WorldWideScience

Sample records for greatest electronic coupling

  1. The Greatest Mathematical Discovery?

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  2. Electromagnetic Pulse Coupling Analysis of Electronic Equipment

    OpenAIRE

    Hong Lei; Qingying LI

    2017-01-01

    High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.

  3. Nature's Greatest Puzzles

    International Nuclear Information System (INIS)

    Quigg, Chris

    2005-01-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit

  4. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  5. Computational Physics' Greatest Hits

    Science.gov (United States)

    Bug, Amy

    2011-03-01

    The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.

  6. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  7. Electron-phonon coupling in one dimension

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1981-08-01

    The Ward identity is derived for the electron-phonon coupling in one dimension and the spectrum of elementary excitations is calculated by assuming that the Fermi distribution is not strongly distorted by interaction. The electron-phonon vertex is renormalized in the case of the forward scattering and Migdal's theorem is discussed. A model is proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and found to be in agreement with the experimental data for KCP. (author)

  8. Electron-phonon coupling at metal surfaces

    International Nuclear Information System (INIS)

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  9. Few electron quantum dot coupling to donor implanted electron spins

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  10. Magnetic impurity coupled to interacting conduction electrons

    International Nuclear Information System (INIS)

    Schork, T.

    1996-01-01

    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of a 1/N f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the interaction strength. We find that their effect on the Kondo temperature, T K , in the Kondo limit is twofold: first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T K . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling. copyright 1996 The American Physical Society

  11. Synchronous behavior of two coupled electronic neurons

    International Nuclear Information System (INIS)

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-01-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society

  12. Mode coupling of electron plasma waves

    International Nuclear Information System (INIS)

    Harte, J.A.

    1975-01-01

    The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency

  13. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  14. Electron-optical phonon coupling in superconductors

    International Nuclear Information System (INIS)

    Rietschel, H.

    1975-01-01

    The role of the optical phonons in superconductivity is investigated in the case of compounds with different atomic masses Msub(k). It is shown that the electron mass enhancement factor lambda is independent of Msub(k) if the force constant matrix is mass independent. However, when using lambda to calculate Tsub(c), it must be decomposed into its acoustical and optical contributions, which depend separately on Msub(k). Interference scattering from a light and a heavy mass is studied and its contributions to lambda within the free electron approximation. Numerical results are presented for a rocksalt structure crystal with nearest and next nearest neighbour coupling. These results indicate that the optical phonon contributions to lambda may substantially increase Tsub(c). (orig.) [de

  15. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  16. Microwave power coupling with electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    600 W microwave power with an average electron density of ∼ 6 × 1011 cm. −3 ... the angular frequency of the cyclotron motion, e is the electron charge, m is the mass of .... is also suitable for ECR plasma-based applications like high-quality ...

  17. Tuning intermetallic electronic coupling in polyruthenium systems ...

    Indian Academy of Sciences (India)

    molecular architecture. SANDEEP GHUMAAN and GOUTAM KUMAR LAHIRI ... complexes encompassing selective combinations of spacer (bridging ligand, BL) and ancillary (AL) functionalities have been designed. ... plications in designing molecular electronic devices3 such as molecular wires, semi-conductors, rods etc.

  18. The coupling of condensed matter excitations to electron probes

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs

  19. Electron-phonon coupling in the rare-earth metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    -phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...

  20. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  1. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    Science.gov (United States)

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  2. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  3. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  4. Electronic Maxwell demon in the coherent strong-coupling regime

    Science.gov (United States)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  5. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  6. Decoherence of Flux Qubits Coupled to Electronic Circuits

    NARCIS (Netherlands)

    Wilhelm, F.K.; Storcz, M.J.; van der Wal, C.H.; Harmans, C.J.P.M.; Mooij, J.E.

    2003-01-01

    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the

  7. Techniques to reduce memory requirements for coupled photon-electron transport

    International Nuclear Information System (INIS)

    Turcksin, Bruno; Ragusa, Jean; Morel, Jim

    2011-01-01

    In this work, we present two methods to decrease memory needs while solving the photon- electron transport equation. The coupled transport of electrons and photons is of importance in radiotherapy because it describes the interactions of X-rays with matter. One of the issues of discretized electron transport is that the electron scattering is highly forward peaked. A common approximation is to represent the peak in the scattering cross section by a Dirac distribution. This is convenient, but the integration over all angles of this distribution requires the use of Galerkin quadratures. By construction these quadratures impose that the number of flux moments be equal to the number of directions (number of angular fluxes), which is very demanding in terms of memory. In this study, we show that even if the number of moments is not as large as the number of directions, an accurate solution can be obtained when using Galerkin quadratures. Another method to decrease the memory needs involves choosing an appropriate reordering of the energy groups. We show in this paper that an appropriate alternation of photons/electrons groups allows to rewrite one transport problem of n groups as gcd successive transport problems of n/gcd groups where gcd is the greatest common divisor between the number of photon groups and the number of electron groups. (author)

  8. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  9. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  10. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  11. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  12. Dynamics of coupled electron-nuclei-systems in laser fields

    International Nuclear Information System (INIS)

    Falge, Mirjam

    2012-01-01

    This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H 2 O/D 2 O and H 2 /D 2 . It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H 2 O and D 2 O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time-resolved photoelectron spectra and the

  13. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  14. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  15. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  16. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  17. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  18. Electron-phonon coupling in quasi free-standing graphene

    DEFF Research Database (Denmark)

    Christian Johannsen, Jens; Ulstrup, Søren; Bianchi, Marco

    2013-01-01

    Quasi free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene is indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many......-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. Both...

  19. Large Higgs-electron Yukawa coupling in 2HDM

    Science.gov (United States)

    Dery, Avital; Frugiuele, Claudia; Nir, Yosef

    2018-04-01

    The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of O(600) . We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z 2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than O(0.01/{κ}_e) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e + e - resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

  20. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  1. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  2. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  3. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mardaani, Mohammad, E-mail: mohammad-m@sci.sku.ac.ir; Rabani, Hassan, E-mail: rabani-h@sci.sku.ac.ir [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Esmaili, Esmat; Shariati, Ashrafalsadat [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2015-08-07

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  4. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    International Nuclear Information System (INIS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-01-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance

  5. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  6. Continuum-Coupling in Electron-Atom scattering

    International Nuclear Information System (INIS)

    Ballance, C.P.; Griffin, D.C.; Badnell, N.R.; Loch, S.D.; Pindzola, M.S.

    2004-01-01

    High quality fundamental atomic data provide the foundation of accurate collisional-radiative models of laboratory and astrophysical plasmas. In the SciDAC (Scientific Discovery through Advanced Computing) project entitled 'Terascale Computational Atomic Physics for the Edge Region in Controlled Fusion Plasmas', we employ an integrated approach from the calculation of basic atomic data to the modeling necessary for the interpretation of controlled nuclear fusion experiments. For example, helium electron-impact excitation results support helium puff experiments on the MAST (Mega Ampere Spherical Tokamak) at Culham to diagnose the radial variation in plasma density and temperature. Similarly, electron-impact excitation/ionization work for isonuclear beryllium will prove vital if beryllium is adopted as a surface material for the plasma-facing walls for ITER. Here we will discuss some examples of electron-impact excitation and ionization, where the effects of coupling to and between the target continuum states are large, and advanced close-coupling methods are required in order to generate data of sufficient accuracy

  7. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  8. Coupled electron/photon transport in static external magnetic fields

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Vandevender, W.H.

    A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)

  9. Antenna-coupled 30 THz hot electron bolometer mixers

    OpenAIRE

    Shcherbatenko, M.; Lobanov, Y.; Benderov, O.; Shurakov, A.; Ignatov, A.; Titova, N.; Finkel, M.; Maslennikov, S.; Kaurova, N.; Voronov, B.M.; Rodin, A.; Klapwijk, T.M.; Gol'tsman, G.N.

    2015-01-01

    We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 ?m (30 THz) range where O3, NH3, CO2, CH4, N2O, …. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the ra...

  10. Electron diamagnetism and toroidal coupling of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Hastie, R.J.

    1987-10-01

    Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs

  11. CAST constraints on the axion-electron coupling

    CERN Document Server

    Barth, K.; Beltran, B.; Bräuninger, H.; Carmona, J.M.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Galan, J.; Garcia, J.A.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.D.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Königsmann, K.; Kotthaus, R.; Kousouris, K.; Krcmar, M.; Kuster, M.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.W.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Redondo, J.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Stewart, L.; Van Bibber, K.; Vieira, J.D.; Villar, J.A.; Vogel, J.K.; Walckiers, L.; Zioutas, K.

    2013-01-01

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  12. Tunable coupled nanomechanical resonators for single-electron transport

    International Nuclear Information System (INIS)

    Scheible, Dominik V; Erbe, Artur; Blick, Robert H

    2002-01-01

    Nano-electromechanical systems (NEMS) are ideal for sensor applications and ultra-sensitive force detection, since their mechanical degree of freedom at the nanometre scale can be combined with semiconductor nano-electronics. We present a system of coupled nanomechanical beam resonators in silicon which is mechanically fully Q-tunable ∼700-6000. This kind of resonator can also be employed as a mechanical charge shuttle via an insulated metallic island at the tip of an oscillating cantilever. Application of our NEMS as an electromechanical single-electron transistor (emSET) is introduced and experimental results are discussed. Three animation clips demonstrate the manufacturing process of the NEMS, the Q-tuning experiment and the concept of the emSET

  13. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  14. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  15. Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling.

    Science.gov (United States)

    Cheng, Guanghui; Qin, Wei; Lin, Meng-Hsien; Wei, Laiming; Fan, Xiaodong; Zhang, Huayang; Gwo, Shangjr; Zeng, Changgan; Hou, J G; Zhang, Zhenyu

    2017-10-13

    The interplays between different quasiparticles in solids lay the foundation for a wide spectrum of intriguing quantum effects, yet how the collective plasmon excitations affect the quantum transport of electrons remains largely unexplored. Here we provide the first demonstration that when the electron-plasmon coupling is introduced, the quantum coherence of electrons in graphene is substantially enhanced with the quantum coherence length almost tripled. We further develop a microscopic model to interpret the striking observations, emphasizing the vital role of the graphene plasmons in suppressing electron-electron dephasing. The novel and transformative concept of plasmon-enhanced quantum coherence sheds new insight into interquasiparticle interactions, and further extends a new dimension to exploit nontrivial quantum phenomena and devices in solid systems.

  16. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    thought possible only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T{sub c} materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T{sub c} cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that

  17. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T c materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T c cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that seen in established

  18. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  19. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  20. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  1. First-principles method for electron-phonon coupling and electron mobility

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n-type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full......-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part...... of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene...

  2. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  3. Coupling of the 4f Electrons in Lanthanide Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kazhdan, Daniel [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    (C5Me5)2LnOTf where Ln = La, Ce, Sm, Gd, and Yb have been synthesized and these derivatives are good starting materials for the synthesis of (C5Me5)2LnX derivatives. (C5Me5)2Ln(2,2'-bipyridine), where Ln = La, Ce, Sm, and Gd, along with several methylated bipyridine analogues have been synthesized and their magnetic moments have been measured as a function of temperature. In lanthanum, cerium, and gadolinium complexes the bipyridine ligand ligand is unequivocally the radical anion, and the observed magnetic moment is the result of intramolecular coupling of the unpaired electron on the lanthanide fragment with the unpaired electron on the bipyridine along with the intermolecular coupling between radicals. Comparison with the magnetic moments of the known compounds (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine) leads to an understanding of the role of the SmII/SmIII and YbII/YbIII couple in the magnetic properties of (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine). In addition, crystal structures of (C5Me5)2Ln(2,2'-bipyridine) and [(C5Me5)2Ln(2,2'-bipyridine)][BPh4](Ln= Ce and Gd), where the lanthanide is unequivocally in the +3 oxidation state, give the crystallographic characteristics of bipyridine as an anion and as a neutral ligand in the same coordination environment, respectively. Substituted bipyridine ligands coordinated to (C5Me5)2Yb are studied to further understand how the magnetic coupling in (C5Me5)2Yb(2,2'-bipyridine) changes with substitutions. In the cases of (C5Me5)2Yb(5,5&apos

  4. Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons

    International Nuclear Information System (INIS)

    Čisárová, Jana; Strečka, Jozef

    2014-01-01

    Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks

  5. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  6. Electron temperatures of inductively coupled Cl2-Ar plasmas

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Donnelly, Vincent M.; Herman, Irving P.

    2002-01-01

    Trace rare gases optical emission spectroscopy has been used to measure the electron temperature, T e , in a high-density inductively coupled Cl 2 -Ar plasma at 18 mTorr as function of the 13.56 MHz radio frequency power and Ar fraction. Only the Kr and Xe emission lines were used to determine T e , because of evidence of radiation trapping when the Ar emission lines were also used for larger Ar fractions. At 600 W (10.6 W cm-2), T e increases from ∼4.0±0.5 eV to ∼6.0±2.0 eV as the Ar fraction increases from 1% to 96%. In the H (inductive, bright) mode, T e , for a 'neat' chlorine plasma (including 1% of each He/Ne/Ar/Kr/Xe) increases only slightly from ∼3.8 to 4.0 eV as power increases from 450 to 750 W. This increase is much larger for larger Ar fractions, such as from ∼4.0 to 7.3 eV for 78% Ar. Most of these effects can be understood using the fundamental particle balance equation

  7. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  8. Nature's Greatest Puzzles

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab

    2005-02-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.

  9. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  10. Convergent Close-Coupling Calculations for Electron-Atom and Electron-Molecule Scattering

    International Nuclear Information System (INIS)

    Fursa, Dmitry; Zammit, M.C.; Bostock, C.J.; Bray, I.

    2014-01-01

    The Convergent Close-Coupling (CCC) method developed in our group has been applied extensively to study electron-atom/ion collisions and recently has been extended to electron collisions with diatomic molecules. This approach relies on the ability to represent the infinite number of target bound states and its continuum via a finite number of states obtained by a diagonalization of the target in a square-integrable (Sturmian) one-electron basis. We normally use a Laguerre basis though other choices are possible, for example a boxed-based basis or a B-spline basis. The choice of the basis is governed by the physical problem under consideration. As the size of a Sturmian basis increases the calculated negative energy states (relative to the corresponding ionization stage of the target) converge to the target true bound states and the positive energy states provide an increasingly dense representation of the target continuum. We then perform a multichannel expansion of the total (projectile plus target electrons) wave function and formulate a set of close-coupling equations. These equations are transformed into momentum space where they take the form of the Lippmann-Schwinger equations for the T-matrix. A solution of the T-matrix equations is obtained at each total energy E by converting them into a set of linear equations that are solved by standard techniques. We perform a partial-wave expansion of the projectile wave function and take into account the symmetry of the scattering system (e.g, total spin, parity, etc.) in order to reduce the size of the coupled equations and make calculations feasible. As soon as the T-matrix is obtained we can evaluate scattering amplitudes and cross sections for the transitions of interest. For the case of molecular targets the formulation is done within the fixed-nuclei approximation. We adopt a single-centre approach in CCC calculations. This allows us to utilize a great deal of computational development thoroughly tested for

  11. Was ocean acidification responsible for history's greatest extinction?

    Science.gov (United States)

    Schultz, Colin

    2011-11-01

    Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.

  12. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  13. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  14. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    Science.gov (United States)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  15. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    International Nuclear Information System (INIS)

    Linares, Jesus; Nistal, Maria C.

    2009-01-01

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  16. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  17. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  18. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    Science.gov (United States)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  19. Strong coupling of a single electron in silicon to a microwave photon

    Science.gov (United States)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  20. Electron-Ion Beam Coupling Through Collective Interactions

    National Research Council Canada - National Science Library

    Wheelock, Adrian; Cooke, David L; Gatsonis, Nikolaos A

    2006-01-01

    .... It is shown that Coulomb collisions, which can act to match velocities through strong ion-electron collisions between particles with low relative velocities, are far too slow to explain the phenomenon...

  1. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  2. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Clark, W.L.; DePaula, R.A.; Martinez, F.A.; Roybal, P.L.; Wilkerson, L.C.; Young, L.M.

    1986-01-01

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  3. Near field resonant inductive coupling to power electronic devices dispersed in water

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  4. Integrated circuits with emitter coupling and their application in nanosecond nuclear electronics

    International Nuclear Information System (INIS)

    Basiladze, S.G.

    1976-01-01

    Principal static and dynamic characteristics are considered of integrated circuits with emitter coupling, as well as problems of signal transmission. Diagrams are given of amplifiers, discriminators, time interval drivers, generators, etc. Systems and units of nanosecond electronics employing integrated circuits with emitter coupling are briefly described

  5. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  6. Coupled state analysis of electron excitations in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Reus, T. de; Mueller, U.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1985-01-01

    A coupled channel formalism is presented, using relativistic basis states of the target atom. Screening effects are incorporated by means of an effective potential of Hartree-Fock-Slater type. Relativistic wave packets are employed for the description of the continuum. The impact parameter dependence of the K-hole production in p-Ag collisions is calculated, including quadrupole contributions of the projectile Coulomb potential. The results are compared with experimental data. (orig.)

  7. Coupling effect on the electronic transport through dimolecular junctions

    International Nuclear Information System (INIS)

    Long, Meng-Qiu; Wang, Lingling; Chen, Ke-Qiu; Li, Xiao-Fei; Zou, B.S.; Shuai, Z.

    2007-01-01

    Using nonequilibrium Green's function and first-principle calculations, we investigate the transport behaviors of a dimolecule device with two 1,4-Dithiolbenzenes (DTB) sandwiched between two gold electrodes. The results show that the intermolecular coupling effect plays an important role in the conducting behavior of the system. By changing the dihedral angles between the two DTB molecules, namely changing the magnitude of the intermolecular interaction, a different transport behavior can be observed in the system

  8. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    International Nuclear Information System (INIS)

    Oliveira, Gilson F. de; Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-01-01

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time

  9. Transverse transport in coupled strongly correlated electronic chains

    International Nuclear Information System (INIS)

    Capponi, S.; Poilblanc, D.

    1997-01-01

    One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)

  10. Convergent close-coupling calculations of electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, Igor; Stelbovics, A.T.

    1992-04-01

    The convergence of the close-coupling formalism is studied by expanding the target states in an orthogonal L 2 Laguerre basis. The theory is without approximation and convergence is established by simply increasing the basis size. The convergent elastic, 2s, and 2p differential cross sections, spin asymmetries, and angular correlation parameters for the 2p excitation at 35, 54.4, and 100 eV are calculated. Integrated and total cross sections as well as T-matrix elements for the first five partial waves are also given. 30 refs., 3 tabs., 9 figs

  11. Magnetic response of localized spins coupled to itinerant electrons in an inhomogeneous crystal field

    International Nuclear Information System (INIS)

    Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.

    1990-01-01

    The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt

  12. Optical-phonon-induced frictional drag in coupled two-dimensional electron gases

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1998-01-01

    The role of optical phonons in frictional drag between two adjacent but electrically isolated two-dimensional electron gases is investigated. Since the optical phonons in III-V materials have a considerably larger coupling to electrons than acoustic phonons (which are the dominant drag mechanism ...

  13. Electron Bernstein Wave Coupling and Emission Measurements on NSTX

    Czech Academy of Sciences Publication Activity Database

    Taylor, G.; Diem, S.J.; Caughman, J.; Efthimion, P.; Harvey, R.W.; LeBlanc, B.P.; Philips, C.K.; Preinhaelter, Josef; Urban, Jakub

    2006-01-01

    Roč. 51, č. 7 (2006), s. 177 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  14. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  15. Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo

    International Nuclear Information System (INIS)

    Evans, T.M.; Densmore, J.D.

    2007-01-01

    We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations

  16. A Hybrid System Based on an Electronic Nose Coupled with an Electronic Tongue for the Characterization of Moroccan Waters

    Directory of Open Access Journals (Sweden)

    Z. Haddi

    2014-05-01

    Full Text Available A hybrid multisensor system combined with multivariate analysis was applied to the characterization of different kinds of Moroccan waters. The proposed hybrid system based on an electronic nose coupled with an electronic tongue consisted of metal oxide semiconductors and potentiometric sensors respectively. Five Taguchi Gas Sensors were implemented in the electronic nose for the discrimination between mineral, natural, sparkling, river and tap waters. Afterwards, the electronic tongue, based on series of Ion-Selective-Electrodes was applied to the analysis of the same waters. Multisensor responses obtained from the waters were processed by two chemometrics: Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. PCA results using electronic nose data depict all of the potable water samples in a separate group from the samples that were originated from river. Furthermore, PCA and LDA analysis on electronic tongue data permitted clear and rapid recognizing of the different waters due to the concentration changes of the chemical parameters from source to another.

  17. A new coupling mechanism between two graphene electron waveguides for ultrafast switching

    Science.gov (United States)

    Huang, Wei; Liang, Shi-Jun; Kyoseva, Elica; Ang, Lay Kee

    2018-03-01

    In this paper, we report a novel coupling between two graphene electron waveguides, in analogy the optical waveguides. The design is based on the coherent quantum mechanical tunneling of Rabi oscillation between the two graphene electron waveguides. Based on this coupling mechanism, we propose that it can be used as an ultrafast electronic switching device. Based on a modified coupled mode theory, we construct a theoretical model to analyze the device characteristics, and predict that the switching speed is faster than 1 ps and the on-off ratio exceeds 106. Due to the long mean free path of electrons in graphene at room temperature, the proposed design avoids the limitation of low temperature operation required in the traditional design by using semiconductor quantum-well structure. The layout of our design is similar to that of a standard complementary metal-oxide-semiconductor transistor that should be readily fabricated with current state-of-art nanotechnology.

  18. Strong-coupling behaviour of two t - J chains with interchain single-electron hopping

    International Nuclear Information System (INIS)

    Zhang Guangming; Feng Shiping; Yu Lu.

    1994-01-01

    Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs

  19. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  20. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    Directory of Open Access Journals (Sweden)

    Ge Yang

    2016-03-01

    Full Text Available The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be ≈1  MHz per electron, indicating the feasibility of achieving single electron strong coupling.

  1. Electronically Strongly Coupled Divinylheterocyclic-Bridged Diruthenium Complexes.

    Science.gov (United States)

    Pfaff, Ulrike; Hildebrandt, Alexander; Korb, Marcus; Oßwald, Steffen; Linseis, Michael; Schreiter, Katja; Spange, Stefan; Winter, Rainer F; Lang, Heinrich

    2016-01-11

    Complexes [{Ru(CO)Cl(PiPr3 )2 }2 (μ-2,5-(CH-CH)2 -(c) C4 H2 E] (E=NR; R=C6 H4 -4-NMe2 (10 a), C6 H4 -4-OMe (10 b), C6 H4 -4-Me (10 c), C6 H5 (10 d), C6 H4 -4-CO2 Et (10 e), C6 H4 -4-NO2 (10 f), C6 H3 -3,5-(CF3 )2 (10 g), CH3 (11); E=O (12), S (13)) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron-donating or -withdrawing substituents R in 10 a-g on the electrochemical and spectroscopic properties. The CVs display two consecutive one-electron redox events with ΔE°'=350-495 mV. A linear relationship between ΔE°' and the σp Hammett constant for 10 a-f was found. IR, UV/Vis/NIR and EPR studies for 10(+) -13(+) confirm full charge delocalization over the {Ru}CH-CH-heterocycle-CH-CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT-optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  3. Ab initio determination of effective electron-phonon coupling factor in copper

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  4. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  5. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  6. ZZ ENDLIB, Coupled Electron and Photon Transport Library in ENDL Format

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The LLNL Evaluated Nuclear Data Library has existed since 1958 in a succession of forms and formats. The present form is as a machine-independent character file format and contains data for the evaluated atomic relaxation data library (EADL), the evaluated photon interaction data library (EPDL), and the evaluated electron interaction data library (EEDL). The purpose of these libraries is to furnish data for coupled electron-photon transport calculations. In order to perform coupled photon-electron transport calculations, all three libraries are required. The UCRL-ID-117796 report included in the documentation for this package provides information on the contents and formats for all three libraries, which are included in this package. All of these libraries span atomic numbers, Z, from 1 to 100. Additionally the electron and photon interaction libraries cover the incident particle energy range from 10 eV to 100 GeV

  7. Kinks in the σ band of graphene induced by electron-phonon coupling.

    Science.gov (United States)

    Mazzola, Federico; Wells, Justin W; Yakimova, Rositza; Ulstrup, Søren; Miwa, Jill A; Balog, Richard; Bianchi, Marco; Leandersson, Mats; Adell, Johan; Hofmann, Philip; Balasubramanian, T

    2013-11-22

    Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.

  8. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2005-01-01

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope

  9. Spatial distribution of electrons on a superfluid helium charge-coupled device

    International Nuclear Information System (INIS)

    Takita, Maika; Bradbury, F R; Lyon, S A; Gurrieri, T M; Wilkel, K J; Eng, Kevin; Carroll, M S

    2012-01-01

    Electrons floating on the surface of superfluid helium have been suggested as promising mobile spin qubits. Three micron wide channels fabricated with standard silicon processing are filled with superfluid helium by capillary action. Photoemitted electrons are held by voltages applied to underlying gates. The gates are connected as a 3-phase charge-coupled device (CCD). Starting with approximately one electron per channel, no detectable transfer errors occur while clocking 10 9 pixels. One channel with its associated gates is perpendicular to the other 120, providing a CCD which can transfer electrons between the others. This perpendicular channel has not only shown efficient electron transport but also serves as a way to measure the uniformity of the electron occupancy in the 120 parallel channels.

  10. Ab initio study of the electron-phonon coupling at the Cr(001) surface

    Science.gov (United States)

    Peters, L.; Rudenko, A. N.; Katsnelson, M. I.

    2018-04-01

    It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.

  11. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xue, Haizhou [Univ. of Tennessee, Knoxville, TN (United States); Zarkadoula, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Army Research Office, Triangle Park, NC (United States); Ostrouchov, Christopher [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); Shandong Univ., Jinan (China); Wang, Xue -lin [Shandong Univ., Jinan (China); Zhang, Shuo [Lanzhou Univ., Gansu Province (China); Wang, Tie Shan [Lanzhou Univ., Gansu Province (China); Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (Se/Sn), nuclear stopping powers (dE/dxnucl), electronic stopping powers (dE/dxele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing Se/Sn slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dxele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition

  12. Time-Dependent Close-Coupling Methods for Electron-Atom/Molecule Scattering

    International Nuclear Information System (INIS)

    Colgan, James

    2014-01-01

    The time-dependent close-coupling (TDCC) method centers on an accurate representation of the interaction between two outgoing electrons moving in the presence of a Coulomb field. It has been extensively applied to many problems of electrons, photons, and ions scattering from light atomic targets. Theoretical Description: The TDCC method centers on a solution of the time-dependent Schrödinger equation for two interacting electrons. The advantages of a time-dependent approach are two-fold; one treats the electron-electron interaction essentially in an exact manner (within numerical accuracy) and a time-dependent approach avoids the difficult boundary condition encountered when two free electrons move in a Coulomb field (the classic three-body Coulomb problem). The TDCC method has been applied to many fundamental atomic collision processes, including photon-, electron- and ion-impact ionization of light atoms. For application to electron-impact ionization of atomic systems, one decomposes the two-electron wavefunction in a partial wave expansion and represents the subsequent two-electron radial wavefunctions on a numerical lattice. The number of partial waves required to converge the ionization process depends on the energy of the incoming electron wavepacket and on the ionization threshold of the target atom or ion.

  13. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  14. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  15. New Oxime Ligand with Potential for Proton-Coupled Electron-Transfer Reactions

    DEFF Research Database (Denmark)

    Deville, Claire; Sundberg, Jonas; McKenzie, Christine Joy

    Proton-coupled electron-transfer (PCET) is found in a range of oxidation-reduction reactions in biology.1 This mechanism is of interest for applications in energy conversion processes. The PCET reaction has been shown to be facilitated when the proton is transferred to an intramolecular basic sit...

  16. Linear-response theory of Coulomb drag in coupled electron systems

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    1995-01-01

    We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...

  17. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  18. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  19. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  20. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    International Nuclear Information System (INIS)

    Neuscamman, Eric

    2013-01-01

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

  1. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan

    2014-04-22

    The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface. This knowledge is essential to many semiconductor nanoparticle based devices, including photocatalytic waste degradation and dye sensitized solar cells.

  2. The Kondo temperature of a two-dimensional electron gas with Rashba spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Liang; Lin, Hai-Qing; Sun, Jinhua; Tang, Ho-Kin

    2016-01-01

    We use the Hirsch–Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin–orbit coupling. We calculate the spin susceptibility for various values of spin–orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin–orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin–orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin–orbit coupling. (paper)

  3. Relativistic convergent close-coupling method applied to electron scattering from mercury

    International Nuclear Information System (INIS)

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3 P 0,1,2 states. These cross sections are associated with the formation of negative ion (Hg - ) resonances that could not be resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other relativistic theories.

  4. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  5. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  6. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  7. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Science.gov (United States)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  8. Electron phonon couplings in 2D perovskite probed by ultrafast photoinduced absorption spectroscopy

    Science.gov (United States)

    Huynh, Uyen; Ni, Limeng; Rao, Akshay

    We use the time-resolved photoinduced absorption (PIA) spectroscopy with 20fs time resolution to investigate the electron phonon coupling in the self-assembled hybrid organic layered perovskite, the hexyl ammonium lead iodide compound (C6H13NH3)2 (PbI4) . The coupling results in the broadening and asymmetry of its temperature-dependence photoluminescence spectra. The exact time scale of this coupling, however, wasn't reported experimentally. Here we show that using an ultrashort excitation pulse allows us to resolve from PIA kinetics the oscillation of coherent longitudinal optical phonons that relaxes and self-traps electrons to lower energy states within 200 fs. The 200fs relaxation time is equivalent to a coupling strength of 40meV. Two coupled phonon modes are also identified as about 100 cm-1 and 300 cm-1 from the FFT spectrum of the PIA kinetics. The lower energy mode is consistent with previous reports and Raman spectrum but the higher energy one hasn't been observed before.

  9. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  10. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  11. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...... and obtained a set of basis functions for the elements Sc–Zn, which were saturated with respect to both the Fermi contact and spin-dipolar components of the hyperfine coupling tensor [Hedeg°ard et al., J. Chem. Theory Comput., 2011, 7, pp. 4077-4087]. Furthermore, a contraction scheme was proposed leading...

  12. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  13. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  14. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  15. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    Science.gov (United States)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  16. Electronic and magnetic coupling of iron and copper phthalocyanine to ferromagnetic Co(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane [Department of Physics, University of Kaiserslautern, Erwin Schroedinger Str. 56, D-67663 Kaiserslautern (Germany); Ali, Ehesan; Oppeneer, Peter [Department of Physics and Materials Science, Box 530, Uppsala University, S-75121 Uppsala (Sweden)

    2009-07-01

    Metallo-phthalocyanines are organic semiconductors which show in certain cases promising magnetic properties, advertising them for use in organic spintronics. Here, copper (CuPc) and iron phthalocyanine (FePc) were grown on ultra thin layers of Co(100) substrates with well known highly spin-polarized electron injection capability. Photoelectron spectroscopy (XPS) reveals different interactions between the pyrolytic nitrogen atoms and the cobalt surface for the two phthalocyanines. The analysis of the different multiplet structures appearing for the nitrogen core levels in the submonolayer regime and UPS investigations of the valence band electronic structure of the Co dominated region near the Fermi level indicates a particularly electronic coupling and a rehybridisation of the molecular orbitals with the cobalt orbitals. In order to clarify the influence of the two different central atoms on the electronic- and subsequently the magnetic coupling to the Co substrate, theoretical calculations using the GGA and GGA+U methodologies on a structure of Fe/Cu-phthalocyanine adsorbed on a 3-layered cobalt surface were performed indicating a ferromagnetic coupling between FePc and Co.

  17. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    Science.gov (United States)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  18. The Laser ablation of a metal foam: The role of electron-phonon coupling and electronic heat diffusivity

    Science.gov (United States)

    Rosandi, Yudi; Grossi, Joás; Bringa, Eduardo M.; Urbassek, Herbert M.

    2018-01-01

    The incidence of energetic laser pulses on a metal foam may lead to foam ablation. The processes occurring in the foam may differ strongly from those in a bulk metal: The absorption of laser light, energy transfer to the atomic system, heat conduction, and finally, the atomistic processes—such as melting or evaporation—may be different. In addition, novel phenomena take place, such as a reorganization of the ligament network in the foam. We study all these processes in an Au foam of average porosity 79% and an average ligament diameter of 2.5 nm, using molecular dynamics simulation. The coupling of the electronic system to the atomic system is modeled by using the electron-phonon coupling, g, and the electronic heat diffusivity, κe, as model parameters, since their actual values for foams are unknown. We show that the foam coarsens under laser irradiation. While κe governs the homogeneity of the processes, g mainly determines their time scale. The final porosity reached is independent of the value of g.

  19. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  20. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  1. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  2. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  3. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  4. Measurement of the electroweak coupling of neutrinos and antineutrinos on electrons

    International Nuclear Information System (INIS)

    Jonker, M.

    1983-01-01

    This thesis describes the analysis of the events induced by elastic scattering of neutrinos and antineutrinos on electrons and interprets the results in terms of the coupling strength of (anti)neutrino on electrons. The data for this analysis were obtained with the electronic calorimeter of the CHARM (Amsterdam, Cern, Hamburg, Moscow, Rome) collaboration during the wide band neutrino beam exposures of 1979, 1980 and 1981 in the neutrino facility of the SPS (Super Proton Synchrotron) at CERN (Conseil Europeen pour la Recherche Nucleaire, Geneva, Switzerland). In chapter 1 a historical overview of the early neutrino physics and a description of the phenomenological Lagrangian is given, followed by an introduction to the electroweak unification model. The neutrino detector of the CHARM collaboration is described in chapter 2. Chapter 3 deals with the on-line monitoring system of this detector which has been under the responsibility of the author. The wide band neutrino facility of the CERN SPS is described in chapter 4, followed by a discussion of the experimental method to measure the neutrino energy spectra of the neutrino beams. The electromagnetic shower development process is reviewed in chapter 5 and is followed by a description of the technique that was used to separate showers of electromagnetic and hadronic origin. Chapter 6 discusses the observed signal of the (anti)neutrinos scattering on electrons and interprets these events in terms of the parameters related to the strength of the coupling of neutrinos to electrons. (Auth.)

  5. Kinks in the σ Band of Graphene Induced by Electron-Phonon Coupling

    DEFF Research Database (Denmark)

    Mazzola, Federico; Wells, Justin; Yakimova, Rosita

    2013-01-01

    Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the band...... of graphene that has a binding energy of more than 3:5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of states. The existence of the effect suggests a very weak coupling...

  6. Polarized Bhabha scattering and a precision measurement of the electron neutral current couplings

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    Bhabha scattering with polarized electrons at the Z 0 resonance has been measured with the SLD experiment at the SLAC Linear Collider. The first measurement of the left-right asymmetry in Bhabha scattering is presented, yielding the effective weak mixing angle of sinθ eff W =0.2245±0.0049±0.0010. The effective electron couplings to the Z 0 are extracted from a combined analysis of polarized Bhabha scattering and the left-right asymmetry previously published: υ e =-0.0414±0.0020 and a e =-0.4977±0.0045

  7. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  8. Enhanced electron-lattice coupling under uniaxial stress in layered double hydroxides intercalated with samarium complexes

    International Nuclear Information System (INIS)

    Park, Ta-Ryeong

    2004-01-01

    We have applied uniaxial stress to samarium complexes by intercalating them into the gallery of a layered material and by using a diamond-anvil cell at 28 K. Although uniaxial stress reduces symmetry and removes degeneracy, the overall number of photoluminescence (PL) peaks evidently decreased with the application of uniaxial stress. This contradictory observation is explained by an increased electron-lattice coupling strength under uniaxial stress. This behavior is also confirmed by time-resolved PL data.

  9. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  10. Weak coupling theory of the ripplon limited mobility of a 2-D electron lattice

    International Nuclear Information System (INIS)

    Dahm, A.J.; Mehrotra, R.

    1981-01-01

    The one ripplon-n phonon scattering contribution to the mobility of a 2D electron lattice supported by a liquid helium substrate is calculated in first order perturbation theory to all orders of n in the weak coupling limit. The Debye Waller factor is shown to limit the momentum transfer at large ripplon wave-vectors and high temperatures causing a minimum in the mobility as a function of temperature. (orig.)

  11. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C

    2008-01-01

    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure in their...... systems, entailing new design principles for the realization of quantum bits (qubits) in nanotubes and providing a mechanism for all-electrical control of spins in nanotubes....

  12. Relaxation of electron energy in the coupled polar semiconductor quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2001-01-01

    Roč. 49, 10-11 (2001), s. 1011-1018 ISSN 0015-8208 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : coupled polar semiconductor quantum dots * electron energy relaxation Subject RIV: BE - The oretical Physics Impact factor: 1.043, year: 2001

  13. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    Science.gov (United States)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  14. Anisotropic plasmon-coupling dimerization of a pair of spherical electron gases

    International Nuclear Information System (INIS)

    Gumbs, Godfrey; Iurov, Andrii; Balassis, Antonios; Huang, Danhong

    2014-01-01

    We have discovered a novel feature in the plasmon excitations for a pair of Coulomb-coupled non-concentric spherical two-dimensional electron gases (S2DEGs). Our results show that the plasmon excitations for such pairs depend on the orientation with respect to the external electromagnetic probe field. The origin of this anisotropy of the inter-sphere Coulomb interaction is due to the directional asymmetry of the electrostatic coupling of electrons in excited states which depend on both the angular momentum quantum number L and its projection M on the axis of quantization taken as the probe E-field direction. We demonstrate the anisotropic inter-sphere Coulomb coupling in space and present semi-analytic results in the random-phase approximation both perpendicular and parallel to the axis of quantization. For the incidence of light with a finite orbital or spin angular momentum, the magnetic field generated from an induced oscillating electric dipole on one sphere can couple to an induced magnetic dipole on another sphere in a way that is dependent on whether the direction is parallel or perpendicular to the probe E field. Such an effect from the plasmon spatial correlation is expected to be experimentally observable by employing circularly polarized light or a helical light beam for incidence. The S2DEG serves as a simple model for fullerenes as well as metallic dimers, when the energy bands are far apart. (paper)

  15. Iteratively-coupled propagating exterior complex scaling method for electron-hydrogen collisions

    International Nuclear Information System (INIS)

    Bartlett, Philip L; Stelbovics, Andris T; Bray, Igor

    2004-01-01

    A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schroedinger equation, for L ≤ 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources. (letter to the editor)

  16. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  17. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  18. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  19. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  20. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  1. Evidence for strong electron-lattice coupling in La2-xSrxNiO4

    International Nuclear Information System (INIS)

    McQueeney, R.J.; Sarrao, J.L.

    1999-01-01

    The inelastic neutron scattering spectra were measured for several Sr concentrations of polycrystalline La 2-x Sr x NiO 4 . The authors find that the generalized phonon density-of-states is identical for x = 0 and x = 1/8. For x = 1/3 and x = 1/2, the band of phonons corresponding to the in-plane oxygen vibrations (> 65 meV) splits into two subbands centered at 75 meV and 85 meV. The lower frequency band increases in amplitude for the x = 1/2 sample, indicating that it is directly related to the hole concentration. These changes are associated with the coupling of oxygen vibrations to doped holes which reside in the NiO 2 planes and are a signature of strong electron-lattice coupling. Comparison of La 1.9 Sr 0.1 CuO 4 and La 1.875 Sr 0.125 NiO 4 demonstrates that much stronger electron-lattice coupling occurs for particular modes in the cuprate for modest doping and is likely related to the metallic nature of the cuprate

  2. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  3. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  4. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  5. Combined UMC- DFT prediction of electron-hole coupling in unit cells of pentacene crystals.

    Science.gov (United States)

    Leal, Luciano Almeida; de Souza Júnior, Rafael Timóteo; de Almeida Fonseca, Antonio Luciano; Ribeiro Junior, Luiz Antonio; Blawid, Stefan; da Silva Filho, Demetrio Antonio; da Cunha, Wiliam Ferreira

    2017-05-01

    Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.

  6. Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit

    Science.gov (United States)

    Santillán, Moisés

    We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.

  7. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  8. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    Science.gov (United States)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  9. Application of the Arbitrarily High Order Method to Coupled Electron Photon Transport

    International Nuclear Information System (INIS)

    Duo, Jose Ignacio

    2004-01-01

    This work is about the application of the Arbitrary High Order Nodal Method to coupled electron photon transport.A Discrete Ordinates code was enhanced and validated which permited to evaluate the advantages of using variable spatial development order per particle.The results obtained using variable spatial development and adaptive mesh refinement following an a posteriori error estimator are encouraging.Photon spectra for clinical accelerator target and, dose and charge depositio profiles are simulated in one-dimensional problems using cross section generated with CEPXS code.Our results are in good agreement with ONELD and MCNP codes

  10. Electron-phonon and spin-phonon coupling in NaV2O5 : Charge fluctuations effects

    NARCIS (Netherlands)

    Sherman, E.Ya.; Fischer, M.; Lemmens, P; Loosdrecht, P.H.M. van; Güntherodt, G.

    1999-01-01

    We show that the asymmetric crystal environment of the V site in the ladder compound NaV2O5 leads to a strong coupling of vanadium 3d electrons to phonons. This coupling causes fluctuations of the charge on the V ions, and favors a transition to a charge-ordered state at low temperatures. In the low

  11. First-principles study of the electronic structure of CdS/ZnSe coupled quantum dots

    NARCIS (Netherlands)

    Ganguli, N.; Acharya, S.; Dasgupta, I.

    2014-01-01

    We have studied the electronic structure of CdS/ZnSe coupled quantum dots, a novel heterostructure at the nanoscale. Our calculations reveal CdS/ZnSe coupled quantum dots are type II in nature where the anion p states play an important role in deciding the band offset for the highest occupied

  12. Electron-impact ionization of oriented molecules using the time-dependent close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pindzola, M S, E-mail: jcolgan@lanl.gov [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2011-04-01

    An overview is given on recent progress on computing triple differential cross sections for electron-impact ionization of the hydrogen molecule using a time-dependent close-coupling approach. Our calculations, when averaged over all molecular orientations, are generally in very good agreement with (e,2e) measurements made on H{sub 2}, where the molecular orientation is unknown, for a range of incident energies and outgoing electron angles and energies. In this paper, we present TDCS for ionization of H{sub 2} at specific molecular orientations. It is hoped that this study will help stimulate future measurements of TDCS from oriented H{sub 2} at medium impact energies.

  13. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  14. Semiclassical magnetotransport in strongly spin–orbit coupled Rashba two-dimensional electron systems

    International Nuclear Information System (INIS)

    Xiao, Cong; Li, Dingping

    2016-01-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin–orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e . While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. (paper)

  15. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  16. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  17. CEPXS/ONELD: A one-dimensional coupled electron-photon discrete ordinates code package

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Morel, J.E.

    1992-01-01

    CEPXS/ONELD is a discrete ordinates transport code package that can model the electron-photon cascade from 100 MeV to 1 keV. The CEPXS code generates fully-coupled multigroup-Legendre cross section data. This data is used by the general-purpose discrete ordinates code, ONELD, which is derived from the Los Alamos ONEDANT and ONBTRAN codes. Version 1.0 of CEPXS/ONELD was released in 1989 and has been primarily used to analyze the effect of radiation environments on electronics. Version 2.0 is under development and will include user-friendly features such as the automatic selection of group structure, spatial mesh structure, and S N order

  18. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  19. Electronic and optical properties of ZrB12 and YB6. Discussion on electron-phonon coupling

    International Nuclear Information System (INIS)

    Teyssier, J.; Kuzmenko, A.; Marel, D. van der; Lortz, R.; Junod, A.; Filippov, V.; Shitsevalova, N.

    2006-01-01

    We report the optical properties of high-quality single crystals of low temperature superconductors zirconiumdodecaboride ZrB 12 (T c =5.95 K) and yttrium hexaboride YB 6 (T c =7.15 K) in the range 6 meV-4.6 eV at room temperature. The experimental optical conductivity was extracted from the analysis of the reflectivity in the infrared range and ellipsometry measurement of the dielectric function in the visible range. The electronic band structure of these compounds was calculated by the self-consistent full-potential LMTO method and used to compute the interband part of the optical conductivity and the plasma frequency Ω p . A good agreement was observed between the interband part of the experimental optical conductivities and the band structure calculations. Different methods combining optical spectroscopy, resistivity, specific heat measurements and results of band structure calculations are used to determine the electron-phonon coupling constant. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  1. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  2. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  3. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  4. Electronic response of a photodiode coupled to a boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Costa, Fabio E.; Raele, Marcus P.; Zahn, Guilherme S.; Geraldo, Bianca; Vieira Junior, Nilson D.; Samad, Ricardo E.; Genezini, Frederico A., E-mail: priscila3.costa@usp.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    A portable thermal neutron detector is proposed in this work using a silicon photodiode coupled to a boron thin film. The aim of this work was to verify the effect in the electronic response of this specific photodiode due to boron deposition, since the direct deposition of boron in the semiconductor surface could affect its electrical properties specifically the p-type layer that affects directly the depletion region of the semiconductor reducing the neutron detector efficiency count. Three boron depositions with different thickness were performed in the photodiode (S3590-09) surface by pulsed laser deposition and the photodiode was characterized, before and after the deposition process, using a radioactive americium source. Energy spectra were used to verify the electronic response of the photodiode, due to the fact that it is possible to relate it to the photopeak pulse height and resolution. Spectra from the photodiode without and with boron film deposition were compared and a standard photodiode (S3590-04) that had the electronic signal conserved was used as reference to the pulse height for electronics adjustments. The photopeak energy resolution for the photodiode without boron layer was 10.26%. For the photodiode with boron deposition at different thicknesses, the resolution was: 7.64 % (0.14 μm), 7.30 % (0.44 μm) and 6.80 % (0.63 μm). From these results it is possible to evaluate that there was not any degradation in the silicon photodiode. (author)

  5. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.

    1985-01-01

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  6. Measuring CP nature of top-Higgs couplings at the future Large Hadron electron Collider

    Directory of Open Access Journals (Sweden)

    Baradhwaj Coleppa

    2017-07-01

    Full Text Available We investigate the sensitivity of top-Higgs coupling by considering the associated vertex as CP phase (ζt dependent through the process pe−→t¯hνe in the future Large Hadron electron Collider. In particular the decay modes are taken to be h→bb¯ and t¯ → leptonic mode. Several distinct ζt dependent features are demonstrated by considering observables like cross sections, top-quark polarisation, rapidity difference between h and t¯ and different angular asymmetries. Luminosity (L dependent exclusion limits are obtained for ζt by considering significance based on fiducial cross sections at different σ-levels. For electron and proton beam-energies of 60 GeV and 7 TeV respectively, at L=100 fb−1, the regions above π/5<ζt≤π are excluded at 2σ confidence level, which reflects better sensitivity expected at the Large Hadron Collider. With appropriate error fitting methodology we find that the accuracy of SM top-Higgs coupling could be measured to be κ=1.00±0.17(0.08 at s=1.3(1.8 TeV for an ultimate L=1ab−1.

  7. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    International Nuclear Information System (INIS)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-01-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant

  8. Higher-order harmonics coupling in different free-electron laser codes

    Science.gov (United States)

    Giannessi, L.; Freund, H. P.; Musumeci, P.; Reiche, S.

    2008-08-01

    The capability for simulation of the dynamics of a free-electron laser including the higher-order harmonics in linear undulators exists in several existing codes as MEDUSA [H.P. Freund, S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. 27 (2000) 243; H.P. Freund, Phys. Rev. ST-AB 8 (2005) 110701] and PERSEO [L. Giannessi, Overview of Perseo, a system for simulating FEL dynamics in Mathcad, , in: Proceedings of FEL 2006 Conference, BESSY, Berlin, Germany, 2006, p. 91], and has been recently implemented in GENESIS 1.3 [See ]. MEDUSA and GENESIS also include the dynamics of even harmonics induced by the coupling through the betatron motion. In addition MEDUSA, which is based on a non-wiggler averaged model, is capable of simulating the generation of even harmonics in the transversally cold beam regime, i.e. when the even harmonic coupling arises from non-linear effects associated with longitudinal particle dynamics and not to a finite beam emittance. In this paper a comparison between the predictions of the codes in different conditions is given.

  9. Continuum orbital approximations in weak-coupling theories for inelastic electron scattering

    International Nuclear Information System (INIS)

    Peek, J.M.; Mann, J.B.

    1977-01-01

    Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-atom (ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their Langer uniform approximations and the use of an average trajectory approximation which entirely avoids the necessity for generating continuum orbitals. Numerical tests for a dipole-allowed and a dipole-forbidden event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded that the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the average approximation should be limited to collision energies exceeding at least twice the threshold energy. The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave collision-strength data indicate that greater care should be exercised in using these approximations to predict quantities differential in the scattering angle. An application to the 2s 2 S-2p 2 P transition in Ne VIII is presented

  10. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    Science.gov (United States)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  11. Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes

    International Nuclear Information System (INIS)

    Patrone, L.; Palacin, S.; Bourgoin, J.P.

    2003-01-01

    Scanning tunneling microscopy experiments have been performed to compare the electronic coupling provided by S and by Se used as alligator clips for bisthiol- and biselenol-terthiophene molecules adsorbed onto gold. The molecules were inserted in a dodecanethiol (DT) self-assembled monolayer. Their apparent height above the dodecanethiol matrix was used as a measure of the electronic coupling strength corresponding to S and Se, respectively. We show that the insertion behaviors of the two molecules are qualitatively the same, and that Se provides systematically a better coupling link than S, whatever the tunneling conditions

  12. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    Science.gov (United States)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  13. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    Science.gov (United States)

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  14. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  15. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition

    International Nuclear Information System (INIS)

    Bouis, F.

    1999-01-01

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  16. Electron beam instabilities in unmagnetized plasmas via the Stieltjes transform (linear theory and nonlinear mode coupling)

    International Nuclear Information System (INIS)

    Krishan, S.

    2007-01-01

    The Stieltjes transform has been used in place of a more common Laplace transform to determine the time evolution of the self-consistent field (SCF) of an unmagnetized semi-infinite plasma, where the plasma electrons together with a primary and a low-density secondary electron beam move perpendicular to the boundary surface. The secondary beam is produced when the primary beam strikes the grid. Such a plasma system has been investigated by Griskey and Stanzel [M. C. Grisky and R. L. Stenzel, Phys. Rev. Lett. 82, 556 (1999)]. The physical phenomenon, observed in their experiment, has been named by them as ''secondary beam instability.'' The character of the instability observed in the experiment is not the same as predicted by the conventional treatments--the field amplitude does not grow with time. In the frequency spectrum, the theory predicts peak values in the amplitude of SCF at the plasma frequency of plasma and secondary beam electrons, decreasing above and below it. The Stieltjes transform for functions, growing exponentially in the long time limit, does not exist, while the Laplace transform technique gives only exponentially growing solutions. Therefore, it should be interesting to know the kind of solutions that an otherwise physically unstable plasma will yield. In the high-frequency limit, the plasma has been found to respond to any arbitrary frequency of the initial field differentiated only by the strength of the resulting SCF. The condition required for exponential growth in the conventional treatments, and the condition for maximum amplitude (with respect to frequency) in the present treatment, have been found to be the same. Nonlinear mode coupling between the modes excited by the plasma electrons and the low-density secondary beam gives rise to two frequency-dependent peaks in the field amplitude, symmetrically located about the much stronger peak due to the plasma electrons, as predicted by the experiment

  17. Vertex function for the coupling of an electron with intramolecular phonons: Exact results in the antiadiabatic limit

    International Nuclear Information System (INIS)

    Takada, Y.; Higuchi, T.

    1995-01-01

    The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω 0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω 0 , are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation

  18. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    Science.gov (United States)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  19. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    Science.gov (United States)

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Strong-coupling electron-phonon superconductivity in H{sub 3}S

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Warren E. [University of California, Davis, CA (United States); Quan, Yundi [Beijing Normal University, Beijing (China)

    2016-07-01

    The superconducting phase of hydrogen sulfide at T{sub c} = 200 K observed by Eremets' group at pressures around 200 GPa is simple bcc Im-3m H{sub 3}S. Remarkably, this record high temperature superconductor was predicted beforehand by Duan et al., so the theory would seem to be in place. Here we will discuss why this is not true. Several extremes are involved: extreme pressure, meaning reduction of volume;extremely high H phonon energy scale around 1400 K; unusually narrow peak in the density of states at the Fermi level; extremely high temperature for a superconductor. Analysis of the H3S electronic structure and two important van Hove singularities (vHs) reveal the effect of sulfur. The implications for the strong coupling Migdal-Eliashberg theory will be discussed. Followed by comments on ways of increasing T{sub c} in H{sub 3}S-like materials.

  4. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  5. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  6. Electron-phonon coupling, gap anisotropy and multigap structure in the high transition temperature cuprates

    International Nuclear Information System (INIS)

    Kresin, V.Z.; Wolf, S.A.

    1989-01-01

    In this paper the authors report on several important properties of the high t c cuprates. Firstly, the authors have developed a method for evaluating the electron-phonon coupling strength λ using an analysis of the heat capacity data. The authors estimate λ to be about 2.0 for La-Sr-Cu-O, which indicates that phonons are important but are not sufficient to explain the measured T c . Secondly, the authors have demonstrated that these materials exhibit gap anisotropy and multigap structure (the latter in the Re-Ba-Cu-O materials) which is responsible for the experimental difficulties in analyzing tunnelling and infrared data. Finally the authors have explained the anomalous results on the Pr substituted Y-Ba-Cu-O by its effects on the two dimensional Cu-O band in the framework of a two band multigap structure

  7. Assessment of pesticide residues in some fruits using gas chromatography coupled with micro electron capture detector

    International Nuclear Information System (INIS)

    Latif, Y.; Sherazi, S.T.H.; Bhanger, M.I.

    2011-01-01

    A very sensitive analytical method for the determination of 26 pesticides in some fruits based on solid phase extraction (SPE) cleanup was developed using gas chromatography (GC) coupled with micro electron capture detector (mu ECD). The identity of the pesticides was confirmed by gas chromatography mass spectroscopy (GC-MS) using selected ion monitoring (SIM) mode. Ethyl acetate was used as a solvent for the extraction of pesticide residues with assistance of sonication. For cleanup an octadecyl, C18 SPE column was used. A linear response of mu ECD was observed for all pesticides with good correlation coefficients (>0.9992). Proposed method was successfully applied for the determination of pesticide residues in the orange, apple, and grape fruits. Average recoveries achieved for all of the pesticides at fortification levels of 0.05, 1.0 and 2.0 mu g g/sup -1/ in analyzed fruits were above 90% with relative standard deviations (RSD) less than 6%. (author)

  8. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  9. Proton position near QB and coupling of electron and proton transfer in photosynthesis

    International Nuclear Information System (INIS)

    Belousov, R V; Poltev, S V; Kukushkin, A K

    2003-01-01

    We have calculated the energy levels and wavefunctions of a proton in a histidine (His)-plastoquinone (PQ) system in the reaction centre (RC) of photosystem 2 of higher plants and the RC of purple bacteria for different redox states of PQ Q B . For oxidized Q B , the proton is located near His. For once-reduced PQ, it is positioned in the middle between the nitrogen of His and the oxygen of PQ. For twofold-reduced PQ, the proton is localized near the oxygen of PQ. Using the values of total energy of the system in these states, we have also estimated the frequency of proton oscillations. On the basis of these results we propose a hypothesis about the coupling of electron-proton transfer

  10. Local instability driving extreme events in a pair of coupled chaotic electronic circuits

    Science.gov (United States)

    de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza

    2016-06-01

    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.

  11. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  12. Massive the Higgs boson and the greatest hunt in science

    CERN Document Server

    Sample, Ian

    2013-01-01

    Now fully updated -- this is the dramatic and gripping account of the greatest scientific discovery of our time. In the early 1960s, three groups of physicists, working independently in different countries, stumbled upon an idea that would change physics and fuel the imagination of scientists for decades. That idea was the Higgs boson -- to find it would be to finally understand the origins of mass -- the last building block of life itself. Now, almost 50 years later, that particle has finally been discovered.

  13. Penicillin: the medicine with the greatest impact on therapeutic outcomes.

    Science.gov (United States)

    Kardos, Nelson; Demain, Arnold L

    2011-11-01

    The principal point of this paper is that the discovery of penicillin and the development of the supporting technologies in microbiology and chemical engineering leading to its commercial scale production represent it as the medicine with the greatest impact on therapeutic outcomes. Our nomination of penicillin for the top therapeutic molecule rests on two lines of evidence concerning the impact of this event: (1) the magnitude of the therapeutic outcomes resulting from the clinical application of penicillin and the subsequent widespread use of antibiotics and (2) the technologies developed for production of penicillin, including both microbial strain selection and improvement plus chemical engineering methods responsible for successful submerged fermentation production. These became the basis for production of all subsequent antibiotics in use today. These same technologies became the model for the development and production of new types of bioproducts (i.e., anticancer agents, monoclonal antibodies, and industrial enzymes). The clinical impact of penicillin was large and immediate. By ushering in the widespread clinical use of antibiotics, penicillin was responsible for enabling the control of many infectious diseases that had previously burdened mankind, with subsequent impact on global population demographics. Moreover, the large cumulative public effect of the many new antibiotics and new bioproducts that were developed and commercialized on the basis of the science and technology after penicillin demonstrates that penicillin had the greatest therapeutic impact event of all times. © Springer-Verlag 2011

  14. Greatest Happiness Principle in a Complex System Approach

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2012-06-01

    Full Text Available The principle of greatest happiness was the basis of ethics in Plato’s and Aristotle’s work, it served as the basis of utility principle in economics, and the happiness research has become a hot topic in social sciences in Western countries in particular in economics recently. Nevertheless there is a considerable scientific pessimism over whether it is even possible to affect sustainable increases in happiness.In this paper we outline an economic theory of decision based on the greatest happiness principle (GHP. Modern equilibrium economics is a simple system simplification of the GHP, the complex approach outlines a non-equilibrium economic theory. The comparison of the approaches reveals the fact that the part of the results – laws of modern economics – follow from the simplifications and they are against the economic nature. The most important consequence is that within the free market economy one cannot be sure that the path found by it leads to a beneficial economic system.

  15. ITS, TIGER System of Coupled Electron Photon Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.; Young, M.F.

    1996-01-01

    1 - Description of program or function: ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/ photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. 2 - Method of solution: Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors. With the ITS-3.0 release the PSR-0245/UPEML package is included to perform these functions. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/ photon cascade from 1.0 GeV down to 1.0 keV. Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures. 3 - Restrictions on the complexity of the problem: - Restrictions and/or limitations for ITS depend upon the local operating system

  16. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    Science.gov (United States)

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer.

  17. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  18. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  19. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  20. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, S.; Qamar, Anisa

    2014-09-01

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  1. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    Science.gov (United States)

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  2. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    Science.gov (United States)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  3. Perturbation theory for the bloch electrons on strongly coupled chains in both uniform electric and magnetic fields

    International Nuclear Information System (INIS)

    Zhao, X.G.; Chen, S.G.

    1992-01-01

    In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed

  4. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  5. Exchange electron-hole interaction of two-dimensional magnetoexcitons under the influence of the Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    Moskalenko, S.A.; Podlesny, I.V.; Lelyakov, I.A.; Novikov, B.V.; Kiselyova, E.S.; Gherciu, L.

    2011-01-01

    The Rashba spin-orbit coupling (RSOC) in the case of two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field was studied. The spinor-type wave functions are characterized by different numbers of Landau levels in different spin projections. For electrons they differ by 1 as was established earlier by Rashba, whereas for holes they differ by 3. Two lowest electron states and four lowest hole states of Landau quantization give rise to eight 2D magnetoexciton states. The exchange electron-hole interaction in the frame of these states is investigated.

  6. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    Science.gov (United States)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  7. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.

    2010-11-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  8. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    International Nuclear Information System (INIS)

    Masood, W.; Mirza, Arshad M.

    2010-01-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  9. Exact results and conjectures on the adiabatic Holstein-Hubbard model at large electron-phonon coupling

    International Nuclear Information System (INIS)

    Aubry, S.

    1993-01-01

    Principles and notations of the Holstein-Hubbard model in a magnetic field are first reviewed. Effects of the dimensionality, the lattice discreteness and the magnetic field on single polarons, are examined and the existence of many polarons and bipolarons structures at large electron-phonon coupling is discussed. Properties of bipolaronic and polaronic structures are examined together with the magnetic field effects on these structures. High Tc superconductivity resulting from the competition between the electron-phonon and Hubbard couplings is discussed. 7 figs., 18 refs

  10. Masses of galaxies and the greatest redshifts of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Hills, J G [Illinois Univ., Urbana (USA)

    1977-04-01

    The outer parts of a typical galaxy follows an R/sup -2/ density distribution which results in the collapse time of its protogalaxy being proportional to its mass. Since quasars probably occur in the nuclei of galaxies which can only form after the collapse of their parent galaxies, their greatest observed redshift, Zsub(max), is largely determined by the mass, Msub(t), of a typical protogalaxy. The observed Zsub(max) of quasars indicates that Msub(t) = 1 x 10/sup 12/ solar masses. This mass is consistent with the masses of galaxies found in recent dynamical studies. It indicates that most of the mass in a typical galaxy is in the halo lying beyond the familiar optically-bright core, but the mass of a standard galaxy is still only 0.3 of that required for galaxies alone to close the universe.

  11. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT

    Science.gov (United States)

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-01

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  12. On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidation-reduction reactions.

    Science.gov (United States)

    Peters, John W; Beratan, David N; Schut, Gerrit J; Adams, Michael W W

    2018-04-19

    Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes. Bifurcating enzymes require a redox center that is capable of directing electron transport along two spatially separate pathways. Research into the nature of electron bifurcating sites indicates that one of the keys is the formation of a low potential oxidation state to satisfy the energetics required of the endergonic half reaction, indicating that any redox center (organic or inorganic) that can exist in multiple oxidation states with sufficiently separated redox potentials should be capable of electron bifurcation. In this Feature Article, we explore a paradigm for bifurcating electrons down independent high and low potential pathways, and describe redox cofactors that have been demonstrated or implicated in driving this unique biochemistry.

  13. Reentrant resistance and giant Andreev back scattering in a two-dimensional electron gas coupled to superconductors

    NARCIS (Netherlands)

    den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We first present the bias-voltage dependence of the superconducting phase-dependent reduction in the differential resistance of a disordered T-shaped two-dimensional electron gas (2DEG) coupled to two superconductors. This reduction exhibits a reentrant behavior, since it first increases upon

  14. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    Science.gov (United States)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  15. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission

    NARCIS (Netherlands)

    Wibowo, Meilani; Broer, Ria; Havenith, Remco W. A.

    2017-01-01

    For the design of efficient singlet fission chromophores, knowledge of the factors that govern the singlet fission rate is important. This rate is approximately proportional to the electronic coupling between the lowest (diabatic) spin singlet state that is populated following photoexcitation state

  16. Spin-dependent electron-phonon coupling in the valence band of single-layer WS2

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin

    2017-01-01

    The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....

  17. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    International Nuclear Information System (INIS)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-01-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  18. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-20

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  19. Tunneling conductance of a two-dimensional electron gas with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Srisongmuang, B.; Ka-oey, A.

    2012-01-01

    We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band. - Highlights: → DSOC energy can be directly measured from tunneling conductance spectrum. → Spin polarization of conductance in the propagation direction can be obtained by injecting from DSOC system. → Both types of scattering can increase spin polarization.

  20. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    Science.gov (United States)

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  1. Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization

  2. Self-adjoint angular flux equation for coupled electron-photon transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization

  3. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films

    Science.gov (United States)

    Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.

    2017-09-01

    Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.

  4. Assessment of Pesticide Residues in Some Fruits Using Gas Chromatography Coupled with Micro Electron Capture Detector

    Directory of Open Access Journals (Sweden)

    M. I. Bhanger

    2011-12-01

    Full Text Available A very sensitive analytical method for the determination of 26 pesticides in some fruits based on solid phase extraction (SPE cleanup was developed using gas chromatography (GC coupled with micro electron capture detector (μECD. The identity of the pesticides was confirmed by gas chromatography mass spectroscopy (GC-MS using selected ion monitoring (SIM mode. Ethyl acetate was used as a solvent for the extraction of pesticide residues with assistance of sonication. For cleanup an octadecyl, C18 SPE column was used. A linear response of μECD was observed for all pesticides with good correlation coefficients (>0.9992. Proposed method was successfully applied for the determination of pesticide residues in the orange, apple, and grape fruits. Average recoveries achieved for all of the pesticides at fortification levels of 0.05, 1.0 and 2.0 μg g-1 in analyzed fruits were above 90% with relative standard deviations (RSD less than 6

  5. Quasiparticle properties of a coupled quantum-wire electron-phonon system

    DEFF Research Database (Denmark)

    Hwang, E. H.; Hu, Ben Yu-Kuang; Sarma, S. Das

    1996-01-01

    We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron-electron interac......We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron......-electron interactions, The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within...... theoretical results for quasiparticle properties....

  6. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2005-01-01

    Roč. 76, č. 9 (2005), 093704:1-6 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA202/03/1575 Keywords : electron bombarded CCD * modulation transfer function * detective quantum efficiency Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.235, year: 2005

  7. Solution of the Eliashberg equations for a very strong electron-phonon coupling with a low-energy cutoff

    International Nuclear Information System (INIS)

    Weger, M.; Barbiellini, B.; Jarlborg, T.; Peter, M.; Santi, G.

    1995-01-01

    We solve the Eliashberg equations for the case of an explicit vector k dependence of the interactions, and of the resulting self-energies Σ 1 ( vector k,ω), Σ 2 ( vector k,ω). We consider a strong energy-dependence of the electron-electron scattering-rate τ ee -1 , which is associated with a strong energy-dependence of the electron-phonon matrix element g(k,k'). We characterize this energy-dependence by a cutoff ξ 1 , which is of the order of the phonon frequency ω ph . We find that we can account for a large number of unexpected features of the superconductivity of the cuprates by the BCS electron-phonon theory, if we consider very large values of the McMillan coupling constant λ ph , and small values of the cutoff ξ 1 . Specifically, the Coulomb interaction is found not to depress T c ; the isotope effect is strongly reduced when ξ 1 ph . We find solutions in which the gap function Δ( vector k,ω) has extended s-wave symmetry but is very anisotropic. We suggest that the underlying cause of the strong energy-dependence is a very small electronic screening parameter at the Fermi surface; the electron-phonon matrix element g is abnormally large, and this accounts for the high transition temperatures of the cuprates. An order of magnitude estimate suggests that the electron-phonon mechanism can account for transition temperatures up to about 200 K. We thus propose a very-strong-coupling theory, in which the renormalization functions, in particular the energy-renormalization X, depend very strongly on the superconducting gap Δ, and thus display a very strong temperature-dependence between T c and T=0. An experimental manifestation of the very strong coupling with a small cutoff is a zero bias anomaly sometimes observed in tunneling experiments. (orig.)

  8. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals

    Science.gov (United States)

    Rillo, Giovanni; Morales, Miguel A.; Ceperley, David M.; Pierleoni, Carlo

    2018-03-01

    We performed simulations for solid molecular hydrogen at high pressures (250 GPa ≤ P ≤ 500 GPa) along two isotherms at T = 200 K (phase III) and at T = 414 K (phase IV). At T = 200 K, we considered likely candidates for phase III, the C2c and Cmca12 structures, while at T = 414 K in phase IV, we studied the Pc48 structure. We employed both Coupled Electron-Ion Monte Carlo (CEIMC) and Path Integral Molecular Dynamics (PIMD). The latter is based on Density Functional Theory (DFT) with the van der Waals approximation (vdW-DF). The comparison between the two methods allows us to address the question of the accuracy of the exchange-correlation approximation of DFT for thermal and quantum protons without recurring to perturbation theories. In general, we find that atomic and molecular fluctuations in PIMD are larger than in CEIMC which suggests that the potential energy surface from vdW-DF is less structured than the one from quantum Monte Carlo. We find qualitatively different behaviors for systems prepared in the C2c structure for increasing pressure. Within PIMD, the C2c structure is dynamically partially stable for P ≤ 250 GPa only: it retains the symmetry of the molecular centers but not the molecular orientation; at intermediate pressures, it develops layered structures like Pbcn or Ibam and transforms to the metallic Cmca-4 structure at P ≥ 450 GPa. Instead, within CEIMC, the C2c structure is found to be dynamically stable at least up to 450 GPa; at increasing pressure, the molecular bond length increases and the nuclear correlation decreases. For the other two structures, the two methods are in qualitative agreement although quantitative differences remain. We discuss various structural properties and the electrical conductivity. We find that these structures become conducting around 350 GPa but the metallic Drude-like behavior is reached only at around 500 GPa, consistent with recent experimental claims.

  9. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  10. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  11. Dynamics of coupled electron-nuclei-systems in laser fields; Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Falge, Mirjam

    2012-07-01

    This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H{sub 2}O/D{sub 2}O and H{sub 2}/D{sub 2}. It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H{sub 2}O and D{sub 2}O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time

  12. Chiral-like tunneling of electrons in two-dimensional semiconductors with Rashba spin-orbit coupling.

    Science.gov (United States)

    Ang, Yee Sin; Ma, Zhongshui; Zhang, C

    2014-01-21

    The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a single layer graphene and bilayer graphene represent some of the most bizarre quantum transport phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses at a Dirac-like point and has a band turning point. These features generate transport properties not found in usual two-dimensional electron gas. Albeit its π Berry phase, electron backscattering is present in R2DEG. An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its energy is near the subband minima.

  13. Study of electron-related intersubband optical properties in three coupled quantum wells wires with triangular transversal section

    Science.gov (United States)

    Tiutiunnyk, A.; Tulupenko, V.; Akimov, V.; Demediuk, R.; Morales, A. L.; Mora-Ramos, M. E.; Radu, A.; Duque, C. A.

    2015-11-01

    This work concerns theoretical study of confined electrons in a low-dimensional structure consisting of three coupled triangular GaAs/AlxGa1-xAs quantum wires. Calculations have been made in the effective mass and parabolic band approximations. In the calculations a diagonalization method to find the eigenfunctions and eigenvalues of the Hamiltonian was used. A comparative analysis of linear and nonlinear optical absorption coefficients and the relative change in the refractive index was made, which is tied to the intersubband electron transitions.

  14. Dynamical instability, strong anharmonicity and electron-phonon coupling in KOs2O6: First-principles calculations

    Science.gov (United States)

    Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi

    2017-09-01

    First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.

  15. ATA and the electron phonon coupling constant in calculating TA of super conducting alloys [Paper No. : V-2

    International Nuclear Information System (INIS)

    Chatterjee, P.; Chatterjee, S.

    1978-01-01

    The theoretical formula of McMillan has been very successful in explaining the superconducting transition temperature. In this theory the electron-phonon coupling constant was very difficult to calculate from a purely theoretical stand point until Gyorffy and Gaspari gave a theoretical formulation from the multiple scattering point of view. This theory has been very successful in explaining Tsub(c) of many superconducting elements and compounds. For the disordered solid, such as substitution alloys, this theory fails because of the breakdown of the translational symmetry used in the multiple scattering theory of Gyorffy and Gaspari. This problem can however be solved if we average the Green's function in random phase approximation (ATA). In this work we have reformulated Gyorffy and Gaspari's expression of the electron phonon coupling constant in the random phase approximation. This theory has been utilised to alloys of Nb and Mo with different concentrations. The agreement between theory and experiment appears to be very good. (author)

  16. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  17. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  18. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  19. Dynamical coupling of electrons and ions in Xray-induced dynamics

    International Nuclear Information System (INIS)

    Saalmann, Ulf; Camacho, Abraham; Rost, Jan-Michael

    2015-01-01

    Photo-absorption from short and intense Xray pulses by a molecule or a cluster triggers a complicated electron and ion dynamics. Whereas the excitation process concerns largely core-shell electrons, there are various subsequent relaxation channels like electronic decays and ionic Coulomb explosion. We will discuss the interplay of those processes for molecular clusters and fullerenes. (paper)

  20. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  1. Theory of photoemission and inverse-photoemission spectra of highly correlated electron systems: A weak-coupling 1/N expansion

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1989-01-01

    An N-fold-degenerate Hubbard model is examined in the weak-coupling regime. The one-electron Green's function is calculated from a systematic expansion of the irreducible self-energy in powers of 1/N. To lowest order in the expansion, one obtains a trivial mean-field theory. In the next leading order in 1/N, one finds that the dynamics are dominated by bosonlike collective excitations. The resulting expansion has the characteristics of the standard weak-coupling field theory, except the inclusion of the 1/N factors extends the regime of applicability to include Stoner-like enhancement factors which can be N times larger. The joint valence-band photoemission and inverse-photoemission spectrum is given by the trace of the imaginary part of the one-electron Green's function. The electronic spectrum has been calculated by truncating the series expansion for the self-energy in the lowest nontrivial order of 1/N. For small values of the Coulomb interaction between the electrons, the spectrum reduces to the form obtained by calculating the self-energy to second order in the Coulomb interaction. The spectra shows a narrowing of the band in the vicinity of the Fermi level and long high-energy band tails. When the boson spectrum softens, indicating the vicinity of a phase transition, the electronic spectrum shows the appearance of satellites. The results are compared with experimental observations of anomalies in the electronic spectra of uranium-based systems. The relation between the electronic spectrum and the thermodynamic mass enhancements is also discussed

  2. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  3. Different regimes of electronic coupling and their influence on exciton recombination in vertically stacked InAs/InP quantum wires

    International Nuclear Information System (INIS)

    Fuster, David; Martinez-Pastor, Juan; Gonzalez, Luisa; Gonzalez, Yolanda

    2006-01-01

    In the present work we study the influence of stacking self-assembled InAs quantum wires (QWRs) on the emission wavelength and the excitonic recombination dynamics. The reduction in the InP spacer layer thickness, d(InP), produces both a size filtering effect towards large wire ensembles and an increase in the vertical coupling for electrons and holes along the stack direction. The different vertical coupling for electrons and holes induces a different behaviour in the exciton recombination dynamics, depending on the InP spacer layer thickness: weak electron coupling and negligible hole coupling for d(InP) > 10 nm, intermediate electron coupling and weak hole coupling for 5 nm ≤ d(InP) ≤ 10 nm and strong electron coupling and moderate hole coupling for d(InP) < 5 nm. Such exciton dynamics have been established by comparing the experimental time decay results with a multi-quantum well model accounting for the vertical carrier coupling

  4. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  5. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    Science.gov (United States)

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  6. Spin current in an electron waveguide tunnel-coupled to a topological insulator

    International Nuclear Information System (INIS)

    Sukhanov, Aleksei A; Sablikov, Vladimir A

    2012-01-01

    We show that electron tunneling from edge states in a two-dimensional topological insulator into a parallel electron waveguide leads to the appearance of spin-polarized current in the waveguide. The spin polarization P can be very close to unity and the electron current passing through the tunnel contact splits in the waveguide into two branches flowing from the contact. The polarization essentially depends on the electron scattering by the contact and the electron-electron interaction in the one-dimensional edge states. The electron-electron interaction is treated within the Luttinger liquid model. The main effect of the interaction stems from the renormalization of the electron velocity, due to which the polarization increases with the interaction strength. Electron scattering by the contact leads to a decrease in P. A specific effect occurs when the bottom of the subbands in the waveguide crosses the Dirac point of the spectrum of edge states when changing the voltage or chemical potential. This leads to changing the direction of the spin current.

  7. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Low-temperature reactive mixing of controlled electron beam modified Polytetrafluoroethylene (PTFE nanopowder with Ethylene-Propylene-Diene-Monomer (EPDM rubber produced PTFE coupled EPDM rubber compounds with desired physical properties. The radiation-induced chemical alterations in PTFE nanopowder, determined by electron spin resonance (ESR and Fourier transform infrared (FTIR spectroscopy, showed increasing concentration of radicals and carboxylic groups (–COOH with increasing irradiation dose. The morphological variations of the PTFE nanopowder including its decreasing mean agglomerate size with the absorbed dose was investigated by particle size and scanning electron microscopy (SEM analysis. With increasing absorbed dose the wettability of the modified PTFE nanopowder determined by contact angle method increased in accordance with the (–COOH concentration. Transmission electron microscopy (TEM showed that modified PTFE nanopowder is obviously enwrapped by EPDM. This leads to a characteristic compatible interphase around the modified PTFE. Crystallization studies by differential scanning calorimetry (DSC also revealed the existence of a compatible interphase in the modified PTFE coupled EPDM.

  8. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    Science.gov (United States)

    Winter, Thomas G.; Alston, Steven G.

    1992-02-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.

  9. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    International Nuclear Information System (INIS)

    Winter, T.G.; Alston, S.G.

    1992-01-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He + ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v 2 /2, corresponding to the Thomas mechanism

  10. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  11. Coupled quantum-classical method for long range charge transfer: relevance of the nuclear motion to the quantum electron dynamics

    International Nuclear Information System (INIS)

    Da Silva, Robson; Hoff, Diego A; Rego, Luis G C

    2015-01-01

    Charge and excitonic-energy transfer phenomena are fundamental for energy conversion in solar cells as well as artificial photosynthesis. Currently, much interest is being paid to light-harvesting and energy transduction processes in supramolecular structures, where nuclear dynamics has a major influence on electronic quantum dynamics. For this reason, the simulation of long range electron transfer in supramolecular structures, under environmental conditions described within an atomistic framework, has been a difficult problem to study. This work describes a coupled quantum mechanics/molecular mechanics method that aims at describing long range charge transfer processes in supramolecular systems, taking into account the atomistic details of large molecular structures, the underlying nuclear motion, and environmental effects. The method is applied to investigate the relevance of electron–nuclei interaction on the mechanisms for photo-induced electron–hole pair separation in dye-sensitized interfaces as well as electronic dynamics in molecular structures. (paper)

  12. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  13. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, Adam; Blumberger, Jochen, E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hoffmann, Felix [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany); Heck, Alexander; Elstner, Marcus [Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Oberhofer, Harald [Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching (Germany)

    2014-03-14

    We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  14. Coulomb drag: a probe of electron interactions in coupled quantum wells

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    1996-01-01

    As semiconductor devices shrink in size and in dimensionality, interactions between charge carriers become more and more important. There is a simple physical reason behind this behavior: fewer carriers lead to less effective screening, and hence stronger effective interactions. A point in case...... are one-dimensional systems (quantum wires): there electron-electron interactions may lead to a behavior, which is qualitatively different from the standard Fermi liquid picture (Luttinger liquids). Electron-electron interactions also play a central role in the fractional quantum Hall effect, which...... be the study of quantum wires: there the interactions may lead to even more dramatic effects...

  15. Theory of neutron scattering by atomic electrons: jj-coupling scheme

    International Nuclear Information System (INIS)

    Balcar, E.; Lovesey, S.W.; Uppsala Univ.

    1991-02-01

    Expressions are reported for the matrix element of the neutron-electron interaction for atomic electrons in a j n configuration, appropriate for palladium and platinum group compounds and rare earth and actinide materials. For the latter, f-electron systems, an isolated ion is a realistic approximation. Compact expressions are provided, together with tables of reduced matrix elements, for elastic and inelastic structure factors, and compared with the corresponding Russell-Saunders expressions. Inelastic scattering by two f-electrons, including non-equivalent states, is presented in detail. (author)

  16. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.

    Science.gov (United States)

    Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B

    2018-05-31

    Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

  17. Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

    Science.gov (United States)

    Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh

    2018-01-01

    A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.

  18. Communication: Multireference equation of motion coupled cluster: A transform and diagonalize approach to electronic structure

    Czech Academy of Sciences Publication Activity Database

    Nooijen, M.; Demel, Ondřej; Datta, D.; Kong, L.; Shamasundar, K. R.; Lotrich, V.; Huntington, L. M.; Neese, F.

    2014-01-01

    Roč. 140, č. 8 (2014), 081102 ISSN 0021-9606 R&D Projects: GA ČR GPP208/10/P041; GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : Electronic states * Electronic structure * Equations of motion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  19. Coupled electron-phonon transport from molecular dynamics with quantum baths

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Wang, J. S.

    2009-01-01

    Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi...

  20. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2015-11-01

    Full Text Available We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  1. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    Science.gov (United States)

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.

  2. High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poulkey, J.W.; Rovang, D.

    1995-01-01

    The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam

  3. Investigation of solvent dynamic effects on the electron self-exchange in two thianthrene couples with large inner reorganization energies.

    Science.gov (United States)

    Choto, P; Rasmussen, K; Grampp, G

    2015-02-07

    The large structural difference between thianthrene radical cations and their neutral parent molecules can possibly affect their electron self-exchange reactions. Before this can be investigated experimentally, it is necessary to first understand the influence of the solvent on such electron transfer reactions. To achieve this, the rate constants of the electron self-exchange reactions of the Th˙(+)/Th and MTh˙(+)/MTh (Th = thianthrene, MTh = 2,3,7,8-tetramethoxythianthrene) couples were investigated by means of ESR line broadening experiments in different solvents at 293 K. The diffusion corrected rate constants cover a range of 7.2 × 10(8)≤ket≤ 44 × 10(8) M(-1) s(-1) for Th˙(+)/Th and 2.0 × 10(8)≤ket≤ 11.6 × 10(8) M(-1) s(-1) for MTh˙(+)/MTh, respectively. The results were analysed within the framework of the Marcus Theory and the characteristic reorganization energy, λ, was determined. Both couples clearly show a solvent dynamic effect controlled by the longitudinal relaxation time τL of the solvents. However, the influence of the structural changes, in terms of λ, was smaller than expected at room temperature.

  4. Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2

    International Nuclear Information System (INIS)

    Urbina, Cristian.

    1977-01-01

    It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr

  5. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  6. Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen collisions in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s→2s,2p,3s,3p,3d and 2s→2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  7. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  8. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  9. Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state

    International Nuclear Information System (INIS)

    Fujimoto, Yukinobu; Miyake, Kazumasa

    2012-01-01

    It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.

  10. The dependence of the electronic coupling on energy gap and bridge conformation - Towards prediction of the distance dependence of electron transfer reactions

    International Nuclear Information System (INIS)

    Eng, Mattias P.; Albinsson, Bo

    2009-01-01

    The attenuation factor, β, for the distance dependence of electron exchange reactions is a sensitive function of the donor-bridge energy gap and bridge conformation. In this work the electronic coupling for electron and triplet excitation energy transfer has been investigated for five commonly used repeating bridge structures. The investigated bridge structures are OF (oligo fluorene), OP (oligo phenylene), OPE (oligo p-phenyleneethynylene), OPV (oligo phenylenevinylene), and OTP (oligo thiophene). Firstly, the impact of the donor-bridge energy gap was investigated by performing calculations with a variety of donors appended onto bridges that were kept in a planar conformation. This resulted in, to our knowledge, the first presented sets of bridge specific parameters to be inserted into the commonly used McConnell model. Secondly, since at experimental conditions large conformational flexibility is expected, a previously developed model that takes conformational disorder of the bridge into account has been applied to the investigated systems [M.P. Eng, T. Ljungdahl, J. Martensson, B. Albinsson, J. Phys. Chem. B 110 (2006) 6483]. This model is based on Boltzmann averaging and has been shown to describe the temperature dependence of the attenuation factor through OPE-bridges. Together, the parameters describing the donor-bridge energy gap dependence, for planar bridge structures, and the Boltzmann averaging procedure, describing the impact of rotational disorder, have the potential to a priori predict attenuation factors for electron and excitation energy transfer reactions through bridged donor-acceptor systems

  11. Primary processes of the electron-protic species coupling in pure aqueous phases: - femtosecond laser spectroscopy study; - quantum approach of the electron-water interaction

    International Nuclear Information System (INIS)

    Pommeret, Stanislas

    1991-01-01

    This thesis work deals with the coupling mechanisms between an electron, water molecules or protic species (hydronium ion, hydroxyl radical). Two complementary studies have been carry out in pure aqueous phases. The first one is concerned with the structural aspect of the hydrated electron which is studied via a semi-quantum approach Splitting Operator Method. The results indicates the importance of the second hydration shell in the localisation of an electron at 77 and 300 Kelvin. The second part of this work relates to the dynamic of the primary processes in light or heavy water at room temperature: the ion-molecule reaction, radical pair formation, geminate recombination of the hydrated electron with the hydronium ion and the hydroxyl radical. The dynamic of these reactions is studied by time resolved absorption spectroscopy from the near infrared to the near ultraviolet with a few tens femto-seconds temporal precision. The analysis of the primary processes takes into account the protic properties of water molecules. (author) [fr

  12. Doping-controlled Coherent Electron-Phonon Coupling in Vanadium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Appavoo, Kannatassen [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science; Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Wang, Bin [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Nag, Joyeeta [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Sfeir, Matthew Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Pantelides, Sokrates T. [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vanderbilt Univ., Nashville, TN (United States). Dept. of Electrical Engineering and Computer Science; Haglund, Richard F. [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science and Dept. of Physics and Astronomy

    2015-05-10

    Broadband femtosecond transient spectroscopy and density functional calculations reveal that substitutional tungsten doping of a VO2 film changes the coherent phonon response compared to the undoped film due to altered electronic and structural dynamics.

  13. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    Science.gov (United States)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  14. One-electron transfer reactions of the couple NAD./NADH

    International Nuclear Information System (INIS)

    Grodkowski, J.; Neta, P.; Carlson, B.W.; Miller, L.

    1983-01-01

    One-electron transfer reactions involving nicotinamide-adenine dinucleotide in its oxidized and reducd forms (NAD./NADH) were studied by pulse radiolysis in aqueous solutions. One-electron oxidation of NADH by various phenoxyl radicals and phenothiazine cation radicals was found to take place with rate constants in the range of 10 5 to 10 8 M -1 s -1 , depending on the redox potential of the oxidizing species. In all cases, NAD. is formed quantitatively with no indication for the existence of the protonated form (NADH + .). The spectrum of NAD., as well as the rates of oxidation of NADH by phenoxyl and by (chlorpromazine) + . were independent of pH between pH 4.5 and 13.5. Reaction of deuterated NADH indicated only a small kinetic isotope effect. All these findings point to an electron transfer mechanism. On the other hand, attempts to observe the reverse electron transfer, i.e., one-electron reduction of NAD. to NADH by radicals such as semiquinones, showed that k was less than 10 4 to 10 5 M -1 s -1 , so that it was unobservable. Consequently, it was not possible to achieve equilibrium conditions which would have permitted the direct measurement of the redox potential for NAD./NADH. One-electron reduction of NAD. appears to be an unlikely process. 1 table

  15. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers

    KAUST Repository

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function

  16. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  17. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.

    1993-01-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures

  18. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  19. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.

    1993-06-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.

  20. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria

    Science.gov (United States)

    Alexandre, Adolfo; Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H+ are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H+/2e- ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H+/2e- ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H+/2e- ratio for site 3 was close to 4. The H+/ATP ratio (number of vectorial H+ ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H+ ejection and ATP hydrolysis were measured in the presence of K+ + valinomycin. The H+/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H+ equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H+ equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H+ is used to bring about the energy-requiring electrogenic expulsion of ATP4- in exchange for extramitochondrial ADP3-, via the H+/H2PO4- symporter. PMID:31621

  1. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  2. Ferromagnetic coupling strength and electron-doping effects in double perovskites

    International Nuclear Information System (INIS)

    Fontcuberta, J.; Rubi, D.; Frontera, C.; Garcia-Munoz, J.L.; Wojcik, M.; Jedryka, E.; Nadolski, S.; Izquierdo, M.; Avila, J.; Asensio, M.C.

    2005-01-01

    We review experiments and results on ferromagnetic and metallic A 2 FeMoO 6 double perovskites that made it possible to obtain a detailed understanding of the nature of the ferromagnetic coupling and paved the way for further enhancement of the Curie temperature. We show that appropriate chemical substitutions, combined with detailed structural, magnetotransport and spectroscopic data allow us to map quite a complete picture of the properties of these oxides

  3. Quasi-spin method in the case of j-j coupling in a shell of equivalent atomic electrons

    International Nuclear Information System (INIS)

    Savichyus, E.G.; Kanyauskas, Yu.M.; Rudzikas, Z.B.

    1979-01-01

    Mathematical apparatus of the theory of multielectronic atoms and ions in the case of j-j coupling in a shell of equivalent electrons is built. Quasi-spin method is used. The scheme of the investigation is the following: 1. Tensorial properties of the operators in quasi-spin space are considered. 2. Matrix elements of these operators are built and with the help of Wigner-Eckart theorem the dependence of the matrix elements upon the projection, including the quasi-spin projection, of the quantity of electrons in jj-subshell, is determined. 3. Subgenealogical coefficients (genealogical coefficients presented in quasi-spin space) are determined and some of their properties are investigated. The tables of subgenealogical coefficients for j=5/2, 7/2 are presented

  4. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  5. Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Sauer, Stephan P. A.; Schreiber, Marko

    2010-01-01

    Vertical electronic excitation energies and one-electron properties of 28 medium-sized molecules from a previously proposed benchmark set are revisited using the augmented correlation-consistent triple-zeta aug-cc-pVTZ basis set in CC2, CCSDR(3), and CC3 calculations. The results are compared...... to those obtained previously with the smaller TZVP basis set. For each of the three coupled cluster methods, a correlation coefficient greater than 0.994 is found between the vertical excitation energies computed with the two basis sets. The deviations of the CC2 and CCSDR(3) results from the CC3 reference...... values are very similar for both basis sets, thus confirming previous conclusions on the intrinsic accuracy of CC2 and CCSDR(3). This similarity justifies the use of CC2- or CCSDR(3)-based corrections to account for basis set incompleteness in CC3 studies of vertical excitation energies. For oscillator...

  6. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field

    International Nuclear Information System (INIS)

    Peng Juan; Li Shu-Shen

    2012-01-01

    We study the electronic spectrum of coupled quantum dots (QDs) arranged as a graphene hexagonal lattice in the presence of an external perpendicular magnetic field. In our tight-binding model, the effect of the magnetic field is included in both the Peierls phase of the Hamiltonian and the tight-binding basis Wannier function. The energy of the system is analyzed when the magnetic flux through the lattice unit cell is a rational fraction of the quantum flux. The calculated spectrum has recursive properties, similar to those of the classical Hofstadter butterfly. However, unlike the ideal Hofstadter butterfly structure, our result is asymmetric since the impacts of the specific material and the magnetic field on the wavefunctions are included, making the results more realistic. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  8. Impurity effects in two-electron coupled quantum dots: entanglement modulation

    International Nuclear Information System (INIS)

    Acosta Coden, Diego S; Romero, Rodolfo H; Ferrón, Alejandro; Gomez, Sergio S

    2013-01-01

    We present a detailed analysis of the electronic and optical properties of two-electron quantum dots with a two-dimensional Gaussian confinement potential. We study the effects of Coulomb impurities and the possibility of manipulating the entanglement of the electrons by controlling the confinement potential parameters. The degree of entanglement becomes highly modulated by both the location and charge screening of the impurity atom, resulting in two regimes: one of low entanglement and the other of high entanglement, with both of them mainly determined by the magnitude of the charge. It is shown that the magnitude of the oscillator strength of the system could provide an indication of the presence and characteristics of impurities and, therefore, the degree of entanglement. (paper)

  9. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  10. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    Science.gov (United States)

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  11. Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems

    Science.gov (United States)

    Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2007-04-01

    One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.

  12. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    Science.gov (United States)

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  13. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    Science.gov (United States)

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  14. A green-LED driven source of hydrated electrons characterized from microseconds to hours and applied to cross couplings.

    Science.gov (United States)

    Naumann, Robert; Goez, Martin

    2018-03-12

    We present a novel photoredox catalytic system that delivers synthetically useable concentrations of hydrated electrons when illuminated with a green light-emitting diode (LED). The catalyst is a ruthenium complex protected by an anionic micelle, and the urate dianion serves as sacrificial donor confined to the aqueous bulk. Through its chemical properties, that donor not only suppresses charge recombination that would limit the electron yield but also enables this system to perform cross couplings via hydrated electrons, for which we report the first examples. We have investigated the kinetics of all the steps involving the electron and its direct precursor in a comparative study by using laser flash photolysis and by monitoring product formation during LED photolysis. Despite the differences in timescales, each approach on its own already gives a complete picture of the reaction over a temporal range ten orders of magnitude wide. Noticeable discrepancies between the kinetic parameters obtained with the two complementary techniques can be rationalized with the slow secondary chemistry of the system; they reveal that the product-based method provides a more accurate description because it responds also to the changes of the system composition during a synthesis; hence, they demonstrate that in complex systems the timescale of the experimental observation should be matched to that of the actual application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Giant Andreev backscattering and reentrant resistance in a 2- dimensional electron gas coupled to superconductors

    NARCIS (Netherlands)

    den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We have investigated the superconducting-phase modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered 2-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev back scattering of holes through

  16. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  17. A low-power ASK demodulator for inductively coupled implantable electronics

    DEFF Research Database (Denmark)

    Gudnason, Gunnar

    2000-01-01

    An amplitude shift keying (ASK) demodulator is presented which is suitable for implantable electronic devices that are powered through an inductive link. The demodulator has been tested with carrier frequencies in the range 1-15 MHz, covering most commonly used frequencies. Data rates up to several...

  18. Sign of the electron exchange coupling in random radical encounter pairs in solution

    International Nuclear Information System (INIS)

    Thurnauer, M.C.; Chiu, T.M.; Trifunac, A.D.

    1985-01-01

    An important parameter in the study of reacting radical systems is the electron exchange interaction, J. The properties of interest are the sign and magnitude of J, and its functional dependence on distance between radicals. One source of information about J is from understanding the Chemically Induced Dynamic Electron Polarization (CIDEP) which is observed in the EPR spectra of reactive radical systems. For radicals reacting in solution to form new covalent bonds, it has generally been found that J O. It is suggested that F-pairs react at a separation greater than that at which spin correlated (geminate) pairs of the same radicals are formed, so that the intervening solvent molecules become involved in the exchange interaction giving rise to J>O via some sort of superexchange process. This is an interesting proposition since superexchange via solvent molecules may play a role in rates of long-distance electron transfer reactions and in the electron transfer reactions of photosynthesis. However, the model suggested runs contrary to all F-air radicals are produced. In order to clarify this important point, the authors present here a definitive study in which we examine several systems of radgenerated independently (exclusive F-pairs) by pulsed laser photolysis and pulsed radiolicals generatedysis in aqueous, alcoholic and hydrocarbon solvents

  19. Ruthenium and iron complexes with benzotriazole and benzimidazole derivatives as simple models for proton-coupled electron transfer systems

    Directory of Open Access Journals (Sweden)

    Rocha Reginaldo C.

    2001-01-01

    Full Text Available Iron and ruthenium complexes of the type [M-LH]n (where M = RuII,III(NH35(2+,3+, RuII,III(edta2-,- [edta = ethylenedinitrilotetraacetate], or FeII,III(CN5(3-,2- and LH = benzotriazole or benzimidazole were prepared and characterized in aqueous solutions by means of electrochemical and spectroelectrochemical methods. Special emphasis was given to the pH-dependent redox processes, exhibited by all the investigated complexes. From their related Pourbaix diagrams, which displayed a typically Nernstian behavior, the pKa and formal reduction potential values were extracted. In addition, these E1/2 versus pH curves were also used to illustrate the partitioning relationship concerning the redox and acid-base species, and their interconversion equilibria. The active area in which the dependence of the M III/M II couple on the pH takes place, as delimited by pKaIII and pKaII, was taken into account in order to evaluate the usefulness of such simple complexes as models for proton-coupled electron transfer (PCET. The results were interpreted in terms of the acceptor/donor electronic character of the ligands and sigma,pi-metal-ligand interactions in both redox states of the metal ion.

  20. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  1. Stationary solution of the Fokker-Planck equation for linearly coupled motion in an electron storage ring

    International Nuclear Information System (INIS)

    Chao, A.W.; Lee, M.J.

    1975-09-01

    Effects upon longitudinal bunch shape in a storage ring due to linear and nonlinear potential can be calculated by finding the stationary solution to the Fokker-Planck equation for the particle distribution. Effects upon transverse bunch shape of a stored electron beam due to photon emissions and damping can be calculated by this method. It has been found that this method can also be used for a case in which the transverse modes of oscillation are coupled to the energy deviation δ. Examples of lattice elements which produce linear coupling between these oscillations are skew quadrupole magnets and solenoid magnets. For the linearly coupled case the stationary solution has been found to be given by exp (ΣΣA/sub ij/ x/sub i/x/sub j/) with x/sub i/ the canonical variables (x,p/sub x/, y, p/sub y/, δ, p/sub δ/) and A /sub ij/ some constants. The solution for the values of A /sub ij/'s will be described in this report. It will be shown that this solution can be expressed in a compact form. For simple cases, this form of solution leads directly to analytic expressions for the values of A /sub ij/'s and the bunch shape can be calculated by integrating the distribution function over some of the coordinates; for the more complex cases, it can be conveniently adapted as an algorithm for numerical evaluation. 16 refs

  2. Effect of Noise on the Decoherence of a Central Electron Spin Coupled to an Antiferromagnetic Spin Bath

    Directory of Open Access Journals (Sweden)

    G. C. Fouokeng

    2014-01-01

    Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.

  3. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    Science.gov (United States)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  4. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    Science.gov (United States)

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  5. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    Science.gov (United States)

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and

  6. Long distance electron transmission couples sulphur, iron, calcium and oxygen cycling in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    sulfide oxidation leads to electric field formation, sulfide depletion and acidification of the upper centimeters of the sediment. This promoted ion migration and dissolution of carbonates and iron sulfides. Sulfide released from iron sulfides was the major e-donor in the system. Ferrous iron released...... from iron sulfides was to a large extend deposited in the oxic zone as iron oxides and Ca2+ eventually precipitates at the surface as due to high pH caused by cathodic oxygen reduction. The result show how long distance electron transmission allows oxygen to drive the allocation of important minerals...... geochemical alterations in the upper centimetres of the anoxic sediment: Sulphides were oxidized to sulphate in anoxic sediment layers. Electrons from this half-reaction were passed to the oxic layers cm above. In this way the domain of oxygen was extended far beyond it’s physically presence. Bioelectrical...

  7. A simplified spherical harmonic method for coupled electron-photon transport calculations

    International Nuclear Information System (INIS)

    Josef, J.A.

    1996-12-01

    In this thesis we have developed a simplified spherical harmonic method (SP N method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP N method has never before been applied to charged-particle transport. We have performed a first time Fourier analysis of the source iteration scheme and the P 1 diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP N equations. Our theoretical analyses indicate that the source iteration and P 1 DSA schemes are as effective for the 2-D SP N equations as for the 1-D S N equations. Previous analyses have indicated that the P 1 DSA scheme is unstable (with sufficiently forward-peaked scattering and sufficiently small absorption) for the 2-D S N equations, yet is very effective for the 1-D S N equations. In addition, we have applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well for the 2-D SP N equations as for the 1-D S N equations. It has previously been shown for 1-D S N calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. We have investigated the applicability of the SP N approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems. In the space shielding study, the SP N method produced solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and often orders of magnitude faster than Monte Carlo. We have successfully modeled quasi-void problems and have obtained excellent agreement with Monte Carlo. We have observed that the SP N method appears to be too diffusive an approximation for beam problems. This result, however, is in agreement with theoretical expectations

  8. Coupling of heterogeneous and homogeneous electron transfer: Transition from stability to chaotic behavior

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Fanelli, N.; Gál, Miroslav; Kolivoška, Viliam; Valášek, M.

    2012-01-01

    Roč. 2012, - (2012), s. 72 ISSN 0872-1904. [Iberic Meeting of Electrochemistry /14./ and Meeting of the Portuguese Electrochemical Society /17./. 11.04.2012-14.04.2012, Madeira Island] R&D Projects: GA ČR GA203/09/0705; GA AV ČR IAA400400802 Institutional research plan: CEZ:AV0Z40400503 Keywords : electron transfer * electrochemistry Subject RIV: CG - Electrochemistry

  9. Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Mas Sánchez, Avelino, E-mail: avelino.massanchez@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Bertizzolo, Robert; Chavan, René [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Gagliardi, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Goodman, Timothy; Landis, Jean-Daniel [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Saibene, Gabriella [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Santos Silva, Phillip [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Vaccaro, Alessandro [Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany)

    2016-11-01

    Highlights: • A double-metallic-seal waveguide flange coupling, capable of withstanding the expected load specification, has been designed. • The numerical simulations have shown that bending is the dominant load configuration for the current coupling concept. • The numerical studies indicate that an excessive seal decompression will not occur due to the expected load configurations. • Experimental tests show a good agreement with the results obtained in the numerical analyses. - Abstract: The four electron cyclotron (EC) upper port antennas (or “upper launchers” —UL) will be used to drive current locally inside magnetic islands located at the q = 2 (or smaller) rational surfaces in order to stabilize neoclassical tearing modes (NTMs), as well as heat inside of ρ of about 0.4. Each antenna consists of eight beam lines that are designed for the transmission of 1.5 MW of mm-wave power at 170 GHz. The First Confinement System (FCS) is formed by the ex-vessel mm-wave waveguide components, for which SIC-1 classification requirements apply. The beam lines in the FCS comprise a Z shaped set of straight corrugated waveguides with a nominal diameter of 50 mm connected by miter bends. This system is subjected to imposed displacements coming mainly from the thermal expansion of the vacuum vessel, seismic events and/or plasma disruption events. In absence of suitable SIC-1 waveguide bellows, the FCS waveguides must provide the necessary mechanical functional compliance. This has required the development of a dedicated, flange type coupling system with double metallic seals, capable of resisting the generated external loads while maintaining vacuum tightness and alignment. This paper presents the results of the design, analysis and pre-qualification experimental work done on the waveguides and the integrated SIC-1 compliant coupling system.

  10. Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher

    International Nuclear Information System (INIS)

    Mas Sánchez, Avelino; Bertizzolo, Robert; Chavan, René; Gagliardi, Mario; Goodman, Timothy; Landis, Jean-Daniel; Saibene, Gabriella; Santos Silva, Phillip; Vaccaro, Alessandro

    2016-01-01

    Highlights: • A double-metallic-seal waveguide flange coupling, capable of withstanding the expected load specification, has been designed. • The numerical simulations have shown that bending is the dominant load configuration for the current coupling concept. • The numerical studies indicate that an excessive seal decompression will not occur due to the expected load configurations. • Experimental tests show a good agreement with the results obtained in the numerical analyses. - Abstract: The four electron cyclotron (EC) upper port antennas (or “upper launchers” —UL) will be used to drive current locally inside magnetic islands located at the q = 2 (or smaller) rational surfaces in order to stabilize neoclassical tearing modes (NTMs), as well as heat inside of ρ of about 0.4. Each antenna consists of eight beam lines that are designed for the transmission of 1.5 MW of mm-wave power at 170 GHz. The First Confinement System (FCS) is formed by the ex-vessel mm-wave waveguide components, for which SIC-1 classification requirements apply. The beam lines in the FCS comprise a Z shaped set of straight corrugated waveguides with a nominal diameter of 50 mm connected by miter bends. This system is subjected to imposed displacements coming mainly from the thermal expansion of the vacuum vessel, seismic events and/or plasma disruption events. In absence of suitable SIC-1 waveguide bellows, the FCS waveguides must provide the necessary mechanical functional compliance. This has required the development of a dedicated, flange type coupling system with double metallic seals, capable of resisting the generated external loads while maintaining vacuum tightness and alignment. This paper presents the results of the design, analysis and pre-qualification experimental work done on the waveguides and the integrated SIC-1 compliant coupling system.

  11. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  12. Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents

    Science.gov (United States)

    Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.

    2018-03-01

    The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.

  13. Numerical simulation of electronic properties of coupled quantum dots on wetting layers

    International Nuclear Information System (INIS)

    Betcke, M M; Voss, H

    2008-01-01

    Self-assembled quantum dots are grown on wetting layers and frequently in an array-like assembly of many similar but not exactly equal dots. Nevertheless, most simulations disregard these structural conditions and restrict themselves to simulating a pure single quantum dot. For reasons of numerical efficiency we advocate the effective one-band Hamiltonian with energy- and position-dependent effective mass approximation and a finite height hard-wall 3D confinement potential for computation of the energy levels of the electrons in the conduction band. Within this model we investigate the geometrical effects mentioned above on the electronic structure of a pyramidal InAs quantum dot embedded in a GaAs matrix. We find that the presence of a wetting layer may affect the electronic structure noticeably. Furthermore, we establish that, in spite of the large bandgap of the InAs/GaAs heterostructure, if the dots in a vertically aligned array are sufficiently close stacked there is considerable interaction between their eigenfunctions. Moreover, the eigenfunctions of such an array are quite sensitive to certain structural perturbations

  14. Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

    Directory of Open Access Journals (Sweden)

    Dazhang Huang

    2016-10-01

    Full Text Available The microbunching instability developed during the beam compression process in the linear accelerator (LINAC of a free-electron laser (FEL facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  15. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  16. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

    Science.gov (United States)

    Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan

    2018-01-01

    MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806

  17. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo [William R. Wiley Environmental; Kowalski, Karol [William R. Wiley Environmental

    2017-08-11

    The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.

  18. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  19. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  20. General concepts of the NG-3 goniometer design and coupled electronic control system

    International Nuclear Information System (INIS)

    Elizarov, O.I.; Zhukov, G.P.; Ondrejchka, K.; Salamatin, I.M.; Khrykin, A.S.; Erzhabek, Ya.; Shimane, Ch.; Shul'ts, V.

    1984-01-01

    The system of adjustment and control by goniometer used in spectrometer for investigating neutron diffractography is briefly described. The two-stage system of angle adjustment is accepted by which the goniometer circle position is determined by the 15-bit word. It the first stage the angle is adjusted by pitches, the accuracy of which is ensured by amplying more gearing (8 bits). At the second stage the angle is adjusted in the limits of a pitch by the system of micrometer screw up to hundredth fraction of the pitch (7 bits). From the viewpoint of control the goniometer can be considered as a totality of circle rotation control systems. Each system has its own address and storage for specifying the ordinal number of a pitch and location of the microscuew. The block-diagram of the control system, the block-diagram of the goniometer coupling with controlling microprocessor and those of control program are presented

  1. Electron transmission through coupled quantum dots in an Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Joe, Y. S.; Kim, Y. D.

    2006-01-01

    Stimulated by recent intriguing experiments with a quantum dot in an Aharonov-Bohm (AB) ring, we investigate novel resonant phenomena by studying the total transmission probability of nanoscale AB ring with embedded double quantum dots in one arm and a magnetic flux passing through the rings' center. In this system, we show an overlapping and merging of Fano resonances as the interaction parameter between the dots changes. In the strong overlapping region of Fano resonances, the transmission zeros leave the real-energy axis and move away in opposite directions in the complex-energy plane. The behavior of the Fano zero-pole resonances in the complex-energy plane as a function of the external magnetic flux is also investigated for various coupling integrals between the quantum dots in the ring.

  2. Measurement of excitation, ionization, and electron temperatures and positive ion concentrations in a 144 MHz inductively coupled radiofrequency plasma

    International Nuclear Information System (INIS)

    Walters, P.E.; Chester, T.L.; Winefordner, J.D.

    1977-01-01

    Diagnostic measurements of 144 MHz radiofrequency inductively coupled plasmas at pressures between 0.5 and 14 Torr have been made. Other variables studied included the gas type (Ar or Ne) and material in plasma (Ti or Tl). Parameters measured included excitation temperatures via the atomic Boltzmann plot and the two-line method, ionization electric probes. Excitation temperatures increased as the pressure of Ar or Ne plasmas decreased and reached a maximum of approx.9000 degreeK in the latter case and approx.6700 degreeK in the former case; Tl in the Ar plasma resulted in in a smaller rate of decrease of excitation temperature with increase of pressure of Ar. The ionization temperatures were lower than the excitation temperatures and were similar for both the Ar and Ne plasmas. Electron temperatures were about 10 times higher than the excitation temperatures indicating non-LTE behavior. Again, the electron temperatures indicating in Ne were considerably higher than in Ar. With the presence of metals, the electron temperatures with a metal in the Ar plasma were higher than in the absence. Positive ion concentrations were also measured for the various plasmas and were found to be similar (approx.10 18 m -3 ) in both the Ar and Ne plasmas. The presence of metals caused significant increase in the positive ion concentrations. From the results obtained, the optimum Ar pressure for Tl electrodeless discharge lamps operated at 144 MHz would be between 2 and 4 Torr

  3. Analysis of neonicotinoids by gas chromatography coupled to nuclide 63Ni - Electron Capture Detector - GC/ECD

    International Nuclear Information System (INIS)

    Amaral, Priscila O.; Leao, Claudio; Redigolo, Marcelo M.; Crepaldi, Caike; Bustillos, Oscar V.

    2015-01-01

    Recently, several reports have been published discussing reduction in bee population which polymerizes cultures around the world this phenomenon is known as Colony Collapse Disorder (CCD). The phenomenon describes the lack of worker honeybees in the colony despite having pups and food. The causes of this problem are unknown but there are studies that claim that reduction of population of bees is linked to poisoning through insecticides specifically neonicotinoids. Among this type of pesticide are imidacloprid (C 9 H 10 ClN 5 O 2 ), clothianidin (C 6 H 8 ClN 5 O 2 S) and thiamethoxam (C 8 H 10 ClN 5 O 3 S). This paper presents the analysis of neonicotinoids - clothianidin, imidacloprid and thiamethoxam - by the technique of gas chromatography coupled to nuclide 63 Ni electron capture detector (GC/ECD). The electron capture detector (ECD) is a gas chromatography detector that has been used for the detection of organic halogens, nitriles, nitrates and organometallic compounds. The ECD detector ionizes the analytes by the beta particles from the nuclide sources 63 Ni within carrier gas N 2 . The electrons produced in this process are collected and create a current that are amplified and generates a chromatographic peak. Methodology and details of the analysis are present in this work. (author)

  4. Analysis of neonicotinoids by gas chromatography coupled to nuclide {sup 63}Ni - Electron Capture Detector - GC/ECD

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Priscila O.; Leao, Claudio; Redigolo, Marcelo M.; Crepaldi, Caike; Bustillos, Oscar V., E-mail: priscilaoamaral@gmail.com, E-mail: claudio.leao@usp.br, E-mail: marceloredigolo@gmail.com, E-mail: caike1995@gmail.com, E-mail: ovega@ipen.bremails [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Recently, several reports have been published discussing reduction in bee population which polymerizes cultures around the world this phenomenon is known as Colony Collapse Disorder (CCD). The phenomenon describes the lack of worker honeybees in the colony despite having pups and food. The causes of this problem are unknown but there are studies that claim that reduction of population of bees is linked to poisoning through insecticides specifically neonicotinoids. Among this type of pesticide are imidacloprid (C{sub 9}H{sub 10}ClN{sub 5}O{sub 2}), clothianidin (C{sub 6}H{sub 8}ClN{sub 5}O{sub 2}S) and thiamethoxam (C{sub 8}H{sub 10}ClN{sub 5}O{sub 3}S). This paper presents the analysis of neonicotinoids - clothianidin, imidacloprid and thiamethoxam - by the technique of gas chromatography coupled to nuclide {sup 63}Ni electron capture detector (GC/ECD). The electron capture detector (ECD) is a gas chromatography detector that has been used for the detection of organic halogens, nitriles, nitrates and organometallic compounds. The ECD detector ionizes the analytes by the beta particles from the nuclide sources {sup 63}Ni within carrier gas N{sub 2}. The electrons produced in this process are collected and create a current that are amplified and generates a chromatographic peak. Methodology and details of the analysis are present in this work. (author)

  5. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-07

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.

  6. Electron-phonon coupling and superconductivity in the (4/3)-monolayer of Pb on Si(111): Role of spin-orbit interaction

    Science.gov (United States)

    Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Echenique, P. M.; Chulkov, E. V.

    2018-05-01

    The effect of spin-orbit coupling on the electron-phonon interaction in a (4/3)-monolayer of Pb on Si(111) is investigated within the density-functional theory and linear-response approach in the mixed-basis pseudopotential representation. We show that the spin-orbit interaction produces a large weakening of the electron-phonon coupling strength, which appears to be strongly overestimated in the scalar relativistic calculations. The effect of spin-orbit interaction is largely determined by the induced modification of Pb electronic bands and a stiffening of the low-energy part of phonon spectrum, which favor a weakening of the electron-phonon coupling strength. The state-dependent strength of the electron-phonon interaction in occupied Pb electronic bands varies depending on binding energy rather than electronic momentum. It is markedly larger than the value averaged over electron momentum because substrate electronic bands make a small contribution to the phonon-mediated scattering and agrees well with the experimental data.

  7. X-ray acquisition and electronic digital readout by charge coupled devices

    International Nuclear Information System (INIS)

    Cavailler, C.; Launspach, J.; Mens, A.; Sauneuf, R.

    1985-09-01

    X-ray imaging adapted to laser-matter interaction experiments consists in recording plasma images from its X-ray emission; these phenomena have between 100 ps and some nanoseconds duration. Investigation of the laser-driven plasma may require the formation and the detection of two-dimensional images formed by X-ray microscopes or spectrometers in the soft X-ray range (from about 50 eV to some keV). To reach that purpose, we have developed and tested two opto-electronic chains. The first one is built around a small image converter tube with a soft X-ray photocathode and P20 phosphor screen deposited on a fiber optic plate; the electronic image appearing on the screen is read by a C.C.D. working in the visible spectral range. The second one, designed to work below 100eV is realized with a very thin phosphor screen deposited on the fiber optic input of a visible microchannel image intensifier; the output image is then read by a C.C.D. in the same manner than previously

  8. Ultra-fast pump-probe determination of electron-phonon coupling in cuprate superconductors

    Science.gov (United States)

    Mihailovic, Dragan

    2010-03-01

    Fresh femtosecond spectroscopy experiments show the electron-phonon interaction strength λ to be 0.7 and 1.4 for YBCO and LSCO respectively and not around 0.2 as previously reported [1]. The revised estimates arise primarily from improved time-resolution, and also partly from improved modeling. Comparison with classical superconductors and pnictides shows non-monotonic correlation of λ with Tc. Systematic new measurements of the condensate vaporization energy (Uv) in cuprates [2] and pnictides reveals a power-law dependence on Tc with exponent 2. However, Uc is 16-18 times greater than the BCS condensation energy Uc, implying that a significant heat capacity of the ``bosonic glue.'' In contrast, charge-density wave systems with electronically driven ordering transitions have Uv˜Uc. The data suggest BCS and Eliashberg-based models to be inappropriate for describing the physics of high-temperature superconductors, and point towards polaron models which consider strong or intermediate λ.[4pt] [1] C.Gadermeier et al., arXiv:0902.1636[0pt] [2] P.Kusar et al., Phys. Rev. Lett. 101, 227001 (2008)

  9. Electronic and optical properties of ZrB{sub 12} and YB{sub 6}. Discussion on electron-phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Teyssier, J.; Kuzmenko, A.; Marel, D. van der; Lortz, R.; Junod, A. [Departement de Physique de la Matiere Condensee, Universite de Geneve, Quai Ernest-Ansermet 24, 1211 Geneve 4 (Switzerland); Filippov, V.; Shitsevalova, N. [Institute for Problems of Materials Science NANU, Kiev (Ukraine)

    2006-09-15

    We report the optical properties of high-quality single crystals of low temperature superconductors zirconiumdodecaboride ZrB{sub 12} (T{sub c}=5.95 K) and yttrium hexaboride YB{sub 6} (T{sub c}=7.15 K) in the range 6 meV-4.6 eV at room temperature. The experimental optical conductivity was extracted from the analysis of the reflectivity in the infrared range and ellipsometry measurement of the dielectric function in the visible range. The electronic band structure of these compounds was calculated by the self-consistent full-potential LMTO method and used to compute the interband part of the optical conductivity and the plasma frequency {omega}{sub p}. A good agreement was observed between the interband part of the experimental optical conductivities and the band structure calculations. Different methods combining optical spectroscopy, resistivity, specific heat measurements and results of band structure calculations are used to determine the electron-phonon coupling constant. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  11. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size

  12. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-01

    The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.

  13. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    Science.gov (United States)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  14. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    International Nuclear Information System (INIS)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S; Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M

    2010-01-01

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy 0 DBS - Li + (PPy: polypyrrole; DBS - : dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  15. Proton-coupled electron transfer promotes the reduction of ferrylmyoglobin by uric acid under physiological conditions

    DEFF Research Database (Denmark)

    de Zawadzki, Andressa; Cardoso, Daniel R.; Skibsted, Leif Horsfelt

    2017-01-01

    The hypervalent muscle pigment ferrylmyoglobin, MbFe(IV)]O, is not reduced by urate monoanions at physiological conditions despite a strong driving force of around 30 kJ mol1 while for low pH, uric acid was found to reduce protonated ferrylmyoglobin, MbFe(IV)]O,H+, efficiently in a bimolecular...... reaction with k1 ¼ 1.1 0.1 103 L mol1 s1, DH‡ ¼ 66.1 0.1 kJ mol1 and DS‡ ¼ 35.2 0.2 J mol1 K1. For intermediate pH, like for anaerobic muscles and for meat, proton-oupled electron transfer occurs in a transition state, {MbFe(IV)]O/H+/urate}‡, which is concluded to be formed from uric acid and Mb...... in uric acid concentration may serve as an inherent protection against radical formation by ferrylmyoglobin...

  16. Use of the neighboring orbital model for analysis of electronic coupling in Class III intervalence compounds

    International Nuclear Information System (INIS)

    Nelsen, Stephen F.; Weaver, Michael N.; Luo Yun; Lockard, Jenny V.; Zink, Jeffrey I.

    2006-01-01

    Symmetrical charge-delocalized intervalence radical ions should not be described by the traditional two-state model that has been so successful for their localized counterparts. If they lack direct overlap between their charge-bearing units (M), their diabatic orbitals have an equal energy pair of symmetrized M-centered combination orbitals that are symmetric (S) or antisymmetric (A) with respect to a symmetry element at the center of the molecule. The M combination orbitals will mix separately with bridge orbitals of the same symmetry. We call the simplest useful model for this situation the neighboring orbital model, which uses the S and A bridge orbitals of high overlap that lie closest in energy to the M orbital pair, resulting in two two-state models that have a common energy for one pair. This model is developed quantitatively, and examples having 1, 3, 5, and 7 electrons in the neighboring orbitals are illustrated

  17. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  18. Nicotinic Receptor Transduction Zone: Invariant Arginine Couples to Multiple Electron-Rich Residues

    Science.gov (United States)

    Mukhtasimova, Nuriya; Sine, Steven M.

    2013-01-01

    Summary Gating of the muscle-type acetylcholine receptor (AChR) channel depends on communication between the ACh-binding site and the remote ion channel. A key region for this communication is located within the structural transition zone between the ligand-binding and pore domains. Here, stemming from β-strand 10 of the binding domain, the invariant αArg209 lodges within the hydrophobic interior of the subunit and is essential for rapid and efficient channel gating. Previous charge-reversal experiments showed that the contribution of αArg209 to channel gating depends strongly on αGlu45, also within this region. Here we determine whether the contribution of αArg209 to channel gating depends on additional anionic or electron-rich residues in this region. Also, to reconcile diverging findings in the literature, we compare the dependence of αArg209 on αGlu45 in AChRs from different species, and compare the full agonist ACh with the weak agonist choline. Our findings reveal that the contribution of αArg209 to channel gating depends on additional nearby electron-rich residues, consistent with both electrostatic and steric contributions. Furthermore, αArg209 and αGlu45 show a strong interdependence in both human and mouse AChRs, whereas the functional consequences of the mutation αE45R depend on the agonist. The emerging picture shows a multifaceted network of interdependent residues that are required for communication between the ligand-binding and pore domains. PMID:23442857

  19. Nicotinic receptor transduction zone: invariant arginine couples to multiple electron-rich residues.

    Science.gov (United States)

    Mukhtasimova, Nuriya; Sine, Steven M

    2013-01-22

    Gating of the muscle-type acetylcholine receptor (AChR) channel depends on communication between the ACh-binding site and the remote ion channel. A key region for this communication is located within the structural transition zone between the ligand-binding and pore domains. Here, stemming from β-strand 10 of the binding domain, the invariant αArg209 lodges within the hydrophobic interior of the subunit and is essential for rapid and efficient channel gating. Previous charge-reversal experiments showed that the contribution of αArg209 to channel gating depends strongly on αGlu45, also within this region. Here we determine whether the contribution of αArg209 to channel gating depends on additional anionic or electron-rich residues in this region. Also, to reconcile diverging findings in the literature, we compare the dependence of αArg209 on αGlu45 in AChRs from different species, and compare the full agonist ACh with the weak agonist choline. Our findings reveal that the contribution of αArg209 to channel gating depends on additional nearby electron-rich residues, consistent with both electrostatic and steric contributions. Furthermore, αArg209 and αGlu45 show a strong interdependence in both human and mouse AChRs, whereas the functional consequences of the mutation αE45R depend on the agonist. The emerging picture shows a multifaceted network of interdependent residues that are required for communication between the ligand-binding and pore domains. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  1. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  2. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites

    Science.gov (United States)

    Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie

    Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.

  3. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    Science.gov (United States)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  4. Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric-enzymatic reaction coupling process

    Science.gov (United States)

    Zhao, Tianming; Fu, Yongming; He, Haoxuan; Dong, Chuanyi; Zhang, Linlin; Zeng, Hui; Xing, Lili; Xue, Xinyu

    2018-02-01

    A new self-powered wearable gustation electronic skin for mimicking taste buds has been realized based on enzyme-modified/ZnO nanowire arrays on patterned-electrode flexible substrate. The e-skin can actively taste beverages or fruits without any external electric power. Through the piezoelectric-enzymatic reaction coupling effect, the nanowires can harvest the mechanical energy of body movement and output piezoelectric signal. The piezoelectric output is significantly dependent on the concentration of target analyte. The response for detecting 2 × 10-2 M ascorbic acid (ascorbate acid oxidase@ZnO) is up to 171.747, and the selectivity is high. The response for detecting 50% alcohol (alcohol oxidase@ZnO) is up to 45.867. Our results provide a new research direction for the development of multifunctional e-skin and expand the study scope for self-powered bionic systems.

  5. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  6. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  7. Seismo-Ionospheric Coupling as Intensified EIA Observed by Satellite Electron Density and GPS-TEC Data

    Science.gov (United States)

    Ryu, K.; Jangsoo, C.; Kim, S. G.; Jeong, K. S.; Parrot, M.; Pulinets, S. A.; Oyama, K. I.

    2014-12-01

    Examples of intensified EIA features temporally and spatially related to large earthquakes observed by satellites and GPS-TEC are introduced. The precursory, concurrent, and ex-post enhancements of EIA represented by the equatorial electron density, which are thought to be related to the M8.7 Northern Sumatra earthquake of March 2005, the M8.0 Pisco earthquake of August 2007, and the M7.9 Wenchuan Earthquake of 12 May 2008, are shown with space weather condition. Based on the case studies, statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite (DEMETER) over a period of 2005-2010 was executed in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the EIA intensity indices were performed for each region with excluding the possible effects from the geomagnetic and solar activity. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 7.0 in the low latitude region can accompany observable seismo-ionospheric coupling phenomena in the form of EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling to explain the observation and the possibility of earthquake prediction using the EIA intensity variation are discussed.

  8. Bond-order wave phase of the extended Hubbard model: Electronic solitons, paramagnetism, and coupling to Peierls and Holstein phonons

    Science.gov (United States)

    Kumar, Manoranjan; Soos, Zoltán G.

    2010-10-01

    The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.

  9. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution.

    Science.gov (United States)

    Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2004-01-01

    The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  10. Control of Multiple Exciton Generation and Electron-Phonon Coupling by Interior Nanospace in Hyperstructured Quantum Dot Superlattice.

    Science.gov (United States)

    Chang, I-Ya; Kim, DaeGwi; Hyeon-Deuk, Kim

    2017-09-20

    The possibility of precisely manipulating interior nanospace, which can be adjusted by ligand-attaching down to the subnanometer regime, in a hyperstructured quantum dot (QD) superlattice (QDSL) induces a new kind of collective resonant coupling among QDs and opens up new opportunities for developing advanced optoelectric and photovoltaic devices. Here, we report the first real-time dynamics simulations of the multiple exciton generation (MEG) in one-, two-, and three-dimensional (1D, 2D, and 3D) hyperstructured H-passivated Si QDSLs, accounting for thermally fluctuating band energies and phonon dynamics obtained by finite-temperature ab initio molecular dynamics simulations. We computationally demonstrated that the MEG was significantly accelerated, especially in the 3D QDSL compared to the 1D and 2D QDSLs. The MEG acceleration in the 3D QDSL was almost 1.9 times the isolated QD case. The dimension-dependent MEG acceleration was attributed not only to the static density of states but also to the dynamical electron-phonon couplings depending on the dimensionality of the hyperstructured QDSL, which is effectively controlled by the interior nanospace. Such dimension-dependent modifications originated from the short-range quantum resonance among component QDs and were intrinsic to the hyperstructured QDSL. We propose that photoexcited dynamics including the MEG process can be effectively controlled by only manipulating the interior nanospace of the hyperstructured QDSL without changing component QD size, shape, compositions, ligand, etc.

  11. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  12. Density functional theory studies on the structures and electronic communication of meso-ferrocenylporphyrins: long range orbital coupling via porphyrin core.

    Science.gov (United States)

    Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-02-01

    The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  14. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms.

  15. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    International Nuclear Information System (INIS)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun

    2008-01-01

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms

  16. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  17. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  18. Direct Coupling of Electron Beam Irradiation and Polymer Extrusion for a Continuous Polymer Modification in Molten State

    International Nuclear Information System (INIS)

    Stephan, M.

    2006-01-01

    The new approach of an e-beam initiating of chemical reactions in polymers in molten state results in some innovative results. High temperature, intensive macromolecular mobility and the absence of any crystallinity are some reasons for achieving unexpected structures, processing behaviour and properties changes in such treated thermoplastics and rubbers. Examples are a much more effective crosslinking of polyethylene and special rubbers, long chain branching of polypropylene or a partial crosslinking of polysulfone. Additionally, most of these modification effects are also achievable by a direct coupling of electron beam irradiation and conventional polymer extrusion processing for a continuous polymer modification in molten state. For realizing this unique processing technique a special MOBILE RADIATION FACILITY (MOBRAD1/T) was designed, constructed and manufactured in the IPF Dresden at which a lab-scale single screw extruder was adapted direct to an electron beam accelerator to realize a prompt irradiation of extruded polymer melt profiles before there solidification. Surprisingly, as a result of these short-time-melt reactions some effective and new polymer modification effects were found and will be presented

  19. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  20. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling.

    Science.gov (United States)

    Cai, Chunfeng; Zhai, Jizhi; Bi, Gang; Wu, Huizhen

    2016-09-15

    Localized surface plasmon resonance coupling effects (LSPR) have attracted much attention due to their interesting properties. This Letter demonstrates significant photoluminescence (PL) enhancement in the Au NS/CH3NH3PbI3-xClx heterostructures via the LSPR coupling. The observed PL emission enhancement is mainly attributed to the hot electron energy transfer effect related to the LSPR coupling. For the energy transfer effect, photo-generated electrons will be directly extracted into Au SPs, rather than relaxed into exciton states. This energy transfer process is much faster than the diffusion and relaxation time of free electrons, and may provide new ideas on the design of high-efficiency solar cells and ultrafast response photodetectors.

  1. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    International Nuclear Information System (INIS)

    Nastar, M.

    1994-01-01

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT 1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  2. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    Science.gov (United States)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  3. Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration.

    Science.gov (United States)

    Qin, Hejie; Li, Jinxiang; Yang, Hongyi; Pan, Bingcai; Zhang, Weiming; Guan, Xiaohong

    2017-05-02

    Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe 0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe 0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe 0 to surface-located Se(VI).

  4. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  6. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  7. Coupled-channel optical calculation of electron-hydrogen scattering: elastic scattering from 0.5 to 30 eV

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1991-01-01

    A coupled-channel optical method for electron-atomic hydrogen scattering is presented in a form that treats both the projectile and the target electrons symmetrically. Elastic differential cross sections are calculated at a range of energies from 0.5 to 30 eV and are found to be in complete agreement with the absolute measurements, previously reported. Total and total ionization cross sections are also presented. 13 refs., 2 tabs., 2 figs

  8. MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to

  9. Calculations on thirteen Λ–S states of PO radical: Electronic structure, spectroscopy and spin–orbit coupling

    International Nuclear Information System (INIS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2013-01-01

    This paper presents the potential energy curves (PECs) of X 2 Π, B 2 Σ + , B′ 2 Π, C 2 Σ − , C′ 2 Δ, 3 2 Π, a 4 Π, b 4 Σ − , 1 4 Δ, 2 4 Δ, 1 4 Σ + , 1 6 Σ + and 1 6 Π Λ–S states and the PECs of 16 Ω states generated from the eight bound Λ–S states of PO radical. All the PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. The spin–orbit coupling is included by the state interaction approach with the Breit–Pauli Hamiltonian. The convergent behavior is observed and discussed with respect to the correlation-consistent basis set and level of theory. The effect on the energy splitting by core-electron correlations is studied. To improve the quality of PECs, core-valence correlation corrections are included by a cc-pCVTZ basis set. Scalar relativistic correction calculations are made by the third-order Douglas–Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. With these PECs, the spectroscopic parameters of 10 Λ–S and 16 Ω bound states are evaluated. The vibrational manifolds of the first 16 vibrational states are evaluated for each Λ–S and Ω state of non-rotation radical. With the PECs obtained by the MRCI+Q/CV+DK+56+SO calculations, the SO coupling splitting energy of X 2 Π Λ–S state is determined as 225.18 cm −1 , which agrees well with the measurements of 224.17 cm −1 . Moreover, other spectroscopic parameters and molecular constants calculated here are also in excellent agreement with the available measurements. It shows that the spectroscopic parameters and molecular constants reported here can be expected to be reliable predicted ones. -- Highlights: ► Convergent behavior is observed with respect to the basis set and level of theory. ► Effect on the PECs by core-valence correlation and relativistic corrections is included. ► PECs are extrapolated

  10. The greatest hydroelectric power plant in the world. Itaipu Hydroelectric Power Plant

    International Nuclear Information System (INIS)

    Andonov - Chento, Ilija

    2004-01-01

    Details to demonstrate the size and engineering achievements of one of the world's greatest hydroelectric power plant are given. Principal technical features of construction and operation of the Itaipu Dam are tabulated and discussed

  11. The importance of spin-orbit coupling and electron correlation in the rationalization of the ground state of the CUO molecule

    NARCIS (Netherlands)

    Infante, I.A.C.; Visscher, L.

    2004-01-01

    The importance of electron correlation and spin-orbit coupling in the rationalization of the ground state of the CUO molecule is discussed. It was observed that SOC gave a consistent energy splitting of the triplet state contribution that does not depend much on the method used to compute a

  12. The role of electronic dopant on full band in-plane RKKY coupling in armchair graphene nanoribbons-magnetic impurity system

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-05-01

    Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

  13. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  14. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  15. Electron temperature anisotropy modeling and its effect on anisotropy-magnetic field coupling in an underdense laser heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)

  16. Searches for the Anomalous FCNC Top-Higgs Couplings with Polarized Electron Beam at the LHeC

    Directory of Open Access Journals (Sweden)

    XiaoJuan Wang

    2017-01-01

    Full Text Available We study the single top and Higgs associated production e-p→νet-→νehq-(h→bb- in the top-Higgs FCNC couplings at the LHeC with the electron beam energy of Ee=60 GeV and Ee=120 GeV and combination of a 7 TeV and 50 TeV proton beam. With the possibility of e-beam polarization (pe=0, ±0.6, we distinct the cut-based method and the multivariate analysis- (MVA- based method and compare with the current experimental and theoretical limits. It is shown that the branching ratio Br(t→uh can be probed to 0.113 (0.093%, 0.071 (0.057%, 0.030 (0.022%, and 0.024 (0.019% with the cut-based (MVA-based analysis at (Ep, Ee = (7 TeV, 60 GeV, (Ep, Ee = (7 TeV, 120 GeV, (Ep, Ee = (50 TeV, 60 GeV, and (Ep, Ee = (50 TeV, 120 GeV beam energy and 1σ level. With the possibility of e-beam polarization, the expected limits can be probed down to 0.090 (0.073%, 0.056 (0.045%, 0.024 (0.018%, and 0.019 (0.015%, respectively.

  17. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  18. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications

    Directory of Open Access Journals (Sweden)

    Haruo Sugi

    2018-05-01

    Full Text Available The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC. The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm. After exhaustion of ATP, myosin heads return to their neutral position. In the actin–myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD, respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca2+-activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.

  19. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  20. Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

    CERN Document Server

    Turk Cakir, I; Tasci, A T; Cakir, O

    2016-01-01

    We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (∆κγ, λγ) and (∆κz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb-1.

  1. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  2. A Measurement of the Effective Electron Neutral Current Coupling Parameters from Polarized Bhabha Scattering at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Matthew D

    2003-07-15

    The effective electron neutral current coupling parameters, {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}, have been measured from analyzing 43,222 polarized Bhabha scattered events (e{sup +}e{sup -} {yields} e{sup +}e{sup -}) using the SLAC Large Detector (SLD) experiment at the Stanford Linear Accelerator Center (SLAC). The SLAC Linear Collider (SLC) produced the Bhabha scattered events by colliding polarized electrons, with an average polarization of 74%, with unpolarized positrons at an average center-of-mass energy of 91.25 GeV. The analysis used the entire SLD data sample collected between 1994 and 1998 (the last year the SLD detector collected data). The results are {bar g}{sub V}{sup e} = -0.0469 {+-} 0.0024 (stat.) {+-} 0.0004 (sys.); {bar g}{sub A}{sup e} = -0.5038 {+-} 0.0010 (stat.) {+-} 0.0043 (sys.). All Bhabha scattered events within the angular acceptance of the SLD calorimeter subsystems were used in this analysis, including both small-angle events (28 mrad. {le} theta {le} 68 mrad.) measured by the Silicon/Tungsten Luminosity Monitor (LUM), and large angle events (0 {le} |cos{theta}| {le} 0.9655) measured by the Liquid Argon Calorimeter (LAC). Using all of the data in this manner allows for the high-precision measurement of the luminosity provided by the LUM to constrain the uncertainty on {bar g}{sub V}{sup e} and {bar g}{sub A}{sup e}. The measured integrated luminosity for the combined 1993 through 1998 SLD data sample is L{sub Integrated} = 19,247 {+-} 17 (stat.) {+-} 146 (sys.) nb{sup -1}. In contrast with other SLD precision measurements of the effective weak mixing angle, which are sensitive to the ratio {bar g}{sub V}{sup e}/{bar g}{sub A}{sup e}, this result independently determines {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}. The analysis techniques to measure {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c} are described, and the results are compared with other SLD measurements as well as other experiments.

  3. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Stephen C. [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States; Bettis Homan, Stephanie [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States; Weiss, Emily A. [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecond time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.

  4. Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states.

    Science.gov (United States)

    Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten

    2017-11-01

    Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Charge-transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad.

    Science.gov (United States)

    Fortage, Jérôme; Scarpaci, Annabelle; Viau, Lydie; Pellegrin, Yann; Blart, Errol; Falkenström, Magnus; Hammarström, Leif; Asselberghs, Inge; Kellens, Ruben; Libaers, Wim; Clays, Koen; Eng, Mattias P; Odobel, Fabrice

    2009-09-14

    We report the synthesis and the characterizations of a novel dyad composed of a zinc porphyrin (ZnP) linked to a gold porphyrin (AuP) through an ethynyl spacer. The UV/Vis absorption spectrum and the electrochemical properties clearly reveal that this dyad exhibits a strong electronic coupling in the ground state as evidenced by shifted redox potentials and the appearance of an intense charge-transfer band localized at lambda = 739 nm in dichloromethane. A spectroelectrochemical study of the dyad along with the parent homometallic system (i.e., ZnP-ZnP and AuP-AuP) was undertaken to determine the spectra of the reduced and oxidized porphyrin units. Femtosecond transient absorption spectroscopic analysis showed that the photoexcitation of the heterometallic dyad leads to an ultrafast formation of a charge-separated state ((+)ZnP-AuP(*)) that displays a particularly long lifetime (tau = 4 ns in toluene) for such a short separation distance. The molecular orbitals of the dyad were determined by DFT quantum-chemical calculations. This theoretical study confirms that the observed intense band at lambda = 739 nm corresponds to an interporphyrin charge-transfer transition from the HOMO orbital localized on the zinc porphyrin to LUMO orbitals localized on the gold porphyrin. Finally, a Hyper-Rayleigh scattering study shows that the dyad possesses a large first molecular hyperpolarizability coefficient (beta = 2100x10(-30) esu at lambda = 1064 nm), thus highlighting the valuable nonlinear optical properties of this new type of push-pull porphyrin system.

  6. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

    Science.gov (United States)

    Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2018-02-28

    The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

  7. Bias changing molecule–lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study

    International Nuclear Information System (INIS)

    Min, Y.; Fang, J.H.; Zhong, C.G.; Dong, Z.C.; Zhao, Z.Y.; Zhou, P.X.; Yao, K.L.

    2015-01-01

    A first-principles study of the transport properties of 3,13-dimercaptononacene–6,21-dione molecule sandwiched between two gold leads is reported. The strong effect of negative differential resistance with large peak-to-valley ratio of 710% is present under low bias. We found that bias can change molecule–lead couple and induce low bias negative differential resistance for electrons acceptor, which may promise the potential applications in molecular devices with low-power dissipation in the future. - Highlights: • Acceptor is constructed to negative differential resistor (NDR). • NDR effect is present under low bias. • Bias change molecule–lead couple and induce NDR effect

  8. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  9. Genealogical electronic coupling procedure incorporating the Hartree--Fock interacting space and suitable for degenerate point groups. Application to excited states of BH3

    International Nuclear Information System (INIS)

    Swope, W.C.; Schaefer, H.F. III; Yarkony, D.R.

    1980-01-01

    The use of Clebsch--Gordan-type coupling coefficients for finite point groups is applied to the problem of constructing symmetrized N-electron wave functions (configurations) for use by the Hartree--Fock SCF and CI methods of determining electronic wave functions for molecular systems. The configurations are eigenfunctions of electronic spin operators, and transform according to a particular irreducible representation of the relevant group of spatial operations which leave the Born--Oppenheimer Hamiltonian invariant. The method proposed for constructing the configurations involves a genealogical coupling procedure. It is particularly useful for studies of molecules which belong to a group which has multiply degenerate irreducible representations. The advantage of the method is that it results in configurations which are real linear combinations of determinants of real symmetry orbitals. This procedure for constructing configurations also allows for the identification of configurations which have no matrix element of the Hamiltonian with a reference configuration. It is therefore possible to construct a Hartree--Fock interacting space of configurations which can speed the convergence of a CI wave function. The coupling method is applied to a study of the ground and two excited electronic states of BH 3 in its D/sub 3h/ geometry. The theoretical approach involved Hartree--Fock SCF calculations followed by single and double substitution CI calculations, both of which employed double-zeta plus polarization quality basis sets

  10. The Effects of Different Electron-Phonon Couplings on the Spectral and Transport Properties of Small Molecule Single-Crystal Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Carmine Antonio Perroni

    2014-03-01

    Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the

  11. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  12. NMR Evidences of the Coupling between Conduction Electrons and Molecular Degrees of Freedom in the Exotic Member of the Bechgaard Salt (TMTSF)2FSO3

    Science.gov (United States)

    Satsukawa, Hidetaka; Yajima, Akio; Hiraki, Ko-ichi; Takahashi, Toshihiro; Kang, Haeyong; Jo, Younjung; Kang, Woun; Chung, Ok-Hee

    2016-12-01

    We performed 77Se- and 19F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the temperature-pressure phase diagram, determined by precise transport measurements [Jo et al., Phys. Rev. B 67, 014516 (2003)]. We claim that such varieties of electronic states in the refined phase diagram are caused by strong couplings of the conduction electrons with FSO3 anions, especially with the permanent electric dipoles on the anions. We suggest that as temperature decreases, the FSO3 anions form orientational ordering through two steps; first, only the tetrahedrons form an orientational order leaving the orientations of the electronic dipoles in random (transition I); then the dipoles form a perfect orientational order at a lower temperature (transition II). In the intermediate temperature range between transitions I and II, we found an appreciable enhancement of homogeneous and inhomogeneous widths of the 77Se-NMR spectrum. From the analysis of the angular dependence of the linewidth, we attributed these anomalies to the intramolecular charge disproportionation or imbalance and its slow dynamics caused by the coupling with the permanent electric dipole of the anion. Results of 19F-NMR relaxation and lineshape measurements support this picture very well. Electronic structures at higher pressures up to 1.25 GPa are discussed on the basis of the results of the 77Se- and 19F-NMR measurements.

  13. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  14. School Issues Under [Section] 504 and the ADA: The Latest and Greatest.

    Science.gov (United States)

    Aleman, Steven R.

    This paper highlights recent guidance and rulings from the Office of Civil Rights (OCR) of interest to administrators, advocates, and attorneys. It is a companion piece to Student Issues on SectionNB504/ADA: The Latest and Greatest. Compliance with SectionNB504 and the Americans with Disabilities Act (ADA) continues to involve debate and dialog on…

  15. Stigma and Discrimination in HIV/AIDS; The greatest Challenge to ...

    African Journals Online (AJOL)

    The greatest challenge to the efforts of the various agencies and governments in the care, support and treatment of people living with HIV/AIDS, appears to be stigma and discrimination. Stigma and discrimination has to be addressed through public education, legislation to protect people living with HIV/AIDS and also by ...

  16. FedWeb Greatest Hits: Presenting the New Test Collection for Federated Web Search

    NARCIS (Netherlands)

    Demeester, Thomas; Trieschnigg, Rudolf Berend; Zhou, Ke; Nguyen, Dong-Phuong; Hiemstra, Djoerd

    This paper presents 'FedWeb Greatest Hits', a large new test collection for research in web information retrieval. As a combination and extension of the datasets used in the TREC Federated Web Search Track, this collection opens up new research possibilities on federated web search challenges, as

  17. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  18. Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit.

    Science.gov (United States)

    Zhong, Qiuhang; Tian, Zhaobing; Veerasubramanian, Venkat; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Plant, David V

    2014-05-01

    We report on the first experimental demonstration of the thermal control of coupling strength between a rolled-up microtube and a waveguide on a silicon electronic-photonic integrated circuit. The microtubes are fabricated by selectively releasing a coherently strained GaAs/InGaAs heterostructure bilayer. The fabricated microtubes are then integrated with silicon waveguides using an abruptly tapered fiber probe. By tuning the gap between the microtube and the waveguide using localized heaters, the microtube-waveguide evanescent coupling is effectively controlled. With heating, the extinction ratio of a microtube whispering-gallery mode changes over an 18 dB range, while the resonant wavelength remains approximately unchanged. Utilizing this dynamic thermal tuning effect, we realize coupling modulation of the microtube integrated with the silicon waveguide at 2 kHz with a heater voltage swing of 0-6 V.

  19. Electron paramagnetic resonance study of exchange coupled Ce.sup.3+./sup. ions in Lu.sub.2./sub.SiO.sub.5./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Rosa, Jan; Nikl, Martin

    2016-01-01

    Roč. 90, Jul (2016), s. 23-26 ISSN 1350-4487 R&D Projects: GA ČR GAP204/12/0805; GA MŠk(CZ) LM2011029; GA MŠk LO1409 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * scintillators * lutetium oxyorthosilicate * exchange coupled ions * cerium ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  20. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    Science.gov (United States)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  1. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth; Erwin, Patrick; Nordlund, Dennis; Vandewal, Koen; Li, Ruipeng; Ngongang Ndjawa, Guy Olivier; Hoke, Eric T.; Salleo, Alberto; Thompson, Mark E.; McGehee, Michael D.; Amassian, Aram

    2013-01-01

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM) - An important tool for identification of different types of mineralization

    Czech Academy of Sciences Publication Activity Database

    Pašava, J.; Svojtka, Martin; Veselovský, F.; Ďurišová, Jana; Ackerman, Lukáš; Pour, O.; Drábek, M.; Halodová, P.; Haluzová, Eva

    2016-01-01

    Roč. 72, č. 1 (2016), s. 874-895 ISSN 0169-1368 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : molybdenite * trace-element geochemistry * Laser Ablation Inductively Coupled Mass * spectrometry * scanning electron microscopy * nano- to micro-inclusions * Bohemian Massif * Uzbekistan Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.095, year: 2016

  3. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth

    2013-07-30

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  5. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl; Cho, Eunkyung; Malafeev, Alexander; Ivanov, Viktor; Kremer, Kurt; Risko, Chad; Bré das, Jean-Luc; Andrienko, Denis

    2013-01-01

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  6. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  7. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  8. Determination of electron density and temperature in a capacitively coupled RF discharge in neon by OES complemented with a CR model

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, Z; Dvorak, P; Trunec, D [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Brzobohaty, O, E-mail: zdenek@physics.muni.c [Institute of Scientific Instruments of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, 612 64 Brno (Czech Republic)

    2010-12-22

    A method of determination of electron temperature and electron density in plasmas based on optical emission spectroscopy complemented with collisional-radiative modelling (OES/CRM) was studied in this work. A radiofrequency (13.56 MHz) capacitively coupled discharge in neon at 10 Pa was investigated by intensity calibrated optical emission spectroscopy. The absolute intensities of neon transitions between 3p and 3s states were fitted with a collisional-radiative (CR) model in order to determine the electron temperature and electron density. Measuring techniques such as imaging with an ICCD camera were adopted for supplementary diagnostics. The obtained results were compared with the results of compensated Langmuir probe measurement and one-dimensional particle-in-cell/Monte Carlo (PIC/MC) simulation. The results of OES/CRM and PIC/MC method were in close agreement in the case of electron temperature in the vicinity of a driven electrode. The determined value of electron temperature was about 8 eV. In bulk plasma, the measured spectra were not satisfactorily fitted. In the case of electron density only relative agreement was obtained between OES/CRM and Langmuir probe measurement; the absolute values differed by a factor of 5. The axial dependence of electron density calculated by PIC/MC was distinct from them, reaching the maximum values between the results of the other two methods. The investigation of power dependence of plasma parameters close to the driven electrode showed a decrease in electron temperature and an increase in electron density together with increasing incoming RF power. The calculated spectra fitted very well the measured spectra in this discharge region.

  9. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  10. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao

    2010-09-27

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5 is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic. © 2010 IOP Publishing Ltd.

  11. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    Science.gov (United States)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  12. A parity-breaking electronic nematic phase transition in the spin-orbit coupled correlated metal Cd2Re2O7

    Science.gov (United States)

    Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.

    Strong interactions between electrons are known to drive metallic systems toward a variety of well-known symmetry-broken phases, including superconducting, electronic liquid crystalline, and charge- and spin-density wave ordered states. In contrast, the electronic instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncover a novel multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially-resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic liquid crystalline phases, this multipolar nematic phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 K in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order parameter.

  13. Greatest Happiness Principle in a Complex System: Maximisation versus Driving Force

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2012-06-01

    Full Text Available From philosophical point of view, micro-founded economic theories depart from the principle of the pursuit of the greatest happiness. From mathematical point of view, micro-founded economic theories depart from the utility maximisation program. Though economists are aware of the serious limitations of the equilibrium analysis, they remain in that framework. We show that the maximisation principle, which implies the equilibrium hypothesis, is responsible for this impasse. We formalise the pursuit of the greatest happiness principle by the help of the driving force postulate: the volumes of activities depend on the expected wealth increase. In that case we can get rid of the equilibrium hypothesis and have new insights into economic theory. For example, in what extent standard economic results depend on the equilibrium hypothesis?

  14. Social Media - DoD’s Greatest Information Sharing Tool or Weakest Security Link?

    Science.gov (United States)

    2010-04-15

    or position of the Department of the Army, Department of Defense, or the U.S. Government. SOCIAL MEDIA – DOD’S GREATEST INFORMATION SHARING TOOL...appropriateness and effectiveness of these policies in securing the information network. 15. SUBJECT TERMS Social media , information...TYPE Civilian Research Paper 3. DATES COVERED (From - To) August 2009-April 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Social Media

  15. The conditions for attaining the greatest degree of system stability with strict generator excitation control

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Ekimova, M.M.; Truspekova, G.A.

    1982-01-01

    Expressions are derived for an idealized model of a complex electric power system; these expressions define the greatest level of stability of an electric power system and the optimum combination of stabilization factors with automatic excitation control in a single power system. The possibility of increasing the level of stability of an electric power system with simultaneous strict automatic excitation control of the synychronous generators in several power systems is analyzed.

  16. Asymptotics for the greatest zeros of solutions of a particular O.D.E.

    Directory of Open Access Journals (Sweden)

    Silvia Noschese

    1994-05-01

    Full Text Available This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.

  17. Magnetic Grüneisen parameter and magnetocaloric properties of a coupled spin–electron double-tetrahedral chain

    International Nuclear Information System (INIS)

    Gálisová, Lucia; Strečka, Jozef

    2015-01-01

    Magnetocaloric effect in a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with three equivalent lattice sites available for mobile electrons, is exactly investigated by considering the one-third electron filling and the ferromagnetic Ising exchange interaction between the mobile electrons and their nearest Ising neighbours. The entropy and the magnetic Grüneisen parameter, which closely relate to the magnetocaloric effect, are exactly calculated in order to investigate the relation between the ground-state degeneracy and the cooling efficiency of the hybrid spin–electron system during the adiabatic demagnetization. - Highlights: • A double-tetrahedral chain of mobile electrons and localized Ising spins is studied. • Magnetic Grüneisen parameter for the system is exactly derived. • Macroscopically degenerate phases FRU and FM constitute the ground state. • MCE is three times higher nearby FRU–FM transition than in FRU phase at small fields

  18. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  19. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  20. Electronic structure and Landé g-factor of a quantum ring in the presence of spin-orbit coupling: Temperature and Zeeman effect

    Science.gov (United States)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    A wide variety of semiconductor nanostructures have been fabricated experimentally and both theoretical and experimental investigations of their features imply the great role they have in new generation technological devices. However, mathematical modeling provide a powerful means due to definitive goal of predicting the features and understanding of such structures behavior under different circumstances. Therefore, effective Hamiltonian for an electron in a quantum ring with axial symmetry in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI) is derived. Here we report our study of the electronic structure and electron g-factor in the presence of spin-orbit (SO) couplings under the influence of external magnetic field at finite temperature. This investigation shows that, when Rashba and Dresselhaus couplings are simultaneously present, the degeneracy is removed and energy levels split into two branches. Furthermore, with enhancing the applied magnetic field, separation of former degenerate levels increases and also avoided crossings (anti-crossing) in the energy spectra is detected. It is also discussed how the energy levels of the system can be adjusted with variation of temperature as well as the magnetic field and geometrical sizes.

  1. Maxima and minima of the orientation phenomena for direct 1s→2p+-1 electron-ion collisional excitations in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Yoon Jung-Sik; Jung Young-Dae

    1999-01-01

    Orientation phenomena for direct 1s→2p +-1 electron-ion collisional excitations in weakly coupled plasma are investigated using the semiclassical trajectory method including the close-encounter effects. In weakly coupled plasmas, the electron-ion interaction potential is given by the classical nonspherical Debye-Hueckel model. The semiclassical screened hyperbolic-orbit trajectory method is applied to describe the motion of the projectile electron in order to investigate the variation of the orientation parameter as a function of the impact parameter, projectile energy, and Debye length. A comparison is also given for the hyperbolic-orbit and straight-line trajectory methods. The results show that the orientation parameters obtained by the hyperbolic-orbit trajectory method have maxima and minima for small impact parameter regions. In other words, there are complete 1s→2p +1 (maxima) and complete 1s→2p -1 (minima) transitions for certain impact parameters. These maxima cannot be found using the straight-line trajectory method. The variation of the propensity of the 1s→2p -1 transitions due to the plasma screening effects on the atomic wave functions is also discussed

  2. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers

    KAUST Repository

    Zhang, Chendong

    2017-01-07

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice.

  3. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    Science.gov (United States)

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  4. STRONG CORRELATIONS AND ELECTRON-PHONON COUPLING IN HIGH-TEMPERATURE SUPERCONDUCTORS - A QUANTUM MONTE-CARLO STUDY

    NARCIS (Netherlands)

    MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W

    We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The

  5. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH.

    Science.gov (United States)

    Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  6. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  7. Warm Dense Matter and Strongly Coupled Plasmas Created by Intense Heavy Ion Beams and XUV-Free Electron Laser: An Overview of Spectroscopic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F B [University of Provence et CNRS, Centre St. Jerome, PIIM-DGP, case 232, 13397 Marseille Cedex 20 (France); Lee, R W [Lawrence Livermore National Laboratory, Livermore, CA (United States); Riley, D [Queens University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Meyer-ter-Vehn, J [Max-Planck Institute for Quantum Optics, 85748 Garching (Germany); Krenz, A [Max-Planck Institute for Quantum Optics, 85748 Garching (Germany); Tschentscher, T [HASYLAB at DESY, Nothkestrasse 85, 22607 Hamburg (Germany); Tauschwitz, An [University of Frankfurt, Institute of Theoretical Physics, Frankfurt (Germany); Tauschwitz, A [Gesellschaft fuer Schwerionenforschung GSI, Planckstr. 1, 64291 Darmstadt (Germany); Lisitsa, V S [Russian Research Center Kurchatov, 123182 Moscow (Russian Federation); Faenov, A Ya [VNIIFTRI, Multi Charged Ion Spectra Data Center, 141570 Mendeleevo (Russian Federation)

    2007-06-15

    High density plasma physics, radiation emission/scattering and related atomic physics, spectroscopy and diagnostics are going to make large steps forward due to new experimental facilities providing beams of intense heavy ions and X/XUV free electron laser radiation. These facilities are currently being established at GSI-Darmstadt and DESY-Hamburg in Germany to access new and complementary parameter regimes for basic research which have never been obtained in laboratories so far: homogenous benchmark samples near solid density and temperatures from eV up to keV. This will provide important impact to many disciplines like astrophysics, atomic physics in dense environments, dense and strongly coupled plasma effects, radiation emission, equation of state. The spectroscopic analysis of the radiation emission plays a key role in this research to investigate the dynamics of electric fields in multi-particle coupled Coulomb systems and the modification of plasma statistics.

  8. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions

    Science.gov (United States)

    Jagau, Thomas-C.

    2018-01-01

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  9. Northeast and Midwest regional species and habitats at greatest risk and most vulnerable to climate impacts

    Science.gov (United States)

    Staudinger, Michelle D.; Hilberg, Laura; Janowiak, Maria; Swanton, C.O.

    2016-01-01

    The objectives of this Chapter are to describe climate change vulnerability, it’s components, the range of assessment methods being implemented regionally, and examples of training resources and tools. Climate Change Vulnerability Assessments (CCVAs) have already been conducted for numerous Regional Species of Greatest Conservation Need and their dependent 5 habitats across the Northeast and Midwest. This chapter provides a synthesis of different assessment frameworks, information on the locations (e.g., States) where vulnerability assessments were conducted, lists of individual species and habitats with their respective vulnerability rankings, and a comparison of how vulnerability rankings were determined among studies.

  10. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao; Schwingenschlö gl, Udo

    2010-01-01

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5

  11. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO2 scattering

    International Nuclear Information System (INIS)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO 2 collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO 2 scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to Σ/sub g/ symmetry. Comparison with static and static-exchange approximations are made

  12. Spectral diffusion and electron-phonon coupling of the B800 BChl a molecules in LH2 complexes from three different species of purple bacteria.

    Science.gov (United States)

    Baier, J; Gabrielsen, M; Oellerich, S; Michel, H; van Heel, M; Cogdell, R J; Köhler, J

    2009-11-04

    We have investigated the spectral diffusion and the electron-phonon coupling of B800 bacteriochlorophyll a molecules in the peripheral light-harvesting complex LH2 for three different species of purple bacteria, Rhodobacter sphaeroides, Rhodospirillum molischianum, and Rhodopseudomonas acidophila. We come to the conclusion that B800 binding pockets for Rhodobacter sphaeroides and Rhodopseudomonas acidophila are rather similar with respect to the polarity of the protein environment but that the packaging of the alphabeta-polypeptides seems to be less tight in Rb. sphaeroides with respect to the other two species.

  13. Application of Chan-Lam cross coupling for the synthesis of N-heterocyclic carbene precursors bearing strong electron donating or withdrawing groups

    Science.gov (United States)

    Huang, Liliang; He, Chengxiang; Sun, Zhihua

    2015-07-01

    Chan-Lam cross coupling allowed efficient synthesis of N,N’-disubstituted ortho-phenylene diamines bearing strong electron donating or withdrawing groups, such as nitro or methoxy groups, with moderate to high yields. These diamines can then be turned into N-heterocyclic carbene precursors after condensation with trimethyl orthoformate. The same strategy can also be utilized for the synthesis of N-monosubstituted aniline derivatives containing a functionalized ortho-aminomethyl group as intermediates for chiral 6-membered ring carbene precursors.

  14. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  15. Coping and acceptance: the greatest challenge for veterans with intestinal stomas.

    Science.gov (United States)

    Krouse, Robert S; Grant, Marcia; Rawl, Susan M; Mohler, M Jane; Baldwin, Carol M; Coons, Stephen Joel; McCorkle, Ruth; Schmidt, C Max; Ko, Clifford Y

    2009-03-01

    Intestinal stomas (ostomies) create challenges for veterans. The goal of this qualitative analysis was to understand better patients' perspectives regarding their greatest challenge. Ostomates at three Veterans Affairs locations were surveyed using the modified City of Hope Quality of Life-Ostomy questionnaire that contained an open-ended request for respondents to describe their greatest challenge. The response rate was 51% (239 of 467); 68% (163 of 239) completed the open-ended item. Content analysis was performed by an experienced qualitative research team. Coping and acceptance were the most commonly addressed themes. The most frequently expressed issues and advice were related to a need for positive thinking and insight regarding adjustment over time. Coping strategies included the use of humor, recognition of positive changes resulting from the stoma, and normalization of life with an ostomy. Coping and acceptance are common themes described by veterans with an intestinal stoma. Health-care providers can assist veterans by utilizing ostomate self-management strategies, experience, and advice.

  16. The greatest challenges reported by long-term colorectal cancer survivors with stomas.

    Science.gov (United States)

    McMullen, Carmit K; Hornbrook, Mark C; Grant, Marcia; Baldwin, Carol M; Wendel, Christopher S; Mohler, M Jane; Altschuler, Andrea; Ramirez, Michelle; Krouse, Robert S

    2008-04-01

    This paper presents a qualitative analysis of the greatest challenges reported by long-term colorectal cancer survivors with ostomies. Surveys that included an open-ended question about challenges of living with an ostomy were administered at three Kaiser Permanente regions: Northern California, Northwest, and Hawaii. The study was coordinated at the Southern Arizona Veterans Affairs Health Care System in Tucson. The City of Hope Quality of Life Model for Ostomy Patients provided a framework for the study's design, measures, data collection, and data analysis. The study's findings may be generalized broadly to community settings across the United States. Results replicate those of previous research among veterans, California members of the United Ostomy Association, Koreans with ostomies, and colorectal cancer survivors with ostomies residing in the United Kingdom. The greatest challenges reported by 178 colorectal cancer survivors with ostomies confirmed the Institute of Medicine's findings that survivorship is a distinct, chronic phase of cancer care and that cancer's effects are broad and pervasive. The challenges reported by study participants should inform the design, testing and integration of targeted education, early interventions, and ongoing support services for colorectal cancer patients with ostomies.

  17. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C{sub 60} and C{sub 70}

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70802 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Kowalski, Karol, E-mail: karol.kowalski@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O.Box 999, Richland, Washington 99352 (United States); Moreno, Juana; Jarrell, Mark [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70802 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Shelton, William A. [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2014-08-21

    In both molecular and periodic solid-state systems there is a need for the accurate determination of the ionization potential and the electron affinity for systems ranging from light harvesting polymers and photocatalytic compounds to semiconductors. The development of a Green's function approach based on the coupled cluster (CC) formalism would be a valuable tool for addressing many properties involving many-body interactions along with their associated correlation functions. As a first step in this direction, we have developed an accurate and parallel efficient approach based on the equation of motion-CC technique. To demonstrate the high degree of accuracy and numerical efficiency of our approach we calculate the ionization potential and electron affinity for C{sub 60} and C{sub 70}. Accurate predictions for these molecules are well beyond traditional molecular scale studies. We compare our results with experiments and both quantum Monte Carlo and GW calculations.

  18. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    Energy Technology Data Exchange (ETDEWEB)

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Włoch, Marta [Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931 (United States); Gour, Jeffrey R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA and Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-01-22

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.

  19. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2015-05-14

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

  20. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    International Nuclear Information System (INIS)

    Varghese, Jithin J.; Mushrif, Samir H.

    2015-01-01

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu n where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH 3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH x (x = 1–3) species and recombination of H with CH x have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters

  1. Interlayer coupling effects on electronic properties of the phosphorene/h-BN van der Walls heterostructure: A first principles investigation

    Science.gov (United States)

    Luo, Yanwei; Zhang, Shuai; Chen, Weiguang; Jia, Yu

    2018-04-01

    By using first-principles calculations, we systemically investigate the electronic properties of phosphorene/h-BN heterostructure with different interlayer distances. Our results show that the electronic states in the vicinity of the Fermi level are completely dominated by phosphorene, and the system exhibits type-I band alignment consequently. Moreover, we also reveal the variation of the band structure of phosphorene/h-BN heterostructure with different interlayer distances. The band gap undergoes a direct to indirect transition as decreasing the interlayer distance. The mechanism of the band gap transition can be attributed to the different energy levels shifts, according to different electronic orbital characters on the band edge. In specific, the energy level of the P_pz bonding state shifts up while that of the P_px,py bonding state falls down, along with the enhancement of the interactions between phosphorene and h-BN.

  2. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling Through Intramolecular Tunneling Barriers

    DEFF Research Database (Denmark)

    Danilov, Andrey; Kubatkin, Sergey; Kafanov, Sergey

    2008-01-01

    We report on single molecule electron transport measurements of two oligophenylenevinylene (OPV3) derivatives placed in a nanogap between gold (Au) or lead (Pb) electrodes in a field effect transistor device. Both derivatives contain thiol end groups that allow chemical binding to the electrodes....... One derivative has additional methylene groups separating the thiols from the delocalized -electron system. The insertion of methylene groups changes the open state conductance by 3-4 orders of magnitude and changes the transport mechanism from a coherent regime with finite zero-bias conductance...

  3. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  4. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Nina Schuback

    Full Text Available Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII, mol e- mol RCII(-1 s(-1 increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  5. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  6. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  7. Asymptotic solution of the coupled equations for electron collisions with atoms or positive ions using Dirac hamiltonians

    International Nuclear Information System (INIS)

    Grant, I.P.

    1982-01-01

    Possible relativistic effects in low energy electron scattering from atoms or positive ions has been investigated using the Dirac hamiltonian. Single channel formula and many channel expressions indicate that asymptotic estimation of radial wavefunctions can be carried out satisfactorily for most purposes using non-relativistic methods. (U.K.)

  8. Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities

    International Nuclear Information System (INIS)

    Ishimaru, S.; Utsumi, K.

    1981-01-01

    We propose a fitting formula for the dielectric screening function of the degenerate electron liquids at metallic and lower densities which accurately reproduces the recent Monte Carlo results as well as those of the microscopic calculations, and which satisfies the self-consistency conditions in the compressibility sum rule and the short-range correlation

  9. Redox modulation of flavin and tyrosine determines photoinduced proton-coupled electron transfer and photoactivation of BLUF photoreceptors

    NARCIS (Netherlands)

    Mathes, T.; van Stokkum, I.H.M.; Stierl, M.; Kennis, J.T.M.

    2012-01-01

    Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with

  10. Multi-interface roughness effects on electron mobility in a Ga0.5In0.5P/GaAs multisubband coupled quantum well structure

    International Nuclear Information System (INIS)

    Sahu, Trinath; Shore, K Alan

    2009-01-01

    We analyse the effect of interface roughness scattering on low temperature electron mobility μ n mediated by intersubband interactions in a multisubband coupled Ga 0.5 In 0.5 P/GaAs quantum well structure. We consider a barrier δ-doped double quantum well system in which the subband electron mobility is limited by the interface roughness scattering μ IR n and ionized impurity scattering μ imp n . We analyse the effect of the intersubband interaction and coupling of subband wavefunctions through the barrier on the intrasubband and intersubband transport scattering rates. We show that the intersubband interaction controls the roughness potential of different interfaces through the dielectric screening matrix. In the case of lowest subband occupancy, the mobility is mainly governed by the interface roughness of the central barrier. Whereas when two subbands are occupied, the interface roughness of the outer barrier predominates due to intersubband effects. The influence of the intersubband interaction also exhibits interesting results on the well width up to which the interface roughness dominates in a double quantum well structure

  11. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation.

    Science.gov (United States)

    Pappas, Iraklis; Chirik, Paul J

    2016-10-03

    The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η 5 -C 5 Me 5 )(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η 5 -C 5 R 5 )(CO) 3 Cr-H ([Cr] R -H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H 2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH 3 by proton coupled electron transfer at a well-defined transition metal center.

  12. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-01-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  13. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches

    Science.gov (United States)

    Abe, M.; Prasannaa, V. S.; Das, B. P.

    2018-03-01

    Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.

  14. Research for the boson of Higgs and for couplings of capacity quartic abnormal in the channel WW in electrons in the experiment D0 in Tevatron

    International Nuclear Information System (INIS)

    Chapon, Emilien

    2013-01-01

    Two physics analyzes are presented in this thesis, both probing the electroweak sector of the Standard Model using events with two oppositely charged electrons and missing transverse energy. The events are selected from the full Run II data sample of 9.7 fb -1 of proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96 TeV. The first analysis is a search for the Higgs boson in H → WW → evev decays. To validate the search methodology, the non-resonant WW production cross section is measured. In the Higgs boson search, no significant excess above the background expectation is observed. Upper limits on the Higgs boson production cross section are therefore derived, within the Standard Model, but also within a theoretical framework with a fourth generation of fermions, and in the context of fermiophobic Higgs boson couplings. A search for anomalous quartic gauge couplings between the photon and the W boson is then presented, using exclusive W boson pair production, allowing to probe new physics effects. The selection of the events and the analysis techniques used are mostly identical to those used in the first analysis, the search for the Higgs boson. The limits set on this type of anomalous couplings are the first ones from the Tevatron and the most stringent ones at the time of the publication. (author) [fr

  15. Reducing mortality from childhood pneumonia: The leading priority is also the greatest opportunity

    Directory of Open Access Journals (Sweden)

    Igor Rudan

    2013-06-01

    Full Text Available Pneumonia and diarrhoea have been the leading causes of global child mortality for many decades. The work of Child Health Epidemiology Reference Group (CHERG has been pivotal in raising awareness that the UN's Millennium Development Goal 4 cannot be achieved without increased focus on preventing and treating the two diseases in low– and middle–income countries. Global Action Plan for Pneumonia (GAPP and Diarrhoea Global Action Plan (DGAP groups recently concluded that addressing childhood pneumonia and diarrhoea is not only the leading priority but also the greatest opportunity in global health today: scaling up of existing highly cost–effective interventions could prevent 95% of diarrhoea deaths and 67% of pneumonia deaths in children younger than 5 years by the year 2025. The cost of such effort was estimated at about US$ 6.7 billion.

  16. Use of microextraction by packed sorbent directly coupled to an electron ionization single quadrupole mass spectrometer as an alternative for non-separative determinations.

    Science.gov (United States)

    Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis

    2017-02-01

    Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL -1 in the non-separative scheme and between 0.02 and 1.72μgL -1 when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Many-polaron theory for superconductivity and charge-density waves in a strongly coupled electron-phonon system with quasi-two-dimensionality: An interpolation between the adiabatic limit and the inverse-adiabatic limit

    International Nuclear Information System (INIS)

    Nasu, K.

    1987-01-01

    The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent

  18. Optoelectronic properties of XIn2S4 (X = Cd, Mg) thiospinels through highly accurate all-electron FP-LAPW method coupled with modified approximations

    International Nuclear Information System (INIS)

    Yousaf, Masood; Dalhatu, S.A.; Murtaza, G.; Khenata, R.; Sajjad, M.; Musa, A.; Rahnamaye Aliabad, H.A.; Saeed, M.A.

    2015-01-01

    Highlights: • Highly accurate all-electron FP-LAPW+lo method is used. • New physical parameters are reported, important for the fabrication of optoelectronic devices. • A comparative study that involves FP-LAPW+lo method and modified approximations. • Computed band gap values have good agreement with the experimental values. • Optoelectronic results of fundamental importance can be utilized for the fabrication of devices. - Abstract: We report the structural, electronic and optical properties of the thiospinels XIn 2 S 4 (X = Cd, Mg), using highly accurate all-electron full potential linearized augmented plane wave plus local orbital method. In order to calculate the exchange and correlation energies, the method is coupled with modified techniques such as GGA+U and mBJ-GGA, which yield improved results as compared to the previous studies. GGA+SOC approximation is also used for the first time on these compounds to examine the spin orbit coupling effect on the band structure. From the analysis of the structural parameters, robust character is predicted for both materials. Energy band structures profiles are fairly the same for GGA, GGA+SOC, GGA+U and mBJ-GGA, confirming the indirect and direct band gap nature of CdIn 2 S 4 and MgIn 2 S 4 materials, respectively. We report the trend of band gap results as: (mBJ-GGA) > (GGA+U) > (GGA) > (GGA+SOC). Localized regions appearing in the valence bands for CdIn 2 S 4 tend to split up nearly by ≈1 eV in the case of GGA+SOC. Many new physical parameters are reported that can be important for the fabrication of optoelectronic devices. Optical spectra namely, dielectric function (DF), refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), optical conductivity σ(ω), absorption coefficient α(ω) and electron loss function are discussed. Optical’s absorption edge is noted to be 1.401 and 1.782 for CdIn 2 S 4 and MgIn 2 S 4 , respectively. The prominent peaks in the electron energy spectrum

  19. f-electron-nuclear hyperfine-coupled multiplets in the unconventional charge order phase of filled skutterudite PrRu4P12

    International Nuclear Information System (INIS)

    Aoki, Yuji; Namiki, Takahiro; Saha, Shanta R.; Sato, Hideyuki; Tayama, Takashi; Sakakibara, Toshiro; Shiina, Ryousuke; Shiba, Hiroyuki; Sugawara, Hitoshi

    2011-01-01

    The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f-electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets, the first thermodynamical observation of its kind. (author)

  20. Application of relativistic distorted-wave method to electron-impact excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas

    Science.gov (United States)

    Chen, Zhanbin

    2018-05-01

    The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.

  1. Giant Andreev Backscattering through a Quantum Point Contact Coupled via a Disordered Two-Dimensional Electron Gas to Superconductors

    International Nuclear Information System (INIS)

    den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society

  2. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    Science.gov (United States)

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin

  3. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    Science.gov (United States)

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the

  4. Electron Transport in a Dioxygenase-Ferredoxin Complex: Long Range Charge Coupling between the Rieske and Non-Heme Iron Center.

    Directory of Open Access Journals (Sweden)

    Wayne K Dawson

    Full Text Available Dioxygenase (dOx utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC. Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx. Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys. In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available. The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated

  5. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    International Nuclear Information System (INIS)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X

    2015-01-01

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  6. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  7. Current Global Pricing For Human Papillomavirus Vaccines Brings The Greatest Economic Benefits To Rich Countries.

    Science.gov (United States)

    Herlihy, Niamh; Hutubessy, Raymond; Jit, Mark

    2016-02-01

    Vaccinating females against human papillomavirus (HPV) prior to the debut of sexual activity is an effective way to prevent cervical cancer, yet vaccine uptake in low- and middle-income countries has been hindered by high vaccine prices. We created an economic model to estimate the distribution of the economic surplus-the sum of all health and economic benefits of a vaccine, minus the costs of development, production, and distribution-among different country income groups and manufacturers for a cohort of twelve-year-old females in 2012. We found that manufacturers may have received economic returns worth five times their original investment in HPV vaccine development. High-income countries gained the greatest economic surplus of any income category, realizing over five times more economic value per vaccinated female than low-income countries did. Subsidizing vaccine prices in low- and middle-income countries could both reduce financial barriers to vaccine adoption and still allow high-income countries to retain their economic surpluses and manufacturers to retain their profits. Project HOPE—The People-to-People Health Foundation, Inc.

  8. Covering women's greatest health fear: breast cancer information in consumer magazines.

    Science.gov (United States)

    Walsh-Childers, Kim; Edwards, Heather; Grobmyer, Stephen

    2011-04-01

    Women identify consumer magazines as a key source of information on many health topics, including breast cancer, which continues to rank as women's greatest personal health fear. This study examined the comprehensiveness and accuracy of breast cancer information provided in 555 articles published in 17 consumer magazines from 2002 through 2007. Accuracy of information was determined for 33 key breast cancer facts identified by an expert panel as important information for women to know. The results show that only 7 of 33 key facts were mentioned in at least 5% of the articles. These facts all dealt with breast cancer risk factors, screening, and detection; none of the key facts related to treatment or outcomes appeared in at least 5% of the articles. Other topics (not key facts) mentioned centered around controllable risk factors, support for breast cancer patients, and chemotherapy treatment. The majority of mentions of key facts were coded as fully accurate, although as much as 44% of mentions of some topics (the link between hormone replacement therapy and breast cancer) were coded as inaccurate or only partially accurate. The magazines were most likely to emphasize family history of breast cancer or genetic characteristics as risk factors for breast cancers; family history was twice as likely to be discussed as increasing age, which is in fact the most important risk factor for breast cancer other than being female. Magazine coverage may contribute to women's inaccurate perceptions of their breast cancer risk.

  9. Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions† †Electronic supplementary information (ESI) available: Detailed experimental and computational results, procedures, characterization data, copies of NMR charts, and crystallographic data. CCDC 1572238. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04675h

    Science.gov (United States)

    Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi

    2018-01-01

    We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward

  10. Ab initio study of the excited-state coupled electron-proton-transfer process in the 2-aminopyridine dimer

    International Nuclear Information System (INIS)

    Sobolewski, Andrzej L.; Domcke, Wolfgang

    2003-01-01

    The low-lying 1 ππ* excited states of the 2-aminopyridine dimer have been investigated with multi-reference ab initio methods (CASSCF and MRMP2). The 2-aminopyridine dimer can be considered as a mimetic model of Watson-Crick DNA base pairs. The reaction path and the energy profile for single proton transfer in the lowest 1 ππ* inter-monomer charge-transfer state have been obtained. A weakly avoided crossing of the 1 ππ* surface with the electronic ground-state surface has been found near the single-proton-transfer minimum of the 1 ππ* surface. From the splitting of the adiabatic surfaces at the avoided crossing, an internal-conversion lifetime of the excited state of <100 ps has been estimated. The potential relevance of these results for the rationalization of radiation-induced mutations and the photostability of the genetic code is briefly discussed

  11. Electron-correlation study of Y III-Tc VII ions using a relativistic coupled-cluster theory

    Science.gov (United States)

    Das, Arghya; Bhowmik, Anal; Nath Dutta, Narendra; Majumder, Sonjoy

    2018-01-01

    Spectroscopic properties, useful for plasma diagnostics and astrophysics, of a few rubidium-like ions are studied here. We choose one of the simplest, but correlationally challenging series where d- and f-orbitals are present in the core and/or valence shells with 4d {}2{D}3/2 as the ground state. We study different correlation characteristics of this series and make precise calculations of electronic structure and rates of electromagnetic transitions. Our calculated lifetimes and transition rates are compared with other available experimental and theoretical values. Radiative rates of vacuum ultraviolet electromagnetic transitions of the long lived Tc6+ ion, useful in several areas of physics and chemistry, are estimated. To the best of our knowledge, there is no literature for most of these transitions.

  12. Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface

    International Nuclear Information System (INIS)

    Silly, Fabien

    2012-01-01

    Two-dimensional self-assembly of 1-octanol molecules on a graphite surface is investigated using scanning tunneling microscopy (STM) at the solid/liquid interface. STM images reveal that this molecule self-assembles into a compact hydrogen-bonded herringbone nanoarchitecture. Molecules are preferentially arranged in a head-to-head and tail-to-tail fashion. A Moiré pattern appears in the STM images when the 1-octanol layer is covering the graphite surface. The large Moiré stripes are perpendicular to the 1-octanol lamellae. Interpretation of the STM images suggests that the Moiré periodicity is governed by the electronic properties of the graphite surface and the 1-octanol layer periodicity. (paper)

  13. Coupling auto trophic in vitro plant cultivation system to scanning electron microscope to study plant-fungal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, N. de; Decock, C.; Declereck, S.; Providencia, I. E. de la

    2010-07-01

    The interactions of plants with pathogens and beneficial micro-organisms have been seldom compared on the same host and under strict controlled auto trophic in vitro culture conditions. Here, the life cycle of two plant beneficial (Glomus sp. MUCL 41833 and Trichoderma harzianum) and one plant pathogen (Rhizoctonia solani) fungi were described on potato (Solanum tuberosum) plantlets under auto trophic in vitro culture conditions using video camera imaging and the scanning electron microscope (SEM). (i) The colony developmental pattern of the extraradical mycelium within the substrate, (ii) the reproduction structures and (iii) the three-dimensional spatial arrangements of the fungal hyphae within the potato root cells were successfully visualized, monitored and described. The combination of the autotrophic in vitro culture system and SEM represent a powerful tool for improving our knowledge on the dynamics of plant-fungal interactions. (Author) 41 refs.

  14. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  15. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.

    Science.gov (United States)

    Usman, Muhammad

    2015-10-21

    Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical

  16. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  17. COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

    Directory of Open Access Journals (Sweden)

    JONG WOON KIM

    2014-04-01

    In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

  18. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  19. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    Science.gov (United States)

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  20. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found