

    Panda (for Provenance and Data) is a system that supports the creation and execution of data-oriented workflows, with automatic provenance generation and built-in provenance tracing operations. Workflows in Panda are arbitrary a cyclic graphs

  15. Hermes: Seamless delivery of containerized bioinformatics workflows in hybrid cloud (HTC) environments

    Science.gov (United States)

    Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.

    Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.

  16. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    Directory of Open Access Journals (Sweden)

    Gryk Michael R

    2007-01-01

    Full Text Available Abstract Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting

  17. High performance workflow implementation for protein surface characterization using grid technology

    Directory of Open Access Journals (Sweden)

    Clematis Andrea

    2005-12-01

    Full Text Available Abstract Background This study concerns the development of a high performance workflow that, using grid technology, correlates different kinds of Bioinformatics data, starting from the base pairs of the nucleotide sequence to the exposed residues of the protein surface. The implementation of this workflow is based on the Italian Grid.it project infrastructure, that is a network of several computational resources and storage facilities distributed at different grid sites. Methods Workflows are very common in Bioinformatics because they allow to process large quantities of data by delegating the management of resources to the information streaming. Grid technology optimizes the computational load during the different workflow steps, dividing the more expensive tasks into a set of small jobs. Results Grid technology allows efficient database management, a crucial problem for obtaining good results in Bioinformatics applications. The proposed workflow is implemented to integrate huge amounts of data and the results themselves must be stored into a relational database, which results as the added value to the global knowledge. Conclusion A web interface has been developed to make this technology accessible to grid users. Once the workflow has started, by means of the simplified interface, it is possible to follow all the different steps throughout the data processing. Eventually, when the workflow has been terminated, the different features of the protein, like the amino acids exposed on the protein surface, can be compared with the data present in the output database.

  18. A Collaborative Workflow for the Digitization of Unique Materials

    Science.gov (United States)

    Gueguen, Gretchen; Hanlon, Ann M.

    2009-01-01

    This paper examines the experience of one institution, the University of Maryland Libraries, as it made organizational efforts to harness existing workflows and to capture digitization done in the course of responding to patron requests. By examining the way this organization adjusted its existing workflows to put in place more systematic methods…

  19. Development of the workflow kine systems for support on KAIZEN.

    Science.gov (United States)

    Mizuno, Yuki; Ito, Toshihiko; Yoshikawa, Toru; Yomogida, Satoshi; Morio, Koji; Sakai, Kazuhiro

    2012-01-01

    In this paper, we introduce the new workflow line system consisted of the location and image recording, which led to the acquisition of workflow information and the analysis display. From the results of workflow line investigation, we considered the anticipated effects and the problems on KAIZEN. Workflow line information included the location information and action contents information. These technologies suggest the viewpoints to help improvement, for example, exclusion of useless movement, the redesign of layout and the review of work procedure. Manufacturing factory, it was clear that there was much movement from the standard operation place and accumulation residence time. The following was shown as a result of this investigation, to be concrete, the efficient layout was suggested by this system. In the case of the hospital, similarly, it is pointed out that the workflow has the problem of layout and setup operations based on the effective movement pattern of the experts. This system could adapt to routine work, including as well as non-routine work. By the development of this system which can fit and adapt to industrial diversification, more effective "visual management" (visualization of work) is expected in the future.

  20. Restructuring of workflows to minimise errors via stochastic model checking: An automated evolutionary approach

    International Nuclear Information System (INIS)

    Herbert, L.T.; Hansen, Z.N.L.

    2016-01-01

    This paper presents a framework for the automated restructuring of stochastic workflows to reduce the impact of faults. The framework allows for the modelling of workflows by means of a formalised subset of the BPMN workflow language. We extend this modelling formalism to describe faults and incorporate an intention preserving stochastic semantics able to model both probabilistic- and non-deterministic behaviour. Stochastic model checking techniques are employed to generate the state-space of a given workflow. Possible improvements obtained by restructuring are measured by employing the framework's capacity for tracking real-valued quantities associated with states and transitions of the workflow. The space of possible restructurings of a workflow is explored by means of an evolutionary algorithm, where the goals for improvement are defined in terms of optimising quantities, typically employed to model resources, associated with a workflow. The approach is fully automated and only the modelling of the production workflows, potential faults and the expression of the goals require manual input. We present the design of a software tool implementing this framework and explore the practical utility of this approach through an industrial case study in which the risk of production failures and their impact are reduced by restructuring the workflow. - Highlights: • We present a framework which allows for the automated restructuring of workflows. • This framework seeks to minimise the impact of errors on the workflow. • We illustrate a scalable software implementation of this framework. • We explore the practical utility of this approach through an industry case. • The impact of errors can be substantially reduced by restructuring the workflow.

  1. A Prudent Approach to Fair Use Workflow

    Directory of Open Access Journals (Sweden)

    Karey Patterson

    2018-02-01

    Full Text Available This poster will outline a new highly efficient workflow for the management of copyright materials that is prudent and accommodates generally and legally accepted Fair Use limits. The workflow allows library or copyright staff an easy means to keep on top of their copyright obligations, manage licenses and review and adjust schedules but is still a highly efficient means to cope with large numbers of requests to use materials. The poster details speed and efficiency gains for professors and library staff while reducing legal exposure.

  2. Hermes: Seamless delivery of containerized bioinformatics workflows in hybrid cloud (HTC environments

    Directory of Open Access Journals (Sweden)

    Athanassios M. Kintsakis

    2017-01-01

    Full Text Available Hermes introduces a new “describe once, run anywhere” paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.

  3. Enhancing and Customizing Laboratory Information Systems to Improve/Enhance Pathologist Workflow.

    Science.gov (United States)

    Hartman, Douglas J

    2015-06-01

    Optimizing pathologist workflow can be difficult because it is affected by many variables. Surgical pathologists must complete many tasks that culminate in a final pathology report. Several software systems can be used to enhance/improve pathologist workflow. These include voice recognition software, pre-sign-out quality assurance, image utilization, and computerized provider order entry. Recent changes in the diagnostic coding and the more prominent role of centralized electronic health records represent potential areas for increased ways to enhance/improve the workflow for surgical pathologists. Additional unforeseen changes to the pathologist workflow may accompany the introduction of whole-slide imaging technology to the routine diagnostic work. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Electronic Health Record-Driven Workflow for Diagnostic Radiologists.

    Science.gov (United States)

    Geeslin, Matthew G; Gaskin, Cree M

    2016-01-01

    In most settings, radiologists maintain a high-throughput practice in which efficiency is crucial. The conversion from film-based to digital study interpretation and data storage launched the era of PACS-driven workflow, leading to significant gains in speed. The advent of electronic health records improved radiologists' access to patient data; however, many still find this aspect of workflow to be relatively cumbersome. Nevertheless, the ability to guide a diagnostic interpretation with clinical information, beyond that provided in the examination indication, can add significantly to the specificity of a radiologist's interpretation. Responsibilities of the radiologist include, but are not limited to, protocoling examinations, interpreting studies, chart review, peer review, writing notes, placing orders, and communicating with referring providers. Most of the aforementioned activities are not PACS-centric and require a login to one or more additional applications. Consolidation of these tasks for completion through a single interface can simplify workflow, save time, and potentially reduce the incidence of errors. Here, the authors describe diagnostic radiology workflow that leverages the electronic health record to significantly add to a radiologist's ability to be part of the health care team, provide relevant interpretations, and improve efficiency and quality. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Data and Workflow Management Challenges in Global Adjoint Tomography

    Science.gov (United States)

    Lei, W.; Ruan, Y.; Smith, J. A.; Modrak, R. T.; Orsvuran, R.; Krischer, L.; Chen, Y.; Balasubramanian, V.; Hill, J.; Turilli, M.; Bozdag, E.; Lefebvre, M. P.; Jha, S.; Tromp, J.

    2017-12-01

    It is crucial to take the complete physics of wave propagation into account in seismic tomography to further improve the resolution of tomographic images. The adjoint method is an efficient way of incorporating 3D wave simulations in seismic tomography. However, global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Through our collaboration with the Oak Ridge National Laboratory (ORNL) computing group and an allocation on Titan, ORNL's GPU-accelerated supercomputer, we are now performing our global inversions by assimilating waveform data from over 1,000 earthquakes. The first challenge we encountered is dealing with the sheer amount of seismic data. Data processing based on conventional data formats and processing tools (such as SAC), which are not designed for parallel systems, becomes our major bottleneck. To facilitate the data processing procedures, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of Python-based processing tools to replace legacy FORTRAN-based software. These tools greatly enhance reproducibility and accountability while taking full advantage of highly parallel system and showing superior scaling on modern computational platforms. The second challenge is that the data processing workflow contains more than 10 sub-procedures, making it delicate to handle and prone to human mistakes. To reduce human intervention as much as possible, we are developing a framework specifically designed for seismic inversion based on the state-of-the art workflow management research, specifically the Ensemble Toolkit (EnTK), in collaboration with the RADICAL team from Rutgers University. Using the initial developments of the EnTK, we are able to utilize the full computing power of the data processing cluster RHEA at ORNL while keeping human interaction to a minimum and greatly reducing the data processing time. Thanks to all the improvements, we are now able to

  6. Styx Grid Services: Lightweight Middleware for Efficient Scientific Workflows

    Directory of Open Access Journals (Sweden)

    J.D. Blower

    2006-01-01

    Full Text Available The service-oriented approach to performing distributed scientific research is potentially very powerful but is not yet widely used in many scientific fields. This is partly due to the technical difficulties involved in creating services and workflows and the inefficiency of many workflow systems with regard to handling large datasets. We present the Styx Grid Service, a simple system that wraps command-line programs and allows them to be run over the Internet exactly as if they were local programs. Styx Grid Services are very easy to create and use and can be composed into powerful workflows with simple shell scripts or more sophisticated graphical tools. An important feature of the system is that data can be streamed directly from service to service, significantly increasing the efficiency of workflows that use large data volumes. The status and progress of Styx Grid Services can be monitored asynchronously using a mechanism that places very few demands on firewalls. We show how Styx Grid Services can interoperate with with Web Services and WS-Resources using suitable adapters.

  7. Analyzing the Gap between Workflows and their Natural Language Descriptions

    NARCIS (Netherlands)

    Groth, P.T.; Gil, Y

    2009-01-01

    Scientists increasingly use workflows to represent and share their computational experiments. Because of their declarative nature, focus on pre-existing component composition and the availability of visual editors, workflows provide a valuable start for creating user-friendly environments for end

  8. Assessment of the Nurse Medication Administration Workflow Process

    Directory of Open Access Journals (Sweden)

    Nathan Huynh

    2016-01-01

    Full Text Available This paper presents findings of an observational study of the Registered Nurse (RN Medication Administration Process (MAP conducted on two comparable medical units in a large urban tertiary care medical center in Columbia, South Carolina. A total of 305 individual MAP observations were recorded over a 6-week period with an average of 5 MAP observations per RN participant for both clinical units. A key MAP variation was identified in terms of unbundled versus bundled MAP performance. In the unbundled workflow, an RN engages in the MAP by performing only MAP tasks during a care episode. In the bundled workflow, an RN completes medication administration along with other patient care responsibilities during the care episode. Using a discrete-event simulation model, this paper addresses the difference between unbundled and bundled workflow and their effects on simulated redesign interventions.

  9. Developing integrated workflows for the digitisation of herbarium specimens using a modular and scalable approach.

    Science.gov (United States)

    Haston, Elspeth; Cubey, Robert; Pullan, Martin; Atkins, Hannah; Harris, David J

    2012-01-01

    Digitisation programmes in many institutes frequently involve disparate and irregular funding, diverse selection criteria and scope, with different members of staff managing and operating the processes. These factors have influenced the decision at the Royal Botanic Garden Edinburgh to develop an integrated workflow for the digitisation of herbarium specimens which is modular and scalable to enable a single overall workflow to be used for all digitisation projects. This integrated workflow is comprised of three principal elements: a specimen workflow, a data workflow and an image workflow.The specimen workflow is strongly linked to curatorial processes which will impact on the prioritisation, selection and preparation of the specimens. The importance of including a conservation element within the digitisation workflow is highlighted. The data workflow includes the concept of three main categories of collection data: label data, curatorial data and supplementary data. It is shown that each category of data has its own properties which influence the timing of data capture within the workflow. Development of software has been carried out for the rapid capture of curatorial data, and optical character recognition (OCR) software is being used to increase the efficiency of capturing label data and supplementary data. The large number and size of the images has necessitated the inclusion of automated systems within the image workflow.

  10. Neural-net predictor for beta limit disruptions in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2005-01-01

    Prediction of major disruptions occurring at the β -limit for tokamak plasmas with a normal magnetic shear in JT-60U was conducted using neural networks. Since no clear precursors are generally observed a few tens of milliseconds before the β -limit disruption, a sub-neural network is trained to output the value of the β N limit every 2 ms. The target β N limit is artificially set by the operator in the first step to train a network with non-disruptive shots as well as disruptive shots, and then in the second step the target limit is modified using the β N limit output from the trained network. The adjusted target greatly improves the consistency between the input data and the output. This training, the 'self-teaching method', has greatly reduced the false alarm rate triggered for non-disruptive shots. To improve the prediction performance further, the difference between the output β N limit and the measured β N , and 11 parameters, are inputted to the main neural network to calculate the 'stability level'. The occurrence of a major disruption is predicted when the stability level decreases to the 'alarm level'. Major disruptions at the β -limit have been predicted by the main network with a prediction success rate of 80% at 10 ms prior to the disruption while the false alarm rate is lower than 4% for non-disruptive shots. This 80% value is much higher than that obtained for a network trained with a fixed target β N limit set to be the maximum β N observed at the start of a major disruption, lower than 10%. A prediction success rate of 90% with a false alarm rate of 12% at 10 ms prior to the disruption has also been obtained. This 12% value is about half of that obtained for a network trained with a fixed target β N limit

  11. Summer Student Report - AV Workflow

    CERN Document Server

    Abramson, Jessie

    2014-01-01

    The AV Workflow is web application which allows cern users to publish, update and delete videos from cds. During my summer internship I implemented the backend of the new version of the AV Worklow in python using the django framework.

  12. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  13. Exploring the impact of an automated prescription-filling device on community pharmacy technician workflow

    Science.gov (United States)

    Walsh, Kristin E.; Chui, Michelle Anne; Kieser, Mara A.; Williams, Staci M.; Sutter, Susan L.; Sutter, John G.

    2012-01-01

    Objective To explore community pharmacy technician workflow change after implementation of an automated robotic prescription-filling device. Methods At an independent community pharmacy in rural Mayville, WI, pharmacy technicians were observed before and 3 months after installation of an automated robotic prescription-filling device. The main outcome measures were sequences and timing of technician workflow steps, workflow interruptions, automation surprises, and workarounds. Results Of the 77 and 80 observations made before and 3 months after robot installation, respectively, 17 different workflow sequences were observed before installation and 38 after installation. Average prescription filling time was reduced by 40 seconds per prescription with use of the robot. Workflow interruptions per observation increased from 1.49 to 1.79 (P = 0.11), and workarounds increased from 10% to 36% after robot use. Conclusion Although automated prescription-filling devices can increase efficiency, workflow interruptions and workarounds may negate that efficiency. Assessing changes in workflow and sequencing of tasks that may result from the use of automation can help uncover opportunities for workflow policy and procedure redesign. PMID:21896459

  14. From Paper Based Clinical Practice Guidelines to Declarative Workflow Management

    DEFF Research Database (Denmark)

    Lyng, Karen Marie; Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2009-01-01

    a sub workflow can be described in a declarative workflow management system: the Resultmaker Online Consultant (ROC). The example demonstrates that declarative primitives allow to naturally extend the paper based flowchart to an executable model without introducing a complex cyclic control flow graph....

  15. Workflow interruptions, cognitive failure and near-accidents in health care.

    Science.gov (United States)

    Elfering, Achim; Grebner, Simone; Ebener, Corinne

    2015-01-01

    Errors are frequent in health care. A specific model was tested that affirms failure in cognitive action regulation to mediate the influence of nurses' workflow interruptions and safety conscientiousness on near-accidents in health care. One hundred and sixty-five nurses from seven Swiss hospitals participated in a questionnaire survey. Structural equation modelling confirmed the hypothesised mediation model. Cognitive failure in action regulation significantly mediated the influence of workflow interruptions on near-accidents (p accidents via cognitive failure in action regulation was also significant (p accidents; moreover, cognitive failure mediated the association between compliance and near-accidents (p < .05). Contrary to expectations, compliance with safety regulations was not related to workflow interruptions. Workflow interruptions caused by colleagues, patients and organisational constraints are likely to trigger errors in nursing. Work redesign is recommended to reduce cognitive failure and improve safety of nurses and patients.

  16. Distributing Workflows over a Ubiquitous P2P Network

    Directory of Open Access Journals (Sweden)

    Eddie Al-Shakarchi

    2007-01-01

    Full Text Available This paper discusses issues in the distribution of bundled workflows across ubiquitous peer-to-peer networks for the application of music information retrieval. The underlying motivation for this work is provided by the DART project, which aims to develop a novel music recommendation system by gathering statistical data using collaborative filtering techniques and the analysis of the audio itsel, in order to create a reliable and comprehensive database of the music that people own and which they listen to. To achieve this, the DART scientists creating the algorithms need the ability to distribute the Triana workflows they create, representing the analysis to be performed, across the network on a regular basis (perhaps even daily in order to update the network as a whole with new workflows to be executed for the analysis. DART uses a similar approach to BOINC but differs in that the workers receive input data in the form of a bundled Triana workflow, which is executed in order to process any MP3 files that they own on their machine. Once analysed, the results are returned to DART's distributed database that collects and aggregates the resulting information. DART employs the use of package repositories to decentralise the distribution of such workflow bundles and this approach is validated in this paper through simulations that show that suitable scalability is maintained through the system as the number of participants increases. The results clearly illustrate the effectiveness of the approach.

  17. Flexible Early Warning Systems with Workflows and Decision Tables

    Science.gov (United States)

    Riedel, F.; Chaves, F.; Zeiner, H.

    2012-04-01

    An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows

  18. Automation of Flexible Migration Workflows

    Directory of Open Access Journals (Sweden)

    Dirk von Suchodoletz

    2011-03-01

    Full Text Available Many digital preservation scenarios are based on the migration strategy, which itself is heavily tool-dependent. For popular, well-defined and often open file formats – e.g., digital images, such as PNG, GIF, JPEG – a wide range of tools exist. Migration workflows become more difficult with proprietary formats, as used by the several text processing applications becoming available in the last two decades. If a certain file format can not be rendered with actual software, emulation of the original environment remains a valid option. For instance, with the original Lotus AmiPro or Word Perfect, it is not a problem to save an object of this type in ASCII text or Rich Text Format. In specific environments, it is even possible to send the file to a virtual printer, thereby producing a PDF as a migration output. Such manual migration tasks typically involve human interaction, which may be feasible for a small number of objects, but not for larger batches of files.We propose a novel approach using a software-operated VNC abstraction layer in order to replace humans with machine interaction. Emulators or virtualization tools equipped with a VNC interface are very well suited for this approach. But screen, keyboard and mouse interaction is just part of the setup. Furthermore, digital objects need to be transferred into the original environment in order to be extracted after processing. Nevertheless, the complexity of the new generation of migration services is quickly rising; a preservation workflow is now comprised not only of the migration tool itself, but of a complete software and virtual hardware stack with recorded workflows linked to every supported migration scenario. Thus the requirements of OAIS management must include proper software archiving, emulator selection, system image and recording handling. The concept of view-paths could help either to automatically determine the proper pre-configured virtual environment or to set up system

  19. Considering Time in Orthophotography Production: from a General Workflow to a Shortened Workflow for a Faster Disaster Response

    Science.gov (United States)

    Lucas, G.

    2015-08-01

    This article overall deals with production time with orthophoto imagery with medium size digital frame camera. The workflow examination follows two main parts: data acquisition and post-processing. The objectives of the research are fourfold: 1/ gathering time references for the most important steps of orthophoto production (it turned out that literature is missing on this topic); these figures are used later for total production time estimation; 2/ identifying levers for reducing orthophoto production time; 3/ building a simplified production workflow for emergency response: less exigent with accuracy and faster; and compare it to a classical workflow; 4/ providing methodical elements for the estimation of production time with a custom project. In the data acquisition part a comprehensive review lists and describes all the factors that may affect the acquisition efficiency. Using a simulation with different variables (average line length, time of the turns, flight speed) their effect on acquisition efficiency is quantitatively examined. Regarding post-processing, the time references figures were collected from the processing of a 1000 frames case study with 15 cm GSD covering a rectangular area of 447 km2; the time required to achieve each step during the production is written down. When several technical options are possible, each one is tested and time documented so as all alternatives are available. Based on a technical choice with the workflow and using the compiled time reference of the elementary steps, a total time is calculated for the post-processing of the 1000 frames. Two scenarios are compared as regards to time and accuracy. The first one follows the "normal" practices, comprising triangulation, orthorectification and advanced mosaicking methods (feature detection, seam line editing and seam applicator); the second is simplified and make compromise over positional accuracy (using direct geo-referencing) and seamlines preparation in order to achieve

  20. Planning bioinformatics workflows using an expert system

    Science.gov (United States)

    Chen, Xiaoling; Chang, Jeffrey T.

    2017-01-01

    Abstract Motivation: Bioinformatic analyses are becoming formidably more complex due to the increasing number of steps required to process the data, as well as the proliferation of methods that can be used in each step. To alleviate this difficulty, pipelines are commonly employed. However, pipelines are typically implemented to automate a specific analysis, and thus are difficult to use for exploratory analyses requiring systematic changes to the software or parameters used. Results: To automate the development of pipelines, we have investigated expert systems. We created the Bioinformatics ExperT SYstem (BETSY) that includes a knowledge base where the capabilities of bioinformatics software is explicitly and formally encoded. BETSY is a backwards-chaining rule-based expert system comprised of a data model that can capture the richness of biological data, and an inference engine that reasons on the knowledge base to produce workflows. Currently, the knowledge base is populated with rules to analyze microarray and next generation sequencing data. We evaluated BETSY and found that it could generate workflows that reproduce and go beyond previously published bioinformatics results. Finally, a meta-investigation of the workflows generated from the knowledge base produced a quantitative measure of the technical burden imposed by each step of bioinformatics analyses, revealing the large number of steps devoted to the pre-processing of data. In sum, an expert system approach can facilitate exploratory bioinformatic analysis by automating the development of workflows, a task that requires significant domain expertise. Availability and Implementation: https://github.com/jefftc/changlab Contact: jeffrey.t.chang@uth.tmc.edu PMID:28052928

  1. Developing integrated workflows for the digitisation of herbarium specimens using a modular and scalable approach

    Directory of Open Access Journals (Sweden)

    Elspeth Haston

    2012-07-01

    Full Text Available Digitisation programmes in many institutes frequently involve disparate and irregular funding, diverse selection criteria and scope, with different members of staff managing and operating the processes. These factors have influenced the decision at the Royal Botanic Garden Edinburgh to develop an integrated workflow for the digitisation of herbarium specimens which is modular and scalable to enable a single overall workflow to be used for all digitisation projects. This integrated workflow is comprised of three principal elements: a specimen workflow, a data workflow and an image workflow.The specimen workflow is strongly linked to curatorial processes which will impact on the prioritisation, selection and preparation of the specimens. The importance of including a conservation element within the digitisation workflow is highlighted. The data workflow includes the concept of three main categories of collection data: label data, curatorial data and supplementary data. It is shown that each category of data has its own properties which influence the timing of data capture within the workflow. Development of software has been carried out for the rapid capture of curatorial data, and optical character recognition (OCR software is being used to increase the efficiency of capturing label data and supplementary data. The large number and size of the images has necessitated the inclusion of automated systems within the image workflow.

  2. Data mining workflow templates for intelligent discovery assistance in RapidMiner

    OpenAIRE

    Kietz, J U; Serban, F; Bernstein, A; Fischer, S

    2010-01-01

    Knowledge Discovery in Databases (KDD) has evolved during the last years and reached a mature stage offering plenty of operators to solve complex tasks. User support for building workflows, in contrast, has not increased proportionally. The large number of operators available in current KDD systems make it difficult for users to successfully analyze data. Moreover, workflows easily contain a large number of operators and parts of the workflows are applied several times, thus it is hard for us...

  3. Requirements for Secure Logging of Decentralized Cross-Organizational Workflow Executions

    NARCIS (Netherlands)

    Wombacher, Andreas; Wieringa, Roelf J.; Jonker, Willem; Knezevic, P.; Pokraev, S.; meersman, R; Tari, Z; herrero, p; Méndez, G.; Cavedon, L.; Martin, D.; Hinze, A.; Buchanan, G.

    2005-01-01

    The control of actions performed by parties involved in a decentralized cross-organizational workflow is done by several independent workflow engines. Due to the lack of a centralized coordination control, an auditing is required which supports a reliable and secure detection of malicious actions

  4. CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on

  5. CrossFlow : cross-organizational workflow management in dynamic virtual enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, K.; Hoffner, Y.

    2000-01-01

    This paper gives a detailed overview of the approach to cross-organizational workflow management developed in the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual

  6. The Symbiotic Relationship between Scientific Workflow and Provenance (Invited)

    Science.gov (United States)

    Stephan, E.

    2010-12-01

    The purpose of this presentation is to describe the symbiotic nature of scientific workflows and provenance. We will also discuss the current trends and real world challenges facing these two distinct research areas. Although motivated differently, the needs of the international science communities are the glue that binds this relationship together. Understanding and articulating the science drivers to these communities is paramount as these technologies evolve and mature. Originally conceived for managing business processes, workflows are now becoming invaluable assets in both computational and experimental sciences. These reconfigurable, automated systems provide essential technology to perform complex analyses by coupling together geographically distributed disparate data sources and applications. As a result, workflows are capable of higher throughput in a shorter amount of time than performing the steps manually. Today many different workflow products exist; these could include Kepler and Taverna or similar products like MeDICI, developed at PNNL, that are standardized on the Business Process Execution Language (BPEL). Provenance, originating from the French term Provenir “to come from”, is used to describe the curation process of artwork as art is passed from owner to owner. The concept of provenance was adopted by digital libraries as a means to track the lineage of documents while standards such as the DublinCore began to emerge. In recent years the systems science community has increasingly expressed the need to expand the concept of provenance to formally articulate the history of scientific data. Communities such as the International Provenance and Annotation Workshop (IPAW) have formalized a provenance data model. The Open Provenance Model, and the W3C is hosting a provenance incubator group featuring the Proof Markup Language. Although both workflows and provenance have risen from different communities and operate independently, their mutual

  7. Research and Implementation of Key Technologies in Multi-Agent System to Support Distributed Workflow

    Science.gov (United States)

    Pan, Tianheng

    2018-01-01

    In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.

  8. Integration of the radiotherapy irradiation planning in the digital workflow

    International Nuclear Information System (INIS)

    Roehner, F.; Schmucker, M.; Henne, K.; Bruggmoser, G.; Grosu, A.L.; Frommhold, H.; Heinemann, F.E.; Momm, F.

    2013-01-01

    Background and purpose: At the Clinic of Radiotherapy at the University Hospital Freiburg, all relevant workflow is paperless. After implementing the Operating Schedule System (OSS) as a framework, all processes are being implemented into the departmental system MOSAIQ. Designing a digital workflow for radiotherapy irradiation planning is a large challenge, it requires interdisciplinary expertise and therefore the interfaces between the professions also have to be interdisciplinary. For every single step of radiotherapy irradiation planning, distinct responsibilities have to be defined and documented. All aspects of digital storage, backup and long-term availability of data were considered and have already been realized during the OSS project. Method: After an analysis of the complete workflow and the statutory requirements, a detailed project plan was designed. In an interdisciplinary workgroup, problems were discussed and a detailed flowchart was developed. The new functionalities were implemented in a testing environment by the Clinical and Administrative IT Department (CAI). After extensive tests they were integrated into the new modular department system. Results and conclusion: The Clinic of Radiotherapy succeeded in realizing a completely digital workflow for radiotherapy irradiation planning. During the testing phase, our digital workflow was examined and afterwards was approved by the responsible authority. (orig.)

  9. Parents’ Education, Personality, and Their Children’s Disruptive Behaviour

    Directory of Open Access Journals (Sweden)

    Purwati

    2017-07-01

    Full Text Available The aims of this study were (1 to understand the effects of parents' education and personality aspects on child disruptive behavior, (2 to know the correlation between the parents' personality aspects (N-Deference, N-Succorance, NDominance and N-Aggression and the children' disruptive behavior. A quantitative approach to the correlational design was employed. Three variables were studied, namely parents' education and personality as the independent variables and child disruptive behavior as the independent variable. The applied instruments are questionnaires, (2 personality test (EPPS, and (3 observation with time and interval samplings approach. The population is from Magelang, Indonesia, while the participants are 100 children at the age of 5 – 7 years and their parents. The results show that (1 there are some effects of parents' education and personality on child disruptive behavior, and (2 aggressive aspects of the parents' personality gave great effects on child disruptive behavior, followed by the succorance, deference, and at the lowest level, the dominance aspects

  10. Measuring Semantic and Structural Information for Data Oriented Workflow Retrieval with Cost Constraints

    Directory of Open Access Journals (Sweden)

    Yinglong Ma

    2014-01-01

    Full Text Available The reuse of data oriented workflows (DOWs can reduce the cost of workflow system development and control the risk of project failure and therefore is crucial for accelerating the automation of business processes. Reusing workflows can be achieved by measuring the similarity among candidate workflows and selecting the workflow satisfying requirements of users from them. However, due to DOWs being often developed based on an open, distributed, and heterogeneous environment, different users often can impose diverse cost constraints on data oriented workflows. This makes the reuse of DOWs challenging. There is no clear solution for retrieving DOWs with cost constraints. In this paper, we present a novel graph based model of DOWs with cost constraints, called constrained data oriented workflow (CDW, which can express cost constraints that users are often concerned about. An approach is proposed for retrieving CDWs, which seamlessly combines semantic and structural information of CDWs. A distance measure based on matrix theory is adopted to seamlessly combine semantic and structural similarities of CDWs for selecting and reusing them. Finally, the related experiments are made to show the effectiveness and efficiency of our approach.

  11. A Multilevel Secure Workflow Management System

    National Research Council Canada - National Science Library

    Kang, Myong H; Froscher, Judith N; Sheth, Amit P; Kochut, Krys J; Miller, John A

    1999-01-01

    The Department of Defense (DoD) needs multilevel secure (MLS) workflow management systems to enable globally distributed users and applications to cooperate across classification levels to achieve mission critical goals...

  12. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  13. DIaaS: Data-Intensive workflows as a service - Enabling easy composition and deployment of data-intensive workflows on Virtual Research Environments

    Science.gov (United States)

    Filgueira, R.; Ferreira da Silva, R.; Deelman, E.; Atkinson, M.

    2016-12-01

    We present the Data-Intensive workflows as a Service (DIaaS) model for enabling easy data-intensive workflow composition and deployment on clouds using containers. DIaaS model backbone is Asterism, an integrated solution for running data-intensive stream-based applications on heterogeneous systems, which combines the benefits of dispel4py with Pegasus workflow systems. The stream-based executions of an Asterism workflow are managed by dispel4py, while the data movement between different e-Infrastructures, and the coordination of the application execution are automatically managed by Pegasus. DIaaS combines Asterism framework with Docker containers to provide an integrated, complete, easy-to-use, portable approach to run data-intensive workflows on distributed platforms. Three containers integrate the DIaaS model: a Pegasus node, and an MPI and an Apache Storm clusters. Container images are described as Dockerfiles (available online at http://github.com/dispel4py/pegasus_dispel4py), linked to Docker Hub for providing continuous integration (automated image builds), and image storing and sharing. In this model, all required software (workflow systems and execution engines) for running scientific applications are packed into the containers, which significantly reduces the effort (and possible human errors) required by scientists or VRE administrators to build such systems. The most common use of DIaaS will be to act as a backend of VREs or Scientific Gateways to run data-intensive applications, deploying cloud resources upon request. We have demonstrated the feasibility of DIaaS using the data-intensive seismic ambient noise cross-correlation application (Figure 1). The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The application is submitted via Pegasus (Container1), and Phase1 and Phase2 are executed in the MPI (Container2) and Storm (Container3) clusters respectively. Although both phases could be executed

  14. Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2014-12-01

    The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.We will present performance metrics from the most recent Cyber

  15. Pegasus Workflow Management System: Helping Applications From Earth and Space

    Science.gov (United States)

    Mehta, G.; Deelman, E.; Vahi, K.; Silva, F.

    2010-12-01

    Pegasus WMS is a Workflow Management System that can manage large-scale scientific workflows across Grid, local and Cloud resources simultaneously. Pegasus WMS provides a means for representing the workflow of an application in an abstract XML form, agnostic of the resources available to run it and the location of data and executables. It then compiles these workflows into concrete plans by querying catalogs and farming computations across local and distributed computing resources, as well as emerging commercial and community cloud environments in an easy and reliable manner. Pegasus WMS optimizes the execution as well as data movement by leveraging existing Grid and cloud technologies via a flexible pluggable interface and provides advanced features like reusing existing data, automatic cleanup of generated data, and recursive workflows with deferred planning. It also captures all the provenance of the workflow from the planning stage to the execution of the generated data, helping scientists to accurately measure performance metrics of their workflow as well as data reproducibility issues. Pegasus WMS was initially developed as part of the GriPhyN project to support large-scale high-energy physics and astrophysics experiments. Direct funding from the NSF enabled support for a wide variety of applications from diverse domains including earthquake simulation, bacterial RNA studies, helioseismology and ocean modeling. Earthquake Simulation: Pegasus WMS was recently used in a large scale production run in 2009 by the Southern California Earthquake Centre to run 192 million loosely coupled tasks and about 2000 tightly coupled MPI style tasks on National Cyber infrastructure for generating a probabilistic seismic hazard map of the Southern California region. SCEC ran 223 workflows over a period of eight weeks, using on average 4,420 cores, with a peak of 14,540 cores. A total of 192 million files were produced totaling about 165TB out of which 11TB of data was saved

  16. Design and implementation of a secure workflow system based on PKI/PMI

    Science.gov (United States)

    Yan, Kai; Jiang, Chao-hui

    2013-03-01

    As the traditional workflow system in privilege management has the following weaknesses: low privilege management efficiency, overburdened for administrator, lack of trust authority etc. A secure workflow model based on PKI/PMI is proposed after studying security requirements of the workflow systems in-depth. This model can achieve static and dynamic authorization after verifying user's ID through PKC and validating user's privilege information by using AC in workflow system. Practice shows that this system can meet the security requirements of WfMS. Moreover, it can not only improve system security, but also ensures integrity, confidentiality, availability and non-repudiation of the data in the system.

  17. Characterizing workflow for pediatric asthma patients in emergency departments using electronic health records.

    Science.gov (United States)

    Ozkaynak, Mustafa; Dziadkowiec, Oliwier; Mistry, Rakesh; Callahan, Tiffany; He, Ze; Deakyne, Sara; Tham, Eric

    2015-10-01

    The purpose of this study was to describe a workflow analysis approach and apply it in emergency departments (EDs) using data extracted from the electronic health record (EHR) system. We used data that were obtained during 2013 from the ED of a children's hospital and its four satellite EDs. Workflow-related data were extracted for all patient visits with either a primary or secondary diagnosis on discharge of asthma (ICD-9 code=493). For each patient visit, eight different a priori time-stamped events were identified. Data were also collected on mode of arrival, patient demographics, triage score (i.e. acuity level), and primary/secondary diagnosis. Comparison groups were by acuity levels 2 and 3 with 2 being more acute than 3, arrival mode (ambulance versus walk-in), and site. Data were analyzed using a visualization method and Markov Chains. To demonstrate the viability and benefit of the approach, patient care workflows were visually and quantitatively compared. The analysis of the EHR data allowed for exploration of workflow patterns and variation across groups. Results suggest that workflow was different for different arrival modes, settings and acuity levels. EHRs can be used to explore workflow with statistical and visual analytics techniques novel to the health care setting. The results generated by the proposed approach could be utilized to help institutions identify workflow issues, plan for varied workflows and ultimately improve efficiency in caring for diverse patient groups. EHR data and novel analytic techniques in health care can expand our understanding of workflow in both large and small ED units. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A Workflow-Oriented Approach To Propagation Models In Heliophysics

    Directory of Open Access Journals (Sweden)

    Gabriele Pierantoni

    2014-01-01

    Full Text Available The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time

  19. Analog to digital workflow improvement: a quantitative study.

    Science.gov (United States)

    Wideman, Catherine; Gallet, Jacqueline

    2006-01-01

    This study tracked a radiology department's conversion from utilization of a Kodak Amber analog system to a Kodak DirectView DR 5100 digital system. Through the use of ProModel Optimization Suite, a workflow simulation software package, significant quantitative information was derived from workflow process data measured before and after the change to a digital system. Once the digital room was fully operational and the radiology staff comfortable with the new system, average patient examination time was reduced from 9.24 to 5.28 min, indicating that a higher patient throughput could be achieved. Compared to the analog system, chest examination time for modality specific activities was reduced by 43%. The percentage of repeat examinations experienced with the digital system also decreased to 8% vs. the level of 9.5% experienced with the analog system. The study indicated that it is possible to quantitatively study clinical workflow and productivity by using commercially available software.

  20. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  1. An integrated billing application to streamline clinician workflow.

    Science.gov (United States)

    Vawdrey, David K; Walsh, Colin; Stetson, Peter D

    2014-01-01

    Between 2008 and 2010, our academic medical center transitioned to electronic provider documentation using a commercial electronic health record system. For attending physicians, one of the most frustrating aspects of this experience was the system's failure to support their existing electronic billing workflow. Because of poor system integration, it was difficult to verify the supporting documentation for each bill and impractical to track whether billable notes had corresponding charges. We developed and deployed in 2011 an integrated billing application called "iCharge" that streamlines clinicians' documentation and billing workflow, and simultaneously populates the inpatient problem list using billing diagnosis codes. Each month, over 550 physicians use iCharge to submit approximately 23,000 professional service charges for over 4,200 patients. On average, about 2.5 new problems are added to each patient's problem list. This paper describes the challenges and benefits of workflow integration across disparate applications and presents an example of innovative software development within a commercial EHR framework.

  2. CMS Alignement and Calibration workflows: lesson learned and future plans

    CERN Document Server

    AUTHOR|(CDS)2069172

    2014-01-01

    We review the online and offline workflows designed to align and calibrate the CMS detector. Starting from the gained experience during the first LHC run, we discuss the expected developments for Run II. In particular, we describe the envisioned different stages, from the alignment using cosmic rays data to the detector alignment and calibration using the first proton-proton collisions data ( O(100 pb-1) ) and a larger dataset ( O(1 fb-1) ) to reach the target precision. The automatisation of the workflow and the integration in the online and offline activity (dedicated triggers and datasets, data skims, workflows to compute the calibration and alignment constants) are discussed.

  3. New Interactions with Workflow Systems

    NARCIS (Netherlands)

    Wassink, I.; van der Vet, P.E.; van der Veer, Gerrit C.; Roos, M.; van Dijk, Elisabeth M.A.G.; Norros, L.; Koskinen, H.; Salo, L.; Savioja, P.

    2009-01-01

    This paper describes the evaluation of our early design ideas of an ad-hoc of workflow system. Using the teach-back technique, we have performed a hermeneutic analysis of the mockup implementation named NIWS to get corrective and creative feedback at the functional, dialogue and representation level

  4. Logical provenance in data-oriented workflows?

    KAUST Repository

    Ikeda, R.; Das Sarma, Akash; Widom, J.

    2013-01-01

    for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations' provenance to the workflow provenance. We

  5. Workflow in clinical trial sites & its association with near miss events for data quality: ethnographic, workflow & systems simulation.

    Science.gov (United States)

    de Carvalho, Elias Cesar Araujo; Batilana, Adelia Portero; Claudino, Wederson; Reis, Luiz Fernando Lima; Schmerling, Rafael A; Shah, Jatin; Pietrobon, Ricardo

    2012-01-01

    With the exponential expansion of clinical trials conducted in (Brazil, Russia, India, and China) and VISTA (Vietnam, Indonesia, South Africa, Turkey, and Argentina) countries, corresponding gains in cost and enrolment efficiency quickly outpace the consonant metrics in traditional countries in North America and European Union. However, questions still remain regarding the quality of data being collected in these countries. We used ethnographic, mapping and computer simulation studies to identify/address areas of threat to near miss events for data quality in two cancer trial sites in Brazil. Two sites in Sao Paolo and Rio Janeiro were evaluated using ethnographic observations of workflow during subject enrolment and data collection. Emerging themes related to threats to near miss events for data quality were derived from observations. They were then transformed into workflows using UML-AD and modeled using System Dynamics. 139 tasks were observed and mapped through the ethnographic study. The UML-AD detected four major activities in the workflow evaluation of potential research subjects prior to signature of informed consent, visit to obtain subject́s informed consent, regular data collection sessions following study protocol and closure of study protocol for a given project. Field observations pointed to three major emerging themes: (a) lack of standardized process for data registration at source document, (b) multiplicity of data repositories and (c) scarcity of decision support systems at the point of research intervention. Simulation with policy model demonstrates a reduction of the rework problem. Patterns of threats to data quality at the two sites were similar to the threats reported in the literature for American sites. The clinical trial site managers need to reorganize staff workflow by using information technology more efficiently, establish new standard procedures and manage professionals to reduce near miss events and save time/cost. Clinical trial

  6. A workflow learning model to improve geovisual analytics utility.

    Science.gov (United States)

    Roth, Robert E; Maceachren, Alan M; McCabe, Craig A

    2009-01-01

    the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.

  7. Extension of specification language for soundness and completeness of service workflow

    Science.gov (United States)

    Viriyasitavat, Wattana; Xu, Li Da; Bi, Zhuming; Sapsomboon, Assadaporn

    2018-05-01

    A Service Workflow is an aggregation of distributed services to fulfill specific functionalities. With ever increasing available services, the methodologies for the selections of the services against the given requirements become main research subjects in multiple disciplines. A few of researchers have contributed to the formal specification languages and the methods for model checking; however, existing methods have the difficulties to tackle with the complexity of workflow compositions. In this paper, we propose to formalize the specification language to reduce the complexity of the workflow composition. To this end, we extend a specification language with the consideration of formal logic, so that some effective theorems can be derived for the verification of syntax, semantics, and inference rules in the workflow composition. The logic-based approach automates compliance checking effectively. The Service Workflow Specification (SWSpec) has been extended and formulated, and the soundness, completeness, and consistency of SWSpec applications have been verified; note that a logic-based SWSpec is mandatory for the development of model checking. The application of the proposed SWSpec has been demonstrated by the examples with the addressed soundness, completeness, and consistency.

  8. Workflow optimization beyond RIS and PACS

    International Nuclear Information System (INIS)

    Treitl, M.; Wirth, S.; Lucke, A.; Nissen-Meyer, S.; Trumm, C.; Rieger, J.; Pfeifer, K.-J.; Reiser, M.; Villain, S.

    2005-01-01

    Technological progress and the rising cost pressure on the healthcare system have led to a drastic change in the work environment of radiologists today. The pervasive demand for workflow optimization and increased efficiency of its activities raises the question of whether by employment of electronic systems, such as RIS and PACS, the potentials of digital technology are sufficiently used to fulfil this demand. This report describes the tasks and structures in radiology departments, which so far are only insufficiently supported by commercially available electronic systems but are nevertheless substantial. We developed and employed a web-based, integrated workplace system, which simplifies many daily tasks of departmental organization and administration apart from well-established tasks of documentation. Furthermore, we analyzed the effects exerted on departmental workflow by employment of this system for 3 years. (orig.) [de

  9. From shared data to sharing workflow: Merging PACS and teleradiology

    International Nuclear Information System (INIS)

    Benjamin, Menashe; Aradi, Yinon; Shreiber, Reuven

    2010-01-01

    Due to a host of technological, interface, operational and workflow limitations, teleradiology and PACS/RIS were historically developed as separate systems serving different purposes. PACS/RIS handled local radiology storage and workflow management while teleradiology addressed remote access to images. Today advanced PACS/RIS support complete site radiology workflow for attending physicians, whether on-site or remote. In parallel, teleradiology has emerged into a service of providing remote, off-hours, coverage for emergency radiology and to a lesser extent subspecialty reading to subscribing sites and radiology groups. When attending radiologists use teleradiology for remote access to a site, they may share all relevant patient data and participate in the site's workflow like their on-site peers. The operation gets cumbersome and time consuming when these radiologists serve multi-sites, each requiring a different remote access, or when the sites do not employ the same PACS/RIS/Reporting Systems and do not share the same ownership. The least efficient operation is of teleradiology companies engaged in reading for multiple facilities. As these services typically employ non-local radiologists, they are allowed to share some of the available patient data necessary to provide an emergency report but, by enlarge, they do not share the workflow of the sites they serve. Radiology stakeholders usually prefer to have their own radiologists perform all radiology tasks including interpretation of off-hour examinations. It is possible with current technology to create a system that combines the benefits of local radiology services to multiple sites with the advantages offered by adding subspecialty and off-hours emergency services through teleradiology. Such a system increases efficiency for the radiology groups by enabling all users, regardless of location, to work 'local' and fully participate in the workflow of every site. We refer to such a system as SuperPACS.

  10. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  11. The CMS tracker calibration workflow: Experience with cosmic ray data

    International Nuclear Information System (INIS)

    Frosali, Simone

    2010-01-01

    During the second part of 2008 a CMS commissioning was performed with the acquisition of cosmic events in global runs. Cosmic rays detected in the muon chambers were used to trigger the readout of all CMS subdetectors in the general data acquisition system. A total of about 300M of tracks were collected by the CMS Muon Chambers with a 3.8T magnetic field produced by the CMS superconducting solenoid, 6M of which pointing to the tracker region and reconstructed by the Si-Strip Tracker (SST) detectors. Other 1M of cosmic tracks were collected with the magnetic field off. Using the cosmic data available it was possible to validate the performances of the CMS tracker calibration workflows. In this paper the adopted calibration workflow is described. In particular, the three main calibration workflows requested for the low level reconstruction of the SST, i.e. gain calibration, Lorentz angle calibration and bad components identification, are described. The results obtained using cosmic tracks for these three calibration workflows are also presented.

  12. Exformatics Declarative Case Management Workflows as DCR Graphs

    DEFF Research Database (Denmark)

    Slaats, Tijs; Mukkamala, Raghava Rao; Hildebrandt, Thomas

    2013-01-01

    Declarative workflow languages have been a growing research subject over the past ten years, but applications of the declarative approach in industry are still uncommon. Over the past two years Exformatics A/S, a Danish provider of Electronic Case Management systems, has been cooperating...... with researchers at IT University of Copenhagen (ITU) to create tools for the declarative workflow language Dynamic Condition Response Graphs (DCR Graphs) and incorporate them into their products and in teaching at ITU. In this paper we give a status report over the work. We start with an informal introduction...

  13. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    Science.gov (United States)

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  14. A framework for service enterprise workflow simulation with multi-agents cooperation

    Science.gov (United States)

    Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun

    2013-11-01

    Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.

  15. A-Posteriori Detection of Sensor Infrastructure Errors in Correlated Sensor Data and Business Workflows

    NARCIS (Netherlands)

    Wombacher, Andreas; Rinderle-Ma, Stefanie; Toumani, Farouk; Wolf, Karsten

    Some physical objects are influenced by business workflows and are observed by sensors. Since both sensor infrastructures and business workflows must deal with imprecise information, the correlation of sensor data and business workflow data related to physical objects might be used a-posteriori to

  16. Restructuring of workflows to minimise errors via stochastic model checking: An automated evolutionary approach

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee

    2016-01-01

    This article presents a framework for the automated restructuring of stochastic workflows to reduce the impact of faults. The framework allows for the modelling of workflows by means of a formalised subset of the BPMN workflow language. We extend this modelling formalism to describe faults...

  17. Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds

    NARCIS (Netherlands)

    Abrishami, S.; Naghibzadeh, M.; Epema, D.H.J.

    2013-01-01

    The advent of Cloud computing as a new model of service provisioning in distributed systems encourages researchers to investigate its benefits and drawbacks on executing scientific applications such as workflows. One of the most challenging problems in Clouds is workflow scheduling, i.e., the

  18. Grid workflow job execution service 'Pilot'

    Science.gov (United States)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-12-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  19. Grid workflow job execution service 'Pilot'

    International Nuclear Information System (INIS)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-01-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  20. Managing and Communicating Operational Workflow: Designing and Implementing an Electronic Outpatient Whiteboard.

    Science.gov (United States)

    Steitz, Bryan D; Weinberg, Stuart T; Danciu, Ioana; Unertl, Kim M

    2016-01-01

    Healthcare team members in emergency department contexts have used electronic whiteboard solutions to help manage operational workflow for many years. Ambulatory clinic settings have highly complex operational workflow, but are still limited in electronic assistance to communicate and coordinate work activities. To describe and discuss the design, implementation, use, and ongoing evolution of a coordination and collaboration tool supporting ambulatory clinic operational workflow at Vanderbilt University Medical Center (VUMC). The outpatient whiteboard tool was initially designed to support healthcare work related to an electronic chemotherapy order-entry application. After a highly successful initial implementation in an oncology context, a high demand emerged across the organization for the outpatient whiteboard implementation. Over the past 10 years, developers have followed an iterative user-centered design process to evolve the tool. The electronic outpatient whiteboard system supports 194 separate whiteboards and is accessed by over 2800 distinct users on a typical day. Clinics can configure their whiteboards to support unique workflow elements. Since initial release, features such as immunization clinical decision support have been integrated into the system, based on requests from end users. The success of the electronic outpatient whiteboard demonstrates the usefulness of an operational workflow tool within the ambulatory clinic setting. Operational workflow tools can play a significant role in supporting coordination, collaboration, and teamwork in ambulatory healthcare settings.

  1. How to plan workflow changes: a practical quality improvement tool used in an outpatient hospital pharmacy.

    Science.gov (United States)

    Aguilar, Christine; Chau, Connie; Giridharan, Neha; Huh, Youchin; Cooley, Janet; Warholak, Terri L

    2013-06-01

    A quality improvement tool is provided to improve pharmacy workflow with the goal of minimizing errors caused by workflow issues. This study involved workflow evaluation and reorganization, and staff opinions of these proposed changes. The study pharmacy was an outpatient pharmacy in the Tucson area. However, the quality improvement tool may be applied in all pharmacy settings, including but not limited to community, hospital, and independent pharmacies. This tool can help the user to identify potential workflow problem spots, such as high-traffic areas through the creation of current and proposed workflow diagrams. Creating a visual representation can help the user to identify problem spots and to propose changes to optimize workflow. It may also be helpful to assess employees' opinions of these changes. The workflow improvement tool can be used to assess where improvements are needed in a pharmacy's floor plan and workflow. Suggestions for improvements in the study pharmacy included increasing the number of verification points and decreasing high traffic areas in the workflow. The employees of the study pharmacy felt that the proposed changes displayed greater continuity, sufficiency, accessibility, and space within the pharmacy.

  2. Thermal Remote Sensing with Uav-Based Workflows

    Science.gov (United States)

    Boesch, R.

    2017-08-01

    Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.

  3. Simulation of Plasma Disruptions for HL-2M with the DINA Code

    International Nuclear Information System (INIS)

    Xue Lei; Duan Xu-Ru; Zheng Guo-Yao; Yan Shi-Lei; Liu Yue-Qiang; Dokuka, V. V.; Khayrutdinov, R. R.; Lukash, V. E.

    2015-01-01

    Plasma disruption is often an unavoidable aspect of tokamak operations. It may cause severe damage to in-vessel components such as the vacuum vessel conductors, the first wall and the divertor target plates. Two types of disruption, the hot-plasma vertical displacement event and the major disruption with a cold-plasma vertical displacement event, are simulated by the DINA code for HL-2M. The time evolutions of the plasma current, the halo current, the magnetic axis, the minor radius, the elongation as well as the electromagnetic force and eddy currents on the vacuum vessel during the thermal quench and the current quench are investigated. By comparing the electromagnetic forces before and after the disruption, we find that the disruption causes great damage to the vacuum vessel conductors. In addition, the hot-plasma vertical displacement event is more dangerous than the major disruption with the cold-plasma vertical displacement event. (paper)

  4. Supporting the annotation of chronic obstructive pulmonary disease (COPD) phenotypes with text mining workflows.

    Science.gov (United States)

    Fu, Xiao; Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disorder whose recent prevalence has led to an increasing burden on public healthcare. Phenotypic information in electronic clinical records is essential in providing suitable personalised treatment to patients with COPD. However, as phenotypes are often "hidden" within free text in clinical records, clinicians could benefit from text mining systems that facilitate their prompt recognition. This paper reports on a semi-automatic methodology for producing a corpus that can ultimately support the development of text mining tools that, in turn, will expedite the process of identifying groups of COPD patients. A corpus of 30 full-text papers was formed based on selection criteria informed by the expertise of COPD specialists. We developed an annotation scheme that is aimed at producing fine-grained, expressive and computable COPD annotations without burdening our curators with a highly complicated task. This was implemented in the Argo platform by means of a semi-automatic annotation workflow that integrates several text mining tools, including a graphical user interface for marking up documents. When evaluated using gold standard (i.e., manually validated) annotations, the semi-automatic workflow was shown to obtain a micro-averaged F-score of 45.70% (with relaxed matching). Utilising the gold standard data to train new concept recognisers, we demonstrated that our corpus, although still a work in progress, can foster the development of significantly better performing COPD phenotype extractors. We describe in this work the means by which we aim to eventually support the process of COPD phenotype curation, i.e., by the application of various text mining tools integrated into an annotation workflow. Although the corpus being described is still under development, our results thus far are encouraging and show great potential in stimulating the development of further automatic COPD phenotype extractors.

  5. Barriers to critical thinking: workflow interruptions and task switching among nurses.

    Science.gov (United States)

    Cornell, Paul; Riordan, Monica; Townsend-Gervis, Mary; Mobley, Robin

    2011-10-01

    Nurses are increasingly called upon to engage in critical thinking. However, current workflow inhibits this goal with frequent task switching and unpredictable demands. To assess workflow's cognitive impact, nurses were observed at 2 hospitals with different patient loads and acuity levels. Workflow on a medical/surgical and pediatric oncology unit was observed, recording tasks, tools, collaborators, and locations. Nineteen nurses were observed for a total of 85.2 hours. Tasks were short with a mean duration of 62.4 and 81.6 seconds on the 2 units. More than 50% of the recorded tasks were less than 30 seconds in length. An analysis of task sequence revealed few patterns and little pairwise repetition. Performance on specific tasks differed between the 2 units, but the character of the workflow was highly similar. The nonrepetitive flow and high amount of switching indicate nurses experience a heavy cognitive load with little uninterrupted time. This implies that nurses rarely have the conditions necessary for critical thinking.

  6. Task Delegation Based Access Control Models for Workflow Systems

    Science.gov (United States)

    Gaaloul, Khaled; Charoy, François

    e-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model.

  7. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  8. Integrated Automatic Workflow for Phylogenetic Tree Analysis Using Public Access and Local Web Services.

    Science.gov (United States)

    Damkliang, Kasikrit; Tandayya, Pichaya; Sangket, Unitsa; Pasomsub, Ekawat

    2016-11-28

    At the present, coding sequence (CDS) has been discovered and larger CDS is being revealed frequently. Approaches and related tools have also been developed and upgraded concurrently, especially for phylogenetic tree analysis. This paper proposes an integrated automatic Taverna workflow for the phylogenetic tree inferring analysis using public access web services at European Bioinformatics Institute (EMBL-EBI) and Swiss Institute of Bioinformatics (SIB), and our own deployed local web services. The workflow input is a set of CDS in the Fasta format. The workflow supports 1,000 to 20,000 numbers in bootstrapping replication. The workflow performs the tree inferring such as Parsimony (PARS), Distance Matrix - Neighbor Joining (DIST-NJ), and Maximum Likelihood (ML) algorithms of EMBOSS PHYLIPNEW package based on our proposed Multiple Sequence Alignment (MSA) similarity score. The local web services are implemented and deployed into two types using the Soaplab2 and Apache Axis2 deployment. There are SOAP and Java Web Service (JWS) providing WSDL endpoints to Taverna Workbench, a workflow manager. The workflow has been validated, the performance has been measured, and its results have been verified. Our workflow's execution time is less than ten minutes for inferring a tree with 10,000 replicates of the bootstrapping numbers. This paper proposes a new integrated automatic workflow which will be beneficial to the bioinformaticians with an intermediate level of knowledge and experiences. All local services have been deployed at our portal http://bioservices.sci.psu.ac.th.

  9. e-BioFlow: improving practical use of workflow systems in bioinformatics

    NARCIS (Netherlands)

    Wassink, I.; Ooms, M.; Neerincx, P.; Rauwerda, H.; Leunissen, J.A.M.; Breit, T.M.; Nijholt, A.; Vet, van der P.

    2010-01-01

    Workflow management systems (WfMSs) are useful tools for bioinformaticians. As experiences with using WfMSs accumulate, shortcomings of current systems become apparent. In this paper, we focus on practical issues that hinder WfMS users and that arise in the design and execution of workflows, and in

  10. VisTrails is an open-source scientific workflow and provenance management system

    CSIR Research Space (South Africa)

    Mthombeni, Thabo DM

    2011-12-01

    Full Text Available VisTrails is an open-source scientific workflow and provenance management system that provides support for simulations, data exploration and visualization. Whereas workflows have been traditionally used to automate repetitive tasks, for applications...

  11. Modeling workflow to design machine translation applications for public health practice.

    Science.gov (United States)

    Turner, Anne M; Brownstein, Megumu K; Cole, Kate; Karasz, Hilary; Kirchhoff, Katrin

    2015-02-01

    Provide a detailed understanding of the information workflow processes related to translating health promotion materials for limited English proficiency individuals in order to inform the design of context-driven machine translation (MT) tools for public health (PH). We applied a cognitive work analysis framework to investigate the translation information workflow processes of two large health departments in Washington State. Researchers conducted interviews, performed a task analysis, and validated results with PH professionals to model translation workflow and identify functional requirements for a translation system for PH. The study resulted in a detailed description of work related to translation of PH materials, an information workflow diagram, and a description of attitudes towards MT technology. We identified a number of themes that hold design implications for incorporating MT in PH translation practice. A PH translation tool prototype was designed based on these findings. This study underscores the importance of understanding the work context and information workflow for which systems will be designed. Based on themes and translation information workflow processes, we identified key design guidelines for incorporating MT into PH translation work. Primary amongst these is that MT should be followed by human review for translations to be of high quality and for the technology to be adopted into practice. The time and costs of creating multilingual health promotion materials are barriers to translation. PH personnel were interested in MT's potential to improve access to low-cost translated PH materials, but expressed concerns about ensuring quality. We outline design considerations and a potential machine translation tool to best fit MT systems into PH practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Integration Of Externalized Decision Models In The Definition Of Workflows For Digital Pathology

    Directory of Open Access Journals (Sweden)

    J. van Leeuwen

    2016-06-01

    We proposed a workflow solution enabling the representation of decision models as externalized executable tasks in the process definition. Our approach separates the task implementations from the workflow model, ensuring scalability and allowing for the inclusion of complex decision logic in the workflow execution. In we depict a simplified model of a pathology diagnosis workflow (starting with the digitization of the slides, represented according to the BPMN modeling conventions. The example shows a workflow sequence that automatically orders a HER2 FISH when IHC is borderline according to defined customizable thresholds. The process model integrates an image analysis algorithm that scores images. Based on the score and the thresholds the decision model evaluates the condition and recommends the pre-ordering of an additional test when the score falls between the two thresholds. This leads to faster diagnosis and allows balancing the costs of an additional test versus the overhead of the pathologist by choosing the values of the thresholds.  

  13. Translating Unstructured Workflow Processes to Readable BPEL: Theory and Implementation

    DEFF Research Database (Denmark)

    van der Aalst, Willibrordus Martinus Pancratius; Lassen, Kristian Bisgaard

    2008-01-01

    and not easy to use by end-users. Therefore, we provide a mapping from Workflow Nets (WF-nets) to BPEL. This mapping builds on the rich theory of Petri nets and can also be used to map other languages (e.g., UML, EPC, BPMN, etc.) onto BPEL. In addition to this we have implemented the algorithm in a tool called...... WorkflowNet2BPEL4WS....

  14. Workflow Based Software Development Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed research is to investigate and develop a workflow based tool, the Software Developers Assistant, to facilitate the collaboration between...

  15. Workflow Based Software Development Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed research is to investigate and develop a workflow based tool, the Software Developers Assistant, to facilitate the collaboration between...

  16. BIFI: a Taverna plugin for a simplified and user-friendly workflow platform.

    Science.gov (United States)

    Yildiz, Ahmet; Dilaveroglu, Erkan; Visne, Ilhami; Günay, Bilal; Sefer, Emrah; Weinhausel, Andreas; Rattay, Frank; Goble, Carole A; Pandey, Ram Vinay; Kriegner, Albert

    2014-10-20

    Heterogeneity in the features, input-output behaviour and user interface for available bioinformatics tools and services is still a bottleneck for both expert and non-expert users. Advancement in providing common interfaces over such tools and services are gaining interest among researchers. However, the lack of (meta-) information about input-output data and parameter prevents to provide automated and standardized solutions, which can assist users in setting the appropriate parameters. These limitations must be resolved especially in the workflow-based solution in order to ease the integration of software. We report a Taverna Workbench plugin: the XworX BIFI (Beautiful Interfaces for Inputs) implemented as a solution for the aforementioned issues. BIFI provides a Graphical User Interface (GUI) definition language used to layout the user interface and to define parameter options for Taverna workflows. BIFI is also able to submit GUI Definition Files (GDF) directly or discover appropriate instances from a configured repository. In the absence of a GDF, BIFI generates a default interface. The Taverna Workbench is an open source software providing the ability to combine various services within a workflow. Nevertheless, users can supply input data to the workflow via a simple user interface providing only a text area to enter the input in text form. The workflow may contain meta-information in human readable form such as description text for the port and an example value. However, not all workflow ports are documented so well or have all the required information.BIFI uses custom user interface components for ports which give users feedback on the parameter data type or structure to be used for service execution and enables client-side data validations. Moreover, BIFI offers user interfaces that allow users to interactively construct workflow views and share them with the community, thus significantly increasing usability of heterogeneous, distributed service

  17. SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System

    Science.gov (United States)

    Liu, Xiao; Yuan, Dong; Zhang, Gaofeng; Chen, Jinjun; Yang, Yun

    Workflow systems are designed to support the process automation of large scale business and scientific applications. In recent years, many workflow systems have been deployed on high performance computing infrastructures such as cluster, peer-to-peer (p2p), and grid computing (Moore, 2004; Wang, Jie, & Chen, 2009; Yang, Liu, Chen, Lignier, & Jin, 2007). One of the driving forces is the increasing demand of large scale instance and data/computation intensive workflow applications (large scale workflow applications for short) which are common in both eBusiness and eScience application areas. Typical examples (will be detailed in Section 13.2.1) include such as the transaction intensive nation-wide insurance claim application process; the data and computation intensive pulsar searching process in Astrophysics. Generally speaking, instance intensive applications are those processes which need to be executed for a large number of times sequentially within a very short period or concurrently with a large number of instances (Liu, Chen, Yang, & Jin, 2008; Liu et al., 2010; Yang et al., 2008). Therefore, large scale workflow applications normally require the support of high performance computing infrastructures (e.g. advanced CPU units, large memory space and high speed network), especially when workflow activities are of data and computation intensive themselves. In the real world, to accommodate such a request, expensive computing infrastructures including such as supercomputers and data servers are bought, installed, integrated and maintained with huge cost by system users

  18. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    Science.gov (United States)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  19. Provenance-Based Debugging and Drill-Down in Data-Oriented Workflows

    KAUST Repository

    Ikeda, Robert

    2012-04-01

    Panda (for Provenance and Data) is a system that supports the creation and execution of data-oriented workflows, with automatic provenance generation and built-in provenance tracing operations. Workflows in Panda are arbitrary a cyclic graphs containing both relational (SQL) processing nodes and opaque processing nodes programmed in Python. For both types of nodes, Panda generates logical provenance - provenance information stored at the processing-node level - and uses the generated provenance to support record-level backward tracing and forward tracing operations. In our demonstration we use Panda to integrate, process, and analyze actual education data from multiple sources. We specifically demonstrate how Panda\\'s provenance generation and tracing capabilities can be very useful for workflow debugging, and for drilling down on specific results of interest. © 2012 IEEE.

  20. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  1. Text mining for the biocuration workflow

    Science.gov (United States)

    Hirschman, Lynette; Burns, Gully A. P. C; Krallinger, Martin; Arighi, Cecilia; Cohen, K. Bretonnel; Valencia, Alfonso; Wu, Cathy H.; Chatr-Aryamontri, Andrew; Dowell, Karen G.; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G.

    2012-01-01

    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community. PMID:22513129

  2. Workflow Automation: A Collective Case Study

    Science.gov (United States)

    Harlan, Jennifer

    2013-01-01

    Knowledge management has proven to be a sustainable competitive advantage for many organizations. Knowledge management systems are abundant, with multiple functionalities. The literature reinforces the use of workflow automation with knowledge management systems to benefit organizations; however, it was not known if process automation yielded…

  3. Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics.

    Science.gov (United States)

    Guitton, Yann; Tremblay-Franco, Marie; Le Corguillé, Gildas; Martin, Jean-François; Pétéra, Mélanie; Roger-Mele, Pierrick; Delabrière, Alexis; Goulitquer, Sophie; Monsoor, Misharl; Duperier, Christophe; Canlet, Cécile; Servien, Rémi; Tardivel, Patrick; Caron, Christophe; Giacomoni, Franck; Thévenot, Etienne A

    2017-12-01

    Metabolomics is a key approach in modern functional genomics and systems biology. Due to the complexity of metabolomics data, the variety of experimental designs, and the multiplicity of bioinformatics tools, providing experimenters with a simple and efficient resource to conduct comprehensive and rigorous analysis of their data is of utmost importance. In 2014, we launched the Workflow4Metabolomics (W4M; http://workflow4metabolomics.org) online infrastructure for metabolomics built on the Galaxy environment, which offers user-friendly features to build and run data analysis workflows including preprocessing, statistical analysis, and annotation steps. Here we present the new W4M 3.0 release, which contains twice as many tools as the first version, and provides two features which are, to our knowledge, unique among online resources. First, data from the four major metabolomics technologies (i.e., LC-MS, FIA-MS, GC-MS, and NMR) can be analyzed on a single platform. By using three studies in human physiology, alga evolution, and animal toxicology, we demonstrate how the 40 available tools can be easily combined to address biological issues. Second, the full analysis (including the workflow, the parameter values, the input data and output results) can be referenced with a permanent digital object identifier (DOI). Publication of data analyses is of major importance for robust and reproducible science. Furthermore, the publicly shared workflows are of high-value for e-learning and training. The Workflow4Metabolomics 3.0 e-infrastructure thus not only offers a unique online environment for analysis of data from the main metabolomics technologies, but it is also the first reference repository for metabolomics workflows. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Formalizing an integrative, multidisciplinary cancer therapy discovery workflow

    Science.gov (United States)

    McGuire, Mary F.; Enderling, Heiko; Wallace, Dorothy I.; Batra, Jaspreet; Jordan, Marie; Kumar, Sushil; Panetta, John C.; Pasquier, Eddy

    2014-01-01

    Although many clinicians and researchers work to understand cancer, there has been limited success to effectively combine forces and collaborate over time, distance, data and budget constraints. Here we present a workflow template for multidisciplinary cancer therapy that was developed during the 2nd Annual Workshop on Cancer Systems Biology sponsored by Tufts University, Boston, MA in July 2012. The template was applied to the development of a metronomic therapy backbone for neuroblastoma. Three primary groups were identified: clinicians, biologists, and scientists (mathematicians, computer scientists, physicists and engineers). The workflow described their integrative interactions; parallel or sequential processes; data sources and computational tools at different stages as well as the iterative nature of therapeutic development from clinical observations to in vitro, in vivo, and clinical trials. We found that theoreticians in dialog with experimentalists could develop calibrated and parameterized predictive models that inform and formalize sets of testable hypotheses, thus speeding up discovery and validation while reducing laboratory resources and costs. The developed template outlines an interdisciplinary collaboration workflow designed to systematically investigate the mechanistic underpinnings of a new therapy and validate that therapy to advance development and clinical acceptance. PMID:23955390

  5. Improved compliance by BPM-driven workflow automation.

    Science.gov (United States)

    Holzmüller-Laue, Silke; Göde, Bernd; Fleischer, Heidi; Thurow, Kerstin

    2014-12-01

    Using methods and technologies of business process management (BPM) for the laboratory automation has important benefits (i.e., the agility of high-level automation processes, rapid interdisciplinary prototyping and implementation of laboratory tasks and procedures, and efficient real-time process documentation). A principal goal of the model-driven development is the improved transparency of processes and the alignment of process diagrams and technical code. First experiences of using the business process model and notation (BPMN) show that easy-to-read graphical process models can achieve and provide standardization of laboratory workflows. The model-based development allows one to change processes quickly and an easy adaption to changing requirements. The process models are able to host work procedures and their scheduling in compliance with predefined guidelines and policies. Finally, the process-controlled documentation of complex workflow results addresses modern laboratory needs of quality assurance. BPMN 2.0 as an automation language to control every kind of activity or subprocess is directed to complete workflows in end-to-end relationships. BPMN is applicable as a system-independent and cross-disciplinary graphical language to document all methods in laboratories (i.e., screening procedures or analytical processes). That means, with the BPM standard, a communication method of sharing process knowledge of laboratories is also available. © 2014 Society for Laboratory Automation and Screening.

  6. PGen: large-scale genomic variations analysis workflow and browser in SoyKB.

    Science.gov (United States)

    Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti

    2016-10-06

    With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most

  7. Successful Completion of FY18/Q1 ASC L2 Milestone 6355: Electrical Analysis Calibration Workflow Capability Demonstration.

    Energy Technology Data Exchange (ETDEWEB)

    Copps, Kevin D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The Sandia Analysis Workbench (SAW) project has developed and deployed a production capability for SIERRA computational mechanics analysis workflows. However, the electrical analysis workflow capability requirements have only been demonstrated in early prototype states, with no real capability deployed for analysts’ use. This milestone aims to improve the electrical analysis workflow capability (via SAW and related tools) and deploy it for ongoing use. We propose to focus on a QASPR electrical analysis calibration workflow use case. We will include a number of new capabilities (versus today’s SAW), such as: 1) support for the XYCE code workflow component, 2) data management coupled to electrical workflow, 3) human-in-theloop workflow capability, and 4) electrical analysis workflow capability deployed on the restricted (and possibly classified) network at Sandia. While far from the complete set of capabilities required for electrical analysis workflow over the long term, this is a substantial first step toward full production support for the electrical analysts.

  8. Inter-observer reliability assessments in time motion studies: the foundation for meaningful clinical workflow analysis.

    Science.gov (United States)

    Lopetegui, Marcelo A; Bai, Shasha; Yen, Po-Yin; Lai, Albert; Embi, Peter; Payne, Philip R O

    2013-01-01

    Understanding clinical workflow is critical for researchers and healthcare decision makers. Current workflow studies tend to oversimplify and underrepresent the complexity of clinical workflow. Continuous observation time motion studies (TMS) could enhance clinical workflow studies by providing rich quantitative data required for in-depth workflow analyses. However, methodological inconsistencies have been reported in continuous observation TMS, potentially reducing the validity of TMS' data and limiting their contribution to the general state of knowledge. We believe that a cornerstone in standardizing TMS is to ensure the reliability of the human observers. In this manuscript we review the approaches for inter-observer reliability assessment (IORA) in a representative sample of TMS focusing on clinical workflow. We found that IORA is an uncommon practice, inconsistently reported, and often uses methods that provide partial and overestimated measures of agreement. Since a comprehensive approach to IORA is yet to be proposed and validated, we provide initial recommendations for IORA reporting in continuous observation TMS.

  9. BIM Workflow for Mechanical Ventilation Design : Object-Based Modeling with Autodesk Revit®

    OpenAIRE

    Bonduel, Mathias

    2016-01-01

    This study is conducted for the Belgian engineering firm CENERGIE, whose main business activities are within the fields of building systems and sustainable buildings. The company wants to change their current design workflows to adapt the use of Building Information Modeling (BIM) with Autodesk Revit The research focused on the development of a BIM workflow where no models are exchanged between building partners. The aim of this study was to develop such a Revit BIM workflow for the desig...

  10. Soundness of Timed-Arc Workflow Nets

    DEFF Research Database (Denmark)

    Mateo, Jose Antonio; Srba, Jiri; Sørensen, Mathias Grund

    2014-01-01

    , we demonstrate the usability of our theory on the case studies of a Brake System Control Unit used in aircraft certification, the MPEG2 encoding algorithm, and a blood transfusion workflow. The implementation of the algorithms is freely available as a part of the model checker TAPAAL....

  11. Observing health professionals' workflow patterns for diabetes care - First steps towards an ontology for EHR services.

    Science.gov (United States)

    Schweitzer, M; Lasierra, N; Hoerbst, A

    2015-01-01

    Increasing the flexibility from a user-perspective and enabling a workflow based interaction, facilitates an easy user-friendly utilization of EHRs for healthcare professionals' daily work. To offer such versatile EHR-functionality, our approach is based on the execution of clinical workflows by means of a composition of semantic web-services. The backbone of such architecture is an ontology which enables to represent clinical workflows and facilitates the selection of suitable services. In this paper we present the methods and results after running observations of diabetes routine consultations which were conducted in order to identify those workflows and the relation among the included tasks. Mentioned workflows were first modeled by BPMN and then generalized. As a following step in our study, interviews will be conducted with clinical personnel to validate modeled workflows.

  12. Images crossing borders: image and workflow sharing on multiple levels.

    Science.gov (United States)

    Ross, Peeter; Pohjonen, Hanna

    2011-04-01

    Digitalisation of medical data makes it possible to share images and workflows between related parties. In addition to linear data flow where healthcare professionals or patients are the information carriers, a new type of matrix of many-to-many connections is emerging. Implementation of shared workflow brings challenges of interoperability and legal clarity. Sharing images or workflows can be implemented on different levels with different challenges: inside the organisation, between organisations, across country borders, or between healthcare institutions and citizens. Interoperability issues vary according to the level of sharing and are either technical or semantic, including language. Legal uncertainty increases when crossing national borders. Teleradiology is regulated by multiple European Union (EU) directives and legal documents, which makes interpretation of the legal system complex. To achieve wider use of eHealth and teleradiology several strategic documents were published recently by the EU. Despite EU activities, responsibility for organising, providing and funding healthcare systems remains with the Member States. Therefore, the implementation of new solutions requires strong co-operation between radiologists, societies of radiology, healthcare administrators, politicians and relevant EU authorities. The aim of this article is to describe different dimensions of image and workflow sharing and to analyse legal acts concerning teleradiology in the EU.

  13. Improving Radiology Workflow with Automated Examination Tracking and Alerts.

    Science.gov (United States)

    Pianykh, Oleg S; Jaworsky, Christina; Shore, M T; Rosenthal, Daniel I

    2017-07-01

    The modern radiology workflow is a production line where imaging examinations pass in sequence through many steps. In busy clinical environments, even a minor delay in any step can propagate through the system and significantly lengthen the examination process. This is particularly true for the tasks delegated to the human operators, who may be distracted or stressed. We have developed an application to track examinations through a critical part of the workflow, from the image-acquisition scanners to the PACS archive. Our application identifies outliers and actively alerts radiology managers about the need to resolve these problems as soon as they happen. In this study, we investigate how this real-time tracking and alerting affected the speed of examination delivery to the radiologist. We demonstrate that active alerting produced a 3-fold reduction of examination-to-PACS delays. Additionally, we discover an overall improvement in examination-to-PACS delivery, evidence that the tracking and alerts instill a culture where timely processing is essential. By providing supervisors with information about exactly where delays emerge in their workflow and alerting the correct staff to take action, applications like ours create more robust radiology workflow with predictable, timely outcomes. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. A reliable computational workflow for the selection of optimal screening libraries.

    Science.gov (United States)

    Gilad, Yocheved; Nadassy, Katalin; Senderowitz, Hanoch

    2015-01-01

    The experimental screening of compound collections is a common starting point in many drug discovery projects. Successes of such screening campaigns critically depend on the quality of the screened library. Many libraries are currently available from different vendors yet the selection of the optimal screening library for a specific project is challenging. We have devised a novel workflow for the rational selection of project-specific screening libraries. The workflow accepts as input a set of virtual candidate libraries and applies the following steps to each library: (1) data curation; (2) assessment of ADME/T profile; (3) assessment of the number of promiscuous binders/frequent HTS hitters; (4) assessment of internal diversity; (5) assessment of similarity to known active compound(s) (optional); (6) assessment of similarity to in-house or otherwise accessible compound collections (optional). For ADME/T profiling, Lipinski's and Veber's rule-based filters were implemented and a new blood brain barrier permeation model was developed and validated (85 and 74 % success rate for training set and test set, respectively). Diversity and similarity descriptors which demonstrated best performances in terms of their ability to select either diverse or focused sets of compounds from three databases (Drug Bank, CMC and CHEMBL) were identified and used for diversity and similarity assessments. The workflow was used to analyze nine common screening libraries available from six vendors. The results of this analysis are reported for each library providing an assessment of its quality. Furthermore, a consensus approach was developed to combine the results of these analyses into a single score for selecting the optimal library under different scenarios. We have devised and tested a new workflow for the rational selection of screening libraries under different scenarios. The current workflow was implemented using the Pipeline Pilot software yet due to the usage of generic

  15. An observation tool for studying patient-oriented workflow in hospital emergency departments.

    Science.gov (United States)

    Ozkaynak, M; Brennan, P

    2013-01-01

    Studying workflow is a critical step in designing, implementing and evaluating informatics interventions in complex sociotechnical settings, such as hospital emergency departments (EDs). Known approaches to studying workflow in clinical settings attend to the activities of individual clinicians, thus being inadequate to characterize patient care as a cooperative work. The purpose of this paper is twofold. First, we introduce a novel, theory-driven patient-oriented workflow methodology, which better addresses the complex, multiple-provider nature of patient care. Second, we report the development of an observational tool and protocol for use in studies of this type, and the results of an evaluation study. We created a tablet computer implementation of an instrument to efficiently capture patient-oriented workflow, and evaluated it through a field study in three EDs. We focused on activities occurring over time during a single patient care episode as well as the roles of the ED staff members who conducted the activities. The evidence generated supports the validity, viability, and reliability of the tool. The coverage of the tool in terms of activities and roles was satisfactory. The tool was able to capture the sequence of activity-role pairs for 108 patient care episodes. The inter-rater reliability assessment yielded a high kappa value (0.79). The patient-oriented workflow methodology has the potential to facilitate modeling patient care in EDs by characterizing both roles and activities in sequence. The methodology also provides researchers and practitioners a more realistic and comprehensive workflow perspective that can inform the design, implementation and evaluation of health information technology interventions.

  16. A data model for analyzing user collaborations in workflow-driven e-Science

    NARCIS (Netherlands)

    Altintas, I.; Anand, M.K.; Vuong, T.N.; Bowers, S.; Ludäscher, B.; Sloot, P.M.A.

    2011-01-01

    Scientific discoveries are often the result of methodical execution of many interrelated scientific workflows, where workflows and datasets published by one set of users can be used by other users to perform subsequent analyses, leading to implicit or explicit collaboration. In this paper, we

  17. Soundness of Timed-Arc Workflow Nets in Discrete and Continuous-Time Semantics

    DEFF Research Database (Denmark)

    Mateo, Jose Antonio; Srba, Jiri; Sørensen, Mathias Grund

    2015-01-01

    Analysis of workflow processes with quantitative aspectslike timing is of interest in numerous time-critical applications. We suggest a workflow model based on timed-arc Petri nets and studythe foundational problems of soundness and strong (time-bounded) soundness.We first consider the discrete-t...

  18. Using workflows to explore and optimise named entity recognition for chemistry.

    Directory of Open Access Journals (Sweden)

    Balakrishna Kolluru

    Full Text Available Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain, OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM and pattern recognition based classifiers. Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR.

  19. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Science.gov (United States)

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Strategy development for anticipating and handling a disruptive technology.

    Science.gov (United States)

    Chan, Stephen

    2006-10-01

    The profession of radiology has greatly benefited from the introduction of new imaging technologies throughout its history. Therefore, it would seem reasonable for radiologists to believe that the emergence of a new imaging technology can generally be foreseen with sufficient advance notice to allow the appropriate levels of time, effort, and money to be devoted toward incorporating it into radiology practice. However, in his seminal work, Christiansen characterized a new form of technologic innovation, known as "disruptive technology," whose emergence often heralds the replacement of market leaders in an industry by competitors who are quicker in adopting and deploying the new technology. This article briefly describes the phenomenon of disruptive technology and addresses the challenges that organizations face in dealing with disruptive technology. The article raises 4 questions about the future of radiology: (1) Are health care and radiology vulnerable to disruptive technology? (2) What kinds of change may be in store for the radiology profession? (3) Can the radiology profession prepare itself to recognize and respond to a disruptive innovation among a group of new imaging technologies? and (4) How should a radiology organization decide whether to invest significant resources in a potentially disruptive technology? This article addresses these questions by reviewing key insights from leading "gurus" in the fields of competitive strategy and technology management and applying them to radiology. This illustrates how and why (despite past successes) the radiology profession may still have a blind spot in recognizing and handling disruptive technologies.

  1. A standard-enabled workflow for synthetic biology

    KAUST Repository

    Myers, Chris J.; Beal, Jacob; Gorochowski, Thomas E.; Kuwahara, Hiroyuki; Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Gö ksel; Nguyen, Tramy; Oberortner, Ernst; Samineni, Meher; Wipat, Anil; Zhang, Michael; Zundel, Zach

    2017-01-01

    A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select

  2. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Sonia Yassa

    2013-01-01

    Full Text Available We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  3. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Science.gov (United States)

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  4. Realizing improved patient care through human-centered operating room design: a human factors methodology for observing flow disruptions in the cardiothoracic operating room.

    Science.gov (United States)

    Palmer, Gary; Abernathy, James H; Swinton, Greg; Allison, David; Greenstein, Joel; Shappell, Scott; Juang, Kevin; Reeves, Scott T

    2013-11-01

    Human factors engineering has allowed a systematic approach to the evaluation of adverse events in a multitude of high-stake industries. This study sought to develop an initial methodology for identifying and classifying flow disruptions in the cardiac operating room (OR). Two industrial engineers with expertise in human factors workflow disruptions observed 10 cardiac operations from the moment the patient entered the OR to the time they left for the intensive care unit. Each disruption was fully documented on an architectural layout of the OR suite and time-stamped during each phase of surgery (preoperative [before incision], operative [incision to skin closure], and postoperative [skin closure until the patient leaves the OR]) to synchronize flow disruptions between the two observers. These disruptions were then categorized. The two observers made a total of 1,158 observations. After the elimination of duplicate observations, a total of 1,080 observations remained to be analyzed. These disruptions were distributed into six categories such as communication, usability, physical layout, environmental hazards, general interruptions, and equipment failures. They were further organized into 33 subcategories. The most common disruptions were related to OR layout and design (33%). By using the detailed architectural diagrams, the authors were able to clearly demonstrate for the first time the unique role that OR design and equipment layout has on the generation of physical layout flow disruptions. Most importantly, the authors have developed a robust taxonomy to describe the flow disruptions encountered in a cardiac OR, which can be used for future research and patient safety improvements.

  5. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    International Nuclear Information System (INIS)

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  6. Differentiated protection services with failure probability guarantee for workflow-based applications

    Science.gov (United States)

    Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2010-12-01

    A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.

  7. Workflow of CAD / CAM Scoliosis Brace Adjustment in Preparation Using 3D Printing.

    Science.gov (United States)

    Weiss, Hans-Rudolf; Tournavitis, Nicos; Nan, Xiaofeng; Borysov, Maksym; Paul, Lothar

    2017-01-01

    High correction bracing is the most effective conservative treatment for patients with scoliosis during growth. Still today braces for the treatment of scoliosis are made by casting patients while computer aided design (CAD) and computer aided manufacturing (CAM) is available with all possibilities to standardize pattern specific brace treatment and improve wearing comfort. CAD / CAM brace production mainly relies on carving a polyurethane foam model which is the basis for vacuuming a polyethylene (PE) or polypropylene (PP) brace. Purpose of this short communication is to describe the workflow currently used and to outline future requirements with respect to 3D printing technology. Description of the steps of virtual brace adjustment as available today are content of this paper as well as an outline of the great potential there is for the future 3D printing technology. For 3D printing of scoliosis braces it is necessary to establish easy to use software plug-ins in order to allow adding 3D printing technology to the current workflow of virtual CAD / CAM brace adjustment. Textures and structures can be added to the brace models at certain well defined locations offering the potential of more wearing comfort without losing in-brace correction. Advances have to be made in the field of CAD / CAM software tools with respect to design and generation of individually structured brace models based on currently well established and standardized scoliosis brace libraries.

  8. Toward Exascale Seismic Imaging: Taming Workflow and I/O Issues

    Science.gov (United States)

    Lefebvre, M. P.; Bozdag, E.; Lei, W.; Rusmanugroho, H.; Smith, J. A.; Tromp, J.; Yuan, Y.

    2013-12-01

    Providing a better understanding of the physics and chemistry of Earth's interior through numerical simulations has always required tremendous computational resources. Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns on how to obtain optimum performance. Several issues are currently being investigated by the HPC community. To name a few, we can list energy consumption, fault resilience, scalability of the current parallel paradigms, large workflow management, I/O performance and feature extraction with large datasets. For this presentation, we focus on the last three issues. In the context of seismic imaging, in particular for simulations based on adjoint methods, workflows are well defined. They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts composing it. The usual approach is to speedup the purely computational parts by code tuning in order to reach higher FLOPS and better memory usage. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from a severe I/O bottleneck. This limitation occurs both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). In both cases, a parallel I/O library, ORNL's ADIOS, is used to drastically lessen the weight of disk access. Moreover, parallel visualization tools, such as VisIt, are able to take advantage of the metadata included in our ADIOS outputs to extract features and

  9. IT-benchmarking of clinical workflows: concept, implementation, and evaluation.

    Science.gov (United States)

    Thye, Johannes; Straede, Matthias-Christopher; Liebe, Jan-David; Hübner, Ursula

    2014-01-01

    Due to the emerging evidence of health IT as opportunity and risk for clinical workflows, health IT must undergo a continuous measurement of its efficacy and efficiency. IT-benchmarks are a proven means for providing this information. The aim of this study was to enhance the methodology of an existing benchmarking procedure by including, in particular, new indicators of clinical workflows and by proposing new types of visualisation. Drawing on the concept of information logistics, we propose four workflow descriptors that were applied to four clinical processes. General and specific indicators were derived from these descriptors and processes. 199 chief information officers (CIOs) took part in the benchmarking. These hospitals were assigned to reference groups of a similar size and ownership from a total of 259 hospitals. Stepwise and comprehensive feedback was given to the CIOs. Most participants who evaluated the benchmark rated the procedure as very good, good, or rather good (98.4%). Benchmark information was used by CIOs for getting a general overview, advancing IT, preparing negotiations with board members, and arguing for a new IT project.

  10. Automated quality control in a file-based broadcasting workflow

    Science.gov (United States)

    Zhang, Lina

    2014-04-01

    Benefit from the development of information and internet technologies, television broadcasting is transforming from inefficient tape-based production and distribution to integrated file-based workflows. However, no matter how many changes have took place, successful broadcasting still depends on the ability to deliver a consistent high quality signal to the audiences. After the transition from tape to file, traditional methods of manual quality control (QC) become inadequate, subjective, and inefficient. Based on China Central Television's full file-based workflow in the new site, this paper introduces an automated quality control test system for accurate detection of hidden troubles in media contents. It discusses the system framework and workflow control when the automated QC is added. It puts forward a QC criterion and brings forth a QC software followed this criterion. It also does some experiments on QC speed by adopting parallel processing and distributed computing. The performance of the test system shows that the adoption of automated QC can make the production effective and efficient, and help the station to achieve a competitive advantage in the media market.

  11. Implementation of a Workflow Management System for Non-Expert Users

    DEFF Research Database (Denmark)

    Jongejan, Bart

    2016-01-01

    tools, the CLARIN-DK workflow management system (WMS) computes combinations of tools that will give the desired result. This advanced functionality was originally not envisaged, but came within reach by writing the WMS partly in Java and partly in a programming language for symbolic computation, Bracmat....... Handling LT tool profiles, including the computation of workflows, is easier with Bracmat's language constructs for tree pattern matching and tree construction than with the language constructs offered by mainstream programming languages....

  12. SegMine workflows for semantic microarray data analysis in Orange4WS

    Directory of Open Access Journals (Sweden)

    Kulovesi Kimmo

    2011-10-01

    Full Text Available Abstract Background In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases. Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. Results We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. Conclusions Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment.

  13. Routine digital pathology workflow: The Catania experience

    Directory of Open Access Journals (Sweden)

    Filippo Fraggetta

    2017-01-01

    Full Text Available Introduction: Successful implementation of whole slide imaging (WSI for routine clinical practice has been accomplished in only a few pathology laboratories worldwide. We report the transition to an effective and complete digital surgical pathology workflow in the pathology laboratory at Cannizzaro Hospital in Catania, Italy. Methods: All (100% permanent histopathology glass slides were digitized at ×20 using Aperio AT2 scanners. Compatible stain and scanning slide racks were employed to streamline operations. eSlide Manager software was bidirectionally interfaced with the anatomic pathology laboratory information system. Virtual slide trays connected to the two-dimensional (2D barcode tracking system allowed pathologists to confirm that they were correctly assigned slides and that all tissues on these glass slides were scanned. Results: Over 115,000 glass slides were digitized with a scan fail rate of around 1%. Drying glass slides before scanning minimized them sticking to scanner racks. Implementation required introduction of a 2D barcode tracking system and modification of histology workflow processes. Conclusion: Our experience indicates that effective adoption of WSI for primary diagnostic use was more dependent on optimizing preimaging variables and integration with the laboratory information system than on information technology infrastructure and ensuring pathologist buy-in. Implementation of digital pathology for routine practice not only leveraged the benefits of digital imaging but also creates an opportunity for establishing standardization of workflow processes in the pathology laboratory.

  14. THE CHANGE OF WORKFLOW PROCESS INDICATORS ACCORDING TO SPEED CHARACTERISTICS WHEN HEATING THE COMPRESSEDAIR AT THE ENTRONCE TO THE PNEUMATIC ENGINE

    Directory of Open Access Journals (Sweden)

    A. Voronkov

    2015-12-01

    Full Text Available Experimental studies of the four-cylinder piston air motor 0/D = 76/77 with a slide air diffuser. There were considered the experimental high-speed characteristics, taking into account the heating of the compressed intake air. Heating of the entering the motor compressed air has a positive effect on the energy, and economic performance of the workflow. The power and torque, increase hourly and specific air flow reduces. There greatly improves the reliability and durability of the pneumatic engine.

  15. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    International Nuclear Information System (INIS)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-01-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  16. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-07-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  17. A Strategy for an MLS Workflow Management System

    National Research Council Canada - National Science Library

    Kang, Myong H; Froscher, Judith N; Eppinger, Brian J; Moskowitz, Ira S

    1999-01-01

    .... Therefore, DoD needs MLS workflow management systems (WFMS) to enable globally distributed users and existing applications to cooperate across classification domains to achieve mission critical goals...

  18. Widening the adoption of workflows to include human and human-machine scientific processes

    Science.gov (United States)

    Salayandia, L.; Pinheiro da Silva, P.; Gates, A. Q.

    2010-12-01

    Scientific workflows capture knowledge in the form of technical recipes to access and manipulate data that help scientists manage and reuse established expertise to conduct their work. Libraries of scientific workflows are being created in particular fields, e.g., Bioinformatics, where combined with cyber-infrastructure environments that provide on-demand access to data and tools, result in powerful workbenches for scientists of those communities. The focus in these particular fields, however, has been more on automating rather than documenting scientific processes. As a result, technical barriers have impeded a wider adoption of scientific workflows by scientific communities that do not rely as heavily on cyber-infrastructure and computing environments. Semantic Abstract Workflows (SAWs) are introduced to widen the applicability of workflows as a tool to document scientific recipes or processes. SAWs intend to capture a scientists’ perspective about the process of how she or he would collect, filter, curate, and manipulate data to create the artifacts that are relevant to her/his work. In contrast, scientific workflows describe the process from the point of view of how technical methods and tools are used to conduct the work. By focusing on a higher level of abstraction that is closer to a scientist’s understanding, SAWs effectively capture the controlled vocabularies that reflect a particular scientific community, as well as the types of datasets and methods used in a particular domain. From there on, SAWs provide the flexibility to adapt to different environments to carry out the recipes or processes. These environments range from manual fieldwork to highly technical cyber-infrastructure environments, i.e., such as those already supported by scientific workflows. Two cases, one from Environmental Science and another from Geophysics, are presented as illustrative examples.

  19. Flexible Data-Aware Scheduling for Workflows over an In-Memory Object Store

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Francisco Rodrigo; Garcia Blas, Javier; Isaila, Florin; Wozniak, Justin M.; Carretero, Jesus; Ross, Rob

    2016-01-01

    This paper explores novel techniques for improving the performance of many-task workflows based on the Swift scripting language. We propose novel programmer options for automated distributed data placement and task scheduling. These options trigger a data placement mechanism used for distributing intermediate workflow data over the servers of Hercules, a distributed key-value store that can be used to cache file system data. We demonstrate that these new mechanisms can significantly improve the aggregated throughput of many-task workflows with up to 86x, reduce the contention on the shared file system, exploit the data locality, and trade off locality and load balance.

  20. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    Science.gov (United States)

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology

  1. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    Science.gov (United States)

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  2. Improved Screening Mammogram Workflow by Maximizing PACS Streamlining Capabilities in an Academic Breast Center.

    Science.gov (United States)

    Pham, Ramya; Forsberg, Daniel; Plecha, Donna

    2017-04-01

    The aim of this study was to perform an operational improvement project targeted at the breast imaging reading workflow of mammography examinations at an academic medical center with its associated breast centers and satellite sites. Through careful analysis of the current workflow, two major issues were identified: stockpiling of paperwork and multiple worklists. Both issues were considered to cause significant delays to the start of interpreting screening mammograms. Four workflow changes were suggested (scanning of paperwork, worklist consolidation, use of chat functionality, and tracking of case distribution among trainees) and implemented in July 2015. Timestamp data was collected 2 months before (May-Jun) and after (Aug-Sep) the implemented changes. Generalized linear models were used to analyze the data. The results showed significant improvements for the interpretation of screening mammograms. The average time elapsed for time to open a case reduced from 70 to 28 min (60 % decrease, p workflow for diagnostic mammograms at large unaltered even with increased volume of mammography examinations (31 % increase of 4344 examinations for May-Jun to 5678 examinations for Aug-Sep). In conclusion, targeted efforts to improve the breast imaging reading workflow for screening mammograms in a teaching environment provided significant performance improvements without affecting the workflow of diagnostic mammograms.

  3. modeling workflow management in a distributed computing system

    African Journals Online (AJOL)

    Dr Obe

    communication system, which allows for computerized support. ... Keywords: Distributed computing system; Petri nets;Workflow management. 1. ... A distributed operating system usually .... the questionnaire is returned with invalid data,.

  4. Addressing informatics challenges in Translational Research with workflow technology.

    Science.gov (United States)

    Beaulah, Simon A; Correll, Mick A; Munro, Robin E J; Sheldon, Jonathan G

    2008-09-01

    Interest in Translational Research has been growing rapidly in recent years. In this collision of different data, technologies and cultures lie tremendous opportunities for the advancement of science and business for organisations that are able to integrate, analyse and deliver this information effectively to users. Workflow-based integration and analysis systems are becoming recognised as a fast and flexible way to build applications that are tailored to scientific areas, yet are built on a common platform. Workflow systems are allowing organisations to meet the key informatics challenges in Translational Research and improve disease understanding and patient care.

  5. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  6. BioMoby extensions to the Taverna workflow management and enactment software

    Directory of Open Access Journals (Sweden)

    Senger Martin

    2006-11-01

    Full Text Available Abstract Background As biology becomes an increasingly computational science, it is critical that we develop software tools that support not only bioinformaticians, but also bench biologists in their exploration of the vast and complex data-sets that continue to build from international genomic, proteomic, and systems-biology projects. The BioMoby interoperability system was created with the goal of facilitating the movement of data from one Web-based resource to another to fulfill the requirements of non-expert bioinformaticians. In parallel with the development of BioMoby, the European myGrid project was designing Taverna, a bioinformatics workflow design and enactment tool. Here we describe the marriage of these two projects in the form of a Taverna plug-in that provides access to many of BioMoby's features through the Taverna interface. Results The exposed BioMoby functionality aids in the design of "sensible" BioMoby workflows, aids in pipelining BioMoby and non-BioMoby-based resources, and ensures that end-users need only a minimal understanding of both BioMoby, and the Taverna interface itself. Users are guided through the construction of syntactically and semantically correct workflows through plug-in calls to the Moby Central registry. Moby Central provides a menu of only those BioMoby services capable of operating on the data-type(s that exist at any given position in the workflow. Moreover, the plug-in automatically and correctly connects a selected service into the workflow such that users are not required to understand the nature of the inputs or outputs for any service, leaving them to focus on the biological meaning of the workflow they are constructing, rather than the technical details of how the services will interoperate. Conclusion With the availability of the BioMoby plug-in to Taverna, we believe that BioMoby-based Web Services are now significantly more useful and accessible to bench scientists than are more traditional

  7. Networked Print Production: Does JDF Provide a Perfect Workflow?

    Directory of Open Access Journals (Sweden)

    Bernd Zipper

    2004-12-01

    Full Text Available The "networked printing works" is a well-worn slogan used by many providers in the graphics industry and for the past number of years printing-works manufacturers have been working on the goal of achieving the "networked printing works". A turning point from the concept to real implementation can now be expected at drupa 2004: JDF (Job Definition Format and thus "networked production" will form the center of interest here. The first approaches towards a complete, networked workflow between prepress, print and postpress in production are already available - the products and solutions will now be presented publicly at drupa 2004. So, drupa 2004 will undoubtedly be the "JDF-drupa" - the drupa where machines learn to communicate with each other digitally - the drupa, where the dream of general system and job communication in the printing industry can be first realized. CIP3, which has since been renamed CIP4, is an international consortium of leading manufacturers from the printing and media industry who have taken on the task of integrating processes for prepress, print and postpress. The association, to which nearly all manufacturers in the graphics industry belong, has succeeded with CIP3 in developing a first international standard for the transmission of control data in the print workflow.Further development of the CIP4 standard now includes a more extensive "system language" called JDF, which will guarantee workflow communication beyond manufacturer boundaries. However, not only data for actual print production will be communicated with JDF (Job Definition Format: planning and calculation data for MIS (Management Information systems and calculation systems will also be prepared. The German printing specialist Hans-Georg Wenke defines JDF as follows: "JDF takes over data from MIS for machines, aggregates and their control desks, data exchange within office applications, and finally ensures that data can be incorporated in the technical workflow

  8. Distributed interoperable workflow support for electronic commerce

    NARCIS (Netherlands)

    Papazoglou, M.; Jeusfeld, M.A.; Weigand, H.; Jarke, M.

    1998-01-01

    Abstract. This paper describes a flexible distributed transactional workflow environment based on an extensible object-oriented framework built around class libraries, application programming interfaces, and shared services. The purpose of this environment is to support a range of EC-like business

  9. Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ahmad M. Manasrah

    2018-01-01

    Full Text Available Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are managed using the workflow technology over the cloud, which represents one of the challenges in using the resources in an efficient manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to the resources efficiently. The Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the dependent tasks over the heterogonous resources in cloud computing environments. The experiment results show that the GA-PSO algorithm decreases the total execution time of the workflow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the workflow application over the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster and with higher quality compared to other algorithms.

  10. Implementation of the electronic DDA workflow for NSSS system design

    International Nuclear Information System (INIS)

    Eom, Young Sam; Kim, Yeon Sung; Lee, Suk Hee; Kim, Mi Kyung

    1996-06-01

    For improving NSSS design quality, and productivity several cases of the nuclear developed nation's integrated management system, such as Mitsubishi's NUWINGS (Japan), AECL's CANDID (Canada) and Duke Powes's (USA) were investigated, and it was studied in this report that the system implementation of NSSS design document computerization and the major workflow process of the DDA (Document Distribution for Agreement). On the basis of the requirements of design document computerization which covered preparation, review, approval and distribution of the engineering documents, KAERI Engineering Information Management System (KEIMS) was implemented. Major effects of this report are to implement GUI panel for input and retrieval of the document index information, to setup electronic document workflow, and to provide quality assurance verification by tracing the workflow history. Major effects of NSSS design document computerization are the improvement of efficiency and reliability and the engineering cost reduction by means of the fast documents verification capability and electronic document transferring system. 2 tabs., 16 figs., 9 refs. (Author)

  11. Integrating Process Mining and Cognitive Analysis to Study EHR Workflow.

    Science.gov (United States)

    Furniss, Stephanie K; Burton, Matthew M; Grando, Adela; Larson, David W; Kaufman, David R

    2016-01-01

    There are numerous methods to study workflow. However, few produce the kinds of in-depth analyses needed to understand EHR-mediated workflow. Here we investigated variations in clinicians' EHR workflow by integrating quantitative analysis of patterns of users' EHR-interactions with in-depth qualitative analysis of user performance. We characterized 6 clinicians' patterns of information-gathering using a sequential process-mining approach. The analysis revealed 519 different screen transition patterns performed across 1569 patient cases. No one pattern was followed for more than 10% of patient cases, the 15 most frequent patterns accounted for over half ofpatient cases (53%), and 27% of cases exhibited unique patterns. By triangulating quantitative and qualitative analyses, we found that participants' EHR-interactive behavior was associated with their routine processes, patient case complexity, and EHR default settings. The proposed approach has significant potential to inform resource allocation for observation and training. In-depth observations helped us to explain variation across users.

  12. The complete digital workflow in fixed prosthodontics: a systematic review.

    Science.gov (United States)

    Joda, Tim; Zarone, Fernando; Ferrari, Marco

    2017-09-19

    The continuous development in dental processing ensures new opportunities in the field of fixed prosthodontics in a complete virtual environment without any physical model situations. The aim was to compare fully digitalized workflows to conventional and/or mixed analog-digital workflows for the treatment with tooth-borne or implant-supported fixed reconstructions. A PICO strategy was executed using an electronic (MEDLINE, EMBASE, Google Scholar) plus manual search up to 2016-09-16 focusing on RCTs investigating complete digital workflows in fixed prosthodontics with regard to economics or esthetics or patient-centered outcomes with or without follow-up or survival/success rate analysis as well as complication assessment of at least 1 year under function. The search strategy was assembled from MeSH-Terms and unspecific free-text words: {(("Dental Prosthesis" [MeSH]) OR ("Crowns" [MeSH]) OR ("Dental Prosthesis, Implant-Supported" [MeSH])) OR ((crown) OR (fixed dental prosthesis) OR (fixed reconstruction) OR (dental bridge) OR (implant crown) OR (implant prosthesis) OR (implant restoration) OR (implant reconstruction))} AND {("Computer-Aided Design" [MeSH]) OR ((digital workflow) OR (digital technology) OR (computerized dentistry) OR (intraoral scan) OR (digital impression) OR (scanbody) OR (virtual design) OR (digital design) OR (cad/cam) OR (rapid prototyping) OR (monolithic) OR (full-contour))} AND {("Dental Technology" [MeSH) OR ((conventional workflow) OR (lost-wax-technique) OR (porcelain-fused-to-metal) OR (PFM) OR (implant impression) OR (hand-layering) OR (veneering) OR (framework))} AND {(("Study, Feasibility" [MeSH]) OR ("Survival" [MeSH]) OR ("Success" [MeSH]) OR ("Economics" [MeSH]) OR ("Costs, Cost Analysis" [MeSH]) OR ("Esthetics, Dental" [MeSH]) OR ("Patient Satisfaction" [MeSH])) OR ((feasibility) OR (efficiency) OR (patient-centered outcome))}. Assessment of risk of bias in selected studies was done at a 'trial level' including random sequence

  13. Extending a Petri-net based workflow description language for e-business atomicity support

    NARCIS (Netherlands)

    Norta, A.H.; Artishchev, S.

    2004-01-01

    In this paper an extension of XRL is presented for supporting Webbased and inter-organizational e-business atomicity spheres in workflow applications. XRL (eXchangable Routing Language), is an extensible, instance-based language that is intended for inter-organizational workflow processes having an

  14. Dynamic work distribution in workflow management systems : how to balance quality and performance

    NARCIS (Netherlands)

    Kumar, Akhil; Aalst, van der W.M.P.; Verbeek, H.M.W.

    2002-01-01

    Today's workflow management systems offer work items to workers using rather primitive mechanisms.Although most workflow systems support a role-based distribution of work, they have problems dealing with unavailability of workers as a result of vacation or illness, overloading, context-dependent

  15. A method to build and analyze scientific workflows from provenance through process mining

    NARCIS (Netherlands)

    Zeng, R.; He, X.; Li, Jiafei; Liu, Zheng; Aalst, van der W.M.P.

    2011-01-01

    Scientific workflows have recently emerged as a new paradigm for representing and managing complex distributed scientific computations and are used to accelerate the pace of scientific discovery. In many disciplines, individual workflows are large due to the large quantities of data used. As

  16. Health information exchange technology on the front lines of healthcare: workflow factors and patterns of use

    Science.gov (United States)

    Johnson, Kevin B; Lorenzi, Nancy M

    2011-01-01

    Objective The goal of this study was to develop an in-depth understanding of how a health information exchange (HIE) fits into clinical workflow at multiple clinical sites. Materials and Methods The ethnographic qualitative study was conducted over a 9-month period in six emergency departments (ED) and eight ambulatory clinics in Memphis, Tennessee, USA. Data were collected using direct observation, informal interviews during observation, and formal semi-structured interviews. The authors observed for over 180 h, during which providers used the exchange 130 times. Results HIE-related workflow was modeled for each ED site and ambulatory clinic group and substantial site-to-site workflow differences were identified. Common patterns in HIE-related workflow were also identified across all sites, leading to the development of two role-based workflow models: nurse based and physician based. The workflow elements framework was applied to the two role-based patterns. An in-depth description was developed of how providers integrated HIE into existing clinical workflow, including prompts for HIE use. Discussion Workflow differed substantially among sites, but two general role-based HIE usage models were identified. Although providers used HIE to improve continuity of patient care, patient–provider trust played a significant role. Types of information retrieved related to roles, with nurses seeking to retrieve recent hospitalization data and more open-ended usage by nurse practitioners and physicians. User and role-specific customization to accommodate differences in workflow and information needs may increase the adoption and use of HIE. Conclusion Understanding end users' perspectives towards HIE technology is crucial to the long-term success of HIE. By applying qualitative methods, an in-depth understanding of HIE usage was developed. PMID:22003156

  17. WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes to Readable BPEL

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M. P.

    2007-01-01

    code and not easy to use by end-users. Therefore, we provide a mapping from WF-nets to BPEL. This mapping builds on the rich theory of Petri nets and can also be used to map other languages (e.g., UML, EPC, BPMN, etc.) onto BPEL. To evaluate WorkflowNet2BPEL4WS we used more than 100 processes modeled...

  18. Workflow-Based Software Development Environment

    Science.gov (United States)

    Izygon, Michel E.

    2013-01-01

    The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment

  19. Automatic support for product based workflow design : generation of process models from a product data model

    NARCIS (Netherlands)

    Vanderfeesten, I.T.P.; Reijers, H.A.; Aalst, van der W.M.P.; Vogelaar, J.J.C.L.; Meersman, R.; Dillon, T.; Herrero, P.

    2010-01-01

    Product Based Workflow Design (PBWD) is one of the few scientific methodologies for the (re)design of workflow processes. It is based on an analysis of the product that is produced in the workflow process and derives a process model from the product structure. Until now this derivation has been a

  20. A Community-Driven Workflow Recommendation and Reuse Infrastructure

    Data.gov (United States)

    National Aeronautics and Space Administration — Promote and encourage process and workflow reuse  within NASA Earth eXchange (NEX) by developing a proactive recommendation technology based on collective NEX user...

  1. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    Science.gov (United States)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  2. Impact of Diabetes E-Consults on Outpatient Clinic Workflow.

    Science.gov (United States)

    Zoll, Brian; Parikh, Pratik J; Gallimore, Jennie; Harrell, Stephen; Burke, Brian

    2015-08-01

    An e-consult is an electronic communication system between clinicians, usually a primary care physician (PCP) and a medical or surgical specialist, regarding general or patient-specific, low complexity questions that would not need an in-person consultation. The objectives of this study were to understand and quantify the impact of the e-consult initiative on outpatient clinic workflow and outcomes. We collected data from 5 different Veterans Affairs (VA) outpatient clinics and interviewed several physicians and staff members. We then developed a simulation model for a primary care team at an outpatient clinic. A detailed experimental study was conducted to determine the effects of factors, such as e-consult demand, view-alert notification arrivals, walk-in patient arrivals, and PCP unavailability, on e-consult cycle time. Statistical tests indicated that 4 factors related to outpatient clinic workflow were significant, and levels within each of the 4 significant factors resulted in statistically different e-consult cycle times. The arrival rate of electronic notifications, along with patient walk-ins, had a considerable effect on cycle time. Splitting the workload of an unavailable PCP among the other PCPs, instead of the current practice of allocating it to a single PCP, increases the system's ability to handle a much larger e-consult demand. The full potential of e-consults can only be realized if the workflow at the outpatient clinics is designed or modified to support this initiative. This study furthers our understanding of how e-consult systems can be analyzed and alternative workflows tested using statistical and simulation modeling to improve care delivery and outcomes. © The Author(s) 2014.

  3. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    Science.gov (United States)

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  4. Structuring research methods and data with the research object model: genomics workflows as a case study.

    Science.gov (United States)

    Hettne, Kristina M; Dharuri, Harish; Zhao, Jun; Wolstencroft, Katherine; Belhajjame, Khalid; Soiland-Reyes, Stian; Mina, Eleni; Thompson, Mark; Cruickshank, Don; Verdes-Montenegro, Lourdes; Garrido, Julian; de Roure, David; Corcho, Oscar; Klyne, Graham; van Schouwen, Reinout; 't Hoen, Peter A C; Bechhofer, Sean; Goble, Carole; Roos, Marco

    2014-01-01

    One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro.

  5. Using location tracking data to assess efficiency in established clinical workflows.

    Science.gov (United States)

    Meyer, Mark; Fairbrother, Pamela; Egan, Marie; Chueh, Henry; Sandberg, Warren S

    2006-01-01

    Location tracking systems are becoming more prevalent in clinical settings yet applications still are not common. We have designed a system to aid in the assessment of clinical workflow efficiency. Location data is captured from active RFID tags and processed into usable data. These data are stored and presented visually with trending capability over time. The system allows quick assessments of the impact of process changes on workflow, and isolates areas for improvement.

  6. Precise Quantitative Analysis of Probabilistic Business Process Model and Notation Workflows

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    We present a framework for modeling and analysis of real-world business workflows. We present a formalized core subset of the business process modeling and notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... the entire BPMN language, allow for more complex annotations and ultimately to automatically synthesize workflows by composing predefined subprocesses, in order to achieve a configuration that is optimal for parameters of interest....

  7. Workflow interruptions, social stressors from supervisor(s) and attention failure in surgery personnel.

    Science.gov (United States)

    Pereira, Diana; Müller, Patrick; Elfering, Achim

    2015-01-01

    Workflow interruptions and social stressors among surgery personnel may cause attention failure at work that may increase rumination about work issues during leisure time. The test of these assumptions should contribute to the understanding of exhaustion in surgery personnel and patient safety. Workflow interruptions and supervisor-related social stressors were tested to predict attention failure that predicts work-related rumination during leisure time. One hundred ninety-four theatre nurses, anaesthetists and surgeons from a Swiss University hospital participated in a cross-sectional survey. The participation rate was 58%. Structural equation modelling confirmed both indirect paths from workflow interruptions and social stressors via attention failure on rumination (both pworkflow interruptions and social stressors on rumination-could not be empirically supported. Workflow interruptions and social stressors at work are likely to trigger attention failure in surgery personnel. Work redesign and team intervention could help surgery personnel to maintain a high level of quality and patient safety and detach from work related issues to recover during leisure time.

  8. MANAGING DISRUPTIVE BEHAVIOR OF STUDENTS IN LANGUAGE CLASSROOM

    Directory of Open Access Journals (Sweden)

    Siti Khasinah

    2017-05-01

    Full Text Available This article describes students’ disruptive behaviors in language classroom that may greatly affect language teaching and learning process, especially in ESL or EFL classes. Teachers should know what disruptive behavior is to enable them to deal with problems occurred in their classroom or to take preventive actions to keep their students well-behaved during the class. This can reduce the occurrence of misbehavior of students in their classroom. To prevent disruption in the classroom, teachers should establish behavioral expectations in the first day of the semester and the expectations can be based on students attendance, arrivals and departures, class participation, full English speaking, and other appropriate conducts in the syllabus and discuss them at the outset of the term. The agreement is then assigned as a learning contract or a code of conducts with which bounds the whole class. Consequently, whenever students are misbehaved, teachers and other students will directly know and recognize that the behaviors are out of the code. There are factors reasoning students to behave badly, so teachers as trouble solvers have to find appropriate strategies that are effective in helping students keep the code. Otherwise, the disruptions will escalate quickly and the problems will increase in numbers rapidly and finally, teachers will have to work very hard to avoid teaching failure and “losing face” when they cannot manage the disruption as listed in the expectation.

  9. Health information technology: integration of clinical workflow into meaningful use of electronic health records.

    Science.gov (United States)

    Bowens, Felicia M; Frye, Patricia A; Jones, Warren A

    2010-10-01

    This article examines the role that clinical workflow plays in successful implementation and meaningful use of electronic health record (EHR) technology in ambulatory care. The benefits and barriers of implementing EHRs in ambulatory care settings are discussed. The researchers conclude that widespread adoption and meaningful use of EHR technology rely on the successful integration of health information technology (HIT) into clinical workflow. Without successful integration of HIT into clinical workflow, clinicians in today's ambulatory care settings will continue to resist adoption and implementation of EHR technology.

  10. Nanocuration workflows: Establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials

    Directory of Open Access Journals (Sweden)

    Christina M. Powers

    2015-09-01

    Full Text Available There is a critical opportunity in the field of nanoscience to compare and integrate information across diverse fields of study through informatics (i.e., nanoinformatics. This paper is one in a series of articles on the data curation process in nanoinformatics (nanocuration. Other articles in this series discuss key aspects of nanocuration (temporal metadata, data completeness, database integration, while the focus of this article is on the nanocuration workflow, or the process of identifying, inputting, and reviewing nanomaterial data in a data repository. In particular, the article discusses: 1 the rationale and importance of a defined workflow in nanocuration, 2 the influence of organizational goals or purpose on the workflow, 3 established workflow practices in other fields, 4 current workflow practices in nanocuration, 5 key challenges for workflows in emerging fields like nanomaterials, 6 examples to make these challenges more tangible, and 7 recommendations to address the identified challenges. Throughout the article, there is an emphasis on illustrating key concepts and current practices in the field. Data on current practices in the field are from a group of stakeholders active in nanocuration. In general, the development of workflows for nanocuration is nascent, with few individuals formally trained in data curation or utilizing available nanocuration resources (e.g., ISA-TAB-Nano. Additional emphasis on the potential benefits of cultivating nanomaterial data via nanocuration processes (e.g., capability to analyze data from across research groups and providing nanocuration resources (e.g., training will likely prove crucial for the wider application of nanocuration workflows in the scientific community.

  11. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud

    NARCIS (Netherlands)

    Wolstencroft, K.; Haines, R.; Fellows, D.; Williams, A.; Withers, D.; Owen, S.; Soiland-Reyes, S.; Dunlop, I.; Nenadic, A.; Fisher, P.; Bhagat, J.; Belhajjame, K.; Bacall, F.; Hardisty, A.; Nieva de la Hidalga, A.; Balcazar Vargas, M.P.; Sufi, S.; Goble, C.

    2013-01-01

    The Taverna workflow tool suite (http://www.taverna.org.uk) is designed to combine distributed Web Services and/or local tools into complex analysis pipelines. These pipelines can be executed on local desktop machines or through larger infrastructure (such as supercomputers, Grids or cloud

  12. An Integrated Workflow For Secondary Use of Patient Data for Clinical Research.

    Science.gov (United States)

    Bouzillé, Guillaume; Sylvestre, Emmanuelle; Campillo-Gimenez, Boris; Renault, Eric; Ledieu, Thibault; Delamarre, Denis; Cuggia, Marc

    2015-01-01

    This work proposes an integrated workflow for secondary use of medical data to serve feasibility studies, and the prescreening and monitoring of research studies. All research issues are initially addressed by the Clinical Research Office through a research portal and subsequently redirected to relevant experts in the determined field of concentration. For secondary use of data, the workflow is then based on the clinical data warehouse of the hospital. A datamart with potentially eligible research candidates is constructed. Datamarts can either produce aggregated data, de-identified data, or identified data, according to the kind of study being treated. In conclusion, integrating the secondary use of data process into a general research workflow allows visibility of information technologies and improves the accessability of clinical data.

  13. From remote sensing data about information extraction for 3D geovisualization - Development of a workflow

    International Nuclear Information System (INIS)

    Tiede, D.

    2010-01-01

    With an increased availability of high (spatial) resolution remote sensing imagery since the late nineties, the need to develop operative workflows for the automated extraction, provision and communication of information from such data has grown. Monitoring requirements, aimed at the implementation of environmental or conservation targets, management of (environmental-) resources, and regional planning as well as international initiatives, especially the joint initiative of the European Commission and ESA (European Space Agency) for Global Monitoring for Environment and Security (GMES) play also a major part. This thesis addresses the development of an integrated workflow for the automated provision of information derived from remote sensing data. Considering applied data and fields of application, this work aims to design the workflow as generic as possible. Following research questions are discussed: What are the requirements of a workflow architecture that seamlessly links the individual workflow elements in a timely manner and secures accuracy of the extracted information effectively? How can the workflow retain its efficiency if mounds of data are processed? How can the workflow be improved with regards to automated object-based image analysis (OBIA)? Which recent developments could be of use? What are the limitations or which workarounds could be applied in order to generate relevant results? How can relevant information be prepared target-oriented and communicated effectively? How can the more recently developed freely available virtual globes be used for the delivery of conditioned information under consideration of the third dimension as an additional, explicit carrier of information? Based on case studies comprising different data sets and fields of application it is demonstrated how methods to extract and process information as well as to effectively communicate results can be improved and successfully combined within one workflow. It is shown that (1

  14. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration

    Science.gov (United States)

    Hanlon, R.T.; Chiao, C.-C.; Mäthger, L.M.; Barbosa, A.; Buresch, K.C.; Chubb, C.

    2008-01-01

    Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott's hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern. PMID:19008200

  15. EPUB as publication format in Open Access journals: Tools and workflow

    Directory of Open Access Journals (Sweden)

    Trude Eikebrokk

    2014-04-01

    Full Text Available In this article, we present a case study of how the main publishing format of an Open Access journal was changed from PDF to EPUB by designing a new workflow using JATS as the basic XML source format. We state the reasons and discuss advantages for doing this, how we did it, and the costs of changing an established Microsoft Word workflow. As an example, we use one typical sociology article with tables, illustrations and references. We then follow the article from JATS markup through different transformations resulting in XHTML, EPUB and MOBI versions. In the end, we put everything together in an automated XProc pipeline. The process has been developed on free and open source tools, and we describe and evaluate these tools in the article. The workflow is suitable for non-professional publishers, and all code is attached and free for reuse by others.

  16. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    International Nuclear Information System (INIS)

    Braunschweig, R.; Kaden, Ingmar; Schwarzer, J.; Sprengel, C.; Klose, K.

    2009-01-01

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  17. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, R.; Kaden, Ingmar [Klinik fuer Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost Halle (Germany); Schwarzer, J.; Sprengel, C. [Dept. of Management Information System and Operations Research, Martin-Luther-Univ. Halle Wittenberg (Germany); Klose, K. [Medizinisches Zentrum fuer Radiologie, Philips-Univ. Marburg (Germany)

    2009-07-15

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  18. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  19. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  20. Reproducible Research Data Analyses using the Common Workflow Language standards

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    This talk will introduce the Common Workflow Language project. In July 2016 they released standards that enable the portable, interoperable, and executable description of command line data analysis tools and workflow made from those tools. These descriptions are enhanced by CWL's first class (but optional) support for Docker containers. CWL originated from the world of bioinformatics but is not discipline specific and is gaining interest and use in other fields. Attendees who want to play with CWL prior to attending the presentation are invited to go through the "Gentle Introduction to the Common Workflow Language" tutorial on any OS X or Linux machine on their own time. About the speaker Michael R. Crusoe is one of the co-founders of the CWL project and is the CWL Community Engineer. His facilitation, technical contributions, and training on behalf of the project draw from his time as the former lead developer of C. Titus Brown's k-h-mer project, his previous career as a sysadmin and programmer, and his ex...

  1. Multi-perspective workflow modeling for online surgical situation models.

    Science.gov (United States)

    Franke, Stefan; Meixensberger, Jürgen; Neumuth, Thomas

    2015-04-01

    Surgical workflow management is expected to enable situation-aware adaptation and intelligent systems behavior in an integrated operating room (OR). The overall aim is to unburden the surgeon and OR staff from both manual maintenance and information seeking tasks. A major step toward intelligent systems behavior is a stable classification of the surgical situation from multiple perspectives based on performed low-level tasks. The present work proposes a method for the classification of surgical situations based on multi-perspective workflow modeling. A model network that interconnects different types of surgical process models is described. Various aspects of a surgical situation description were considered: low-level tasks, high-level tasks, patient status, and the use of medical devices. A study with sixty neurosurgical interventions was conducted to evaluate the performance of our approach and its robustness against incomplete workflow recognition input. A correct classification rate of over 90% was measured for high-level tasks and patient status. The device usage models for navigation and neurophysiology classified over 95% of the situations correctly, whereas the ultrasound usage was more difficult to predict. Overall, the classification rate decreased with an increasing level of input distortion. Autonomous adaptation of medical devices and intelligent systems behavior do not currently depend solely on low-level tasks. Instead, they require a more general type of understanding of the surgical condition. The integration of various surgical process models in a network provided a comprehensive representation of the interventions and allowed for the generation of extensive situation descriptions. Multi-perspective surgical workflow modeling and online situation models will be a significant pre-requisite for reliable and intelligent systems behavior. Hence, they will contribute to a cooperative OR environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Using workflow for projects in higher education

    NARCIS (Netherlands)

    van der Veen, Johan (CTIT); Jones, Valerie M.; Collis, Betty

    2000-01-01

    The WWW is increasingly used as a medium to support education and training. A course at the University of Twente in which groups of students collaborate in the design and production of multimedia instructional materials has now been supported by a website since 1995. Workflow was integrated with

  3. Modeling Complex Workflow in Molecular Diagnostics

    Science.gov (United States)

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  4. Modernizing Earth and Space Science Modeling Workflows in the Big Data Era

    Science.gov (United States)

    Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.

    2017-12-01

    Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and

  5. Computational workflow for the fine-grained analysis of metagenomic samples.

    Science.gov (United States)

    Pérez-Wohlfeil, Esteban; Arjona-Medina, Jose A; Torreno, Oscar; Ulzurrun, Eugenia; Trelles, Oswaldo

    2016-10-25

    The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping), enables the detection of reads of low-abundance bacteria (producing evidence of their presence), provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  6. Computational workflow for the fine-grained analysis of metagenomic samples

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-Wohlfeil

    2016-10-01

    Full Text Available Abstract Background The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to determine the species present in an environmental community and identify changes in the abundance of species under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational load required to analyze complex samples. Results A computational open-source workflow has been developed for the detailed analysis of metagenomes. This workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of reads assigned to taxa (mapping, enables the detection of reads of low-abundance bacteria (producing evidence of their presence, provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative examples are provided based on the study of two collections of metagenomes from faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers. Conclusions The proposed workflow provides an open environment that offers the opportunity to perform the mapping process using different reference databases. Additionally, this workflow shows the specifications of the mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples and better understanding of the underlying biological processes.

  7. Analysis and classification of oncology activities on the way to workflow based single source documentation in clinical information systems.

    Science.gov (United States)

    Wagner, Stefan; Beckmann, Matthias W; Wullich, Bernd; Seggewies, Christof; Ries, Markus; Bürkle, Thomas; Prokosch, Hans-Ulrich

    2015-12-22

    Today, cancer documentation is still a tedious task involving many different information systems even within a single institution and it is rarely supported by appropriate documentation workflows. In a comprehensive 14 step analysis we compiled diagnostic and therapeutic pathways for 13 cancer entities using a mixed approach of document analysis, workflow analysis, expert interviews, workflow modelling and feedback loops. These pathways were stepwise classified and categorized to create a final set of grouped pathways and workflows including electronic documentation forms. A total of 73 workflows for the 13 entities based on 82 paper documentation forms additionally to computer based documentation systems were compiled in a 724 page document comprising 130 figures, 94 tables and 23 tumour classifications as well as 12 follow-up tables. Stepwise classification made it possible to derive grouped diagnostic and therapeutic pathways for the three major classes - solid entities with surgical therapy - solid entities with surgical and additional therapeutic activities and - non-solid entities. For these classes it was possible to deduct common documentation workflows to support workflow-guided single-source documentation. Clinical documentation activities within a Comprehensive Cancer Center can likely be realized in a set of three documentation workflows with conditional branching in a modern workflow supporting clinical information system.

  8. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    Science.gov (United States)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  9. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker

  10. Beyond GIS with EO4V is Trails: a geospatio-temporal scientific workflow environment

    CSIR Research Space (South Africa)

    Van Zyl, T

    2012-10-01

    Full Text Available be accommodated at once. The scientific workflows approach has other advantages to such as provenance, repeatability and collaboration. The paper presents EO4VisTrails as an example of such a scientific workflows approach to integration and discusses the benefit...

  11. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  12. ATLAS job transforms: a data driven workflow engine

    International Nuclear Information System (INIS)

    Stewart, G A; Breaden-Madden, W B; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2014-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is minimised and the transform can adapt to scenarios where data can be produced along different execution paths. Transforms for specific physics tasks which support up to 60 individual substeps have been successfully run. As the new transforms infrastructure has been deployed in production many features have been added to the framework which improve reliability, quality of error reporting and also provide support for multi-process jobs.

  13. Sources of variation in primary care clinical workflow: implications for the design of cognitive support.

    Science.gov (United States)

    Militello, Laura G; Arbuckle, Nicole B; Saleem, Jason J; Patterson, Emily; Flanagan, Mindy; Haggstrom, David; Doebbeling, Bradley N

    2014-03-01

    This article identifies sources of variation in clinical workflow and implications for the design and implementation of electronic clinical decision support. Sources of variation in workflow were identified via rapid ethnographic observation, focus groups, and interviews across a total of eight medical centers in both the Veterans Health Administration and academic medical centers nationally regarded as leaders in developing and using clinical decision support. Data were reviewed for types of variability within the social and technical subsystems and the external environment as described in the sociotechnical systems theory. Two researchers independently identified examples of variation and their sources, and then met with each other to discuss them until consensus was reached. Sources of variation were categorized as environmental (clinic staffing and clinic pace), social (perception of health information technology and real-time use with patients), or technical (computer access and information access). Examples of sources of variation within each of the categories are described and discussed in terms of impact on clinical workflow. As technologies are implemented, barriers to use become visible over time as users struggle to adapt workflow and work practices to accommodate new technologies. Each source of variability identified has implications for the effective design and implementation of useful health information technology. Accommodating moderate variability in workflow is anticipated to avoid brittle and inflexible workflow designs, while also avoiding unnecessary complexity for implementers and users.

  14. Staffing and Workflow of a Maturing Institutional Repository

    Directory of Open Access Journals (Sweden)

    Debora L. Madsen

    2013-02-01

    Full Text Available Institutional repositories (IRs have become established components of many academic libraries. As an IR matures it will face the challenge of how to scale up its operations to increase the amount and types of content archived. These challenges involve staffing, systems, workflows, and promotion. In the past eight years, Kansas State University's IR (K-REx has grown from a platform for student theses, dissertations, and reports to also include faculty works. The initial workforce of a single faculty member was expanded as a part of a library-wide reorganization, resulting in a cross-departmental team that is better able to accommodate the expansion of the IR. The resultant need to define staff responsibilities and develop resources to manage the workflows has led to the innovations described here, which may prove useful to the greater library community as other IRs mature.

  15. Changes of workflow in a radiolocigal department with RIS, PACS and flatpanel detectors implementation

    International Nuclear Information System (INIS)

    Imhof, H.; Dirisamer, A.; Fischer, H.; Grampp, S.; Heiner, L.; Kaderk, M.; Krestan, C.; Kainberger, F.

    2002-01-01

    Implementation of radiological information systems (RIS) and picture archiving and communicating systems (PACS) results in significant changes of workflow in a radiological department. Additional connection with flatpanel detectors leads to a shortening of the work process. RIS and PACS implementation alone reduces the complete workflow by 21-80%. With flatpanel technology the image production process is further shortened by 25-30%. The workflow-steps are changed from original 17-12 with the implementation of RIS and PACS and to 5 with the integrated use of flatpanels.This clearly recognizable advantages in the workflow need an according financial investment. Several studies could show that the capitalisationfactor calculated over eight years is positive, with a gain range between 5-25%. Whether the additional implementation of flatpanel detectors results also in a positive capitalisation over the years, cannot be estimated exactly, at the moment, because the experiences are too short. Particuarly critical are the interfaces, which needs a constant quality control. Our flatpanel detector-system is fixed, special images - as we have them in about 3-5% of all cases - need still conventional filmscreen or phosphorplate-systems. Full-spine and long-leg examinations cannot be performed with sufficient exactness. Without any questions implementation of integrated RIS, PACS and flatpanel detector-system needs excellent training of the employees, because of the changes in workflow etc. The main profits of such an integrated implementation are an increase in quality in image and report datas, easier handling - there are almost no more cassettes necessary - and excessive shortening of workflow. (orig.) [de

  16. Eleven quick tips for architecting biomedical informatics workflows with cloud computing

    Science.gov (United States)

    Moore, Jason H.

    2018-01-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416

  17. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    Science.gov (United States)

    Cole, Brian S; Moore, Jason H

    2018-03-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  18. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    Directory of Open Access Journals (Sweden)

    Brian S Cole

    2018-03-01

    Full Text Available Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  19. Towards a workflow driven design for mHealth devices within temporary eye clinics in low-income settings.

    Science.gov (United States)

    Bolster, Nigel M; Bastawrous, Andrew; Giardini, Mario E

    2015-01-01

    Only a small minority of mobile healthcare technologies that have been successful in pilot studies have subsequently been integrated into healthcare systems. Understanding the reasons behind this discrepancy is crucial if such technologies are to be adopted. We believe that the mismatch is due to a breakdown in the relation between technical soundness of the original mobile health (mHealth) device design, and integration into healthcare provision workflows. Quantitative workflow modelling provides an opportunity to test this hypothesis. In this paper we present our current progress in developing a clinical workflow model for mobile eye assessment in low-income settings. We test the model for determining the appropriateness of design parameters of a mHealth device within this workflow, by assessing their impact on the entire clinical workflow performance.

  20. A Generalized Email Classification System for Workflow Analysis

    NARCIS (Netherlands)

    P. Chaipornkaew (Piyanuch); T. Prexawanprasut (Takorn); C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2017-01-01

    textabstractOne of the most powerful internet communication channels is email. As employees and their clients communicate primarily via email, much crucial business data is conveyed via email content. Where businesses are understandably concerned, they need a sophisticated workflow management

  1. CrossFlow: integrating workflow management and electronic commerce

    NARCIS (Netherlands)

    Hoffner, Y.; Ludwig, H.; Grefen, P.W.P.J.; Aberer, K.

    2001-01-01

    The CrossFlow architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when

  2. An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment

    Directory of Open Access Journals (Sweden)

    Shaymaa Elsherbiny

    2018-03-01

    Full Text Available Cloud computing is emerging as a high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. Many resource management methods may enhance the efficiency of the whole cloud computing system. The key part of cloud computing resource management is resource scheduling. Optimized scheduling of tasks on the cloud virtual machines is an NP-hard problem and many algorithms have been presented to solve it. The variations among these schedulers are due to the fact that the scheduling strategies of the schedulers are adapted to the changing environment and the types of tasks. The focus of this paper is on workflows scheduling in cloud computing, which is gaining a lot of attention recently because workflows have emerged as a paradigm to represent complex computing problems. We proposed a novel algorithm extending the natural-based Intelligent Water Drops (IWD algorithm that optimizes the scheduling of workflows on the cloud. The proposed algorithm is implemented and embedded within the workflows simulation toolkit and tested in different simulated cloud environments with different cost models. Our algorithm showed noticeable enhancements over the classical workflow scheduling algorithms. We made a comparison between the proposed IWD-based algorithm with other well-known scheduling algorithms, including MIN-MIN, MAX-MIN, Round Robin, FCFS, and MCT, PSO and C-PSO, where the proposed algorithm presented noticeable enhancements in the performance and cost in most situations.

  3. A-Posteriori Detection of Sensor Infrastructure Errors in Correlated Sensor Data and Business Workflows

    NARCIS (Netherlands)

    Wombacher, Andreas

    2011-01-01

    Sensor data can be interpreted as a view on physical objects effected by business processes. Since both sensor infrastructures and business workflows must deal with imprecise information, the correlation of sensor data and business workflow data might be used a-posteriori to determine the source of

  4. Workflow improvement and efficiency gain with near digitalization of a Radiology Department

    International Nuclear Information System (INIS)

    Langen, H.L.; Bielmeier, J.; Selbach, R.; Wittenberg, G.; Feustel, H.

    2003-01-01

    Purpose: To determine the temporal changes of the workflow caused by digitalization of the radiology department after installation of digital luminescence-radiography (DLR), a radiology information system (RIS) and picture archiving and communication system (PACS) at the Missionsaerztliche Klinik in April 2000. Materials and methods: In a comparative study, a workflow analysis by manual registration of different work steps was performed before (1999) and after (2001) digitalization of a radiology department. Results: The digitalization shortened the examination time for patients from a mean of 8 min to 5 min. The time the patient is absent from the emergency room did not change. Reporting radiographic examinations including comparison with previous studies begins earlier from a mean of 2 h 37 min to 17 min. Using PACS, 85.9% of all cases could be interpreted on the day of the examination (without PACS 41.2%) and 87.2% of the reports were completed the day after the examination (without PACS 64.5%). No time differences were found between reading conventional studies on the monitor or as soft-copy. Conclusion: Compared to conventional film-screen systems, complete digitalization of a radiology department is time saving at nearly all steps of the workflow, with expected positive effects on the workflow quality of the entire hospital. (orig.) [de

  5. A system for deduction-based formal verification of workflow-oriented software models

    Directory of Open Access Journals (Sweden)

    Klimek Radosław

    2014-12-01

    Full Text Available The work concerns formal verification of workflow-oriented software models using the deductive approach. The formal correctness of a model’s behaviour is considered. Manually building logical specifications, which are regarded as a set of temporal logic formulas, seems to be a significant obstacle for an inexperienced user when applying the deductive approach. A system, along with its architecture, for deduction-based verification of workflow-oriented models is proposed. The process inference is based on the semantic tableaux method, which has some advantages when compared with traditional deduction strategies. The algorithm for automatic generation of logical specifications is proposed. The generation procedure is based on predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea behind the approach is to consider patterns, defined in terms of temporal logic, as a kind of (logical primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between the intuitiveness of deductive reasoning and the difficulty of its practical application when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing, our understanding of deduction-based formal verification of workflow-oriented models.

  6. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  7. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Jin, Zhigang; Wang, Ning; Su, Yishan; Yang, Qiuling

    2018-02-07

    Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider's sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider's trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15-33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20-58% for a typical network's setting.

  8. Designing Flexible E-Business Workflow Systems

    OpenAIRE

    Cătălin Silvestru; Codrin Nisioiu; Marinela Mircea; Bogdan Ghilic-Micu; Marian Stoica

    2010-01-01

    In today’s business environment organizations must cope with complex interactions between actors adapt fast to frequent market changes and be innovative. In this context, integrating knowledge with processes and Business Intelligenceis a major step towards improving organization agility. Therefore, traditional environments for workflow design have been adapted to answer the new business models and current requirements in the field of collaborative processes. This paper approaches the design o...

  9. A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.

    Science.gov (United States)

    Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary

    2017-12-01

    Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.

  10. NMR strategies to support medicinal chemistry workflows for primary structure determination.

    Science.gov (United States)

    Oguadinma, Paul; Bilodeau, Francois; LaPlante, Steven R

    2017-01-15

    Central to drug discovery is the correct characterization of the primary structures of compounds. In general, medicinal chemists make great synthetic and characterization efforts to deliver the intended compounds. However, there are occasions which incorrect compounds are presented, such as those reported for Bosutinib and TIC10. This may be due to a variety of reasons such as uncontrolled reaction schemes, reliance on limited characterization techniques (LC-MS and/or 1D 1H NMR spectra), or even the lack of availability or knowledge of characterization strategies. Here, we present practical NMR approaches that support medicinal chemist workflows for addressing compound characterization issues and allow for reliable primary structure determinations. These strategies serve to differentiate between regioisomers and geometric isomers, distinguish between N- versus O-alkyl analogues, and identify rotamers and atropisomers. Overall, awareness and application of these available NMR methods (e.g. HMBC/HSQC, ROESY and VT experiments, to name only a few) should help practicing chemists to reveal chemical phenomena and avoid mis-assignment of the primary structures of compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Adaptación de Workflows basada en Ontologías

    Directory of Open Access Journals (Sweden)

    Álvaro E. Prieto

    2014-12-01

    Full Text Available Los workflows para procesos administrativos son utilizados en empresas e instituciones públicas pero, para poder utilizarlos adecuadamente en sus distintas áreas y departamentos, deben ser adaptados a las características propias de cada uno de ellos, respetando las normas que regulan el proceso a nivel general. Este problema, llamado Problema de la Adaptación Jerárquica, también implica establecer las medidas que se deben tomar cuando la normativa general cambia, para mantener la consistencia entre los distintos niveles mediante la propagación de los cambios a todas las adaptaciones. Para resolver este problema, en este trabajo se presenta el Método de Adaptación Jerárquica. Un método basado en ontologías que define las reglas que debe satisfacer un workflow genérico para ser considerado adaptable a diferentes casos de aplicación y las reglas que deben satisfacer las adaptaciones. Además, proporciona las operaciones que facilitan tanto la adaptación de los workflows administrativos como la propagación de los cambios

  12. SHIWA workflow interoperability solutions for neuroimaging data analysis

    NARCIS (Netherlands)

    Korkhov, Vladimir; Krefting, Dagmar; Montagnat, Johan; Truong Huu, Tram; Kukla, Tamas; Terstyanszky, Gabor; Manset, David; Caan, Matthan; Olabarriaga, Silvia

    2012-01-01

    Neuroimaging is a field that benefits from distributed computing infrastructures (DCIs) to perform data- and compute-intensive processing and analysis. Using grid workflow systems not only automates the processing pipelines, but also enables domain researchers to implement their expertise on how to

  13. CrossFlow: Integrating Workflow Management and Electronic Commerce

    NARCIS (Netherlands)

    Hoffner, Y.; Ludwig, H.; Grefen, P.W.P.J.; Aberer, K.

    2001-01-01

    The CrossFlow1 architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when

  14. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods.

    Science.gov (United States)

    Berggren, Elisabet; White, Andrew; Ouedraogo, Gladys; Paini, Alicia; Richarz, Andrea-Nicole; Bois, Frederic Y; Exner, Thomas; Leite, Sofia; Grunsven, Leo A van; Worth, Andrew; Mahony, Catherine

    2017-11-01

    We describe and illustrate a workflow for chemical safety assessment that completely avoids animal testing. The workflow, which was developed within the SEURAT-1 initiative, is designed to be applicable to cosmetic ingredients as well as to other types of chemicals, e.g. active ingredients in plant protection products, biocides or pharmaceuticals. The aim of this work was to develop a workflow to assess chemical safety without relying on any animal testing, but instead constructing a hypothesis based on existing data, in silico modelling, biokinetic considerations and then by targeted non-animal testing. For illustrative purposes, we consider a hypothetical new ingredient x as a new component in a body lotion formulation. The workflow is divided into tiers in which points of departure are established through in vitro testing and in silico prediction, as the basis for estimating a safe external dose in a repeated use scenario. The workflow includes a series of possible exit (decision) points, with increasing levels of confidence, based on the sequential application of the Threshold of Toxicological (TTC) approach, read-across, followed by an "ab initio" assessment, in which chemical safety is determined entirely by new in vitro testing and in vitro to in vivo extrapolation by means of mathematical modelling. We believe that this workflow could be applied as a tool to inform targeted and toxicologically relevant in vitro testing, where necessary, and to gain confidence in safety decision making without the need for animal testing.

  15. Experiences and lessons learned from creating a generalized workflow for data publication of field campaign datasets

    Science.gov (United States)

    Santhana Vannan, S. K.; Ramachandran, R.; Deb, D.; Beaty, T.; Wright, D.

    2017-12-01

    This paper summarizes the workflow challenges of curating and publishing data produced from disparate data sources and provides a generalized workflow solution to efficiently archive data generated by researchers. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics and the Global Hydrology Resource Center (GHRC) DAAC have been collaborating on the development of a generalized workflow solution to efficiently manage the data publication process. The generalized workflow presented here are built on lessons learned from implementations of the workflow system. Data publication consists of the following steps: Accepting the data package from the data providers, ensuring the full integrity of the data files. Identifying and addressing data quality issues Assembling standardized, detailed metadata and documentation, including file level details, processing methodology, and characteristics of data files Setting up data access mechanisms Setup of the data in data tools and services for improved data dissemination and user experience Registering the dataset in online search and discovery catalogues Preserving the data location through Digital Object Identifiers (DOI) We will describe the steps taken to automate, and realize efficiencies to the above process. The goals of the workflow system are to reduce the time taken to publish a dataset, to increase the quality of documentation and metadata, and to track individual datasets through the data curation process. Utilities developed to achieve these goal will be described. We will also share metrics driven value of the workflow system and discuss the future steps towards creation of a common software framework.

  16. a Workflow for UAV's Integration Into a Geodesign Platform

    Science.gov (United States)

    Anca, P.; Calugaru, A.; Alixandroae, I.; Nazarie, R.

    2016-06-01

    This paper presents a workflow for the development of various Geodesign scenarios. The subject is important in the context of identifying patterns and designing solutions for a Smart City with optimized public transportation, efficient buildings, efficient utilities, recreational facilities a.s.o.. The workflow describes the procedures starting with acquiring data in the field, data processing, orthophoto generation, DTM generation, integration into a GIS platform and analyzing for a better support for Geodesign. Esri's City Engine is used mostly for 3D modeling capabilities that enable the user to obtain 3D realistic models. The workflow uses as inputs information extracted from images acquired using UAVs technologies, namely eBee, existing 2D GIS geodatabases, and a set of CGA rules. The method that we used further, is called procedural modeling, and uses rules in order to extrude buildings, the street network, parcel zoning and side details, based on the initial attributes from the geodatabase. The resulted products are various scenarios for redesigning, for analyzing new exploitation sites. Finally, these scenarios can be published as interactive web scenes for internal, groups or pubic consultation. In this way, problems like the impact of new constructions being build, re-arranging green spaces or changing routes for public transportation, etc. are revealed through impact and visibility analysis or shadowing analysis and are brought to the citizen's attention. This leads to better decisions.

  17. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  18. Redrawing the map of Great Britain from a network of human interactions.

    Science.gov (United States)

    Ratti, Carlo; Sobolevsky, Stanislav; Calabrese, Francesco; Andris, Clio; Reades, Jonathan; Martino, Mauro; Claxton, Rob; Strogatz, Steven H

    2010-12-08

    Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland.

  19. Redrawing the map of Great Britain from a network of human interactions.

    Directory of Open Access Journals (Sweden)

    Carlo Ratti

    2010-12-01

    Full Text Available Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland.

  20. ESO Reflex: a graphical workflow engine for data reduction

    Science.gov (United States)

    Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo

    ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.

  1. ESO Reflex: A Graphical Workflow Engine for Data Reduction

    Science.gov (United States)

    Hook, R.; Romaniello, M.; Péron, M.; Ballester, P.; Gabasch, A.; Izzo, C.; Ullgrén, M.; Maisala, S.; Oittinen, T.; Solin, O.; Savolainen, V.; Järveläinen, P.; Tyynelä, J.

    2008-08-01

    Sampo {http://www.eso.org/sampo} (Hook et al. 2005) is a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal is to assess the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Those prototypes will not only be used to validate concepts and understand requirements but will also be tools of immediate value for the community. Most of the raw data produced by ESO instruments can be reduced using CPL {http://www.eso.org/cpl} recipes: compiled C programs following an ESO standard and utilizing routines provided by the Common Pipeline Library. Currently reduction recipes are run in batch mode as part of the data flow system to generate the input to the ESO VLT/VLTI quality control process and are also made public for external users. Sampo has developed a prototype application called ESO Reflex {http://www.eso.org/sampo/reflex/} that integrates a graphical user interface and existing data reduction algorithms. ESO Reflex can invoke CPL-based recipes in a flexible way through a dedicated interface. ESO Reflex is based on the graphical workflow engine Taverna {http://taverna.sourceforge.net} that was originally developed by the UK eScience community, mostly for work in the life sciences. Workflows have been created so far for three VLT/VLTI instrument modes ( VIMOS/IFU {http://www.eso.org/instruments/vimos/}, FORS spectroscopy {http://www.eso.org/instruments/fors/} and AMBER {http://www.eso.org/instruments/amber/}), and the easy-to-use GUI allows the user to make changes to these or create workflows of their own. Python scripts and IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available.

  2. The Diabetic Retinopathy Screening Workflow: Potential for Smartphone Imaging.

    Science.gov (United States)

    Bolster, Nigel M; Giardini, Mario E; Bastawrous, Andrew

    2015-11-23

    Complications of diabetes mellitus, namely diabetic retinopathy and diabetic maculopathy, are the leading cause of blindness in working aged people. Sufferers can avoid blindness if identified early via retinal imaging. Systematic screening of the diabetic population has been shown to greatly reduce the prevalence and incidence of blindness within the population. Many national screening programs have digital fundus photography as their basis. In the past 5 years several techniques and adapters have been developed that allow digital fundus photography to be performed using smartphones. We review recent progress in smartphone-based fundus imaging and discuss its potential for integration into national systematic diabetic retinopathy screening programs. Some systems have produced promising initial results with respect to their agreement with reference standards. However further multisite trialling of such systems' use within implementable screening workflows is required if an evidence base strong enough to affect policy change is to be established. If this were to occur national diabetic retinopathy screening would, for the first time, become possible in low- and middle-income settings where cost and availability of trained eye care personnel are currently key barriers to implementation. As diabetes prevalence and incidence is increasing sharply in these settings, the impact on global blindness could be profound. © 2015 Diabetes Technology Society.

  3. Improving data collection, documentation, and workflow in a dementia screening study.

    Science.gov (United States)

    Read, Kevin B; LaPolla, Fred Willie Zametkin; Tolea, Magdalena I; Galvin, James E; Surkis, Alisa

    2017-04-01

    A clinical study team performing three multicultural dementia screening studies identified the need to improve data management practices and facilitate data sharing. A collaboration was initiated with librarians as part of the National Library of Medicine (NLM) informationist supplement program. The librarians identified areas for improvement in the studies' data collection, entry, and processing workflows. The librarians' role in this project was to meet needs expressed by the study team around improving data collection and processing workflows to increase study efficiency and ensure data quality. The librarians addressed the data collection, entry, and processing weaknesses through standardizing and renaming variables, creating an electronic data capture system using REDCap, and developing well-documented, reproducible data processing workflows. NLM informationist supplements provide librarians with valuable experience in collaborating with study teams to address their data needs. For this project, the librarians gained skills in project management, REDCap, and understanding of the challenges and specifics of a clinical research study. However, the time and effort required to provide targeted and intensive support for one study team was not scalable to the library's broader user community.

  4. Resident Workflow and Psychiatric Emergency Consultation: Identifying Factors for Quality Improvement in a Training Environment.

    Science.gov (United States)

    Blair, Thomas; Wiener, Zev; Seroussi, Ariel; Tang, Lingqi; O'Hora, Jennifer; Cheung, Erick

    2017-06-01

    Quality improvement to optimize workflow has the potential to mitigate resident burnout and enhance patient care. This study applied mixed methods to identify factors that enhance or impede workflow for residents performing emergency psychiatric consultations. The study population consisted of all psychiatry program residents (55 eligible, 42 participating) at the Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles. The authors developed a survey through iterative piloting, surveyed all residents, and then conducted a focus group. The survey included elements hypothesized to enhance or impede workflow, and measures pertaining to self-rated efficiency and stress. Distributional and bivariate analyses were performed. Survey findings were clarified in focus group discussion. This study identified several factors subjectively associated with enhanced or impeded workflow, including difficulty with documentation, the value of personal organization systems, and struggles to communicate with patients' families. Implications for resident education are discussed.

  5. NeuroManager: A workflow analysis based simulation management engine for computational neuroscience

    Directory of Open Access Journals (Sweden)

    David Bruce Stockton

    2015-10-01

    Full Text Available We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach 1 provides flexibility to adapt to a variety of neuroscience simulators, 2 simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and 3 improves tracking of simulator/simulation evolution. We implemented NeuroManager in Matlab, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in twenty-two stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to Matlab's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  6. Perti Net-Based Workflow Access Control Model%基于Perti网的工作流访问控制模型研究

    Institute of Scientific and Technical Information of China (English)

    陈卓; 骆婷; 石磊; 洪帆

    2004-01-01

    Access control is an important protection mechanism for information systems.This paper shows how to make access control in workflow system.We give a workflow access control model (WACM) based on several current access control models.The model supports roles assignment and dynamic authorization.The paper defines the workflow using Petri net.It firstly gives the definition and description of the workflow, and then analyzes the architecture of the workflow access control model (WACM).Finally, an example of an e-commerce workflow access control model is discussed in detail.

  7. The application of workflow technology in the development of management procedures in NPPs

    International Nuclear Information System (INIS)

    Fang Zhaoxia; Huang Fang

    2012-01-01

    According to the national nuclear safety standards and guides, operating organizations of NPPs should document management programs against all safety related activities. One of the preconditions for the implementation of these programs is to setup a comprehensive instructions and procedures. The workflow technology which is a concept originally from computer technology can help in analysing work processes of different working areas in NPP, designing and developing management procedures hierarchy and requirements. The application of the workflow can not only comprehensively analyse the work process but also analyse the requirements for personnel which are related to the work process, therefore the procedures and programs developed could meet the requirements of national nuclear safety standards and guides. This paper also covers the application of workflow in other areas in NPPs. (authors)

  8. Developing a workflow to identify inconsistencies in volunteered geographic information: a phenological case study

    Science.gov (United States)

    Mehdipoor, Hamed; Zurita-Milla, Raul; Rosemartin, Alyssa; Gerst, Katharine L.; Weltzin, Jake F.

    2015-01-01

    Recent improvements in online information communication and mobile location-aware technologies have led to the production of large volumes of volunteered geographic information. Widespread, large-scale efforts by volunteers to collect data can inform and drive scientific advances in diverse fields, including ecology and climatology. Traditional workflows to check the quality of such volunteered information can be costly and time consuming as they heavily rely on human interventions. However, identifying factors that can influence data quality, such as inconsistency, is crucial when these data are used in modeling and decision-making frameworks. Recently developed workflows use simple statistical approaches that assume that the majority of the information is consistent. However, this assumption is not generalizable, and ignores underlying geographic and environmental contextual variability that may explain apparent inconsistencies. Here we describe an automated workflow to check inconsistency based on the availability of contextual environmental information for sampling locations. The workflow consists of three steps: (1) dimensionality reduction to facilitate further analysis and interpretation of results, (2) model-based clustering to group observations according to their contextual conditions, and (3) identification of inconsistent observations within each cluster. The workflow was applied to volunteered observations of flowering in common and cloned lilac plants (Syringa vulgaris and Syringa x chinensis) in the United States for the period 1980 to 2013. About 97% of the observations for both common and cloned lilacs were flagged as consistent, indicating that volunteers provided reliable information for this case study. Relative to the original dataset, the exclusion of inconsistent observations changed the apparent rate of change in lilac bloom dates by two days per decade, indicating the importance of inconsistency checking as a key step in data quality

  9. Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study.

    Science.gov (United States)

    Mehdipoor, Hamed; Zurita-Milla, Raul; Rosemartin, Alyssa; Gerst, Katharine L; Weltzin, Jake F

    2015-01-01

    Recent improvements in online information communication and mobile location-aware technologies have led to the production of large volumes of volunteered geographic information. Widespread, large-scale efforts by volunteers to collect data can inform and drive scientific advances in diverse fields, including ecology and climatology. Traditional workflows to check the quality of such volunteered information can be costly and time consuming as they heavily rely on human interventions. However, identifying factors that can influence data quality, such as inconsistency, is crucial when these data are used in modeling and decision-making frameworks. Recently developed workflows use simple statistical approaches that assume that the majority of the information is consistent. However, this assumption is not generalizable, and ignores underlying geographic and environmental contextual variability that may explain apparent inconsistencies. Here we describe an automated workflow to check inconsistency based on the availability of contextual environmental information for sampling locations. The workflow consists of three steps: (1) dimensionality reduction to facilitate further analysis and interpretation of results, (2) model-based clustering to group observations according to their contextual conditions, and (3) identification of inconsistent observations within each cluster. The workflow was applied to volunteered observations of flowering in common and cloned lilac plants (Syringa vulgaris and Syringa x chinensis) in the United States for the period 1980 to 2013. About 97% of the observations for both common and cloned lilacs were flagged as consistent, indicating that volunteers provided reliable information for this case study. Relative to the original dataset, the exclusion of inconsistent observations changed the apparent rate of change in lilac bloom dates by two days per decade, indicating the importance of inconsistency checking as a key step in data quality

  10. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    International Nuclear Information System (INIS)

    Cheng, C; Wessels, B; Hamilton, H; Difranco, T; Mansur, D

    2014-01-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of a number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT

  11. Reproducible Bioconductor workflows using browser-based interactive notebooks and containers.

    Science.gov (United States)

    Almugbel, Reem; Hung, Ling-Hong; Hu, Jiaming; Almutairy, Abeer; Ortogero, Nicole; Tamta, Yashaswi; Yeung, Ka Yee

    2018-01-01

    Bioinformatics publications typically include complex software workflows that are difficult to describe in a manuscript. We describe and demonstrate the use of interactive software notebooks to document and distribute bioinformatics research. We provide a user-friendly tool, BiocImageBuilder, that allows users to easily distribute their bioinformatics protocols through interactive notebooks uploaded to either a GitHub repository or a private server. We present four different interactive Jupyter notebooks using R and Bioconductor workflows to infer differential gene expression, analyze cross-platform datasets, process RNA-seq data and KinomeScan data. These interactive notebooks are available on GitHub. The analytical results can be viewed in a browser. Most importantly, the software contents can be executed and modified. This is accomplished using Binder, which runs the notebook inside software containers, thus avoiding the need to install any software and ensuring reproducibility. All the notebooks were produced using custom files generated by BiocImageBuilder. BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface. We demonstrate that interactive notebooks can be used to disseminate a wide range of bioinformatics analyses. The use of software containers to mirror the original software environment ensures reproducibility of results. Parameters and code can be dynamically modified, allowing for robust verification of published results and encouraging rapid adoption of new methods. Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive software notebooks will become as necessary for documenting software methods as traditional laboratory notebooks have been for documenting bench protocols, and as ubiquitous. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. a Standardized Approach to Topographic Data Processing and Workflow Management

    Science.gov (United States)

    Wheaton, J. M.; Bailey, P.; Glenn, N. F.; Hensleigh, J.; Hudak, A. T.; Shrestha, R.; Spaete, L.

    2013-12-01

    An ever-increasing list of options exist for collecting high resolution topographic data, including airborne LIDAR, terrestrial laser scanners, bathymetric SONAR and structure-from-motion. An equally rich, arguably overwhelming, variety of tools exists with which to organize, quality control, filter, analyze and summarize these data. However, scientists are often left to cobble together their analysis as a series of ad hoc steps, often using custom scripts and one-time processes that are poorly documented and rarely shared with the community. Even when literature-cited software tools are used, the input and output parameters differ from tool to tool. These parameters are rarely archived and the steps performed lost, making the analysis virtually impossible to replicate precisely. What is missing is a coherent, robust, framework for combining reliable, well-documented topographic data-processing steps into a workflow that can be repeated and even shared with others. We have taken several popular topographic data processing tools - including point cloud filtering and decimation as well as DEM differencing - and defined a common protocol for passing inputs and outputs between them. This presentation describes a free, public online portal that enables scientists to create custom workflows for processing topographic data using a number of popular topographic processing tools. Users provide the inputs required for each tool and in what sequence they want to combine them. This information is then stored for future reuse (and optionally sharing with others) before the user then downloads a single package that contains all the input and output specifications together with the software tools themselves. The user then launches the included batch file that executes the workflow on their local computer against their topographic data. This ZCloudTools architecture helps standardize, automate and archive topographic data processing. It also represents a forum for discovering and

  13. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow

    DEFF Research Database (Denmark)

    Brunk, Elizabeth; George, Kevin W.; Alonso-Gutierrez, Jorge

    2016-01-01

    . Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython...

  14. RMCgui: a new interface for the workflow associated with running Reverse Monte Carlo simulations

    International Nuclear Information System (INIS)

    Dove, Martin T; Rigg, Gary

    2013-01-01

    The Reverse Monte Carlo method enables construction and refinement of large atomic models of materials that are tuned to give best agreement with experimental data such as neutron and x-ray total scattering data, capturing both the average structure and fluctuations. The practical drawback with the current implementations of this approach is the relatively complex workflow required, from setting up the configuration and simulation details through to checking the final outputs and analysing the resultant configurations. In order to make this workflow more accessible to users, we have developed an end-to-end workflow wrapped within a graphical user interface—RMCgui—designed to make the Reverse Monte Carlo more widely accessible. (paper)

  15. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu; Fei, Tong; Luo, Yi; Guo, Bowen

    2017-01-01

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source

  16. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhigang Jin

    2018-02-01

    Full Text Available Underwater acoustic sensor networks (UASNs have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider’s sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider’s trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15–33% compared with cooperative opportunistic routing (OVAR, the hop-by-hop vector-based forwarding (HH-VBF and the vector based forward (VBF methods, and reduce communication energy consumption by 20–58% for a typical network’s setting.

  17. Reduction of Hospital Physicians' Workflow Interruptions: A Controlled Unit-Based Intervention Study

    Directory of Open Access Journals (Sweden)

    Matthias Weigl

    2012-01-01

    Full Text Available Highly interruptive clinical environments may cause work stress and suboptimal clinical care. This study features an intervention to reduce workflow interruptions by re-designing work and organizational practices in hospital physicians providing ward coverage. A prospective, controlled intervention was conducted in two surgical and two internal wards. The intervention was based on physician quality circles - a participative technique to involve employees in the development of solutions to overcome work-related stressors. Outcome measures were the frequency of observed workflow interruptions. Workflow interruptions by fellow physicians and nursing staff were significantly lower after the intervention. However, a similar decrease was also observed in control units. Additional interviews to explore process-related factors suggested that there might have been spill-over effects in the sense that solutions were not strictly confined to the intervention group. Recommendations for further research on the effectiveness and consequences of such interventions for professional communication and patient safety are discussed.

  18. Natural Hazards and Supply Chain Disruptions

    Science.gov (United States)

    Haraguchi, M.

    2016-12-01

    Natural hazards distress the global economy through disruptions in supply chain networks. Moreover, despite increasing investment to infrastructure for disaster risk management, economic damages and losses caused by natural hazards are increasing. Manufacturing companies today have reduced inventories and streamlined logistics in order to maximize economic competitiveness. As a result, today's supply chains are profoundly susceptible to systemic risks, which are the risk of collapse of an entire network caused by a few node of the network. For instance, the prolonged floods in Thailand in 2011 caused supply chain disruptions in their primary industries, i.e. electronic and automotive industries, harming not only the Thai economy but also the global economy. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and the Earthquake in Kumamoto Japan in 2016. This study attempts to discover what kind of effective measures are available for private companies to manage supply chain disruptions caused by floods. It also proposes a method to estimate potential risks using a Bayesian network. The study uses a Bayesian network to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains such as logistics, multiple layers of suppliers, warehouses, and consumer markets. Considering situations across different times, our study shows desirable data requirements for the analysis and effective measures to improve Value at Risk (VaR) for private enterprises and supply chains.

  19. Comparison of manual and automated AmpliSeq™ workflows in the typing of a Somali population with the Precision ID Identity Panel

    DEFF Research Database (Denmark)

    van der Heijden, Suzanne; de Oliveira, Susanne Juel; Kampmann, Marie-Louise

    2017-01-01

    to compare different AmpliSeq™ workflows to investigate the possibility of using automated library building in forensic genetic case work. In order to do so, the SNP typing of the Somalis was performed using three different workflows: 1) manual library building and sequencing on the Ion PGM™, 2) automated...... workflows. The Biomek(®)3000/Ion PGM™ workflow was found to perform similarly to the manual/Ion PGM™ workflow. This argues for the use of automated library building in forensic genetic case work. Automated library building decreases the workload of the laboratory staff, decreases the risk of pipetting...... library building using the Biomek(®)3000 and sequencing on the Ion PGM™, and 3) automated library building using the Ion Chef™ and sequencing on the Ion S5™. AmpliSeq™ workflows were compared based on coverage, locus balance, noise, and heterozygote balance. Overall, the Ion Chef™/Ion S5™ workflow...

  20. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    Science.gov (United States)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high

  1. [Workflow improvement and efficiency gain with near total digitalization of a radiology department].

    Science.gov (United States)

    Langen, H-L; Bielmeier, J; Wittenberg, G; Selbach, R; Feustel, H

    2003-10-01

    To determine the temporal changes of the workflow caused by digitalization of the radiology department after installation of digital luminescence-radiography (DLR), a radiology information system (RIS) and picture archiving and communication system (PACS) at the Missionsärztliche Klinik in April 2000. In a comparative study, a workflow analysis by manual registration of different work steps was performed before (1999) and after (2001) digitalization of a radiology department. The digitalization shortened the examination time for patients from a mean of 8 min to 5 min. The time the patient is absent from the emergency room did not change. Reporting radiographic examinations including comparison with previous studies begins earlier from a mean of 2 h 37 min to 17 min. Using PACS, 85.9 % of all cases could be interpreted on the day of the examination (without PACS 41.2 %) and 87.2 % of the reports were completed the day after the examination (without PACS 64.5 %). No time differences were found between reading conventional studies on the monitor or as soft-copy. Compared to conventional film-screen systems, complete digitalization of a radiology department is time saving at nearly all steps of the workflow, with expected positive effects on the workflow quality of the entire hospital.

  2. Implementing Oracle Workflow

    CERN Document Server

    Mathieson, D W

    1999-01-01

    CERN (see [CERN]) is the world's largest physics research centre. Currently there are around 5,000 people working at the CERN site located on the border of France and Switzerland near Geneva along with another 4,000 working remotely at institutes situated all around the globe. CERN is currently working on the construction of our newest scientific instrument called the Large Hadron Collider (LHC); the construction alone of this 27-kilometre particle accelerator will not complete until 2005. Like many businesses in the current economic climate CERN is expected to continue growing, yet staff numbers are planned to fall in the coming years. In essence, do more with less. In an environment such as this, it is critical that the administration is as efficient as possible. One of the ways that administrative procedures are streamlined is by the use of an organisation-wide workflow system.

  3. Understanding the dispensary workflow at the Birmingham Free Clinic: a proposed framework for an informatics intervention.

    Science.gov (United States)

    Fisher, Arielle M; Herbert, Mary I; Douglas, Gerald P

    2016-02-19

    The Birmingham Free Clinic (BFC) in Pittsburgh, Pennsylvania, USA is a free, walk-in clinic that serves medically uninsured populations through the use of volunteer health care providers and an on-site medication dispensary. The introduction of an electronic medical record (EMR) has improved several aspects of clinic workflow. However, pharmacists' tasks involving medication management and dispensing have become more challenging since EMR implementation due to its inability to support workflows between the medical and pharmaceutical services. To inform the design of a systematic intervention, we conducted a needs assessment study to identify workflow challenges and process inefficiencies in the dispensary. We used contextual inquiry to document the dispensary workflow and facilitate identification of critical aspects of intervention design specific to the user. Pharmacists were observed according to contextual inquiry guidelines. Graphical models were produced to aid data and process visualization. We created a list of themes describing workflow challenges and asked the pharmacists to rank them in order of significance to narrow the scope of intervention design. Three pharmacists were observed at the BFC. Observer notes were documented and analyzed to produce 13 themes outlining the primary challenges pharmacists encounter during dispensation at the BFC. The dispensary workflow is labor intensive, redundant, and inefficient when integrated with the clinical service. Observations identified inefficiencies that may benefit from the introduction of informatics interventions including: medication labeling, insufficient process notification, triple documentation, and inventory control. We propose a system for Prescription Management and General Inventory Control (RxMAGIC). RxMAGIC is a framework designed to mitigate workflow challenges and improve the processes of medication management and inventory control. While RxMAGIC is described in the context of the BFC

  4. Deriving DICOM surgical extensions from surgical workflows

    Science.gov (United States)

    Burgert, O.; Neumuth, T.; Gessat, M.; Jacobs, S.; Lemke, H. U.

    2007-03-01

    The generation, storage, transfer, and representation of image data in radiology are standardized by DICOM. To cover the needs of image guided surgery or computer assisted surgery in general one needs to handle patient information besides image data. A large number of objects must be defined in DICOM to address the needs of surgery. We propose an analysis process based on Surgical Workflows that helps to identify these objects together with use cases and requirements motivating for their specification. As the first result we confirmed the need for the specification of representation and transfer of geometric models. The analysis of Surgical Workflows has shown that geometric models are widely used to represent planned procedure steps, surgical tools, anatomical structures, or prosthesis in the context of surgical planning, image guided surgery, augmented reality, and simulation. By now, the models are stored and transferred in several file formats bare of contextual information. The standardization of data types including contextual information and specifications for handling of geometric models allows a broader usage of such models. This paper explains the specification process leading to Geometry Mesh Service Object Pair classes. This process can be a template for the definition of further DICOM classes.

  5. A workflow for SHPs regulatory compliance in the wholesale market metering system; Workflow para adequacao regulatoria da medicao de faturamento em PCHs

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Danilo Ulisses Soares; Vidal, Fernando de Moura; Mariano, Alex [Way2 Servicos de Tecnologia S.A., Florianopolis, SC (Brazil)], E-mail: way2@way2.com.br

    2011-07-15

    CCEE regulatory compliance is a critical and necessary process to the beginning of the commercial operation of generation plants. Even when this stage is completed, the small-team nature of a PCH work crew, their rushed work pace and typical turnover on the matter of their role at the plant make difficult the task of monitoring the demands and processes, which increases the penalty risk. The current article analyses CCEE commercial procedures (PdCs) and ONS Network Procedures, emphasizing activities and workflow which are in compliancy to regulation. Primarily the asset registering process is described in details, from project elaboration and approval until CCEE final validation. After that, the article summarizes all criteria for penalties application regarding wholesale energy metering compliance, missing data and audit channel Unavailability. Besides that, there is a focus on a workflow definition in order to mitigate penalties risk. (author)

  6. Workflow management for a cosmology collaboratory

    International Nuclear Information System (INIS)

    Loken, Stewart C.; McParland, Charles

    2001-01-01

    The Nearby Supernova Factory Project will provide a unique opportunity to bring together simulation and observation to address crucial problems in particle and nuclear physics. Its goal is to significantly enhance our understanding of the nuclear processes in supernovae and to improve our ability to use both Type Ia and Type II supernovae as reference light sources (standard candles) in precision measurements of cosmological parameters. Over the past several years, astronomers and astrophysicists have been conducting in-depth sky searches with the goal of identifying supernovae in their earliest evolutionary stages and, during the 4 to 8 weeks of their most ''explosive'' activity, measure their changing magnitude and spectra. The search program currently under development at LBNL is an earth-based observation program utilizing observational instruments at Haleakala and Mauna Kea, Hawaii and Mt. Palomar, California. This new program provides a demanding testbed for the integration of computational, data management and collaboratory technologies. A critical element of this effort is the use of emerging workflow management tools to permit collaborating scientists to manage data processing and storage and to integrate advanced supernova simulation into the real-time control of the experiments. This paper describes the workflow management framework for the project, discusses security and resource allocation requirements and reviews emerging tools to support this important aspect of collaborative work

  7. Leveraging workflow control patterns in the domain of clinical practice guidelines.

    Science.gov (United States)

    Kaiser, Katharina; Marcos, Mar

    2016-02-10

    Clinical practice guidelines (CPGs) include recommendations describing appropriate care for the management of patients with a specific clinical condition. A number of representation languages have been developed to support executable CPGs, with associated authoring/editing tools. Even with tool assistance, authoring of CPG models is a labor-intensive task. We aim at facilitating the early stages of CPG modeling task. In this context, we propose to support the authoring of CPG models based on a set of suitable procedural patterns described in an implementation-independent notation that can be then semi-automatically transformed into one of the alternative executable CPG languages. We have started with the workflow control patterns which have been identified in the fields of workflow systems and business process management. We have analyzed the suitability of these patterns by means of a qualitative analysis of CPG texts. Following our analysis we have implemented a selection of workflow patterns in the Asbru and PROforma CPG languages. As implementation-independent notation for the description of patterns we have chosen BPMN 2.0. Finally, we have developed XSLT transformations to convert the BPMN 2.0 version of the patterns into the Asbru and PROforma languages. We showed that although a significant number of workflow control patterns are suitable to describe CPG procedural knowledge, not all of them are applicable in the context of CPGs due to their focus on single-patient care. Moreover, CPGs may require additional patterns not included in the set of workflow control patterns. We also showed that nearly all the CPG-suitable patterns can be conveniently implemented in the Asbru and PROforma languages. Finally, we demonstrated that individual patterns can be semi-automatically transformed from a process specification in BPMN 2.0 to executable implementations in these languages. We propose a pattern and transformation-based approach for the development of CPG models

  8. IDD Archival Hardware Architecture and Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  9. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.

    Science.gov (United States)

    Fu, Qin; Kowalski, Michael P; Mastali, Mitra; Parker, Sarah J; Sobhani, Kimia; van den Broek, Irene; Hunter, Christie L; Van Eyk, Jennifer E

    2018-01-05

    Sample preparation for protein quantification by mass spectrometry requires multiple processing steps including denaturation, reduction, alkylation, protease digestion, and peptide cleanup. Scaling these procedures for the analysis of numerous complex biological samples can be tedious and time-consuming, as there are many liquid transfer steps and timed reactions where technical variations can be introduced and propagated. We established an automated sample preparation workflow with a total processing time for 96 samples of 5 h, including a 2 h incubation with trypsin. Peptide cleanup is accomplished by online diversion during the LC/MS/MS analysis. In a selected reaction monitoring (SRM) assay targeting 6 plasma biomarkers and spiked β-galactosidase, mean intraday and interday cyclic voltammograms (CVs) for 5 serum and 5 plasma samples over 5 days were samples repeated on 3 separate days had total CVs below 20%. Similar results were obtained when the workflow was transferred to a second site: 93% of peptides had CVs below 20%. An automated trypsin digestion workflow yields uniformly processed samples in less than 5 h. Reproducible quantification of peptides was observed across replicates, days, instruments, and laboratory sites, demonstrating the broad applicability of this approach.

  10. Fastr: a workflow engine for advanced data flows in medical image analysis

    Directory of Open Access Journals (Sweden)

    Hakim Christiaan Achterberg

    2016-08-01

    Full Text Available With the increasing number of datasets encountered in imaging studies, the increasingcomplexity of processing workflows, and a growing awareness for data stewardship, thereis a need for managed, automated workflows. In this paper we introduce Fastr, an automatedworkflow engine with support for advanced data flows. Fastr has built-in data provenance forrecording processing trails and ensuring reproducible results. The extensible plugin-based designallows the system to interface with virtually any image archive and processing infrastructure. Thisworkflow engine is designed to consolidate quantitative imaging biomarker pipelines in order toenable easy application to new data.

  11. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control

    Directory of Open Access Journals (Sweden)

    Cherian Mathew

    2014-12-01

    Full Text Available The compilation and cleaning of data needed for analyses and prediction of species distributions is a time consuming process requiring a solid understanding of data formats and service APIs provided by biodiversity informatics infrastructures. We designed and implemented a Taverna-based Data Refinement Workflow which integrates taxonomic data retrieval, data cleaning, and data selection into a consistent, standards-based, and effective system hiding the complexity of underlying service infrastructures. The workflow can be freely used both locally and through a web-portal which does not require additional software installations by users.

  12. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  13. Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments

    International Nuclear Information System (INIS)

    Nyholm, Tufve; Nyberg, Morgan; Karlsson, Magnus G; Karlsson, Mikael

    2009-01-01

    In the present work we compared the spatial uncertainties associated with a MR-based workflow for external radiotherapy of prostate cancer to a standard CT-based workflow. The MR-based workflow relies on target definition and patient positioning based on MR imaging. A solution for patient transport between the MR scanner and the treatment units has been developed. For the CT-based workflow, the target is defined on a MR series but then transferred to a CT study through image registration before treatment planning, and a patient positioning using portal imaging and fiducial markers. An 'open bore' 1.5T MRI scanner, Siemens Espree, has been installed in the radiotherapy department in near proximity to a treatment unit to enable patient transport between the two installations, and hence use the MRI for patient positioning. The spatial uncertainty caused by the transport was added to the uncertainty originating from the target definition process, estimated through a review of the scientific literature. The uncertainty in the CT-based workflow was estimated through a literature review. The systematic uncertainties, affecting all treatment fractions, are reduced from 3-4 mm (1Sd) with a CT based workflow to 2-3 mm with a MR based workflow. The main contributing factor to this improvement is the exclusion of registration between MR and CT in the planning phase of the treatment. Treatment planning directly on MR images reduce the spatial uncertainty for prostate treatments

  14. Sistema informatizado de workflow no atendimento ao consumidor: estudo em uma operadora de saúde suplementar

    Directory of Open Access Journals (Sweden)

    Sonia Francisca Monken

    2017-01-01

    Full Text Available In Brazil, health insurance carriers need to have efficient customer service channels. A workflow system can assist in managing service channels. Hence, there is a need to understand how the implementation of a workflow system helps improve the productivity and central quality of customer service of health insurance carriers. This study aims to describe the stages of implementation of a computerized system for workflow at a health insurance provider. The results showed that this system enabled the monitoring of realtime operations, the reduction of costs, a decrease in customer complaints, the definition of performance indicators, and the ease of generating reports and retrieving documents. The study contributed to broadening the understanding of the application of computerized workflow systems in the context of health insurance carriers and to demonstrate how this system helps to improve productivity and service quality in customer service.

  15. SMITH: a LIMS for handling next-generation sequencing workflows.

    Science.gov (United States)

    Venco, Francesco; Vaskin, Yuriy; Ceol, Arnaud; Muller, Heiko

    2014-01-01

    Life-science laboratories make increasing use of Next Generation Sequencing (NGS) for studying bio-macromolecules and their interactions. Array-based methods for measuring gene expression or protein-DNA interactions are being replaced by RNA-Seq and ChIP-Seq. Sequencing is generally performed by specialized facilities that have to keep track of sequencing requests, trace samples, ensure quality and make data available according to predefined privileges. An integrated tool helps to troubleshoot problems, to maintain a high quality standard, to reduce time and costs. Commercial and non-commercial tools called LIMS (Laboratory Information Management Systems) are available for this purpose. However, they often come at prohibitive cost and/or lack the flexibility and scalability needed to adjust seamlessly to the frequently changing protocols employed. In order to manage the flow of sequencing data produced at the Genomic Unit of the Italian Institute of Technology (IIT), we developed SMITH (Sequencing Machine Information Tracking and Handling). SMITH is a web application with a MySQL server at the backend. Wet-lab scientists of the Centre for Genomic Science and database experts from the Politecnico of Milan in the context of a Genomic Data Model Project developed SMITH. The data base schema stores all the information of an NGS experiment, including the descriptions of all protocols and algorithms used in the process. Notably, an attribute-value table allows associating an unconstrained textual description to each sample and all the data produced afterwards. This method permits the creation of metadata that can be used to search the database for specific files as well as for statistical analyses. SMITH runs automatically and limits direct human interaction mainly to administrative tasks. SMITH data-delivery procedures were standardized making it easier for biologists and analysts to navigate the data. Automation also helps saving time. The workflows are available

  16. SMITH: a LIMS for handling next-generation sequencing workflows

    Science.gov (United States)

    2014-01-01

    workflows are available through an API provided by the workflow management system. The parameters and input data are passed to the workflow engine that performs de-multiplexing, quality control, alignments, etc. Conclusions SMITH standardizes, automates, and speeds up sequencing workflows. Annotation of data with key-value pairs facilitates meta-analysis. PMID:25471934

  17. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    International Nuclear Information System (INIS)

    Sibolt, P; Andersen, C E; Cronholm, R O; Heath, E; Behrens, C F

    2017-01-01

    With emerging techniques for tracking and gating methods in radiotherapy of lung cancer patients, there is an increasing need for efficient four-dimensional Monte Carlo (4DMC) based quality assurance (QA). An automated and flexible workflow for 4DMC QA, based on the 4DdefDOSXYZnrc user code, has been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry. (paper)

  18. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology.

    Science.gov (United States)

    Cock, Peter J A; Grüning, Björn A; Paszkiewicz, Konrad; Pritchard, Leighton

    2013-01-01

    The Galaxy Project offers the popular web browser-based platform Galaxy for running bioinformatics tools and constructing simple workflows. Here, we present a broad collection of additional Galaxy tools for large scale analysis of gene and protein sequences. The motivating research theme is the identification of specific genes of interest in a range of non-model organisms, and our central example is the identification and prediction of "effector" proteins produced by plant pathogens in order to manipulate their host plant. This functional annotation of a pathogen's predicted capacity for virulence is a key step in translating sequence data into potential applications in plant pathology. This collection includes novel tools, and widely-used third-party tools such as NCBI BLAST+ wrapped for use within Galaxy. Individual bioinformatics software tools are typically available separately as standalone packages, or in online browser-based form. The Galaxy framework enables the user to combine these and other tools to automate organism scale analyses as workflows, without demanding familiarity with command line tools and scripting. Workflows created using Galaxy can be saved and are reusable, so may be distributed within and between research groups, facilitating the construction of a set of standardised, reusable bioinformatic protocols. The Galaxy tools and workflows described in this manuscript are open source and freely available from the Galaxy Tool Shed (http://usegalaxy.org/toolshed or http://toolshed.g2.bx.psu.edu).

  19. Streamlining Workflow for Endovascular Mechanical Thrombectomy: Lessons Learned from a Comprehensive Stroke Center.

    Science.gov (United States)

    Wang, Hongjin; Thevathasan, Arthur; Dowling, Richard; Bush, Steven; Mitchell, Peter; Yan, Bernard

    2017-08-01

    Recently, 5 randomized controlled trials confirmed the superiority of endovascular mechanical thrombectomy (EMT) to intravenous thrombolysis in acute ischemic stroke with large-vessel occlusion. The implication is that our health systems would witness an increasing number of patients treated with EMT. However, in-hospital delays, leading to increased time to reperfusion, are associated with poor clinical outcomes. This review outlines the in-hospital workflow of the treatment of acute ischemic stroke at a comprehensive stroke center and the lessons learned in reduction of in-hospital delays. The in-hospital workflow for acute ischemic stroke was described from prehospital notification to femoral arterial puncture in preparation for EMT. Systematic review of literature was also performed with PubMed. The implementation of workflow streamlining could result in reduction of in-hospital time delays for patients who were eligible for EMT. In particular, time-critical measures, including prehospital notification, the transfer of patients from door to computed tomography (CT) room, initiation of intravenous thrombolysis in the CT room, and the mobilization of neurointervention team in parallel with thrombolysis, all contributed to reduction in time delays. We have identified issues resulting in in-hospital time delays and have reported possible solutions to improve workflow efficiencies. We believe that these measures may help stroke centers initiate an EMT service for eligible patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.

    Science.gov (United States)

    Stockton, David B; Santamaria, Fidel

    2017-10-01

    We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.

  1. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    Science.gov (United States)

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  2. An Adaptable Seismic Data Format for Modern Scientific Workflows

    Science.gov (United States)

    Smith, J. A.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Podhorszki, N.; Tromp, J.

    2013-12-01

    Data storage, exchange, and access play a critical role in modern seismology. Current seismic data formats, such as SEED, SAC, and SEG-Y, were designed with specific applications in mind and are frequently a major bottleneck in implementing efficient workflows. We propose a new modern parallel format that can be adapted for a variety of seismic workflows. The Adaptable Seismic Data Format (ASDF) features high-performance parallel read and write support and the ability to store an arbitrary number of traces of varying sizes. Provenance information is stored inside the file so that users know the origin of the data as well as the precise operations that have been applied to the waveforms. The design of the new format is based on several real-world use cases, including earthquake seismology and seismic interferometry. The metadata is based on the proven XML schemas StationXML and QuakeML. Existing time-series analysis tool-kits are easily interfaced with this new format so that seismologists can use robust, previously developed software packages, such as ObsPy and the SAC library. ADIOS, netCDF4, and HDF5 can be used as the underlying container format. At Princeton University, we have chosen to use ADIOS as the container format because it has shown superior scalability for certain applications, such as dealing with big data on HPC systems. In the context of high-performance computing, we have implemented ASDF into the global adjoint tomography workflow on Oak Ridge National Laboratory's supercomputer Titan.

  3. The MPO API: A tool for recording scientific workflows

    Energy Technology Data Exchange (ETDEWEB)

    Wright, John C., E-mail: jcwright@mit.edu [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Greenwald, Martin; Stillerman, Joshua [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Abla, Gheni; Chanthavong, Bobby; Flanagan, Sean; Schissel, David; Lee, Xia [General Atomics, San Diego, CA (United States); Romosan, Alex; Shoshani, Arie [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    2014-05-15

    Highlights: • A description of a new framework and tool for recording scientific workflows, especially those resulting from simulation and analysis. • An explanation of the underlying technologies used to implement this web based tool. • Several examples of using the tool. - Abstract: Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for high-consequence applications. The Metadata, Provenance and Ontology (MPO) project builds on previous work [M. Greenwald, Fusion Eng. Des. 87 (2012) 2205–2208] and is focused on providing documentation of workflows, data provenance and the ability to data-mine large sets of results. While there are important design and development aspects to the data structures and user interfaces, we concern ourselves in this paper with the application programming interface (API) – the set of functions that interface with the data server. Our approach for the data server is to follow the Representational State Transfer (RESTful) software architecture style for client–server communication. At its core, the API uses the POST and GET methods of the HTTP protocol to transfer workflow information in message bodies to targets specified in the URL to and from the database via a web server. Higher level API calls are built upon this core API. This design facilitates implementation on different platforms and in different languages and is robust to changes in the underlying technologies used. The command line client implementation can communicate with the data server from any machine with HTTP access.

  4. The MPO API: A tool for recording scientific workflows

    International Nuclear Information System (INIS)

    Wright, John C.; Greenwald, Martin; Stillerman, Joshua; Abla, Gheni; Chanthavong, Bobby; Flanagan, Sean; Schissel, David; Lee, Xia; Romosan, Alex; Shoshani, Arie

    2014-01-01

    Highlights: • A description of a new framework and tool for recording scientific workflows, especially those resulting from simulation and analysis. • An explanation of the underlying technologies used to implement this web based tool. • Several examples of using the tool. - Abstract: Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for high-consequence applications. The Metadata, Provenance and Ontology (MPO) project builds on previous work [M. Greenwald, Fusion Eng. Des. 87 (2012) 2205–2208] and is focused on providing documentation of workflows, data provenance and the ability to data-mine large sets of results. While there are important design and development aspects to the data structures and user interfaces, we concern ourselves in this paper with the application programming interface (API) – the set of functions that interface with the data server. Our approach for the data server is to follow the Representational State Transfer (RESTful) software architecture style for client–server communication. At its core, the API uses the POST and GET methods of the HTTP protocol to transfer workflow information in message bodies to targets specified in the URL to and from the database via a web server. Higher level API calls are built upon this core API. This design facilitates implementation on different platforms and in different languages and is robust to changes in the underlying technologies used. The command line client implementation can communicate with the data server from any machine with HTTP access

  5. 3D workflows in orthodontics, maxillofacial surgery and prosthodontics

    NARCIS (Netherlands)

    van der Meer, Wicher Jurjen

    2016-01-01

    In this thesis different aspects of digital workflows in Orthodontics, Maxillofacial Surgery and Prosthodontics are discussed and, where possible, placed in a broader perspective thereby attempting to go both broader and deeper into the implications of the introduction of 3D digital technology in

  6. Supporting flexible processes with adaptive workflow and case handling

    NARCIS (Netherlands)

    Günther, C.W.; Reichert, M.; Aalst, van der W.M.P.

    2008-01-01

    Workflow management technology has profoundly transformed the way complex tasks are being handled in modern, large-scale organizations. However, it is mostly those systems' inherent lack of flexibility that hinders their broad acceptance, and that is perceived as annoyance by users. In this context,

  7. HisT/PLIER: A two-fold Provenance Approach for Grid-enabled Scientific Workflows using WS-VLAM

    NARCIS (Netherlands)

    Gerhards, M.; Sander, V.; Belloum, A.; Vasunin, D.; Benabdelkader, A.; Jha, S.; Felde, N.G.; Buyya, R.; Fedak, G.

    2011-01-01

    Large scale scientific applications are frequently modeled as a workflow that is executed under the control of a workflow management system. One crucial requirement is the validation of the generated results, e.g. The trace ability of the experiment execution path. The automated tracking and storage

  8. A framework for streamlining research workflow in neuroscience and psychology

    Directory of Open Access Journals (Sweden)

    Jonas eKubilius

    2014-01-01

    Full Text Available Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for faster, more robust code development and collaboration for researchers.

  9. Research of Workflow Efficiency in HighEnthalpy Air Flow Compact Generators

    Directory of Open Access Journals (Sweden)

    V. Yu. Aleksandrov

    2015-01-01

    Full Text Available To test the combustion chambers (CC of high-speed ramjet engine (ramjet it is necessary to create the inlet conditions as realistic as possible, including the stagnation temperature T0, the Mach number M0, and the total airflow pressure p0. To achieve T0 = 1000 ... 2000 K is possible using a high-enthalpy airflow generator (HAG providing the fired air-heating and oxygen balance compensation.Due to strict weight and size restrictions imposed by the test conditions of the ramjet CC and bench equipment, there is a need to reduce HAG size and weight. For small HAG the relevant tasks are to organize effective workflow and ensure combustion stability, which can be solved directly at the developmental testing stage.The characteristic criterion of the workflow efficiency in HAG is the completed physicochemical combustion processes of the working fluid components. This is due to the fact that in the testing process a possible after-burning component of the working fluid in the flow path of the ramjet CC has a significant impact on the studied characteristics of the engine, thereby having a detrimental effect on the quality of the experiment.The examination of the workflow efficiency in HAG showed that the use of hydrogen as a fuel allows us to achieve a high degree of completing the physicochemical processes and reaching the specified conditions at the CC inlet to the ramjet under test. The use of hydrocarbon fuels reduces the completion degree of the workflow process in HAG and is accompanied by the development of pressure pulsations.The data obtained can be used when developing various HAGs, including those intended for testing the CC of ramjets for the prospective aircrafts.

  10. Automated workflows for critical time-dependent calibrations at the CMS experiment.

    CERN Document Server

    Cerminara, Gianluca

    2015-01-01

    Fast and efficient methods for the calibration and the alignment ofthe detector are a key asset to exploit the physics potential of theCompact Muon Solenoid (CMS) detector and to ensure timely preparationof results for conferences and publications.To achieve this goal, the CMS experiment has set up a powerfulframework. This includes automated workflows in the context of a promptcalibration concept, which allows for a quick turnaround of thecalibration process following as fast as possible any change inrunning conditions.The presentation will review the design and operational experience ofthese workflows and the related monitoring system during the LHC RunIand focus on the development, deployment and commissioning in preparation of RunII.

  11. From Data to Knowledge to Discoveries: Artificial Intelligence and Scientific Workflows

    Directory of Open Access Journals (Sweden)

    Yolanda Gil

    2009-01-01

    Full Text Available Scientific computing has entered a new era of scale and sharing with the arrival of cyberinfrastructure facilities for computational experimentation. A key emerging concept is scientific workflows, which provide a declarative representation of complex scientific applications that can be automatically managed and executed in distributed shared resources. In the coming decades, computational experimentation will push the boundaries of current cyberinfrastructure in terms of inter-disciplinary scope and integrative models of scientific phenomena under study. This paper argues that knowledge-rich workflow environments will provide necessary capabilities for that vision by assisting scientists to validate and vet complex analysis processes and by automating important aspects of scientific exploration and discovery.

  12. Safety and feasibility of STAT RAD: Improvement of a novel rapid tomotherapy-based radiation therapy workflow by failure mode and effects analysis.

    Science.gov (United States)

    Jones, Ryan T; Handsfield, Lydia; Read, Paul W; Wilson, David D; Van Ausdal, Ray; Schlesinger, David J; Siebers, Jeffrey V; Chen, Quan

    2015-01-01

    The clinical challenge of radiation therapy (RT) for painful bone metastases requires clinicians to consider both treatment efficacy and patient prognosis when selecting a radiation therapy regimen. The traditional RT workflow requires several weeks for common palliative RT schedules of 30 Gy in 10 fractions or 20 Gy in 5 fractions. At our institution, we have created a new RT workflow termed "STAT RAD" that allows clinicians to perform computed tomographic (CT) simulation, planning, and highly conformal single fraction treatment delivery within 2 hours. In this study, we evaluate the safety and feasibility of the STAT RAD workflow. A failure mode and effects analysis (FMEA) was performed on the STAT RAD workflow, including development of a process map, identification of potential failure modes, description of the cause and effect, temporal occurrence, and team member involvement in each failure mode, and examination of existing safety controls. A risk probability number (RPN) was calculated for each failure mode. As necessary, workflow adjustments were then made to safeguard failure modes of significant RPN values. After workflow alterations, RPN numbers were again recomputed. A total of 72 potential failure modes were identified in the pre-FMEA STAT RAD workflow, of which 22 met the RPN threshold for clinical significance. Workflow adjustments included the addition of a team member checklist, changing simulation from megavoltage CT to kilovoltage CT, alteration of patient-specific quality assurance testing, and allocating increased time for critical workflow steps. After these modifications, only 1 failure mode maintained RPN significance; patient motion after alignment or during treatment. Performing the FMEA for the STAT RAD workflow before clinical implementation has significantly strengthened the safety and feasibility of STAT RAD. The FMEA proved a valuable evaluation tool, identifying potential problem areas so that we could create a safer workflow

  13. Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D

    International Nuclear Information System (INIS)

    Granetz, R.S.; Hollmann, E.M.; Whyte, D.G.; Izzo, V.A.; Antar, G.Y.; Bader, A.; Bakhtiari, M.; Biewer, T.; Boedo, J.A.; Evans, T.E.; Hutchinson, I.H.; Jernigan, T.C.; Gray, D.S.; Groth, M.; Humphreys, D.A.; Lasnier, C.J.; Moyer, R.A.; Parks, P.B.; Reinke, M.L.; Rudakov, D.L.; Strait, E.J.; Terry, J.L.; Wesley, J.; West, W.P.; Wurden, G.; Yu, J.

    2007-01-01

    High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the requirements of fast response time and reliability, without degrading subsequent discharges. Previously reported gas jet experiments on DIII-D showed good success at reducing deleterious disruption effects. In this paper, results of recent gas jet disruption mitigation experiments on Alcator C-Mod and DIII-D are reported. Jointly, these experiments have greatly improved the understanding of gas jet dynamics and the processes involved in mitigating disruption effects. In both machines, the sequence of events following gas injection is observed to be quite similar: the jet neutrals stop near the plasma edge, the edge temperature collapses and large MHD modes are quickly destabilized, mixing the hot plasma core with the edge impurity ions and radiating away the plasma thermal energy. High radiated power fractions are achieved, thus reducing the conducted heat loads to the chamber walls and divertor. A significant (2 x or more) reduction in halo current is also observed. Runaway electron generation is small or absent. These similar results in two quite different tokamaks are encouraging for the applicability of this disruption mitigation technique to ITER

  14. Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II.

    Science.gov (United States)

    Lu, Zhiyong; Hirschman, Lynette

    2012-01-01

    Manual curation of data from the biomedical literature is a rate-limiting factor for many expert curated databases. Despite the continuing advances in biomedical text mining and the pressing needs of biocurators for better tools, few existing text-mining tools have been successfully integrated into production literature curation systems such as those used by the expert curated databases. To close this gap and better understand all aspects of literature curation, we invited submissions of written descriptions of curation workflows from expert curated databases for the BioCreative 2012 Workshop Track II. We received seven qualified contributions, primarily from model organism databases. Based on these descriptions, we identified commonalities and differences across the workflows, the common ontologies and controlled vocabularies used and the current and desired uses of text mining for biocuration. Compared to a survey done in 2009, our 2012 results show that many more databases are now using text mining in parts of their curation workflows. In addition, the workshop participants identified text-mining aids for finding gene names and symbols (gene indexing), prioritization of documents for curation (document triage) and ontology concept assignment as those most desired by the biocurators. DATABASE URL: http://www.biocreative.org/tasks/bc-workshop-2012/workflow/.

  15. A virtual data language and system for scientific workflow management in data grid environments

    Science.gov (United States)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  16. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Lübeck Christiansen, Rasmus; Jensen, Henrik R.; Brink, Carsten

    2017-01-01

    Background: Current state of the art radiotherapy planning of prostate cancer utilises magnetic resonance (MR) for soft tissue delineation and computed tomography (CT) to provide an electron density map for dose calculation. This dual scan workflow is prone to setup and registration error....... This study evaluates the feasibility of an MR-only workflow and the validity of dose calculation from an MR derived pseudo CT. Material and methods: Thirty prostate cancer patients were CT and MR scanned. Clinical treatment plans were generated on CT using a single 18 MV arc volumetric modulated arc therapy...... was successfully delivered to one patient, including manually performed daily IGRT. Conclusions: Median gamma pass rates were high for pseudo CT and proved superior to uniform density. Local differences in dose calculations were concluded not to have clinical relevance. Feasibility of the MR-only workflow...

  17. Coupling between a multi-physics workflow engine and an optimization framework

    Science.gov (United States)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  18. DataSpaces: An Interaction and Coordination Framework for Coupled Simulation Workflows

    International Nuclear Information System (INIS)

    Docan, Ciprian; Klasky, Scott A.; Parashar, Manish

    2010-01-01

    Emerging high-performance distributed computing environments are enabling new end-to-end formulations in science and engineering that involve multiple interacting processes and data-intensive application workflows. For example, current fusion simulation efforts are exploring coupled models and codes that simultaneously simulate separate application processes, such as the core and the edge turbulence, and run on different high performance computing resources. These components need to interact, at runtime, with each other and with services for data monitoring, data analysis and visualization, and data archiving. As a result, they require efficient support for dynamic and flexible couplings and interactions, which remains a challenge. This paper presents Data-Spaces, a flexible interaction and coordination substrate that addresses this challenge. DataSpaces essentially implements a semantically specialized virtual shared space abstraction that can be associatively accessed by all components and services in the application workflow. It enables live data to be extracted from running simulation components, indexes this data online, and then allows it to be monitored, queried and accessed by other components and services via the space using semantically meaningful operators. The underlying data transport is asynchronous, low-overhead and largely memory-to-memory. The design, implementation, and experimental evaluation of DataSpaces using a coupled fusion simulation workflow is presented.

  19. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    Science.gov (United States)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  20. A Semi-Automated Workflow Solution for Data Set Publication

    Directory of Open Access Journals (Sweden)

    Suresh Vannan

    2016-03-01

    Full Text Available To address the need for published data, considerable effort has gone into formalizing the process of data publication. From funding agencies to publishers, data publication has rapidly become a requirement. Digital Object Identifiers (DOI and data citations have enhanced the integration and availability of data. The challenge facing data publishers now is to deal with the increased number of publishable data products and most importantly the difficulties of publishing diverse data products into an online archive. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, a NASA-funded data center, faces these challenges as it deals with data products created by individual investigators. This paper summarizes the challenges of curating data and provides a summary of a workflow solution that ORNL DAAC researcher and technical staffs have created to deal with publication of the diverse data products. The workflow solution presented here is generic and can be applied to data from any scientific domain and data located at any data center.

  1. CMS data and workflow management system

    CERN Document Server

    Fanfani, A; Bacchi, W; Codispoti, G; De Filippis, N; Pompili, A; My, S; Abbrescia, M; Maggi, G; Donvito, G; Silvestris, L; Calzolari, F; Sarkar, S; Spiga, D; Cinquili, M; Lacaprara, S; Biasotto, M; Farina, F; Merlo, M; Belforte, S; Kavka, C; Sala, L; Harvey, J; Hufnagel, D; Fanzago, F; Corvo, M; Magini, N; Rehn, J; Toteva, Z; Feichtinger, D; Tuura, L; Eulisse, G; Bockelman, B; Lundstedt, C; Egeland, R; Evans, D; Mason, D; Gutsche, O; Sexton-Kennedy, L; Dagenhart, D W; Afaq, A; Guo, Y; Kosyakov, S; Lueking, L; Sekhri, V; Fisk, I; McBride, P; Bauerdick, L; Bakken, J; Rossman, P; Wicklund, E; Wu, Y; Jones, C; Kuznetsov, V; Riley, D; Dolgert, A; van Lingen, F; Narsky, I; Paus, C; Klute, M; Gomez-Ceballos, G; Piedra-Gomez, J; Miller, M; Mohapatra, A; Lazaridis, C; Bradley, D; Elmer, P; Wildish, T; Wuerthwein, F; Letts, J; Bourilkov, D; Kim, B; Smith, P; Hernandez, J M; Caballero, J; Delgado, A; Flix, J; Cabrillo-Bartolome, I; Kasemann, M; Flossdorf, A; Stadie, H; Kreuzer, P; Khomitch, A; Hof, C; Zeidler, C; Kalini, S; Trunov, A; Saout, C; Felzmann, U; Metson, S; Newbold, D; Geddes, N; Brew, C; Jackson, J; Wakefield, S; De Weirdt, S; Adler, V; Maes, J; Van Mulders, P; Villella, I; Hammad, G; Pukhaeva, N; Kurca, T; Semneniouk, I; Guan, W; Lajas, J A; Teodoro, D; Gregores, E; Baquero, M; Shehzad, A; Kadastik, M; Kodolova, O; Chao, Y; Ming Kuo, C; Filippidis, C; Walzel, G; Han, D; Kalinowski, A; Giro de Almeida, N M; Panyam, N

    2008-01-01

    CMS expects to manage many tens of peta bytes of data to be distributed over several computing centers around the world. The CMS distributed computing and analysis model is designed to serve, process and archive the large number of events that will be generated when the CMS detector starts taking data. The underlying concepts and the overall architecture of the CMS data and workflow management system will be presented. In addition the experience in using the system for MC production, initial detector commissioning activities and data analysis will be summarized.

  2. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  3. Barriers to effective, safe communication and workflow between nurses and non-consultant hospital doctors during out-of-hours.

    Science.gov (United States)

    Brady, Anne-Marie; Byrne, Gobnait; Quirke, Mary Brigid; Lynch, Aine; Ennis, Shauna; Bhangu, Jaspreet; Prendergast, Meabh

    2017-11-01

    This study aimed to evaluate the nature and type of communication and workflow arrangements between nurses and doctors out-of-hours (OOH). Effective communication and workflow arrangements between nurses and doctors are essential to minimize risk in hospital settings, particularly in the out-of-hour's period. Timely patient flow is a priority for all healthcare organizations and the quality of communication and workflow arrangements influences patient safety. Qualitative descriptive design and data collection methods included focus groups and individual interviews. A 500 bed tertiary referral acute hospital in Ireland. Junior and senior Non-Consultant Hospital Doctors, staff nurses and nurse managers. Both nurses and doctors acknowledged the importance of good interdisciplinary communication and collaborative working, in sustaining effective workflow and enabling a supportive working environment and patient safety. Indeed, issues of safety and missed care OOH were found to be primarily due to difficulties of communication and workflow. Medical workflow OOH is often dependent on cues and communication to/from nursing. However, communication systems and, in particular the bleep system, considered central to the process of communication between doctors and nurses OOH, can contribute to workflow challenges and increased staff stress. It was reported as commonplace for routine work, that should be completed during normal hours, to fall into OOH when resources were most limited, further compounding risk to patient safety. Enhancement of communication strategies between nurses and doctors has the potential to remove barriers to effective decision-making and patient flow. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. You’ve Got Email: a Workflow Management Extraction System

    NARCIS (Netherlands)

    P. Chaipornkaew (Piyanuch); T. Prexawanprasut (Takorn); M.J. McAleer (Michael)

    2017-01-01

    textabstractEmail is one of the most powerful tools for communication. Many businesses use email as the main channel for communication, so it is possible that substantial data are included in email content. In order to help businesses grow faster, a workflow management system may be required. The

  5. Separating Business Logic from Medical Knowledge in Digital Clinical Workflows Using Business Process Model and Notation and Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Leitich, Harald; Rappelsberger, Andrea

    2018-01-01

    Evidence-based clinical guidelines have a major positive effect on the physician's decision-making process. Computer-executable clinical guidelines allow for automated guideline marshalling during a clinical diagnostic process, thus improving the decision-making process. Implementation of a digital clinical guideline for the prevention of mother-to-child transmission of hepatitis B as a computerized workflow, thereby separating business logic from medical knowledge and decision-making. We used the Business Process Model and Notation language system Activiti for business logic and workflow modeling. Medical decision-making was performed by an Arden-Syntax-based medical rule engine, which is part of the ARDENSUITE software. We succeeded in creating an electronic clinical workflow for the prevention of mother-to-child transmission of hepatitis B, where institution-specific medical decision-making processes could be adapted without modifying the workflow business logic. Separation of business logic and medical decision-making results in more easily reusable electronic clinical workflows.

  6. An Optimization Algorithm for Multipath Parallel Allocation for Service Resource in the Simulation Task Workflow

    Directory of Open Access Journals (Sweden)

    Zhiteng Wang

    2014-01-01

    Full Text Available Service oriented modeling and simulation are hot issues in the field of modeling and simulation, and there is need to call service resources when simulation task workflow is running. How to optimize the service resource allocation to ensure that the task is complete effectively is an important issue in this area. In military modeling and simulation field, it is important to improve the probability of success and timeliness in simulation task workflow. Therefore, this paper proposes an optimization algorithm for multipath service resource parallel allocation, in which multipath service resource parallel allocation model is built and multiple chains coding scheme quantum optimization algorithm is used for optimization and solution. The multiple chains coding scheme quantum optimization algorithm is to extend parallel search space to improve search efficiency. Through the simulation experiment, this paper investigates the effect for the probability of success in simulation task workflow from different optimization algorithm, service allocation strategy, and path number, and the simulation result shows that the optimization algorithm for multipath service resource parallel allocation is an effective method to improve the probability of success and timeliness in simulation task workflow.

  7. Identifying Challenges Associated With the Care Transition Workflow From Hospital to Skilled Home Health Care: Perspectives of Home Health Care Agency Providers.

    Science.gov (United States)

    Nasarwanji, Mahiyar; Werner, Nicole E; Carl, Kimberly; Hohl, Dawn; Leff, Bruce; Gurses, Ayse P; Arbaje, Alicia I

    2015-01-01

    Older adults discharged from the hospital to skilled home health care (SHHC) are at high risk for experiencing suboptimal transitions. Using the human factors approach of shadowing and contextual inquiry, we studied the workflow for transitioning older adults from the hospital to SHHC. We created a representative diagram of the hospital to SHHC transition workflow, we examined potential workflow variations, we categorized workflow challenges, and we identified artifacts developed to manage variations and challenges. We identified three overarching challenges to optimal care transitions-information access, coordination, and communication/teamwork. Future investigations could test whether redesigning the transition from hospital to SHHC, based on our findings, improves workflow and care quality.

  8. Towards seamless workflows in agile data science

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2017-12-01

    Agile workflows are a response to projects with requirements that may change over time. They prioritise rapid and flexible responses to change, preferring to adapt to changes in requirements rather than predict them before a project starts. This suits the needs of research very well because research is inherently agile in its methodology. The adoption of agile methods has made collaborative data analysis much easier in a research environment fragmented across institutional data stores, HPC, personal and lab computers and more recently cloud environments. Agile workflows use tools that share a common worldview: in an agile environment, there may be more that one valid version of data, code or environment in play at any given time. All of these versions need references and identifiers. For example, a team of developers following the git-flow conventions (github.com/nvie/gitflow) may have several active branches, one for each strand of development. These workflows allow rapid and parallel iteration while maintaining identifiers pointing to individual snapshots of data and code and allowing rapid switching between strands. In contrast, the current focus of versioning in research data management is geared towards managing data for reproducibility and long-term preservation of the record of science. While both are important goals in the persistent curation domain of the institutional research data infrastructure, current tools emphasise planning over adaptation and can introduce unwanted rigidity by insisting on a single valid version or point of truth. In the collaborative curation domain of a research project, things are more fluid. However, there is no equivalent to the "versioning iso-surface" of the git protocol for the management and versioning of research data. At CSIRO we are developing concepts and tools for the agile management of software code and research data for virtual research environments, based on our experiences of actual data analytics projects in the

  9. FOSS geospatial libraries in scientific workflow environments: experiences and directions

    CSIR Research Space (South Africa)

    McFerren, G

    2011-07-01

    Full Text Available of experiments. In context of three sets of research (wildfire research, flood modelling and the linking of disease outbreaks to multi-scale environmental conditions), we describe our efforts to provide geospatial capability for scientific workflow software...

  10. PyDBS: an automated image processing workflow for deep brain stimulation surgery.

    Science.gov (United States)

    D'Albis, Tiziano; Haegelen, Claire; Essert, Caroline; Fernández-Vidal, Sara; Lalys, Florent; Jannin, Pierre

    2015-02-01

    Deep brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call upon several image processing and visualization tasks, such as image registration, image segmentation, image fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which adopt differing formats and geometrical conventions and require patient-specific parameterization or interactive tuning. To overcome these issues, we introduce in this article PyDBS, a fully integrated and automated image processing workflow for DBS surgery. PyDBS consists of three image processing pipelines and three visualization modules assisting clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to the postoperative assessment of electrode placement. The system's robustness, speed, and accuracy were assessed by means of a retrospective validation, based on 92 clinical cases. The complete PyDBS workflow achieved satisfactory results in 92 % of tested cases, with a median processing time of 28 min per patient. The results obtained are compatible with the adoption of PyDBS in clinical practice.

  11. Air Force Information Workflow Automation through Synchronized Air Power Management (SAPM)

    National Research Council Canada - National Science Library

    Benkley, Carl; Chang, Irene; Crowley, John; Oristian, Thomas

    2004-01-01

    .... Implementing Extensible Markup Language (XML) messages, web services, and workflow automation, SAPM expands existing web-based capabilities, enables machine-to-machine interfaces, and streamlines the war fighter kill chain process...

  12. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  13. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Cronholm, R.O.; Heath, E.

    2017-01-01

    been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered...... by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry....

  14. BioInfra.Prot: A comprehensive proteomics workflow including data standardization, protein inference, expression analysis and data publication.

    Science.gov (United States)

    Turewicz, Michael; Kohl, Michael; Ahrens, Maike; Mayer, Gerhard; Uszkoreit, Julian; Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Sitek, Barbara; Marcus, Katrin; Eisenacher, Martin

    2017-11-10

    The analysis of high-throughput mass spectrometry-based proteomics data must address the specific challenges of this technology. To this end, the comprehensive proteomics workflow offered by the de.NBI service center BioInfra.Prot provides indispensable components for the computational and statistical analysis of this kind of data. These components include tools and methods for spectrum identification and protein inference, protein quantification, expression analysis as well as data standardization and data publication. All particular methods of the workflow which address these tasks are state-of-the-art or cutting edge. As has been shown in previous publications, each of these methods is adequate to solve its specific task and gives competitive results. However, the methods included in the workflow are continuously reviewed, updated and improved to adapt to new scientific developments. All of these particular components and methods are available as stand-alone BioInfra.Prot services or as a complete workflow. Since BioInfra.Prot provides manifold fast communication channels to get access to all components of the workflow (e.g., via the BioInfra.Prot ticket system: bioinfraprot@rub.de) users can easily benefit from this service and get support by experts. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Implementation of Cyberinfrastructure and Data Management Workflow for a Large-Scale Sensor Network

    Science.gov (United States)

    Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Monitoring with in situ environmental sensors and other forms of field-based observation presents many challenges for data management, particularly for large-scale networks consisting of multiple sites, sensors, and personnel. The availability and utility of these data in addressing scientific questions relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into functional data products. It also depends on the ability of researchers to share and access the data in useable formats. In addition to addressing the challenges presented by the quantity of data, monitoring networks need practices to ensure high data quality, including procedures and tools for post processing. Data quality is further enhanced if practitioners are able to track equipment, deployments, calibrations, and other events related to site maintenance and associate these details with observational data. In this presentation we will describe the overall workflow that we have developed for research groups and sites conducting long term monitoring using in situ sensors. Features of the workflow include: software tools to automate the transfer of data from field sites to databases, a Python-based program for data quality control post-processing, a web-based application for online discovery and visualization of data, and a data model and web interface for managing physical infrastructure. By automating the data management workflow, the time from collection to analysis is reduced and sharing and publication is facilitated. The incorporation of metadata standards and descriptions and the use of open-source tools enhances the sustainability and reusability of the data. We will describe the workflow and tools that we have developed in the context of the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) monitoring network. The iUTAH network consists of aquatic and climate sensors deployed in three watersheds to monitor Gradients Along Mountain to Urban

  16. How to increase work autonomy in workflow management systems?

    NARCIS (Netherlands)

    Vanderfeesten, I.T.P.; Reijers, H.A.

    2006-01-01

    Abstract: Purpose – Current workflow management systems (WfMS's) are often too rigid and lead to "chain production" in the office. The paper proposes a number of "tuning measures" to reconfigure an implemented WfMS in such a way that it is more agreeable to the needs of its users.

  17. An organizational model to support the flexible workflow based on ontology

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Zhang Xiankun

    2012-01-01

    Based on ontology theory, the paper addresses an organizational model for flexible workflow. Firstly, the paper describes the conceptual model of the organizational model on ontology chart, which provides a consistent semantic framework of organization. Secondly, the paper gives the formalization of the model and describes the six key ontology elements of the mode in detail. Finally, the paper discusses deeply how the model supports the flexible workflow and indicates that the model has the advantages of cross-area, cross-organization and cross-domain, multi-process support and scalability. Especially, because the model is represented by ontology, the paper produces the conclusion that the model has covered the defect of unshared feature in traditional models, at the same time, it is more capable and flexible. (authors)

  18. Emergency medicine resident physicians' perceptions of electronic documentation and workflow: a mixed methods study.

    Science.gov (United States)

    Neri, P M; Redden, L; Poole, S; Pozner, C N; Horsky, J; Raja, A S; Poon, E; Schiff, G; Landman, A

    2015-01-01

    To understand emergency department (ED) physicians' use of electronic documentation in order to identify usability and workflow considerations for the design of future ED information system (EDIS) physician documentation modules. We invited emergency medicine resident physicians to participate in a mixed methods study using task analysis and qualitative interviews. Participants completed a simulated, standardized patient encounter in a medical simulation center while documenting in the test environment of a currently used EDIS. We recorded the time on task, type and sequence of tasks performed by the participants (including tasks performed in parallel). We then conducted semi-structured interviews with each participant. We analyzed these qualitative data using the constant comparative method to generate themes. Eight resident physicians participated. The simulation session averaged 17 minutes and participants spent 11 minutes on average on tasks that included electronic documentation. Participants performed tasks in parallel, such as history taking and electronic documentation. Five of the 8 participants performed a similar workflow sequence during the first part of the session while the remaining three used different workflows. Three themes characterize electronic documentation: (1) physicians report that location and timing of documentation varies based on patient acuity and workload, (2) physicians report a need for features that support improved efficiency; and (3) physicians like viewing available patient data but struggle with integration of the EDIS with other information sources. We confirmed that physicians spend much of their time on documentation (65%) during an ED patient visit. Further, we found that resident physicians did not all use the same workflow and approach even when presented with an identical standardized patient scenario. Future EHR design should consider these varied workflows while trying to optimize efficiency, such as improving

  19. Improved efficiency in clinical workflow of reporting measured oncology lesions via PACS-integrated lesion tracking tool.

    Science.gov (United States)

    Sevenster, Merlijn; Travis, Adam R; Ganesh, Rajiv K; Liu, Peng; Kose, Ursula; Peters, Joost; Chang, Paul J

    2015-03-01

    OBJECTIVE. Imaging provides evidence for the response to oncology treatment by the serial measurement of reference lesions. Unfortunately, the identification, comparison, measurement, and documentation of several reference lesions can be an inefficient process. We tested the hypothesis that optimized workflow orchestration and tight integration of a lesion tracking tool into the PACS and speech recognition system can result in improvements in oncologic lesion measurement efficiency. SUBJECTS AND METHODS. A lesion management tool tightly integrated into the PACS workflow was developed. We evaluated the effect of the use of the tool on measurement reporting time by means of a prospective time-motion study on 86 body CT examinations with 241 measureable oncologic lesions with four radiologists. RESULTS. Aggregated measurement reporting time per lesion was 11.64 seconds in standard workflow, 16.67 seconds if readers had to register measurements de novo, and 6.36 seconds for each subsequent follow-up study. Differences were statistically significant (p workflow-integrated lesion management tool, especially for patients with multiple follow-up examinations, reversing the onetime efficiency penalty at baseline registration.

  20. Physicians' and Nurses' Opinions about the Impact of a Computerized Provider Order Entry System on Their Workflow.

    Science.gov (United States)

    Ayatollahi, Haleh; Roozbehi, Masoud; Haghani, Hamid

    2015-01-01

    In clinical practices, the use of information technology, especially computerized provider order entry (CPOE) systems, has been found to be an effective strategy to improve patient care. This study aimed to compare physicians' and nurses' views about the impact of CPOE on their workflow. This case study was conducted in 2012. The potential participants included all physicians (n = 28) and nurses (n = 145) who worked in a teaching hospital. Data were collected using a five-point Likert-scale questionnaire and were analyzed using SPSS version 18.0. The results showed a significant difference between physicians' and nurses' views about the impact of the system on interorganizational workflow (p = .001) and working relationships between physicians and nurses (p = .017). Interorganizational workflow and working relationships between care providers are important issues that require more attention. Before a CPOE system is designed, it is necessary to identify workflow patterns and hidden structures to avoid compromising quality of care and patient safety.

  1. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  2. A Hybrid Metaheuristic for Multi-Objective Scientific Workflow Scheduling in a Cloud Environment

    Directory of Open Access Journals (Sweden)

    Nazia Anwar

    2018-03-01

    Full Text Available Cloud computing has emerged as a high-performance computing environment with a large pool of abstracted, virtualized, flexible, and on-demand resources and services. Scheduling of scientific workflows in a distributed environment is a well-known NP-complete problem and therefore intractable with exact solutions. It becomes even more challenging in the cloud computing platform due to its dynamic and heterogeneous nature. The aim of this study is to optimize multi-objective scheduling of scientific workflows in a cloud computing environment based on the proposed metaheuristic-based algorithm, Hybrid Bio-inspired Metaheuristic for Multi-objective Optimization (HBMMO. The strong global exploration ability of the nature-inspired metaheuristic Symbiotic Organisms Search (SOS is enhanced by involving an efficient list-scheduling heuristic, Predict Earliest Finish Time (PEFT, in the proposed algorithm to obtain better convergence and diversity of the approximate Pareto front in terms of reduced makespan, minimized cost, and efficient load balance of the Virtual Machines (VMs. The experiments using different scientific workflow applications highlight the effectiveness, practicality, and better performance of the proposed algorithm.

  3. The Prosthetic Workflow in the Digital Era

    Directory of Open Access Journals (Sweden)

    Lidia Tordiglione

    2016-01-01

    Full Text Available The purpose of this retrospective study was to clinically evaluate the benefits of adopting a full digital workflow for the implementation of fixed prosthetic restorations on natural teeth. To evaluate the effectiveness of these protocols, treatment plans were drawn up for 15 patients requiring rehabilitation of one or more natural teeth. All the dental impressions were taken using a Planmeca PlanScan® (Planmeca OY, Helsinki, Finland intraoral scanner, which provided digital casts on which the restorations were digitally designed using Exocad® (Exocad GmbH, Germany, 2010 software and fabricated by CAM processing on 5-axis milling machines. A total of 28 single crowns were made from monolithic zirconia, 12 vestibular veneers from lithium disilicate, and 4 three-quarter vestibular veneers with palatal extension. While the restorations were applied, the authors could clinically appreciate the excellent match between the digitally produced prosthetic design and the cemented prostheses, which never required any occlusal or proximal adjustment. Out of all the restorations applied, only one exhibited premature failure and was replaced with no other complications or need for further scanning. From the clinical experience gained using a full digital workflow, the authors can confirm that these work processes enable the fabrication of clinically reliable restorations, with all the benefits that digital methods bring to the dentist, the dental laboratory, and the patient.

  4. Facilitating Scientific Research through Workflows and Provenance on the DataONE Cyberinfrastructure (Invited)

    Science.gov (United States)

    Ludaescher, B.; Cuevas-Vicenttín, V.; Missier, P.; Dey, S.; Kianmajd, P.; Wei, Y.; Koop, D.; Chirigati, F.; Altintas, I.; Belhajjame, K.; Bowers, S.

    2013-12-01

    Provenance data has numerous applications in science. Two key ones are 1) replication: facilitate the repeatable derivation of results and 2) discovery: enable the location of data based on processing history and derivation relationships. The following scenario illustrates a typical use of provenance data. Alice, a climate scientist, has developed a VisTrails workflow to prepare Gross Primary Productivity (GPP) data. After verifying that the workflow generates data in the desired form, she uses the ReproZip tool to create a reproducible package that will enable other scientists to re-run the workflow without having to install and configure the particular libraries she is using. In addition, she exports the provenance information of the workflow execution and customizes it through a tool such as the ProvExplorer, in order to eliminate the information she regards as superfluous. She then creates and shares a DataONE data package containing the data she prepared, the ReproZip package, the customized provenance, and additional science/system metadata. Both the customized provenance and metadata are indexed by the DataONE Cyberinfrastructure (CI) for discovery purposes. Bob, another climate scientist, is looking for a benchmark GPP data to validate the Terrestrial Biosphere Model (TBM) he has developed. Searching the DataONE repository he finds Alice's data package. He retrieves its ReproZip package, customizes it (e.g. changing the spatial resolution), and re-runs it to generate the benchmark data in the form he desires. The newly generated data is then used as input for his own model evaluation workflow. His workflow generates residual maps and a Taylor diagram that enable him to evaluate the similarity between the results of his model and the benchmark data. At this point, Bob can also make use of the tools Alice used to publish his results as another discoverable and reproducible data package. In order to support these capabilities, we propose to extend the Data

  5. Closha: bioinformatics workflow system for the analysis of massive sequencing data.

    Science.gov (United States)

    Ko, GunHwan; Kim, Pan-Gyu; Yoon, Jongcheol; Han, Gukhee; Park, Seong-Jin; Song, Wangho; Lee, Byungwook

    2018-02-19

    While next-generation sequencing (NGS) costs have fallen in recent years, the cost and complexity of computation remain substantial obstacles to the use of NGS in bio-medical care and genomic research. The rapidly increasing amounts of data available from the new high-throughput methods have made data processing infeasible without automated pipelines. The integration of data and analytic resources into workflow systems provides a solution to the problem by simplifying the task of data analysis. To address this challenge, we developed a cloud-based workflow management system, Closha, to provide fast and cost-effective analysis of massive genomic data. We implemented complex workflows making optimal use of high-performance computing clusters. Closha allows users to create multi-step analyses using drag and drop functionality and to modify the parameters of pipeline tools. Users can also import the Galaxy pipelines into Closha. Closha is a hybrid system that enables users to use both analysis programs providing traditional tools and MapReduce-based big data analysis programs simultaneously in a single pipeline. Thus, the execution of analytics algorithms can be parallelized, speeding up the whole process. We also developed a high-speed data transmission solution, KoDS, to transmit a large amount of data at a fast rate. KoDS has a file transfer speed of up to 10 times that of normal FTP and HTTP. The computer hardware for Closha is 660 CPU cores and 800 TB of disk storage, enabling 500 jobs to run at the same time. Closha is a scalable, cost-effective, and publicly available web service for large-scale genomic data analysis. Closha supports the reliable and highly scalable execution of sequencing analysis workflows in a fully automated manner. Closha provides a user-friendly interface to all genomic scientists to try to derive accurate results from NGS platform data. The Closha cloud server is freely available for use from http://closha.kobic.re.kr/ .

  6. A practical data processing workflow for multi-OMICS projects.

    Science.gov (United States)

    Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin

    2014-01-01

    Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post

  7. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment.

    Science.gov (United States)

    Torgerson, Carinna M; Quinn, Catherine; Dinov, Ivo; Liu, Zhizhong; Petrosyan, Petros; Pelphrey, Kevin; Haselgrove, Christian; Kennedy, David N; Toga, Arthur W; Van Horn, John Darrell

    2015-03-01

    Under the umbrella of the National Database for Clinical Trials (NDCT) related to mental illnesses, the National Database for Autism Research (NDAR) seeks to gather, curate, and make openly available neuroimaging data from NIH-funded studies of autism spectrum disorder (ASD). NDAR has recently made its database accessible through the LONI Pipeline workflow design and execution environment to enable large-scale analyses of cortical architecture and function via local, cluster, or "cloud"-based computing resources. This presents a unique opportunity to overcome many of the customary limitations to fostering biomedical neuroimaging as a science of discovery. Providing open access to primary neuroimaging data, workflow methods, and high-performance computing will increase uniformity in data collection protocols, encourage greater reliability of published data, results replication, and broaden the range of researchers now able to perform larger studies than ever before. To illustrate the use of NDAR and LONI Pipeline for performing several commonly performed neuroimaging processing steps and analyses, this paper presents example workflows useful for ASD neuroimaging researchers seeking to begin using this valuable combination of online data and computational resources. We discuss the utility of such database and workflow processing interactivity as a motivation for the sharing of additional primary data in ASD research and elsewhere.

  8. Behaviour of plasma spray coatings under disruption simulation

    International Nuclear Information System (INIS)

    Brossa, F.; Rigon, G.; Looman, B.

    1988-01-01

    The behaviour of metallic and ceramic protective coatings under disruption simulations was studied correlating the damage with their physical and structural parameters. Plasma Spray (PS) and Vacuum Plasma Spray (VPS) were the techniques used for the production of the coatings. W-5% Re was selected for divertor plates, and TiC, TiO 2 , Al 2 O 3 , low-Z ceramic materials for the first wall protection on 316 SS, Cu and Al as substrates. An electron beam gun was used to simulate the plasma disruptions. The tests were carried out from 0.6 to 6 MJ/m 2 . The thermal effects were studied by metallographic and EDXA analysis. The damage was observed comparing the degree of protection provided by each coating to discover the minimum thickness necessary to prevent the underlying material from melting. Good protective coatings must have a high melting point, great porosity and low thermal conductivity. Such coatings act as thermal barriers, increasing the surface temperature and radiating back large parts of the energy. (orig.)

  9. Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows

    Directory of Open Access Journals (Sweden)

    Davy Preuveneers

    2017-09-01

    Full Text Available Microservices offer a compelling competitive advantage for building data flow systems as a choreography of self-contained data endpoints that each implement a specific data processing functionality. Such a ‘single responsibility principle’ design makes them well suited for constructing scalable and flexible data integration and real-time data flow applications. In this paper, we investigate microservice based data processing workflows from a security point of view, i.e., (1 how to constrain data processing workflows with respect to dynamic authorization policies granting or denying access to certain microservice results depending on the flow of the data; (2 how to let multiple microservices contribute to a collective data-driven authorization decision and (3 how to put adequate measures in place such that the data within each individual microservice is protected against illegitimate access from unauthorized users or other microservices. Due to this multifold objective, enforcing access control on the data endpoints to prevent information leakage or preserve one’s privacy becomes far more challenging, as authorization policies can have dependencies and decision outcomes cross-cutting data in multiple microservices. To address this challenge, we present and evaluate a workflow-oriented authorization framework that enforces authorization policies in a decentralized manner and where the delegated policy evaluation leverages feature toggles that are managed at runtime by software circuit breakers to secure the distributed data processing workflows. The benefit of our solution is that, on the one hand, authorization policies restrict access to the data endpoints of the microservices, and on the other hand, microservices can safely rely on other data endpoints to collectively evaluate cross-cutting access control decisions without having to rely on a shared storage backend holding all the necessary information for the policy evaluation.

  10. Next-Generation Climate Modeling Science Challenges for Simulation, Workflow and Analysis Systems

    Science.gov (United States)

    Koch, D. M.; Anantharaj, V. G.; Bader, D. C.; Krishnan, H.; Leung, L. R.; Ringler, T.; Taylor, M.; Wehner, M. F.; Williams, D. N.

    2016-12-01

    We will present two examples of current and future high-resolution climate-modeling research that are challenging existing simulation run-time I/O, model-data movement, storage and publishing, and analysis. In each case, we will consider lessons learned as current workflow systems are broken by these large-data science challenges, as well as strategies to repair or rebuild the systems. First we consider the science and workflow challenges to be posed by the CMIP6 multi-model HighResMIP, involving around a dozen modeling groups performing quarter-degree simulations, in 3-member ensembles for 100 years, with high-frequency (1-6 hourly) diagnostics, which is expected to generate over 4PB of data. An example of science derived from these experiments will be to study how resolution affects the ability of models to capture extreme-events such as hurricanes or atmospheric rivers. Expected methods to transfer (using parallel Globus) and analyze (using parallel "TECA" software tools) HighResMIP data for such feature-tracking by the DOE CASCADE project will be presented. A second example will be from the Accelerated Climate Modeling for Energy (ACME) project, which is currently addressing challenges involving multiple century-scale coupled high resolution (quarter-degree) climate simulations on DOE Leadership Class computers. ACME is anticipating production of over 5PB of data during the next 2 years of simulations, in order to investigate the drivers of water cycle changes, sea-level-rise, and carbon cycle evolution. The ACME workflow, from simulation to data transfer, storage, analysis and publication will be presented. Current and planned methods to accelerate the workflow, including implementing run-time diagnostics, and implementing server-side analysis to avoid moving large datasets will be presented.

  11. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  12. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  13. Implementation of a healthcare process in four different workflow systems

    NARCIS (Netherlands)

    Mans, R.S.; Aalst, van der W.M.P.; Russell, N.C.; Bakker, P.J.M.

    2009-01-01

    Currently, many hospitals are investigating the use of a work-flow management system in order to provide support for care processes. However, today's workow management systems fall short in supporting care processes as exibility is required for its execution. In this paper, we investigate the

  14. A Distributed Collaborative Workflow Based Approach to Data Collection and Analysis

    National Research Council Canada - National Science Library

    Gerecke, William; Enas, Douglas; Gottschlich, Susan

    2004-01-01

    ...) and Modeling and Simulation (M&S) systems and architectures. In our work we have found that in order to be maximally effective, these capabilities must be designed with the military user workflow process in mind...

  15. Optimising metadata workflows in a distributed information environment

    OpenAIRE

    Robertson, R. John; Barton, Jane

    2005-01-01

    The different purposes present within a distributed information environment create the potential for repositories to enhance their metadata by capitalising on the diversity of metadata available for any given object. This paper presents three conceptual reference models required to achieve this optimisation of metadata workflow: the ecology of repositories, the object lifecycle model, and the metadata lifecycle model. It suggests a methodology for developing the metadata lifecycle model, and ...

  16. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  17. Workflow-enabled distributed component-based information architecture for digital medical imaging enterprises.

    Science.gov (United States)

    Wong, Stephen T C; Tjandra, Donny; Wang, Huili; Shen, Weimin

    2003-09-01

    Few information systems today offer a flexible means to define and manage the automated part of radiology processes, which provide clinical imaging services for the entire healthcare organization. Even fewer of them provide a coherent architecture that can easily cope with heterogeneity and inevitable local adaptation of applications and can integrate clinical and administrative information to aid better clinical, operational, and business decisions. We describe an innovative enterprise architecture of image information management systems to fill the needs. Such a system is based on the interplay of production workflow management, distributed object computing, Java and Web techniques, and in-depth domain knowledge in radiology operations. Our design adapts the approach of "4+1" architectural view. In this new architecture, PACS and RIS become one while the user interaction can be automated by customized workflow process. Clinical service applications are implemented as active components. They can be reasonably substituted by applications of local adaptations and can be multiplied for fault tolerance and load balancing. Furthermore, the workflow-enabled digital radiology system would provide powerful query and statistical functions for managing resources and improving productivity. This paper will potentially lead to a new direction of image information management. We illustrate the innovative design with examples taken from an implemented system.

  18. A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Weller, Jennifer B.; Khoshnevis, Saeed; Shi, Liang; McDermott, Jason E.

    2009-04-20

    Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene expression data now available for that organism, and describe our results obtained by following this workflow. The primary tool is one of the network inference algorithms deployed in the Software Environment for BIological Network Inference (SEBINI). Specifically, we selected the algorithm called Context Likelihood of Relatedness (CLR), which uses the mutual information contained in the gene expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological of Biological Interaction Networks (CABIN) tool for further post-analysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.

  19. Reenginering of the i4 workflow engine

    OpenAIRE

    Likar, Tilen

    2013-01-01

    I4 is an enterprise resource planning system which allows you to manage business processes. Due to increasing demands for managing complex processes and adjusting those processes to global standards, a renewal of a part of the system was required. In this thesis we faced the reengineering of the workflow engine, and corresponding data model. We designed a business process diagram in Bizagi Porcess Modeler. The import to i4 and the export from i4 was developed on XPDL file exported from the mo...

  20. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...... of the BPMN language, we employ an evolutionary algorithm where stochastic model checking is used as a fitness function to determine the degree of improvement of candidate processes derived from the original process through mutation and cross-over operations. We illustrate this technique using a case study...