WorldWideScience

Sample records for greater working memory

  1. Benefits from retrieval practice are greater for students with lower working memory capacity.

    Science.gov (United States)

    Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L

    2017-07-01

    We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.

  2. Working memory and inattentional blindness.

    Science.gov (United States)

    Bredemeier, Keith; Simons, Daniel J

    2012-04-01

    Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.

  3. Working memory capacity and overgeneral autobiographical memory in young and older adults.

    Science.gov (United States)

    Ros, Laura; Latorre, José Miguel; Serrano, Juan Pedro

    2010-01-01

    The objectives of this study are to compare the Autobiographical Memory Test (AMT) performance of two healthy samples of younger and older adults and to analyse the relationship between overgeneral memory (OGM) and working memory executive processes (WMEP) using a structural equation modelling with latent variables. The AMT and sustained attention, short-term memory and working memory tasks were administered to a group of young adults (N = 50) and a group of older adults (N = 46). On the AMT, the older adults recalled a greater number of categorical memories (p = .000) and fewer specific memories (p = .000) than the young adults, confirming that OGM occurs in the normal population and increases with age. WMEP was measured by reading span and a working memory with sustained attention load task. Structural equation modelling reflects that WMEP shows a strong relationship with OGM: lower scores on WMEP reflect an OGM phenomenon characterized by higher categorical and lower specific memories.

  4. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  5. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Sarah R Rudebeck

    Full Text Available One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity presented simultaneously (i.e. a dual n-back paradigm. Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores, we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice

  6. Working memory and organizational skills problems in ADHD.

    Science.gov (United States)

    Kofler, Michael J; Sarver, Dustin E; Harmon, Sherelle L; Moltisanti, Allison; Aduen, Paula A; Soto, Elia F; Ferretti, Nicole

    2018-01-01

    This study tested model-driven predictions regarding working memory's role in the organizational problems associated with ADHD. Children aged 8-13 (M = 10.33, SD = 1.42) with and without ADHD (N = 103; 39 girls; 73% Caucasian/Non-Hispanic) were assessed on multiple, counterbalanced working memory tasks. Parents and teachers completed norm-referenced measures of organizational problems (Children's Organizational Skills Scale; COSS). Results confirmed large magnitude working memory deficits (d = 1.24) and organizational problems in ADHD (d = 0.85). Bias-corrected, bootstrapped conditional effects models linked impaired working memory with greater parent- and teacher-reported inattention, hyperactivity/impulsivity, and organizational problems. Working memory predicted organization problems across all parent and teacher COSS subscales (R 2  = .19-.23). Approximately 38%-57% of working memory's effect on organization problems was conveyed by working memory's association with inattentive behavior. Unique effects of working memory remained significant for both parent- and teacher-reported task planning, as well as for teacher-reported memory/materials management and overall organization problems. Attention problems uniquely predicted worse organizational skills. Hyperactivity was unrelated to parent-reported organizational skills, but predicted better teacher-reported task planning. Children with ADHD exhibit multisetting, broad-based organizational impairment. These impaired organizational skills are attributable in part to performance deficits secondary to working memory dysfunction, both directly and indirectly via working memory's role in regulating attention. Impaired working memory in ADHD renders it extraordinarily difficult for these children to consistently anticipate, plan, enact, and maintain goal-directed actions. © 2017 Association for Child and Adolescent Mental Health.

  7. Interactions between visual working memory representations.

    Science.gov (United States)

    Bae, Gi-Yeul; Luck, Steven J

    2017-11-01

    We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.

  8. The Role of Motor Affordances in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Diane Pecher

    2014-12-01

    Full Text Available Motor affordances are important for object knowledge. Semantic tasks on visual objects often show interactions with motor actions. Prior neuro-imaging studies suggested that motor affordances also play a role in visual working memory for objects. When participants remembered manipulable objects (e.g., hammer greater premotor cortex activation was observed than when they remembered non-manipulable objects (e.g., polar bear. In the present study participants held object pictures in working memory while performing concurrent tasks such as articulation of nonsense syllables and performing hand movements. Although concurrent tasks did interfere with working memory performance, in none of the experiments did we find any evidence that concurrent motor tasks affected memory differently for manipulable and non-manipulable objects. I conclude that motor affordances are not used for visual working memory.

  9. Weight and see: Loading working memory improves incidental identification of irrelevant faces

    Directory of Open Access Journals (Sweden)

    David eCarmel

    2012-08-01

    Full Text Available Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eyewitness testimony. Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size. Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting. These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified.

  10. Working memory capacity and task goals modulate error-related ERPs.

    Science.gov (United States)

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  11. Effects of alcohol-induced working memory decline on alcohol consumption and adverse consequences of use.

    Science.gov (United States)

    Lechner, William V; Day, Anne M; Metrik, Jane; Leventhal, Adam M; Kahler, Christopher W

    2016-01-01

    Alcohol use appears to decrease executive function acutely in a dose-dependent manner, and lower baseline executive function appears to contribute to problematic alcohol use. However, no studies, to our knowledge, have examined the relationship between individual differences in working memory (a subcomponent of executive function) after alcohol consumption and drinking behaviors and consequences. The current study assessed the relationship between drinking behavior, alcohol-related consequences, and alcohol-induced changes in working memory (as assessed by Trail Making Test-B). Participants recruited from the community (n = 41), 57.3 % male, mean age 39.2, took part in a three-session, within-subjects, repeated-measures design. Participants were administered a placebo, 0.4 g/kg, or 0.8 g/kg dose of alcohol. Working memory, past 30-day alcohol consumption, and consequences of alcohol use were measured at baseline; working memory was measured again after each beverage administration. Poorer working memory after alcohol administration (controlling for baseline working memory) was significantly associated with a greater number of drinks consumed per drinking day. Additionally, we observed a significant indirect relationship between the degree of alcohol-induced working memory decline and adverse consequences of alcohol use, which was mediated through greater average drinks per drinking day. It is possible that greater individual susceptibility to alcohol-induced working memory decline may limit one's ability to moderate alcohol consumption as evidenced by greater drinks per drinking day and that this results in more adverse consequences of alcohol use.

  12. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  13. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    Science.gov (United States)

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  14. How Human Memory and Working Memory Work in Second Language Acquisition

    OpenAIRE

    小那覇, 洋子; Onaha, Hiroko

    2014-01-01

    We often draw an analogy between human memory and computers. Information around us is taken into our memory storage first, and then we use the information in storage whatever we need it in our daily life. Linguistic information is also in storage and we process our thoughts based on the memory that is stored. Memory storage consists of multiple memory systems; one of which is called working memory that includes short-term memory. Working memory is the central system that underpins the process...

  15. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p 100 voxels). Reanalysis using a more conservative statistical approach (p 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Working memory: a proposal for child evaluating

    Directory of Open Access Journals (Sweden)

    Mayra Monteiro Pires

    2015-01-01

    Full Text Available The working memory is a system with limited capacity which allows the temporary storage and manipulation of information to cognitive complex abilities like language, learning and reasoning. This study has as the objective present the construction, the adaptation and the evaluation of four psycholinguistics working memory tests in Brazilian Portuguese that were based in the English battery of tests Memory Test Battery For Children. The tests adapted were applied in a pilot investigation in a group of 15 children with learning school difficulties and compared to a group of 15 children with normal development. The adaptation of the tests was developed in the E-Prime v2.0 Professional® software. The four psycholinguistic tests access the simultaneous storage and processing capacities of information in general domain, as also specific for language information. The results suggest that the four tests are sensible instruments to detect possible difficulties in the working memory processing in children, because they could identify the different performances between the two groups in a statistical analysis. The tests developed perfectly attended their aims for evaluation and can contribute in a near future for other studies with a greater number of subjects, providing a more concrete and evidences of working memory development in children.

  18. High working memory load leads to more Ebbinghaus illusion

    OpenAIRE

    De Fockert, J. W.; Wu, Si

    2009-01-01

    The evidence that distractor processing increases with greater load on working memory has come mainly from Stroop-type interference tasks, making it difficult to establish whether cognitive load affects distractor processing at the perceptual level or during response selection. We measured the Ebbinghaus illusion under varying levels of working memory load to test whether cognitive control is also relevant for preventing processing of distractors that do not produce any response conflict, and...

  19. Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory.

    Science.gov (United States)

    Shields, Grant S; Doty, Dominique; Shields, Rebecca H; Gower, Garrett; Slavich, George M; Yonelinas, Andrew P

    2017-11-01

    Although substantial research has examined the effects of stress on cognition, much of this research has focused on acute stress (e.g. manipulated in the laboratory) or chronic stress (e.g. persistent interpersonal or financial difficulties). In contrast, the effects of recent life stress on cognition have been relatively understudied. To address this issue, we examined how recent life stress is associated with long-term, working memory, and self-reported memory in a sample of 142 healthy young adults who were assessed at two time points over a two-week period. Recent life stress was measured using the newly-developed Stress and Adversity Inventory for Daily Stress (Daily STRAIN), which assesses the frequency of relatively common stressful life events and difficulties over the preceding two weeks. To assess memory performance, participants completed both long-term and working memory tasks. Participants also provided self-reports of memory problems. As hypothesized, greater recent life stress exposure was associated with worse performance on measures of long-term and working memory, as well as more self-reported memory problems. These associations were largely robust while controlling for possible confounds, including participants' age, sex, and negative affect. The findings indicate that recent life stress exposure is broadly associated with worse memory. Future studies should thus consider assessing recent life stress as a potential predictor, moderator, or covariate of memory performance.

  20. Children's auditory working memory performance in degraded listening conditions.

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R

    2014-08-01

    The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It was hypothesized that stressing the working memory system with the presence of noise would impede working memory processes in real time and result in poorer working memory performance in degraded conditions. Twenty children with typical hearing between 8 and 10 years old were tested using 4 auditory working memory tasks (Forward Digit Recall, Backward Digit Recall, Listening Recall Primary, and Listening Recall Secondary). Stimuli were from the standardized Working Memory Test Battery for Children. Each task was administered in quiet and in 4-talker babble noise at 0 dB and -5 dB signal-to-noise ratios. Children's auditory working memory performance was systematically decreased in the presence of multitalker babble noise compared with quiet. Differences between low-complexity and high-complexity tasks were observed, with children performing more poorly on tasks with greater storage and processing demands. There was no interaction between noise and complexity of task. All tasks were negatively impacted similarly by the addition of noise. Auditory working memory performance was negatively impacted by the presence of multitalker babble noise. Regardless of complexity of task, noise had a similar effect on performance. These findings suggest that the addition of noise inhibits auditory working memory processes in real time for school-age children.

  1. Working memory training may increase working memory capacity but not fluid intelligence.

    Science.gov (United States)

    Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W

    2013-12-01

    Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.

  2. The impact of auditory working memory training on the fronto-parietal working memory network

    OpenAIRE

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory ...

  3. The Development of Attention Systems and Working Memory in Infancy.

    Science.gov (United States)

    Reynolds, Greg D; Romano, Alexandra C

    2016-01-01

    In this article, we review research and theory on the development of attention and working memory in infancy using a developmental cognitive neuroscience framework. We begin with a review of studies examining the influence of attention on neural and behavioral correlates of an earlier developing and closely related form of memory (i.e., recognition memory). Findings from studies measuring attention utilizing looking measures, heart rate, and event-related potentials (ERPs) indicate significant developmental change in sustained and selective attention across the infancy period. For example, infants show gains in the magnitude of the attention related response and spend a greater proportion of time engaged in attention with increasing age (Richards and Turner, 2001). Throughout infancy, attention has a significant impact on infant performance on a variety of tasks tapping into recognition memory; however, this approach to examining the influence of infant attention on memory performance has yet to be utilized in research on working memory. In the second half of the article, we review research on working memory in infancy focusing on studies that provide insight into the developmental timing of significant gains in working memory as well as research and theory related to neural systems potentially involved in working memory in early development. We also examine issues related to measuring and distinguishing between working memory and recognition memory in infancy. To conclude, we discuss relations between the development of attention systems and working memory.

  4. Improving everyday memory performance after acquired brain injury: An RCT on recollection and working memory training.

    Science.gov (United States)

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2018-04-26

    To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Can we improve the clinical assessment of working memory? An evaluation of the Wechsler Adult Intelligence Scale-Third Edition using a working memory criterion construct.

    Science.gov (United States)

    Hill, B D; Elliott, Emily M; Shelton, Jill T; Pella, Russell D; O'Jile, Judith R; Gouvier, W Drew

    2010-03-01

    Working memory is the cognitive ability to hold a discrete amount of information in mind in an accessible state for utilization in mental tasks. This cognitive ability is impaired in many clinical populations typically assessed by clinical neuropsychologists. Recently, there have been a number of theoretical shifts in the way that working memory is conceptualized and assessed in the experimental literature. This study sought to determine to what extent the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Working Memory Index (WMI) measures the construct studied in the cognitive working memory literature, whether an improved WMI could be derived from the subtests that comprise the WAIS-III, and what percentage of variance in individual WAIS-III subtests is explained by working memory. It was hypothesized that subtests beyond those currently used to form the WAIS-III WMI would be able to account for a greater percentage of variance in a working memory criterion construct than the current WMI. Multiple regression analyses (n = 180) revealed that the best predictor model of subtests for assessing working memory was composed of the Digit Span, Letter-Number Sequencing, Matrix Reasoning, and Vocabulary. The Arithmetic subtest was not a significant contributor to the model. These results are discussed in the context of how they relate to Unsworth and Engle's (2006, 2007) new conceptualization of working memory mechanisms.

  6. Detailed sensory memory, sloppy working memory

    Directory of Open Access Journals (Sweden)

    Ilja G Sligte

    2010-10-01

    Full Text Available Visual short-term memory (VSTM enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the pre-change object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the pre-change object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88 percent of the iconic memory trials, on 71 percent of the fragile VSTM trials and merely on 53 percent of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  7. Detailed sensory memory, sloppy working memory.

    Science.gov (United States)

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  8. Is working memory still working?

    Science.gov (United States)

    Baddeley, A D

    2001-11-01

    The current state of A. D. Baddeley and G. J. Hitch's (1974) multicomponent working memory model is reviewed. The phonological and visuospatial subsystems have been extensively investigated, leading both to challenges over interpretation of individual phenomena and to more detailed attempts to model the processes underlying the subsystems. Analysis of the controlling central executive has proved more challenging, leading to a proposed clarification in which the executive is assumed to be a limited capacity attentional system, aided by a newly postulated fourth system, the episodic buffer. Current interest focuses most strongly on the link between working memory and long-term memory and on the processes allowing the integration of information from the component subsystems. The model has proved valuable in accounting for data from a wide range of participant groups under a rich array of task conditions. Working memory does still appear to be working.

  9. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    Science.gov (United States)

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  10. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    Science.gov (United States)

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. When Higher Working Memory Capacity Hinders Insight

    Science.gov (United States)

    DeCaro, Marci S.; Van Stockum, Charles A., Jr.; Wieth, Mareike B.

    2016-01-01

    Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight…

  12. Relating working memory to compression parameters in clinically fit hearing AIDS.

    Science.gov (United States)

    Souza, Pamela E; Sirow, Lynn

    2014-12-01

    Several laboratory studies have demonstrated that working memory may influence response to compression speed in controlled (i.e., laboratory) comparisons of compression. In this study, the authors explored whether the same relationship would occur under less controlled conditions, as might occur in a typical audiology clinic. Participants included 27 older adults who sought hearing care in a private practice audiology clinic. Working memory was measured for each participant using a reading span test. The authors examined the relationship between working memory and aided speech recognition in noise, using clinically fit hearing aids with a range of compression speeds. Working memory, amount of hearing loss, and age each contributed to speech recognition, but the contribution depended on the speed of the compression processor. For fast-acting compression, the best performance was obtained by patients with high working memory. For slow-acting compression, speech recognition was affected by age and amount of hearing loss but was not affected by working memory. Despite the expectation of greater variability from differences in compression implementation, number of compression channels, or attendant signal processing, the relationship between working memory and compression speed showed a similar pattern as results from more controlled, laboratory-based studies.

  13. Selective transfer of visual working memory training on Chinese character learning.

    Science.gov (United States)

    Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel

    2014-01-01

    Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and

  14. The Influence of Attention Set, Working Memory Capacity, and Expectations on Inattentional Blindness.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2016-04-01

    The probability of inattentional blindness, the failure to notice an unexpected object when attention is engaged on some primary task, is influenced by contextual factors like task demands, features of the unexpected object, and the observer's attention set. However, predicting who will notice an unexpected object and who will remain inattentionally blind has proven difficult, and the evidence that individual differences in cognition affect noticing remains ambiguous. We hypothesized that greater working memory capacity might modulate the effect of attention sets on noticing because working memory is associated with the ability to focus attention selectively. People with greater working memory capacity might be better able to attend selectively to target items, thereby increasing the chances of noticing unexpected objects that were similar to the attended items while decreasing the odds of noticing unexpected objects that differed from the attended items. Our study (N = 120 participants) replicated evidence that task-induced attention sets modulate noticing but found no link between noticing and working memory capacity. Our results are largely consistent with the idea that individual differences in working memory capacity do not predict noticing of unexpected objects in an inattentional blindness task. © The Author(s) 2015.

  15. Interference control in working memory: comparing groups of children with atypical development.

    Science.gov (United States)

    Palladino, Paola; Ferrari, Marcella

    2013-01-01

    The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.

  16. Greater autonomy at work

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2004-01-01

    In the past 10 years, workers in the Netherlands increasingly report more decision-making power in their work. This is important for an economy in recession and where workers face greater work demands. It makes work more interesting, creates a healthier work environment, and provides opportunities

  17. The contributions of handedness and working memory to episodic memory.

    Science.gov (United States)

    Sahu, Aparna; Christman, Stephen D; Propper, Ruth E

    2016-11-01

    Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.

  18. The influence of time on task on mind wandering and visual working memory.

    Science.gov (United States)

    Krimsky, Marissa; Forster, Daniel E; Llabre, Maria M; Jha, Amishi P

    2017-12-01

    Working memory relies on executive resources for successful task performance, with higher demands necessitating greater resource engagement. In addition to mnemonic demands, prior studies suggest that internal sources of distraction, such as mind wandering (i.e., having off-task thoughts) and greater time on task, may tax executive resources. Herein, the consequences of mnemonic demand, mind wandering, and time on task were investigated during a visual working memory task. Participants (N=143) completed a delayed-recognition visual working memory task, with mnemonic load for visual objects manipulated across trials (1 item=low load; 2 items=high load) and subjective mind wandering assessed intermittently throughout the experiment using a self-report Likert-type scale (1=on-task, 6=off-task). Task performance (correct/incorrect response) and self-reported mind wandering data were evaluated by hierarchical linear modeling to track trial-by-trial fluctuations. Performance declined with greater time on task, and the rate of decline was steeper for high vs low load trials. Self-reported mind wandering increased over time, and significantly varied asa function of both load and time on task. Participants reported greater mind wandering at the beginning of the experiment for low vs. high load trials; however, with greater time on task, more mind wandering was reported during high vs. low load trials. These results suggest that the availability of executive resources in support of working memory maintenance processes fluctuates in a demand-sensitive manner with time on task, and may be commandeered by mind wandering. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    Science.gov (United States)

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  20. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    Directory of Open Access Journals (Sweden)

    J Elizabeth Richey

    Full Text Available Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  1. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    Science.gov (United States)

    Richey, J Elizabeth; Phillips, Jeffrey S; Schunn, Christian D; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  2. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    Science.gov (United States)

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356

  3. Is the binding of visual features in working memory resource-demanding?

    Science.gov (United States)

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2006-05-01

    The episodic buffer component of working memory is assumed to play a role in the binding of features into chunks. A series of experiments compared memory for arrays of colors or shapes with memory for bound combinations of these features. Demanding concurrent verbal tasks were used to investigate the role of general attentional processes, producing load effects that were no greater on memory for feature combinations than for the features themselves. However, the binding condition was significantly less accurate with sequential rather than simultaneous presentation, especially for items earlier in the sequence. The findings are interpreted as evidence of a relatively automatic but fragile visual feature binding mechanism in working memory. Implications for the concept of an episodic buffer are discussed. 2006 APA, all rights reserved

  4. Detailed sensory memory, sloppy working memory

    NARCIS (Netherlands)

    Sligte, I.G.; Vandenbroucke, A.R.E.; Scholte, H.S.; Lamme, V.A.F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity

  5. The relationship between sustained inattentional blindness and working memory capacity.

    Science.gov (United States)

    Beanland, Vanessa; Chan, Esther Hiu Chung

    2016-04-01

    Inattentional blindness, whereby observers fail to detect unexpected stimuli, has been robustly demonstrated in a range of situations. Originally research focused primarily on how stimulus characteristics and task demands affect inattentional blindness, but increasingly studies are exploring the influence of observer characteristics on the detection of unexpected stimuli. It has been proposed that individual differences in working memory capacity predict inattentional blindness, on the assumption that higher working memory capacity confers greater attentional capacity for processing unexpected stimuli. Unfortunately, empirical investigations of the association between inattentional blindness and working memory capacity have produced conflicting findings. To help clarify this relationship, we examined the relationship between inattentional blindness and working memory capacity in two samples (Ns = 195, 147) of young adults. We used three common variants of sustained inattentional blindness tasks, systematically manipulating the salience of the unexpected stimulus and primary task practice. Working memory capacity, measured by automated operation span (both Experiments 1 & 2) and N-back (Experiment 1 only) tasks, did not predict detection of the unexpected stimulus in any of the inattentional blindness tasks tested. Together with previous research, this undermines claims that there is a robust relationship between inattentional blindness and working memory capacity. Rather, it appears that any relationship between inattentional blindness and working memory is either too small to have practical significance or is moderated by other factors and consequently varies with attributes such as the sample characteristics within a given study.

  6. Neurocognitive architecture of working memory

    Science.gov (United States)

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  7. Memory systems interaction in the pigeon: working and reference memory.

    Science.gov (United States)

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  9. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  10. Working-memory consolidation : Insights from studies on attention and working memory

    NARCIS (Netherlands)

    Ricker, Timothy; Nieuwenstein, Mark; Bayliss, Donna; Barrouillet, Pierre

    2018-01-01

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: Consolidation, refreshing and removal. Here we discuss in

  11. Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.

    Science.gov (United States)

    Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel

    2016-01-01

    Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. EEG correlates of verbal and nonverbal working memory

    Directory of Open Access Journals (Sweden)

    Danker Jared

    2005-11-01

    Full Text Available Abstract Background Distinct cognitive processes support verbal and nonverbal working memory, with verbal memory depending specifically on the subvocal rehearsal of items. Methods We recorded scalp EEG while subjects performed a Sternberg task. In each trial, subjects judged whether a probe item was one of the three items in a study list. Lists were composed of stimuli from one of five pools whose items either were verbally rehearsable (letters, words, pictures of common objects or resistant to verbal rehearsal (sinusoidal grating patterns, single dot locations. Results We found oscillatory correlates unique to verbal stimuli in the θ (4–8 Hz, α (9–12 Hz, β (14–28 Hz, and γ (30–50 Hz frequency bands. Verbal stimuli generally elicited greater power than did nonverbal stimuli. Enhanced verbal power was found bilaterally in the θ band, over frontal and occipital areas in the α and β bands, and centrally in the γ band. When we looked specifically for cases where oscillatory power in the time interval between item presentations was greater than oscillatory power during item presentation, we found enhanced β activity in the frontal and occipital regions. Conclusion These results implicate stimulus-induced oscillatory activity in verbal working memory and β activity in the process of subvocal rehearsal.

  13. Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention.

    OpenAIRE

    Ahmed, Lubna; de Fockert, Jan

    2012-01-01

    Background\\ud \\ud Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention.\\ud \\ud Methodology/Principal Findin...

  14. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  15. Binding across space and time in visual working memory.

    Science.gov (United States)

    Karlsen, Paul Johan; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2010-04-01

    Recent studies of visual short-term memory have suggested that the binding of features such as color and shape into remembered objects is relatively automatic. A series of seven experiments broadened this investigation by comparing the immediate retention of colored shapes with performance when color and shape were separated either spatially or temporally, with participants required actively to form the bound object. Attentional load was manipulated with a demanding concurrent task, and retention in working memory was then tested using a single recognition probe. Both spatial and temporal separation of features tended to impair performance, as did the concurrent task. There was, however, no evidence for greater attentional disruption of performance as a result of either spatial or temporal separation of features. Implications for the process of binding in visual working memory are discussed, and an interpretation is offered in terms of the episodic buffer component of working memory, which is assumed to be a passive store capable of holding bound objects, but not of performing the binding.

  16. Better target detection in the presence of collinear flankers under high working memory load

    Directory of Open Access Journals (Sweden)

    Jan W. De Fockert

    2014-10-01

    Full Text Available There are multiple ways in which working memory can influence selective attention. Aside from the content-specific effects of working memory on selective attention, whereby attention is more likely to be directed towards information that matches the contents of working memory, the mere level of load on working memory has also been shown to have an effect on selective attention. Specifically, high load on working memory is associated with increased processing of irrelevant information. In most demonstrations of the effect to-date, this has led to impaired target performance, leaving open the possibility that the effect partly reflects an increase in general task difficulty under high load. Here we show that working memory load can result in a performance gain when processing of distracting information aids target performance. The facilitation in the detection of a low-contrast Gabor stimulus in the presence of collinear flanking Gabors was greater when load on a concurrent working memory task was high, compared to low. This finding suggests that working memory can interact with selective attention at an early stage in visual processing.

  17. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children – Working Memory (CABC-WM)

    OpenAIRE

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P.

    2017-01-01

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia1 2 and language impairment3 4, but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The C...

  18. Similarity, Not Complexity, Determines Visual Working Memory Performance

    Science.gov (United States)

    Jackson, Margaret C.; Linden, David E. J.; Roberts, Mark V.; Kriegeskorte, Nikolaus; Haenschel, Corinna

    2015-01-01

    A number of studies have shown that visual working memory (WM) is poorer for complex versus simple items, traditionally accounted for by higher information load placing greater demands on encoding and storage capacity limits. Other research suggests that it may not be complexity that determines WM performance per se, but rather increased…

  19. Differences in brain morphology and working memory capacity across childhood.

    Science.gov (United States)

    Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E

    2018-05-01

    Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  20. Bilingualism and Working Memory Capacity: A Comprehensive Meta-Analysis

    Science.gov (United States)

    Grundy, John G.; Timmer, Kalinka

    2017-01-01

    Bilinguals often outperform monolinguals on executive function tasks, including tasks that tap cognitive flexibility, conflict monitoring, and task-switching abilities. Some have suggested that bilinguals also have greater working memory capacity than comparable monolinguals, but evidence for this suggestion is mixed. We therefore conducted a…

  1. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    Science.gov (United States)

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  2. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  3. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  4. Visual working memory buffers information retrieved from visual long-term memory.

    Science.gov (United States)

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  5. When is working memory important for arithmetic? The impact of strategy and age.

    Science.gov (United States)

    Cragg, Lucy; Richardson, Sophie; Hubber, Paula J; Keeble, Sarah; Gilmore, Camilla

    2017-01-01

    Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition.

  6. "Reflecting Forward" on the Digital in Multidirectional Memory-Work between Canada and South Africa

    Science.gov (United States)

    Strong-Wilson, Teresa; Mitchell, Claudia; Morrison,, Connie; Radford,, Linda; Pithouse-Morgan, Kathleen

    2014-01-01

    We explore the place that the digital can occupy in teachers' pedagogical practices around social justice and especially how memory-work can deepen and enhance teacher practices. Like Walter Benjamin, we see memory as being a medium for exploring the past and where the digital provides greater opportunities for teachers to work productively across…

  7. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  8. Mental imagery and visual working memory.

    Directory of Open Access Journals (Sweden)

    Rebecca Keogh

    Full Text Available Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  9. Mental imagery and visual working memory.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  10. Impaired theta-gamma coupling during working memory performance in schizophrenia.

    Science.gov (United States)

    Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J

    2017-11-01

    Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.

  11. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM).

    Science.gov (United States)

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P

    2017-06-12

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia 1 , 2 and language impairment 3 , 4 , but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.

  12. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability.

    Science.gov (United States)

    Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H

    2018-05-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Working Memory Systems in the Rat.

    Science.gov (United States)

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lower baseline performance but greater plasticity of working memory for carriers of the val allele of the COMT Val¹⁵⁸Met polymorphism.

    Science.gov (United States)

    Bellander, Martin; Bäckman, Lars; Liu, Tian; Schjeide, Brit-Maren M; Bertram, Lars; Schmiedek, Florian; Lindenberger, Ulman; Lövdén, Martin

    2015-03-01

    Little is known about genetic contributions to individual differences in cognitive plasticity. Given that the neurotransmitter dopamine is critical for cognition and associated with cognitive plasticity, we investigated the effects of 3 polymorphisms of dopamine-related genes (LMX1A, DRD2, COMT) on baseline performance and plasticity of working memory (WM), perceptual speed, and reasoning. One hundred one younger and 103 older adults underwent approximately 100 days of cognitive training, and extensive testing before and after training. We analyzed the baseline and posttest data using latent change score models. For working memory, carriers of the val allele of the COMT polymorphism had lower baseline performance and larger performance gains from training than carriers of the met allele. There was no significant effect of the other genes or on other cognitive domains. We relate this result to available evidence indicating that met carriers perform better than val carriers in WM tasks taxing maintenance, whereas val carriers perform better at updating tasks. We suggest that val carriers may show larger training gains because updating operations carry greater potential for plasticity than maintenance operations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  15. Working memory, long-term memory, and medial temporal lobe function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  16. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    OpenAIRE

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working mem...

  17. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial

    OpenAIRE

    Dunning, Darren L; Holmes, Joni; Gathercole, Susan E

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first randomized controlled trial with low working memory children investigated whether the benefits of training extend beyond standard working memory tasks...

  18. Prospective memory, working memory, retrospective memory and self-rated memory performance in persons with intellectual disability

    OpenAIRE

    Levén, Anna; Lyxell, Björn; Andersson, Jan; Danielsson, Henrik; Rönnberg, Jerker

    2008-01-01

    The purpose of the present study was to examine the relationship between prospective memory, working memory, retrospective memory and self-rated memory capacity in adults with and without intellectual disability. Prospective memory was investigated by means of a picture-based task. Working memory was measured as performance on span tasks. Retrospective memory was scored as recall of subject performed tasks. Self-ratings of memory performance were based on the prospective and retrospective mem...

  19. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    Science.gov (United States)

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  20. Working Memory: A Selective Review.

    Science.gov (United States)

    Kent, Phillip L

    2016-01-01

    The purpose of this paper is to provide a selective overview of the evolution of the concept and assessment of working memory, and how its assessment has been confused with the assessment of some components of attention. A literature search using PsychNet Gold was conducted using the terms working memory. In addition, the writer reviewed recommendations from a sampling of recent neuropsychology texts in regard to the assessment of attention and working memory, as well as the two most recent editions of the Wechsler Memory Scale. It is argued that many clinicians have an incomplete understanding of the relationship between attention and working memory, and often conflate the two in assessment and treatment. Suggestions were made for assessing these abilities.

  1. Where to start? Bottom-up attention improves working memory by determining encoding order.

    Science.gov (United States)

    Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot

    2016-12-01

    The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. The accessibility of memory items in children’s working memory

    OpenAIRE

    Roome, Hannah; Towse, John

    2016-01-01

    This thesis investigates the processes and systems that support recall in working memory. In particular it seeks to apply ideas from the adult-based dual-memory framework (Unsworth & Engle, 2007b) that claims primary memory and secondary memory are independent contributors to working memory capacity. These two memory systems are described as domain-general processes that combine control of attention and basic memory abilities to retain information. The empirical contribution comprises five ex...

  3. Can verbal working memory training improve reading?

    Science.gov (United States)

    Banales, Erin; Kohnen, Saskia; McArthur, Genevieve

    2015-01-01

    The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.

  4. Working memory for meaningless manual gestures.

    Science.gov (United States)

    Rudner, Mary

    2015-03-01

    Effects on working memory performance relating to item similarity have been linked to prior categorisation of representations in long-term memory. However, there is evidence from gesture processing that this link may not be obligatory. The present study investigated whether working memory for incidentally generated meaningless manual gestures is influenced by formational similarity and whether this effect is modulated by working-memory load. Results showed that formational similarity did lower performance, demonstrating that similarity effects are not dependent on prior categorisation. However, this effect was only found when working-memory load was low, supporting a flexible resource allocation model according to which it is the quality rather than quantity of working memory representations that determines performance. This interpretation is in line with proposals suggesting language modality specific allocation of resources in working memory. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  5. Interaction of threat and verbal working memory in adolescents.

    Science.gov (United States)

    Patel, Nilam; Vytal, Katherine; Pavletic, Nevia; Stoodley, Catherine; Pine, Daniel S; Grillon, Christian; Ernst, Monique

    2016-04-01

    Threat induces a state of sustained anxiety that can disrupt cognitive processing, and, reciprocally, cognitive processing can modulate an anxiety response to threat. These effects depend on the level of cognitive engagement, which itself varies as a function of task difficulty. In adults, we recently showed that induced anxiety impaired working memory accuracy at low and medium but not high load. Conversely, increasing the task load reduced the physiological correlates of anxiety (anxiety-potentiated startle). The present work examines such threat-cognition interactions as a function of age. We expected threat to more strongly impact working memory in younger individuals by virtue of putatively restricted cognitive resources and weaker emotion regulation. This was tested by examining the influence of age on the interaction of anxiety and working memory in 25 adolescents (10 to 17 years) and 25 adults (22 to 46 years). Working memory load was manipulated using a verbal n-back task. Anxiety was induced using the threat of an aversive loud scream and measured via eyeblink startle. Findings revealed that, in both age groups, accuracy was lower during threat than safe conditions at low and medium but not high load, and reaction times were faster during threat than safe conditions at high load but did not differ at other loads. Additionally, anxiety-potentiated startle was greater during low and medium than high load. Thus, the interactions of anxiety with working memory appear similar in adolescents and adults. Whether these similarities reflect common neural mechanisms would need to be assessed using functional neuroimaging. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. Changing concepts of working memory

    Science.gov (United States)

    Ma, Wei Ji; Husain, Masud; Bays, Paul M

    2014-01-01

    Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's ‘magical number’ seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal. PMID:24569831

  7. Working Memory and Neurofeedback.

    Science.gov (United States)

    YuLeung To, Eric; Abbott, Kathy; Foster, Dale S; Helmer, D'Arcy

    2016-01-01

    Impairments in working memory are typically associated with impairments in other cognitive faculties such as attentional processes and short-term memory. This paper briefly introduces neurofeedback as a treatment modality in general, and, more specifically, we review several of the current modalities successfully used in neurofeedback (NF) for the treatment of working memory deficits. Two case studies are presented to illustrate how neurofeedback is applied in treatment. The development of Low Resolution Electromagnetic Tomography (LORETA) and its application in neurofeedback now makes it possible to specifically target deep cortical/subcortical brain structures. Developments in neuroscience concerning neural networks, combined with highly specific yet practical NF technologies, makes neurofeedback of particular interest to neuropsychological practice, including the emergence of specific methodologies for treating very difficult working memory (WM) problems.

  8. Maternal scaffolding in a disadvantaged global context: The influence of working memory and cognitive capacities.

    Science.gov (United States)

    Obradović, Jelena; Portilla, Ximena A; Tirado-Strayer, Nicole; Siyal, Saima; Rasheed, Muneera A; Yousafzai, Aisha K

    2017-03-01

    The current study focuses on maternal cognitive capacities as determinants of parenting in a highly disadvantaged global context, where children's experiences at home are often the 1st and only opportunity for learning and intellectual growth. In a large sample of 1,291 biological mothers of preschool-aged children in rural Pakistan, we examined the unique association of maternal working memory skills (independent of related cognitive capacities) with cognitively stimulating parenting behaviors. Path analysis revealed that directly assessed working memory, short-term memory, and verbal intelligence independently predicted greater levels of observed maternal scaffolding behaviors. Mothers from poorer families demonstrated lower levels of working memory, short-term memory, and verbal intelligence. However, mothers' participation in an early childhood parenting intervention that ended 2 years prior to this study contributed to greater levels of working memory skills and verbal intelligence. Further, all 3 domains of maternal cognitive capacity mediated the effect of family economic resources on maternal scaffolding, and verbal intelligence also mediated the effect of early parenting intervention exposure on maternal scaffolding. The study demonstrates the unique relevance of maternal working memory for scaffolding behaviors that required continuously monitoring the child's engagement, providing assistance, and minimizing external distractions. These results highlight the importance of directly targeting maternal cognitive capacities in poor women with little or no formal education, using a 2-generation intervention approach that includes activities known to promote parental executive functioning and literacy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Age-Related Decline of Precision and Binding in Visual Working Memory

    Science.gov (United States)

    2013-01-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer’s disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  10. Human temporal cortical single neuron activity during working memory maintenance.

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  11. Human Temporal Cortical Single Neuron Activity During Working Memory Maintenance

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-01-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  12. Practicing more retrieval routes leads to greater memory retention.

    Science.gov (United States)

    Zheng, Jun; Zhang, Wei; Li, Tongtong; Liu, Zhaomin; Luo, Liang

    2016-09-01

    A wealth of research has shown that retrieval practice plays a significant role in improving memory retention. The current study focused on one simple yet rarely examined question: would repeated retrieval using two different retrieval routes or using the same retrieval route twice lead to greater long-term memory retention? Participants elaborately learned 22 Japanese-Chinese translation word pairs using two different mediators. Half an hour after the initial study phase, the participants completed two retrieval sessions using either one mediator (Tm1Tm1) or two different mediators (Tm1Tm2). On the final test, which was performed 1week after the retrieval practice phase, the participants received only the cue with a request to report the mediator (M1 or M2) followed by the target (Experiment 1) or only the mediator (M1 or M2) with a request to report the target (Experiment 2). The results of Experiment 1 indicated that the participants who practiced under the Tm1Tm2 condition exhibited greater target retention than those who practiced under the Tm1Tm1 condition. This difference in performance was due to the significant disadvantage in mediator retrieval and decoding of the unpracticed mediator under the Tm1Tm1 condition. Although mediators were provided to participants on the final test in Experiment 2, decoding of the unpracticed mediators remained less effective than decoding of the practiced mediators. We conclude that practicing multiple retrieval routes leads to greater memory retention than focusing on a single retrieval route. Thus, increasing retrieval variability during repeated retrieval practice indeed significantly improves long-term retention in a delay test. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Visual working memory capacity and proactive interference.

    Science.gov (United States)

    Hartshorne, Joshua K

    2008-07-23

    Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  14. Detailed Sensory Memory, Sloppy Working Memory

    OpenAIRE

    Sligte, Ilja G.; Vandenbroucke, Annelinde R. E.; Scholte, H. Steven; Lamme, Victor A. F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a...

  15. What works in auditory working memory? A neural oscillations perspective.

    Science.gov (United States)

    Wilsch, Anna; Obleser, Jonas

    2016-06-01

    Working memory is a limited resource: brains can only maintain small amounts of sensory input (memory load) over a brief period of time (memory decay). The dynamics of slow neural oscillations as recorded using magneto- and electroencephalography (M/EEG) provide a window into the neural mechanics of these limitations. Especially oscillations in the alpha range (8-13Hz) are a sensitive marker for memory load. Moreover, according to current models, the resultant working memory load is determined by the relative noise in the neural representation of maintained information. The auditory domain allows memory researchers to apply and test the concept of noise quite literally: Employing degraded stimulus acoustics increases memory load and, at the same time, allows assessing the cognitive resources required to process speech in noise in an ecologically valid and clinically relevant way. The present review first summarizes recent findings on neural oscillations, especially alpha power, and how they reflect memory load and memory decay in auditory working memory. The focus is specifically on memory load resulting from acoustic degradation. These findings are then contrasted with contextual factors that benefit neural as well as behavioral markers of memory performance, by reducing representational noise. We end on discussing the functional role of alpha power in auditory working memory and suggest extensions of the current methodological toolkit. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  16. Training working memory updating in young adults.

    Science.gov (United States)

    Linares, Rocío; Borella, Erika; Lechuga, M Teresa; Carretti, Barbara; Pelegrina, Santiago

    2018-05-01

    Working memory updating (WMU) is a core mechanism in the human mental architecture and a good predictor of a wide range of cognitive processes. This study analyzed the benefits of two different WMU training procedures, near transfer effects on a working memory measure, and far transfer effects on nonverbal reasoning. Maintenance of any benefits a month later was also assessed. Participants were randomly assigned to: an adaptive training group that performed two numerical WMU tasks during four sessions; a non-adaptive training group that performed the same tasks but on a constant and less demanding level of difficulty; or an active control group that performed other tasks unrelated with working memory. After the training, all three groups showed improvements in most of the tasks, and these benefits were maintained a month later. The gain in one of the two WMU measures was larger for the adaptive and non-adaptive groups than for the control group. This specific gain in a task similar to the one trained would indicate the use of a better strategy for performing the task. Besides this nearest transfer effect, no other transfer effects were found. The adaptability of the training procedure did not produce greater improvements. These results are discussed in terms of the training procedure and the feasibility of training WMU.

  17. The effects of autobiographical memory and visual perspective on working memory.

    Science.gov (United States)

    Cheng, Zenghu; She, Yugui

    2018-08-01

    The present research aims to explore whether recalling and writing about autobiographical memory from different perspectives (first-person perspective vs. third-person perspective) could affect cognitive function. The participants first performed a working memory task to evaluate their working memory capacity as a baseline and then were instructed to recall (Study 1) or write about (Study 2) personal events (failures vs. successes) from the first-person perspective or the third-person perspective. Finally, they performed the working memory task again. The results suggested that autobiographical memory and perspective influence working memory interactively. When recalling a success, the participants who recalled from the third-person perspective performed better than those who recalled from the first-person perspective on the working memory capacity task; when recalling a failure, the opposite was true.

  18. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  19. Visual working memory capacity and proactive interference.

    Directory of Open Access Journals (Sweden)

    Joshua K Hartshorne

    Full Text Available BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/PRINCIPAL FINDINGS: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. CONCLUSIONS/SIGNIFICANCE: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  20. Visual Working Memory Capacity and Proactive Interference

    OpenAIRE

    Hartshorne, Joshua

    2008-01-01

    BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/P...

  1. What’s working in working memory training? An educational perspective

    Science.gov (United States)

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children’s academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial research studies, the current review of all of the available evidence of working memory training efficacy is less optimistic. Our conclusion is that working memory training produces limited benefits in terms of specific gains on short-term and working memory tasks that are very similar to the training programs, but no advantage for academic and achievement-based reading and arithmetic outcomes. PMID:26640352

  2. Visual working memory contaminates perception.

    Science.gov (United States)

    Kang, Min-Suk; Hong, Sang Wook; Blake, Randolph; Woodman, Geoffrey F

    2011-10-01

    Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different motion direction in visual working memory. Control experiments showed that none of a variety of alternative explanations could account for this repulsion effect induced by working memory. Our findings provide compelling evidence that visual working memory representations directly interact with the same neural mechanisms as those involved in processing basic sensory events.

  3. Working memory and simultaneous interpreting

    OpenAIRE

    Timarova, Sarka

    2009-01-01

    Working memory is a cognitive construct underlying a number of abilities, and it has been hypothesised for many years that it is crucial for interpreting. A number of studies have been conducted with the aim to support this hypothesis, but research has not yielded convincing results. Most researchers focused on studying working memory differences between interpreters and non-interpreters with the rationale that differences in working memory between the two groups would provide evidence of wor...

  4. Training working memory to reduce rumination.

    Directory of Open Access Journals (Sweden)

    Thomas Onraedt

    Full Text Available Cognitive symptoms of depression, such as rumination, have shown to be associated with deficits in working memory functioning. More precisely, the capacity to expel irrelevant negative information from working memory seems to be affected. Even though these associations have repeatedly been demonstrated, the nature and causal direction of this association is still unclear. Therefore, within an experimental design, we tried to manipulate working memory functioning of participants with heightened rumination scores in two similar experiments (n = 72 and n = 45 using a six day working memory training compared to active and passive control groups. Subsequently the effects on the processing of non-emotional and emotional information in working memory were monitored. In both experiments, performance during the training task significantly increased, but this performance gain did not transfer to the outcome working memory tasks or rumination and depression measures. Possible explanations for the failure to find transfer effects are discussed.

  5. Working Memory and Attitudes

    Science.gov (United States)

    Jung, Eun Sook; Reid, Norman

    2009-01-01

    Working memory capacity has been shown to be an important factor in controlling understanding in the sciences. Attitudes related to studies in the sciences are also known to be important in relation to success in learning. It might be argued that if working memory capacity is a rate controlling feature of learning and success in understanding…

  6. Working Memory and Hearing Aid Processing: Literature Findings, Future Directions, and Clinical Applications.

    Science.gov (United States)

    Souza, Pamela; Arehart, Kathryn; Neher, Tobias

    2015-01-01

    Working memory-the ability to process and store information-has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This "mismatch" is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how) working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with "low alteration" processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges) in translating information on individual working memory into clinical treatment, including clinically feasible measures of working memory.

  7. Working memory and the hippocampus.

    Science.gov (United States)

    Baddeley, Alan; Jarrold, Christopher; Vargha-Khadem, Faraneh

    2011-12-01

    A number of studies suggest an important role for the hippocampus in tasks involving visuospatial or relational working memory. We test the generality of this proposal across tasks using a battery designed to investigate the various components of working memory, studying the working memory performance of Jon, who shows a bilateral reduction in hippocampal volume of approximately 50%, comparing him to a group of 48 college students. We measure performance on four complex working memory span measures based on combining visuospatial and verbal storage with visuospatial or verbal concurrent processing as well as measuring Jon's ability to carry out the component storage and processing aspects of these tasks. Jon performed at a consistently high level across our range of tasks. Possible reasons for the apparent disparity between our own findings and earlier studies showing a hippocampal deficit are discussed in terms of both the potential differences in the demands placed on relational memory and of the proposed distinction between egocentric and allocentric visuospatial processing.

  8. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    James M Stone

    2015-06-01

    Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

  9. Assessing Working Memory in Spanish-Speaking Children: Automated Working Memory Assessment Battery Adaptation

    Science.gov (United States)

    Injoque-Ricle, Irene; Calero, Alejandra D.; Alloway, Tracy P.; Burin, Debora I.

    2011-01-01

    The Automated Working Memory Assessment battery was designed to assess verbal and visuospatial passive and active working memory processing in children and adolescents. The aim of this paper is to present the adaptation and validation of the AWMA battery to Argentinean Spanish-speaking children aged 6 to 11 years. Verbal subtests were adapted and…

  10. Can Interactive Working Memory Training Improve Learning?

    Science.gov (United States)

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  11. Working memory training improves visual short-term memory capacity.

    Science.gov (United States)

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  12. Assessment of working memory in patients with mesial temporal lobe epilepsy associated with unilateral hippocampal sclerosis.

    Science.gov (United States)

    Tudesco, Ivanda de Souza Silva; Vaz, Leonardo José; Mantoan, Marcele Araújo Silva; Belzunces, Erich; Noffs, Maria Helena; Caboclo, Luís Otávio Sales Ferreira; Yacubian, Elza Márcia Targas; Sakamoto, Américo Ceiki; Bueno, Orlando Francisco Amodeo

    2010-07-01

    The aim of the present study was to investigate whether working memory is impaired in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), a controversial and largely unexplored matter. Twenty subjects with left MTLE-HS, 19 with right MTLE-HS, and 21 control right-handed subjects underwent neuropsychological assessment of episodic and semantic memory, executive functions, and specific working memory components. Left and right epileptogenic foci resulted in impairment of verbal and nonverbal episodic memory (verbal memory deficit greater in left MTLE-HS than in right MTLE-HS). In addition, patients with left MTLE-HS were impaired in learning paired associates, verbal fluency, and Trail Making. No differences were seen in the tests carried out to evaluate the working memory components (except visuospatial short-term memory in right MTLE-HS). In this study we did not detect reliable working memory impairment in patients with MTLE-HS with either a left or right focus in most tasks considered as tests of working memory components. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    OpenAIRE

    Ricker, Timothy J.; Cowan, Nelson

    2013-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals necessarily result in more forgetting. An obstacle to directly comparing conflicting reports is a divergence in methodology across studies. Studies tha...

  14. Mental Imagery and Visual Working Memory

    OpenAIRE

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance ...

  15. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    Science.gov (United States)

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  16. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    Science.gov (United States)

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  17. Working memory and Down syndrome.

    Science.gov (United States)

    Baddeley, A; Jarrold, C

    2007-12-01

    A brief account is given of the evolution of the concept of working memory from a unitary store into a multicomponent system. Four components are distinguished, the phonological loop which is responsible for maintaining speech-based information, the visuospatial sketchpad performing a similar function for visual information, the central executive which acts as an attentional control system, and finally a new component, the episodic buffer. The buffer comprises a temporary multidimensional store which is assumed to form an interface between the various subsystems of working memory, long-term memory, and perception. The operation of the model is then illustrated through an account of a research programme concerned with the analysis of working memory in Down syndrome.

  18. Interactions between working memory and selective attention

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Event-related potential (ERP) was used to examine the interactions between working memory and selective attention. We combined two unrelated tasks, one requiring working memory and the other selective attention, which were performed by some undergraduates. The ERP results revealed that both congruent and incongruent stimuli in the selective attention task evoked an N400 component, reaching the peak point at around 500 ms. The N400 evoked by incongruent stimuli was more negative than that of congruent, which indicated the difference of semantic N400. Furthermore, working memory load had a significant influence on the N400 evoked by selective attention task in parietal region. And working memory load showed difference in the ERPs of working memory retrieval in central and parietal regions. The ERPs of probe under high working memory load were more positive from 350 to 550 ms post-stimulus; however, stimulus type of selective attention had no influence on working memory retrieval. The present study shows that working memory does not play a major role in the selective attention, especially in ignoring distracter, but it influences the performance of the selective attention as the background. The congruency of target and distracter in the selective attention task does not influence the working memory retrieval.

  19. Working memory and hearing aid processing: Literature findings, future directions, and clinical applications

    Directory of Open Access Journals (Sweden)

    Pamela eSouza

    2015-12-01

    Full Text Available Working memory—the ability to process and store information—has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This mismatch is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with low alteration processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges in translating information on individual working memory into clinical treatment, including clinically-feasible measures of working memory.

  20. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Directory of Open Access Journals (Sweden)

    Annabella Di Giorgio

    Full Text Available BACKGROUND: Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560 and in the nicotinic receptor α5 gene (CHRNA5, rs16969968 on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. METHODS: A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T and CHNRA5 rs16969968 (G>A on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. RESULTS: We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. CONCLUSIONS: The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  1. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Science.gov (United States)

    Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro

    2014-01-01

    Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  2. Disruption of visual feature binding in working memory.

    Science.gov (United States)

    Ueno, Taiji; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J; Saito, Satoru

    2011-01-01

    In a series of five experiments, we studied the effect of a visual suffix on the retention in short-term visual memory of both individual visual features and objects involving the binding of two features. Experiments 1A, 1B, and 2 involved suffixes consisting of features external to the to-be-remembered set and revealed a modest but equivalent disruption on individual and bound feature conditions. Experiments 3A and 3B involved suffixes comprising features that could potentially have formed part of the to-be-remembered set (but did not on that trial). Both experiments showed greater disruption of retention for objects comprising bound features than for their individual features. The results are interpreted as differentiating two components of suffix interference, one affecting memory for features and bindings equally, the other affecting memory for bindings. The general component is tentatively identified with the attentional cost of operating a filter to prevent the suffix from entering visual working memory, whereas the specific component is attributed to the particular fragility of bound representations when the filter fails.

  3. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  4. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  5. Liar, liar, working memory on fire: Investigating the role of working memory in childhood verbal deception.

    Science.gov (United States)

    Alloway, Tracy Packiam; McCallum, Fiona; Alloway, Ross G; Hoicka, Elena

    2015-09-01

    The aim of the current study was to investigate the role of working memory in verbal deception in children. We presented 6- and 7-year-olds with a temptation resistance paradigm; they played a trivia game and were then given an opportunity to peek at the final answers on the back of a card. Measures of both verbal and visuospatial working memory were included. The good liars performed better on the verbal working memory test in both processing and recall compared with the bad liars. However, there was no difference in visuospatial working scores between good liars and bad liars. This pattern suggests that verbal working memory plays a role in processing and manipulating the multiple pieces of information involved in lie-telling. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. How Does Working Memory Work in the Classroom?

    Science.gov (United States)

    Alloway, Tracy Packiam

    2006-01-01

    Working memory plays a key role in supporting children's learning over the school years, and beyond this into adulthood. It is proposed here that working memory is crucially required to store information while other material is being mentally manipulated during the classroom learning activities that form the foundations for the acquisition of…

  7. Prospective memory, level of disability, and return to work in severe mental illness.

    Science.gov (United States)

    Burton, Cynthia Z; Vella, Lea; Twamley, Elizabeth W

    2018-02-25

    Prospective memory (the ability to remember to do things) has clear implications for everyday functioning, including employment, in people with severe mental illnesses (SMI). This study aimed to evaluate prospective memory performance and its relationship to real-world functional variables in an employment-seeking sample of people with SMI (Clinical Trial registration number NCT00895258). 153 individuals with DSM-IV diagnosis of depression (n = 58), bipolar disorder (n = 37), or schizophrenia (n = 58) who were receiving outpatient psychiatric care at a university clinic enrolled in a trial of supported employment and completed a baseline assessment. Prospective memory was measured with the Memory for Intentions Test (MIST); real-world functional status included work history variables, clinical history variables, baseline functional capacity (UCSD Performance-based Skills Assessment-Brief), and work outcomes (weeks worked and wages earned during two years of supported employment). Participants with schizophrenia performed worse on the MIST than did those with affective disorders. Independent of diagnosis, education, and estimated intellectual functioning, prospective memory significantly predicted variance in measures of disability and illness burden (disability benefits, hospitalization history, current functional capacity), and work outcomes over two years of supported employment (weeks worked). Worse prospective memory appears to be associated with greater illness burden and functional disability in SMI. Mental health clinicians and employment specialists may counsel clients to use compensatory prospective memory strategies to improve work performance and decrease functional disability associated with SMI.

  8. P1-18: The Effect of Background Music on Working Memory

    Directory of Open Access Journals (Sweden)

    Ding-Hao Liu

    2012-10-01

    Full Text Available Many studies do visual working memory research under sundry sound conditions (Alley & Greene, 2008 Current Psychology 27 277–289; Iwanaga & Ito, 2002 Perceptual Motor Skills 94 1251–1258; Pring & Walker, 1994 Current Psychology 13 165–171. In order to understand more about background music, we modified previous studies to examine how the performance of working memory is affected by four different music conditions. Participants were randomly assigned into two groups to listen to two different pop songs to see if they have the similar effect on the performance of working memory. They were required to do six trials of digit span tasks under each music condition (silence, classical music, non-vocal music, vocal music. After being shown ten digits, each for 800 ms, participants were asked to recall and write down the digits in the correct order within 20 s. The results showed that there was no significant difference between two pop songs. Therefore, data were pooled for further analysis and indicated that there are significant differences and correlations in working memory among the four music conditions. The finding that the effect of non-vocal music affects working memory is greater in this study than in that of western films (Alley & Greene, 2008; Pring & Walker, 1994, which is consistent with the previous study in Japan (Iwanaga & Ito, 2002. The application of this study will be discussed in detail.

  9. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability

    NARCIS (Netherlands)

    Nelwan, M.; Vissers, C.T.W.M.; Kroesbergen, E.H.

    2018-01-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were

  11. Working memory, long-term memory and language processing : issues and future directions

    OpenAIRE

    Collette, Fabienne; Van der Linden, Martial; Poncelet, Martine

    2000-01-01

    We examined different views of the relationships between working memory, long-term memory and language processing : working memory considered as a gateway between sensory input and long-term memory or rather as a workspace; working memory considered as not strictly tied to any particular cognitive system (and consequently viewed as separated from the language system) or rather as drawing on the operation and storage capacities of a subset of components involved in language processing. It is a...

  12. The impact of working memory on interpreting

    Institute of Scientific and Technical Information of China (English)

    白云安; 张国梅

    2016-01-01

    This paper investigates the roles of working memory in interpreting process. First of all, it gives a brief introduction to interpreting. Secondly, the paper exemplifies the role of working memory in interpreting. The result reveals that the working memory capacity of interpreters is not adsolutely proportional to the quality of interpreting in the real interpreting conditions. The performance of an interpreter with well-equipped working memory capacity will comprehensively influenced by various elements.

  13. Effects of Stress and Task Difficulty on Working Memory and Cortical Networking.

    Science.gov (United States)

    Kim, Yujin; Woo, Jihwan; Woo, Minjung

    2017-12-01

    This study investigated interactive effects of stress and task difficulty on working memory and cortico-cortical communication during memory encoding. Thirty-eight adolescent participants (mean age of 15.7 ± 1.5 years) completed easy and hard working memory tasks under low- and high-stress conditions. We analyzed the accuracy and reaction time (RT) of working memory performance and inter- and intrahemispheric electroencephalogram coherences during memory encoding. Working memory accuracy was higher, and RT shorter, in the easy versus the hard task. RT was shorter under the high-stress (TENS) versus low-stress (no-TENS) condition, while there was no difference in memory accuracy between the two stress conditions. For electroencephalogram coherence, we found higher interhemispheric coherence in all bands but only at frontal electrode sites in the easy versus the hard task. On the other hand, intrahemispheric coherence was higher in the left hemisphere in the easy (versus hard task) and higher in the right hemisphere (with one exception) in the hard (versus easy task). Inter- and intracoherences were higher in the low- versus high-stress condition. Significant interactions between task difficulty and stress condition were observed in coherences of the beta frequency band. The difference in coherence between low- and high-stress conditions was greater in the hard compared with the easy task, with lower coherence under the high-stress condition relative to the low-stress condition. Stress seemed to cause a decrease in cortical network communications between memory-relevant cortical areas as task difficulty increased.

  14. Increased working memory-related brain activity in middle-aged women with cognitive complaints.

    Science.gov (United States)

    Dumas, Julie A; Kutz, Amanda M; McDonald, Brenna C; Naylor, Magdalena R; Pfaff, Ashley C; Saykin, Andrew J; Newhouse, Paul A

    2013-04-01

    Individuals who report subjective cognitive complaints but perform normally on neuropsychological tests might be at increased risk for pathological cognitive aging. The current study examined the effects of the presence of subjective cognitive complaints on functional brain activity during a working memory task in a sample of middle-aged postmenopausal women. Twenty-three postmenopausal women aged 50-60 completed a cognitive complaint battery of questionnaires. Using 20% of items endorsed as the threshold, 12 women were categorized as cognitive complainers (CC) and 11 were noncomplainers (NC). All subjects then took part in a functional magnetic resonance imaging scanning session during which they completed a visual-verbal N-back test of working memory. Results showed no difference in working memory performance between CC and NC groups. However, the CC group showed greater activation relative to the NC group in a broad network involved in working memory including the middle frontal gyrus (Brodmann area [BA] 9 and 10), the precuneus (BA 7), and the cingulate gyrus (BA 24 and 32). The CC group recruited additional regions of the working memory network compared with the NC group as the working memory load and difficulty of the task increased. This study showed brain activation differences during working memory performance in a middle-aged group of postmenopausal women with subjective cognitive complaints but without objective cognitive deficit. These findings suggest that subjective cognitive complaints in postmenopausal women might be associated with increased cortical activity during effort-demanding cognitive tasks. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Delayed Recall and Working Memory MMSE Domains Predict Delirium following Cardiac Surgery.

    Science.gov (United States)

    Price, Catherine C; Garvan, Cynthia; Hizel, Loren P; Lopez, Marcos G; Billings, Frederic T

    2017-01-01

    Reduced preoperative cognition is a risk factor for postoperative delirium. The significance for type of preoperative cognitive deficit, however, has yet to be explored and could provide important insights into mechanisms and prediction of delirium. Our goal was to determine if certain cognitive domains from the general cognitive screener, the Mini-Mental State Exam (MMSE), predict delirium after cardiac surgery. Patients completed a preoperative MMSE prior to undergoing elective cardiac surgery. Following surgery, delirium was assessed throughout ICU stay using the Confusion Assessment Method for ICU delirium and the Richmond Agitation and Sedation Scale. Cardiac surgery patients who developed delirium (n = 137) had lower total MMSE scores than patients who did not develop delirium (n = 457). In particular, orientation to place, working memory, delayed recall, and language domain scores were lower. Of these, only the working memory and delayed recall domains predicted delirium in a regression model adjusting for history of chronic obstructive pulmonary disease, age, sex, and duration of cardiopulmonary bypass. For each word not recalled on the three-word delayed recall assessment, the odds of delirium increased by 50%. For each item missed on the working memory index, the odds of delirium increased by 36%. Of the patients who developed delirium, 47% had a primary impairment in memory, 21% in working memory, and 33% in both domains. The area under the receiver operating characteristics curve using only the working memory and delayed recall domains was 0.75, compared to 0.76 for total MMSE score. Delirium risk is greater for individuals with reduced MMSE scores on the delayed recall and working memory domains. Research should address why patients with memory and executive vulnerabilities are more prone to postoperative delirium than those with other cognitive limitations.

  16. Temporal dynamics of visual working memory.

    Science.gov (United States)

    Sobczak-Edmans, M; Ng, T H B; Chan, Y C; Chew, E; Chuang, K H; Chen, S H A

    2016-01-01

    The involvement of the human cerebellum in working memory has been well established in the last decade. However, the cerebro-cerebellar network for visual working memory is not as well defined. Our previous fMRI study showed superior and inferior cerebellar activations during a block design visual working memory task, but specific cerebellar contributions to cognitive processes in encoding, maintenance and retrieval have not yet been established. The current study examined cerebellar contributions to each of the components of visual working memory and presence of cerebellar hemispheric laterality was investigated. 40 young adults performed a Sternberg visual working memory task during fMRI scanning using a parametric paradigm. The contrast between high and low memory load during each phase was examined. We found that the most prominent activation was observed in vermal lobule VIIIb and bilateral lobule VI during encoding. Using a quantitative laterality index, we found that left-lateralized activation of lobule VIIIa was present in the encoding phase. In the maintenance phase, there was bilateral lobule VI and right-lateralized lobule VIIb activity. Changes in activation in right lobule VIIIa were present during the retrieval phase. The current results provide evidence that superior and inferior cerebellum contributes to visual working memory, with a tendency for left-lateralized activations in the inferior cerebellum during encoding and right-lateralized lobule VIIb activations during maintenance. The results of the study are in agreement with Baddeley's multi-component working memory model, but also suggest that stored visual representations are additionally supported by maintenance mechanisms that may employ verbal coding. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Is working memory working against suggestion susceptibility? Results from extended version of DRM paradigm

    Directory of Open Access Journals (Sweden)

    Maciaszek Patrycja

    2016-04-01

    Full Text Available The paper investigates relationship between working memory efficiency, defined as the result of its’ processing & storage capacity (Oberauer et al., 2003 and the tendency to (1 create assosiative memory distortions (false memories, FM; (2 yield under the influence of external, suggesting factors. Both issues were examined using extended version of Deese-Roediger-McDermott procedure (1959, 1995, modified in order to meet the study demands. Suggestion was contained in an ostentatious feedback information the participants (N=88 received during the DRM procedure. Working memory (WM was measured by standardized tasks (n-back, Jaeggi et al., 2010; automatic-ospan, Unsworth et al., 2005. Study included 3 conditions, differing in the quality of suggestion (positive, negative or neutral. Participants were assigned into 3 groups, depending on results they achieved completing the WM tasks. Obtained results alongside the previously set hypothesis, revealed that (1 WM impacts individuals’ tendency to create false memories in DRM and (2 that the individuals showing higher rates in WM tasks are less willing to yield to suggestion compared to those with lesser ones. It also showed that the greater amount to shift (Gudjonsson, 2003, emerges under the negative suggestion condition (collating positive. Notwithstanding that the interaction effect did not achieve saliency, both analyzed factors (WM and suggesting content are considered as meaningful to explain memory suggestion susceptibility in presented study. Although, obtained results emphasize the crucial role of WM efficiency, that is believed to decide the magnitude of feedback that is influential in every subject. Therefore, issue demands further exploration.

  18. The Effects of Maltreatment in Childhood on Working Memory Capacity in Adulthood.

    Science.gov (United States)

    Dodaj, Arta; Krajina, Marijana; Sesar, Kristina; Šimić, Nataša

    2017-11-01

    The aim of this study was to research the relation between exposure to maltreatment in childhood and working memory capacity in adulthood. A survey among 376 females in the age between 16 and 67 was administered. Exposure to maltreatment in childhood (sexual, physical and psychological abuse, neglect and witnessing family violence) was assessed retrospectively using the Child Maltreatment Questionnaire (Karlović, Buljan-Flander, & Vranić, 2001), whilst the Working Memory Questionnaire (Vallat-Azouvi, Pradat-Diehl, & Azouvi, 2012) was used to assess working memory capacity (recalling verbal information, numerical information, attention ability and executive functioning). The results suggest a significantly greater prevalence of physical abuse and witnessing family violence in comparison to other forms of maltreatment in childhood. Psychological abuse and witnessing family violence have shown themselves to be statistically significant predictors for deficits in total working memory capacity, verbal recall and attention ability. The results suggest that traumatic experiences during childhood, such as abuse, may trigger particular cognitive changes which may be reflected in adulthood. It is, therefore, exceedingly important to conduct further research in order to contribute to the understanding of the correlation between cognitive difficulties and maltreatment in childhood.

  19. Components of working memory and visual selective attention.

    Science.gov (United States)

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. What drives sleep-dependent memory consolidation: greater gain or less loss?

    Science.gov (United States)

    Fenn, Kimberly M; Hambrick, David Z

    2013-06-01

    When memory is tested after a delay, performance is typically better if the retention interval includes sleep. However, it is unclear what accounts for this well-established effect. It is possible that sleep enhances the retrieval of information, but it is also possible that sleep protects against memory loss that normally occurs during waking activity. We developed a new research approach to investigate these possibilities. Participants learned a list of paired-associate items and were tested on the items after a 12-h interval that included waking or sleep. We analyzed the number of items gained versus the number of items lost across time. The sleep condition showed more items gained and fewer items lost than did the wake condition. Furthermore, the difference between the conditions (favoring sleep) in lost items was greater than the difference in gain, suggesting that loss prevention may primarily account for the effect of sleep on declarative memory consolidation. This finding may serve as an empirical constraint on theories of memory consolidation.

  1. Transfer after Working Memory Updating Training

    OpenAIRE

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active cont...

  2. Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory: A Randomized Clinical Trial.

    Science.gov (United States)

    Roberts, Gehan; Quach, Jon; Spencer-Smith, Megan; Anderson, Peter J; Gathercole, Susan; Gold, Lisa; Sia, Kah-Ling; Mensah, Fiona; Rickards, Field; Ainley, John; Wake, Melissa

    2016-05-02

    Working memory training may help children with attention and learning difficulties, but robust evidence from population-level randomized controlled clinical trials is lacking. To test whether a computerized adaptive working memory intervention program improves long-term academic outcomes of children 6 to 7 years of age with low working memory compared with usual classroom teaching. Population-based randomized controlled clinical trial of first graders from 44 schools in Melbourne, Australia, who underwent a verbal and visuospatial working memory screening. Children were classified as having low working memory if their scores were below the 15th percentile on either the Backward Digit Recall or Mister X subtest from the Automated Working Memory Assessment, or if their scores were below the 25th percentile on both. These children were randomly assigned by an independent statistician to either an intervention or a control arm using a concealed computerized random number sequence. Researchers were blinded to group assignment at time of screening. We conducted our trial from March 1, 2012, to February 1, 2015; our final analysis was on October 30, 2015. We used intention-to-treat analyses. Cogmed working memory training, comprising 20 to 25 training sessions of 45 minutes' duration at school. Directly assessed (at 12 and 24 months) academic outcomes (reading, math, and spelling scores as primary outcomes) and working memory (also assessed at 6 months); parent-, teacher-, and child-reported behavioral and social-emotional functioning and quality of life; and intervention costs. Of 1723 children screened (mean [SD] age, 6.9 [0.4] years), 226 were randomized to each arm (452 total), with 90% retention at 1 year and 88% retention at 2 years; 90.3% of children in the intervention arm completed at least 20 sessions. Of the 4 short-term and working memory outcomes, 1 outcome (visuospatial short-term memory) benefited the children at 6 months (effect size, 0.43 [95% CI, 0

  3. The nature of working memory for Braille.

    Science.gov (United States)

    Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter

    2010-05-26

    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  4. Precision of working memory for speech sounds.

    Science.gov (United States)

    Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud

    2015-01-01

    Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.

  5. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of working memory contents and perceptual load on distractor processing: When a response-related distractor is held in working memory.

    Science.gov (United States)

    Koshino, Hideya

    2017-01-01

    Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    Science.gov (United States)

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Consciousness and working memory: Current trends and research perspectives.

    Science.gov (United States)

    Velichkovsky, Boris B

    2017-10-01

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Caffeine, extraversion and working memory.

    Science.gov (United States)

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  10. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    OpenAIRE

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their...

  11. The sensory components of high-capacity iconic memory and visual working memory

    OpenAIRE

    Claire eBradley; Claire eBradley; Joel ePearson

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their c...

  12. What's Working in Working Memory Training? An Educational Perspective

    Science.gov (United States)

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children's academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial…

  13. Memory rehabilitation for the working memory of patients with multiple sclerosis (MS).

    Science.gov (United States)

    Mousavi, Shokoufeh; Zare, Hossein; Etemadifar, Masoud; Taher Neshatdoost, Hamid

    2018-05-01

    The main cognitive impairments in multiple sclerosis (MS) affect the working memory, processing speed, and performances that are in close interaction with one another. Cognitive problems in MS are influenced to a lesser degree by disease recovery medications or treatments,but cognitive rehabilitation is considered one of the promising methods for cure. There is evidence regarding the effectiveness of cognitive rehabilitation for MS patients in various stages of the disease. Since the impairment in working memory is one of the main MS deficits, a particular training that affects this cognitive domain can be of a great value. This study aims to determine the effectiveness of memory rehabilitation on the working memory performance of MS patients. Sixty MS patients with cognitive impairment and similar in terms of demographic characteristics, duration of disease, neurological problems, and mental health were randomly assigned to three groups: namely, experimental, placebo, and control. Patients' cognitive evaluation incorporated baseline assessments immediately post-intervention and 5 weeks post-intervention. The experimental group received a cognitive rehabilitation program in one-hour sessions on a weekly basis for 8 weeks. The placebo group received relaxation techniques on a weekly basis; the control group received no intervention. The results of this study showed that the cognitive rehabilitation program had a positive effect on the working memory performance of patients with MS in the experimental group. These results were achieved in immediate evaluation (post-test) and follow-up 5 weeks after intervention. There was no significant difference in working memory performance between the placebo group and the control group. According to the study, there is evidence for the effectiveness of a memory rehabilitation program for the working memory of patients with MS. Cognitive rehabilitation can improve working memory disorders and have a positive effect on the

  14. The nature of working memory for Braille.

    Directory of Open Access Journals (Sweden)

    Henri Cohen

    Full Text Available Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV. In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  15. Working Memory Influences on Long-Term Memory and Comprehension

    National Research Council Canada - National Science Library

    Radvansky, Gabriel

    2004-01-01

    .... This study looked at how comprehension and memory processing at the mental model level is related to traditional measures of working memory capacity, including the word span, reading span, operation...

  16. Beyond perceptual load and dilution: a review of the role of working memory in selective attention.

    Science.gov (United States)

    de Fockert, Jan W

    2013-01-01

    The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.

  17. Beyond perceptual load and dilution: a review of the role of working memory in selective attention

    Directory of Open Access Journals (Sweden)

    Jan W. De Fockert

    2013-05-01

    Full Text Available The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.

  18. Beyond perceptual load and dilution: a review of the role of working memory in selective attention

    Science.gov (United States)

    de Fockert, Jan W.

    2013-01-01

    The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139

  19. Reading and Working Memory

    Science.gov (United States)

    Baddeley, Alan

    1984-01-01

    Outlines the concept of working memory, with particular reference to a hypothetical subcomponent, the articulatory loop. Discusses the role of the loop in fluent adult reading, then examines the reading performance of adults with deficits in auditory verbal memory, showing that a capacity to articulate is not necessary for the effective…

  20. Control of Interference during Working Memory Updating

    Science.gov (United States)

    Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, Andre; Kemps, Eva

    2011-01-01

    The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive…

  1. Modulation of working memory updating: Does long-term memory lexical association matter?

    Science.gov (United States)

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  2. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  3. Directional hippocampal-prefrontal interactions during working memory.

    Science.gov (United States)

    Liu, Tiaotiao; Bai, Wenwen; Xia, Mi; Tian, Xin

    2018-02-15

    Working memory refers to a system that is essential for performing complex cognitive tasks such as reasoning, comprehension and learning. Evidence shows that hippocampus (HPC) and prefrontal cortex (PFC) play important roles in working memory. The HPC-PFC interaction via theta-band oscillatory synchronization is critical for successful execution of working memory. However, whether one brain region is leading or lagging relative to another is still unclear. Therefore, in the present study, we simultaneously recorded local field potentials (LFPs) from rat ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) and while the rats performed a Y-maze working memory task. We then applied instantaneous amplitudes cross-correlation method to calculate the time lag between PFC and vHPC to explore the functional dynamics of the HPC-PFC interaction. Our results showed a strong lead from vHPC to mPFC preceded an animal's correct choice during the working memory task. These findings suggest the vHPC-leading interaction contributes to the successful execution of working memory. Copyright © 2017. Published by Elsevier B.V.

  4. Working memory overload: fronto-limbic interactions and effects on subsequent working memory function.

    Science.gov (United States)

    Yun, Richard J; Krystal, John H; Mathalon, Daniel H

    2010-03-01

    The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.

  5. Individual variation in working memory is associated with fear extinction performance.

    Science.gov (United States)

    Stout, Daniel M; Acheson, Dean T; Moore, Tyler M; Gur, Ruben C; Baker, Dewleen G; Geyer, Mark A; Risbrough, Victoria B

    2018-03-01

    PTSD has been associated consistently with abnormalities in fear acquisition and extinction learning and retention. Fear acquisition refers to learning to discriminate between threat and safety cues. Extinction learning reflects the formation of a new inhibitory-memory that competes with a previously learned threat-related memory. Adjudicating the competition between threat memory and the new inhibitory memory during extinction may rely, in part, on cognitive processes such as working memory (WM). Despite significant shared neural circuits and signaling pathways the relationship between WM, fear acquisition, and extinction is poorly understood. Here, we analyzed data from a large sample of healthy Marines who underwent an assessment battery including tests of fear acquisition, extinction learning, and WM (N-back). Fear potentiated startle (FPS), fear expectancy ratings, and self-reported anxiety served as the primary dependent variables. High WM ability (N = 192) was associated with greater CS + fear inhibition during the late block of extinction and greater US expectancy change during extinction learning compared to individuals with low WM ability (N = 204). WM ability was not associated with magnitude of fear conditioning/expression. Attention ability was unrelated to fear acquisition or extinction supporting specificity of WM associations with extinction. These results support the conclusion that individual differences in WM may contribute to regulating fear responses. Copyright © 2018. Published by Elsevier Ltd.

  6. Short-term and working memory impairments in aphasia.

    Science.gov (United States)

    Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis

    2011-08-01

    The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Working, declarative and procedural memory in specific language impairment

    Science.gov (United States)

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  8. The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory

    OpenAIRE

    Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark

    2014-01-01

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory lo...

  9. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates.

    Science.gov (United States)

    Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P

    2013-06-04

    Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.

  11. Gaming is related to enhanced working memory performance and task-related cortical activity.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Carlson, S; Vuontela, V; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2017-01-15

    Gaming experience has been suggested to lead to performance enhancements in a wide variety of working memory tasks. Previous studies have, however, mostly focused on adult expert gamers and have not included measurements of both behavioral performance and brain activity. In the current study, 167 adolescents and young adults (aged 13-24 years) with different amounts of gaming experience performed an n-back working memory task with vowels, with the sensory modality of the vowel stream switching between audition and vision at random intervals. We studied the relationship between self-reported daily gaming activity, working memory (n-back) task performance and related brain activity measured using functional magnetic resonance imaging (fMRI). The results revealed that the extent of daily gaming activity was related to enhancements in both performance accuracy and speed during the most demanding (2-back) level of the working memory task. This improved working memory performance was accompanied by enhanced recruitment of a fronto-parietal cortical network, especially the dorsolateral prefrontal cortex. In contrast, during the less demanding (1-back) level of the task, gaming was associated with decreased activity in the same cortical regions. Our results suggest that a greater degree of daily gaming experience is associated with better working memory functioning and task difficulty-dependent modulation in fronto-parietal brain activity already in adolescence and even when non-expert gamers are studied. The direction of causality within this association cannot be inferred with certainty due to the correlational nature of the current study. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Working memory capacity and controlled serial memory search.

    Science.gov (United States)

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  14. Verbal declarative memory impairments in specific language impairment are related to working memory deficits

    OpenAIRE

    Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina

    2015-01-01

    This study examined verbal declarative memory functioning in SLI and its relationship to working memory. Encoding, recall, and recognition of verbal information was examined in children with SLI who had below average working memory (SLILow WM), children with SLI who had average working memory (SLIAvg. WM) and, a group of non-language impaired children with average working memory (TDAvg. WM). The SLILow WM group was significantly worse than both the SLIAvg. WM and TDAvg. WM groups at encoding ...

  15. Functional MR imaging of working memory before neurosurgery

    International Nuclear Information System (INIS)

    Wunderlich, A.P.; Groen, G.; Braun, V.

    2007-01-01

    Information concerning the tissue adjacent to a brain tumour is crucial for planning and performing a neurosurgical intervention. In this study, we evaluated the usefulness of functional imaging of working memory in terms of working memory preservation. Working memory performance of 14 patients with prefrontal tumours was tested preoperatively by means of a standardized neuropsychological test battery. Also, functional magnetic resonance imaging (fMRI) using a so-called two-back paradigm was performed to visualize brain areas related to that task. Working memory areas were reliably detected in all patients. Surgery was then planned on the basis of this information, and the data were used for intra-operative cranial neuronavigation. Three to twelve months after surgery, patients were tested again with the test battery in order to detect possible changes in working memory performance. In 13 cases the memory performance was unchanged, only one female patient had a slight impairment of working memory compared to the pre-operative status. (orig.)

  16. Working-memory training improves developmental dyslexia in Chinese children

    Institute of Scientific and Technical Information of China (English)

    Yan Luo; Jing Wang; Hanrong Wu; Dongmei Zhu; Yu Zhang

    2013-01-01

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.

  17. Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.

    Science.gov (United States)

    Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M

    2015-11-01

    Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.

  18. Neural oscillations in auditory working memory

    OpenAIRE

    Wilsch, A.

    2015-01-01

    The present thesis investigated memory load and memory decay in auditory working memory. Alpha power as a marker for memory load served as the primary indicator for load and decay fluctuations hypothetically reflecting functional inhibition of irrelevant information. Memory load was induced by presenting auditory signals (syllables and pure-tone sequences) in noise because speech-in-noise has been shown before to increase memory load. The aim of the thesis was to assess with magnetoencephalog...

  19. The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory

    Science.gov (United States)

    Unsworth, Nash; Engle, Randall W.

    2007-01-01

    Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…

  20. Alpha power gates relevant information during working memory updating.

    Science.gov (United States)

    Manza, Peter; Hau, Chui Luen Vera; Leung, Hoi-Chung

    2014-04-23

    Human working memory (WM) is inherently limited, so we must filter out irrelevant information in our environment or our mind while retaining limited important relevant contents. Previous work suggests that neural oscillations in the alpha band (8-14 Hz) play an important role in inhibiting incoming distracting information during attention and selective encoding tasks. However, whether alpha power is involved in inhibiting no-longer-relevant content or in representing relevant WM content is still debated. To clarify this issue, we manipulated the amount of relevant/irrelevant information using a task requiring spatial WM updating while measuring neural oscillatory activity via EEG and localized current sources across the scalp using a surface Laplacian transform. An initial memory set of two, four, or six spatial locations was to be memorized over a delay until an updating cue was presented indicating that only one or three locations remained relevant for a subsequent recognition test. Alpha amplitude varied with memory maintenance and updating demands among a cluster of left frontocentral electrodes. Greater postcue alpha power was associated with the high relevant load conditions (six and four dots cued to reduce to three relevant) relative to the lower load conditions (four and two dots reduced to one). Across subjects, this difference in alpha power was correlated with condition differences in performance accuracy. In contrast, no significant effects of irrelevant load were observed. These findings demonstrate that, during WM updating, alpha power reflects maintenance of relevant memory contents rather than suppression of no-longer-relevant memory traces.

  1. Working memory, short-term memory and reading proficiency in school-age children with cochlear implants.

    Science.gov (United States)

    Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby

    2015-10-01

    The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these

  2. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  3. Working-memory training improves developmental dyslexia in Chinese children★

    OpenAIRE

    Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu

    2013-01-01

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8–11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the...

  4. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A functional magnetic resonance imaging study of working memory in youth after sports-related concussion: is it still working?

    Science.gov (United States)

    Keightley, Michelle L; Saluja, Rajeet Singh; Chen, Jen-Kai; Gagnon, Isabelle; Leonard, Gabriel; Petrides, Michael; Ptito, Alain

    2014-03-01

    Abstract In children, the importance of detecting deficits after mild traumatic brain injury (mTBI) or concussion has grown with the increasing popularity of leisure physical activities and contact sports. Whereas most postconcussive symptoms (PCS) are similar for children and adults, the breadth of consequences to children remains largely unknown. To investigate the effect of mTBI on brain function, we compared working memory performance and related brain activity using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 15 concussed youths and 15 healthy age-matched control subjects. Neuropsychological tests, self-perceived PCS, and levels of anxiety and depression were also assessed. Our results showed that, behaviorally, concussed youths had significantly worse performances on the working memory tasks, as well as on the Rey figure delayed recall and verbal fluency. fMRI results revealed that, compared to healthy children, concussed youths had significantly reduced task-related activity in bilateral dorsolateral prefrontal cortex, left premotor cortex, supplementary motor area, and left superior parietal lobule during performance of verbal and nonverbal working memory tasks. Additionally, concussed youths also showed less activation than healthy controls in the dorsal anterior cingulate cortex, left thalamus, and left caudate nucleus during the nonverbal task. Regression analysis indicated that BOLD signal changes in bilateral dorsolateral prefrontal cortex were significantly correlated with performance such that greater activities in these regions, relative to the control condition, were associated with greater accuracy. Our findings confirmed functional alterations in brain activity after concussion in youths, a result similar to that observed in adults. However, significant differences were noted. In particular, the observation of reduced working memory accuracy suggests that youths may be unable to engage compensatory

  6. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    Directory of Open Access Journals (Sweden)

    Elien Segers

    2018-03-01

    Full Text Available Introduction: Behavioral Parent Training (BPT is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children.Methods: Ninety-seven children (age 6–10 completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials, followed by an extinction phase (80 trials. Data of 88 children were used for analysis.Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF condition. Working memory was negatively related to acquisition but not extinction performance.Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement.

  7. Working Memory and Short-Term Memory Abilities in Accomplished Multilinguals

    Science.gov (United States)

    Biedron, Adriana; Szczepaniak, Anna

    2012-01-01

    The role of short-term memory and working memory in accomplished multilinguals was investigated. Twenty-eight accomplished multilinguals were compared to 36 mainstream philology students. The following instruments were used in the study: three memory subtests of the Wechsler Intelligence Scale (Digit Span, Digit-Symbol Coding, and Arithmetic,…

  8. Cardiovascular Fitness is Associated with Altered Cortical Glucose Metabolism During Working Memory in ε4 Carriers

    Science.gov (United States)

    Deeny, Sean P.; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M.; Wu, Joseph C.; Dick, Malcolm; Cotman, Carl W.

    2012-01-01

    Background The possibility that ε4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ε4, fitness and cerebral metabolism in 18 healthy aged females (9 Carriers, 9 Non-carriers) during working memory. Methods Participants underwent VO2 max, CVLT and FDG-PET, collected at rest and during completion of the Sternberg Working Memory Task. Results Resting FDG-PET did not differ between carriers and non-carriers. Significant effects of fitness on FDG-PET during working memory was noted in the ε4 carriers only. High Fit ε4 carriers had greater glucose uptake than the Low Fit in the temporal lobe, but Low Fit had greater glucose uptake in the frontal and parietal lobes. Conclusion(s) We demonstrate that fitness differentially affects cerebral metabolism in ε4 carriers only, consistent with previous findings that the effects of fitness may be more pronounced in populations genetically at risk for cognitive decline. PMID:22226798

  9. Cardiovascular fitness is associated with altered cortical glucose metabolism during working memory in ɛ4 carriers.

    Science.gov (United States)

    Deeny, Sean P; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M; Wu, Joseph C; Dick, Malcolm; Cotman, Carl W

    2012-07-01

    The possibility that ɛ4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ɛ4, fitness, and cerebral metabolism in 18 healthy aged women (nine carriers, nine noncarriers) during working memory. Participants were evaluated using maximal level of oxygen consumption, California Verbal Learning Test, and FDG-PET, which were collected at rest and during completion of the Sternberg working memory task. Resting FDG-PET did not differ between carriers and noncarriers. Significant effects of fitness on FDG-PET during working memory were noted in the ɛ4 carriers only. High fit ɛ4 carriers had greater glucose uptake in the temporal lobe than the low fit ɛ4 carriers, but low fit ɛ4 carriers had greater glucose uptake in the frontal and parietal lobes. We demonstrate that fitness differentially affects cerebral metabolism in ɛ4 carriers only, consistent with previous findings that the effects of fitness may be more pronounced in populations genetically at risk for cognitive decline. Published by Elsevier Inc.

  10. Shielding cognition from nociception with working memory.

    Science.gov (United States)

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  12. Default network connectivity during a working memory task.

    Science.gov (United States)

    Bluhm, Robyn L; Clark, C Richard; McFarlane, Alexander C; Moores, Kathryn A; Shaw, Marnie E; Lanius, Ruth A

    2011-07-01

    The default network exhibits correlated activity at rest and has shown decreased activation during performance of cognitive tasks. There has been little investigation of changes in connectivity of this network during task performance. In this study, we examined task-related modulation of connectivity between two seed regions from the default network posterior cingulated cortex (PCC) and medial prefrontal cortex (mPFC) and the rest of the brain in 12 healthy adults. The purpose was to determine (1) whether connectivity within the default network differs between a resting state and performance of a cognitive (working memory) task and (2) whether connectivity differs between these nodes of the default network and other brain regions, particularly those implicated in cognitive tasks. There was little change in connectivity with the other main areas of the default network for either seed region, but moderate task-related changes in connectivity occurred between seed regions and regions outside the default network. For example, connectivity of the mPFC with the right insula and the right superior frontal gyrus decreased during task performance. Increased connectivity during the working memory task occurred between the PCC and bilateral inferior frontal gyri, and between the mPFC and the left inferior frontal gyrus, cuneus, superior parietal lobule, middle temporal gyrus and cerebellum. Overall, the areas showing greater correlation with the default network seed regions during task than at rest have been previously implicated in working memory tasks. These changes may reflect a decrease in the negative correlations occurring between the default and task-positive networks at rest. Copyright © 2010 Wiley-Liss, Inc.

  13. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  14. The working memory networks of the human brain.

    Science.gov (United States)

    Linden, David E J

    2007-06-01

    Working memory and short-term memory are closely related in their cognitive architecture, capacity limitations, and functional neuroanatomy, which only partly overlap with those of long-term memory. The author reviews the functional neuroimaging literature on the commonalities and differences between working memory and short-term memory and the interplay of areas with modality-specific and supramodal representations in the brain networks supporting these fundamental cognitive processes. Sensory stores in the visual, auditory, and somatosensory cortex play a role in short-term memory, but supramodal parietal and frontal areas are often recruited as well. Classical working memory operations such as manipulation, protection against interference, or updating almost certainly require at least some degree of prefrontal support, but many pure maintenance tasks involve these areas as well. Although it seems that activity shifts from more posterior regions during encoding to more anterior regions during delay, some studies reported sustained delay activity in sensory areas as well. This spatiotemporal complexity of the short-term memory/working memory networks is mirrored in the activation patterns that may explain capacity constraints, which, although most prominent in the parietal cortex, seem to be pervasive across sensory and premotor areas. Finally, the author highlights open questions for cognitive neuroscience research of working memory, such as that of the mechanisms for integrating different types of content (binding) or those providing the link to long-term memory.

  15. Effects of aging on working memory performance and prefrontal cortex activity:A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy (TRS) to explore age‐related differences in prefrontal cortex (PFC) activity while subjects performed a working memory task. Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory (WM) task. All subjects performed the Sternberg test (ST) in which the memory‐set size varied between one and six digits. Using TRS, we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task. In order to identify left/right asymmetry of PFC activity during the working memory task, we calculated the laterality score, i.e.,Δoxy‐Hb (rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC, while negative values indicate greater activity in the left PFC. Results:During the ST, statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load. In high memory‐load tasks, however, older subjects were slower than younger subjects (P Conclusions: The present results are consistent with the hemispheric asymmetry reduction in older adults (HAROLD) model;working memory tasks cause asymmetrical PFC activation in younger adults, while older adults tend to show reduced hemispheric lateralization.

  16. Working Memory From the Psychological and Neurosciences Perspectives: A Review.

    Science.gov (United States)

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural

  17. Working memory predicts the rejection of false memories.

    Science.gov (United States)

    Leding, Juliana K

    2012-01-01

    The relationship between working memory capacity (WMC) and false memories in the memory conjunction paradigm was explored. Previous research using other paradigms has shown that individuals high in WMC are not as likely to experience false memories as low-WMC individuals, the explanation being that high-WMC individuals are better able to engage in source monitoring. In the memory conjunction paradigm participants are presented at study with parent words (e.g., eyeglasses, whiplash). At test, in addition to being presented with targets and foils, participants are presented with lures that are composed of previously studied features (e.g., eyelash). It was found that high-WMC individuals had lower levels of false recognition than low-WMC individuals. Furthermore, recall-to-reject responses were analysed (e.g., "I know I didn't see eyelash because I remember seeing eyeglasses") and it was found that high-WMC individuals were more likely to utilise this memory editing strategy, providing direct evidence that one reason that high-WMC individuals are not as prone to false memories is because they are better able to engage in source monitoring.

  18. Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits

    Directory of Open Access Journals (Sweden)

    Maria eEngstrom

    2013-04-01

    Full Text Available Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network (involving the anterior insular cortex and the anterior cingulate cortex might be of particular importance to working memory tasks that require complex, effortful processing. Method: Healthy participants (n=26 and participants suffering from working memory problems related to the Kleine-Levin syndrome (a specific form of periodic idiopathic hypersomnia; n=18 participated in the study. Participants were further divided into a high and low capacity group, according to performance on a working memory task (listening span. In a functional Magnetic Resonance Imaging (fMRI study, participants were administered the reading span complex working memory task tapping cognitive effort. Principal findings: The fMRI-derived blood oxygen level dependent (BOLD signal was modulated by 1 effort in both the central executive and the salience network and 2 capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. Conclusion: The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive network so that high-capacity participants evidence a lower signal and possibly hence a larger

  19. Examining procedural working memory processing in obsessive-compulsive disorder.

    Science.gov (United States)

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Working memory can enhance unconscious visual perception.

    Science.gov (United States)

    Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying

    2012-06-01

    We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.

  1. Working Memory From the Psychological and Neurosciences Perspectives: A Review

    Directory of Open Access Journals (Sweden)

    Wen Jia Chai

    2018-03-01

    Full Text Available Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent

  2. Working Memory From the Psychological and Neurosciences Perspectives: A Review

    Science.gov (United States)

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized

  3. Working Memory and Developmental Language Impairments

    Science.gov (United States)

    Henry, Lucy A.; Botting, Nicola

    2017-01-01

    Children with developmental language impairments (DLI) are often reported to show difficulties with working memory. This review describes the four components of the well-established working memory model, and considers whether there is convincing evidence for difficulties within each component in children with DLI. The emphasis is on the most…

  4. Working Memory Interventions with Children: Classrooms or Computers?

    Science.gov (United States)

    Colmar, Susan; Double, Kit

    2017-01-01

    The importance of working memory to classroom functioning and academic outcomes has led to the development of many interventions designed to enhance students' working memory. In this article we briefly review the evidence for the relative effectiveness of classroom and computerised working memory interventions in bringing about measurable and…

  5. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory.

    Science.gov (United States)

    Nees, Michael A

    2016-01-01

    Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3-5 s) are compared, and a "same" or "different" judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory-especially two-stimulus comparison tasks-may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  6. Resource-sharing in multiple-component working memory

    OpenAIRE

    Doherty, Jason M.; Logie, Robert H.

    2016-01-01

    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the fu...

  7. Teachers' Perceptions of Classroom Behaviour and Working Memory

    Science.gov (United States)

    Alloway, Tracy Packiam

    2012-01-01

    Working memory, ability to remember and manipulate information, is crucial to academic attainment. The aim of the present study was to understand teachers' perception of working memory and how it impacts classroom behaviour. A semi-structured interview was used to explore teachers' ability to define working memory, identify these difficulties in…

  8. Music training and working memory: an ERP study.

    Science.gov (United States)

    George, Elyse M; Coch, Donna

    2011-04-01

    While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Working-memory performance is related to spatial breadth of attention.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2015-11-01

    Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.

  10. A metacognitive visuospatial working memory training for children

    Directory of Open Access Journals (Sweden)

    Sara Caviola

    2009-10-01

    Full Text Available The paper studies whether visuospatial working memory (VSWM and, specifically, recall of sequential-spatial information, can be improved by metacognitive training. Twenty-two fourth-grade children were involved in seven sessions of sequential-spatial memory training, while twenty-four children attended lessons given by their teacher. The posttraining evaluation demonstrated a specific improvement of performances in the Corsi blocks task, considered a sequential-spatial working memory task. However, no benefits of training were observed in either a verbal working memory task or a simultaneous-spatial working memory task. The results have important theoretical implications, in the study of VSWM components, and educational implications, in catering for children with specific VSWM impairments.

  11. The sensory components of high-capacity iconic memory and visual working memory.

    Science.gov (United States)

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  12. The sensory components of high-capacity iconic memory and visual working memory

    Directory of Open Access Journals (Sweden)

    Claire eBradley

    2012-09-01

    Full Text Available Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of 3 different visual features (colour, orientation and motion across a range of durations from 0 to 6 seconds. We found that the amount of information stored in iconic memory is smaller for motion than for colour or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ~2 seconds. Further experiments showed that performance for the 10 items at 1 second was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory and an effortful ‘lower-capacity’ visual working memory.

  13. Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.

    Science.gov (United States)

    Brocken, J E A; Kal, E C; van der Kamp, J

    2016-01-01

    The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.

  14. Structural correlates of impaired working memory in hippocampal sclerosis

    Science.gov (United States)

    Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S

    2013-01-01

    Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of

  15. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  16. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory

    Directory of Open Access Journals (Sweden)

    Michael A. Nees

    2016-12-01

    Full Text Available Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3 to 5 s are compared, and a same or different judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory—especially two-stimulus comparison tasks—may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  17. Working memory and intelligibility of hearing-aid processed speech

    Science.gov (United States)

    Souza, Pamela E.; Arehart, Kathryn H.; Shen, Jing; Anderson, Melinda; Kates, James M.

    2015-01-01

    Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity) and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing [wide-dynamic range compression (WDRC) and frequency compression (FC)] applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than to the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with WDRC and/or FC parameters that maintain the fidelity of the signal envelope. PMID:25999874

  18. Working memory and intelligibility of hearing-aid processed speech

    Directory of Open Access Journals (Sweden)

    Pamela eSouza

    2015-05-01

    Full Text Available Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing (wide-dynamic range compression and frequency compression applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than on the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with wide-dynamic range compression and/or frequency compression parameters that maintain the fidelity of the signal envelope.

  19. Relating color working memory and color perception.

    Science.gov (United States)

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of motor congruence on visual working memory.

    Science.gov (United States)

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  1. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  2. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory

    Science.gov (United States)

    Kraus, Nina; Strait, Dana; Parbery-Clark, Alexandra

    2012-01-01

    Musicians benefit from real-life advantages such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. PMID:22524346

  3. High visual working memory capacity in trait social anxiety.

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  4. Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.

    Science.gov (United States)

    Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen

    2015-05-01

    The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).

  5. Working memory affects false memory production for emotional events.

    Science.gov (United States)

    Mirandola, Chiara; Toffalini, Enrico; Ciriello, Alfonso; Cornoldi, Cesare

    2017-01-01

    Whereas a link between working memory (WM) and memory distortions has been demonstrated, its influence on emotional false memories is unclear. In two experiments, a verbal WM task and a false memory paradigm for negative, positive or neutral events were employed. In Experiment 1, we investigated individual differences in verbal WM and found that the interaction between valence and WM predicted false recognition, with negative and positive material protecting high WM individuals against false remembering; the beneficial effect of negative material disappeared in low WM participants. In Experiment 2, we lowered the WM capacity of half of the participants with a double task request, which led to an overall increase in false memories; furthermore, consistent with Experiment 1, the increase in negative false memories was larger than that of neutral or positive ones. It is concluded that WM plays a critical role in determining false memory production, specifically influencing the processing of negative material.

  6. Everyday memory and working memory in adolescents with mild intellectual disability

    NARCIS (Netherlands)

    van der Molen, M.J.; van Luit, J.E.H.; van der Molen, M.W.; Jongmans, M.J.

    2010-01-01

    Everyday memory and its relationship to working memory was investigated in adolescents with mild intellectual disability and compared to typically developing adolescents of the same age (CA) and younger children matched on mental age (MA). Results showed a delay on almost all memory measures for the

  7. Individual Differences in Working Memory Capacity Predicts Responsiveness to Memory Rehabilitation After Traumatic Brain Injury.

    Science.gov (United States)

    Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D

    2016-06-01

    To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Depressive thoughts limit working memory capacity in dysphoria.

    Science.gov (United States)

    Hubbard, Nicholas A; Hutchison, Joanna L; Turner, Monroe; Montroy, Janelle; Bowles, Ryan P; Rypma, Bart

    2016-01-01

    Dysphoria is associated with persistence of attention on mood-congruent information. Longer time attending to mood-congruent information for dysphoric individuals (DIs) detracts from goal-relevant information processing and should reduce working memory (WM) capacity. Study 1 showed that DIs and non-DIs have similar WM capacities. Study 2 embedded depressive information into a WM task. Compared to non-DIs, DIs showed significantly reduced WM capacity for goal-relevant information in this task. Study 3 replicated results from Studies 1 and 2, and further showed that DIs had a significantly greater association between processing speed and recall on the depressively modified WM task compared to non-DIs. The presence of inter-task depressive information leads to DI-related decreased WM capacity. Results suggest dysphoria-related WM capacity deficits when depressive thoughts are present. WM capacity deficits in the presence of depressive thoughts are a plausible mechanism to explain day-to-day memory and concentration difficulties associated with depressed mood.

  9. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    Science.gov (United States)

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  10. Tactile Working Memory Outside our Hands

    Directory of Open Access Journals (Sweden)

    Takako Yoshida

    2011-10-01

    Full Text Available The haptic perception of 2D images is believed to make heavy demands on working memory. During active exploration, we need to store not only the current sensory information, but also to integrate this with kinesthetic information of the hand and fingers in order to generate a coherent percept. The question that arises is how much tactile memory we have for tactile stimuli that are no longer in contact with the skin during active touch? We examined working memory using a tactile change detection task with active exploration. Each trial contained two stimulation arrays. Participants engaged in unconstrained active tactile exploration of an array of vibrotactile stimulators. In half of the trials, one of the vibrating tactors that was active in the first stimulation turned off and another started vibrating in the second stimulation. Participants had to report whether the arrays were the same or different. Performance was near-perfect when up to two tactors were used and dropped linearly as the number of the vibrating tactors increased. These results suggest that the tactile working memory off the hand is limited and there is little or no memory integration across hand movements.

  11. The relationship between working memory and episodic memory disorders in transient global amnesia.

    Science.gov (United States)

    Quinette, Peggy; Guillery-Girard, Bérengère; Noël, Audrey; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2006-01-01

    In a previous study, we investigated the relationship between the disorders of both episodic memory and working memory in the acute phase of transient global amnesia (TGA). Since executive functions were spared, another dysfunction may be responsible for the binding and maintenance of multimodal informations and contribute to the encoding disorders observed in some patients [Quinette, P., Guillery, B., Desgranges, B., de la Sayette, V., Viader, F., & Eustache, F. (2003). Working memory and executive functions in transient global amnesia. Brain, 126, 1917-1934.]. The aim of this present study was to assess the functions of binding and maintenance of multimodal information during TGA and explore their involvement in episodic memory disorders. We therefore conducted a more thorough investigation of working memory in 16 new patients during the acute phase of TGA using two tasks designed to assess the binding process and both dimensions of the maintenance, namely the active storage and the memory load ability. We also investigated the nature of the episodic memory impairment in distinguishing between the performance of patients with preferential encoding deficits and those of patients with preferential storage disorders on the episodic memory task. This distinction was closely related to the severity of amnesia, i.e. an encoding disorder was observed rather in the early phase of TGA. The results showed that while the functions of binding and maintenance of multimodal information were intact in patients with storage disorders, they were impaired in the case of encoding deficits. These results are interpreted in the recent framework of episodic buffer proposed by Baddeley [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] that represents an interface between working memory and episodic memory.

  12. Working memory biasing of visual perception without awareness.

    Science.gov (United States)

    Pan, Yi; Lin, Bingyuan; Zhao, Yajun; Soto, David

    2014-10-01

    Previous research has demonstrated that the contents of visual working memory can bias visual processing in favor of matching stimuli in the scene. However, the extent to which such top-down, memory-driven biasing of visual perception is contingent on conscious awareness remains unknown. Here we showed that conscious awareness of critical visual cues is dispensable for working memory to bias perceptual selection mechanisms. Using the procedure of continuous flash suppression, we demonstrated that "unseen" visual stimuli during interocular suppression can gain preferential access to awareness if they match the contents of visual working memory. Strikingly, the very same effect occurred even when the visual cue to be held in memory was rendered nonconscious by masking. Control experiments ruled out the alternative accounts of repetition priming and different detection criteria. We conclude that working memory biases of visual perception can operate in the absence of conscious awareness.

  13. Working memory capacity in generalized social phobia.

    Science.gov (United States)

    Amir, Nader; Bomyea, Jessica

    2011-05-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.

  14. Attention bias modification training under working memory load increases the magnitude of change in attentional bias.

    Science.gov (United States)

    Clarke, Patrick J F; Branson, Sonya; Chen, Nigel T M; Van Bockstaele, Bram; Salemink, Elske; MacLeod, Colin; Notebaert, Lies

    2017-12-01

    Attention bias modification (ABM) procedures have shown promise as a therapeutic intervention, however current ABM procedures have proven inconsistent in their ability to reliably achieve the requisite change in attentional bias needed to produce emotional benefits. This highlights the need to better understand the precise task conditions that facilitate the intended change in attention bias in order to realise the therapeutic potential of ABM procedures. Based on the observation that change in attentional bias occurs largely outside conscious awareness, the aim of the current study was to determine if an ABM procedure delivered under conditions likely to preclude explicit awareness of the experimental contingency, via the addition of a working memory load, would contribute to greater change in attentional bias. Bias change was assessed among 122 participants in response to one of four ABM tasks given by the two experimental factors of ABM training procedure delivered either with or without working memory load, and training direction of either attend-negative or avoid-negative. Findings revealed that avoid-negative ABM procedure under working memory load resulted in significantly greater reductions in attentional bias compared to the equivalent no-load condition. The current findings will require replication with clinical samples to determine the utility of the current task for achieving emotional benefits. These present findings are consistent with the position that the addition of a working memory load may facilitate change in attentional bias in response to an ABM training procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Working memory limitations in children with severe language impairment.

    Science.gov (United States)

    van Daal, John; Verhoeven, Ludo; van Leeuwe, Jan; van Balkom, Hans

    2008-01-01

    In the present study, the relations of various aspects of working memory to various aspects of language problems in a clinical sample of 97 Dutch speaking 5-year-old children with severe language problems were studied. The working memory and language abilities of the children were examined using an extensive battery of tests. Working memory was operationalized according to the model of Baddeley. Confirmative factor analyses revealed three memory factors: phonological, visual and central executive. Language was construed as a multifactorial construct, and confirmative factor analyses revealed four factors: lexical-semantic abilities, phonological abilities, syntactic abilities and speech production abilities. Moderate to high correlations were found between the memory and language factors. Structural equation modelling was used to further explore the relations between the different factors. Phonological memory was found to predict phonological abilities; central-executive memory predicted lexical-semantic abilities; and visual memory predicted speech production abilities. Phonological abilities also predicted syntactic abilities. Both the theoretical and clinical implications of the findings are discussed. The reader will be introduced to the concepts of multifactorial components of working memory as well as language impairment. Secondly the reader will recognize that working memory and language impairment factors can be related. Particular emphasis will be placed on phonological memory, central-executive memory and visual memory and their possible prediction of specific components of language impairment.

  16. Working Memory Capacity, Confidence and Scientific Thinking

    Science.gov (United States)

    Al-Ahmadi, Fatheya; Oraif, Fatima

    2009-01-01

    Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…

  17. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations.

  18. Models of Working Memory

    National Research Council Canada - National Science Library

    Miyake, Akira

    1997-01-01

    .... Understanding the mechanisms and structures underlying working memory is, hence, one of the most important scientific issues that need to be addressed to improve the efficiency and performance...

  19. Working memory and spatial judgments: Cognitive load increases the central tendency bias.

    Science.gov (United States)

    Allred, Sarah R; Crawford, L Elizabeth; Duffy, Sean; Smith, John

    2016-12-01

    Previous work demonstrates that memory for simple stimuli can be biased by information about the distribution of which the stimulus is a member. Specifically, people underestimate values greater than the distribution's average and overestimate values smaller than the average. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In largely separate literature, cognitive load (CL) experiments attempt to manipulate the available working memory of participants in order to observe the effect on choice or judgments. In two experiments, we demonstrate that participants under high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias not described previously.

  20. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  1. Co-speech iconic gestures and visuo-spatial working memory.

    Science.gov (United States)

    Wu, Ying Choon; Coulson, Seana

    2014-11-01

    Three experiments tested the role of verbal versus visuo-spatial working memory in the comprehension of co-speech iconic gestures. In Experiment 1, participants viewed congruent discourse primes in which the speaker's gestures matched the information conveyed by his speech, and incongruent ones in which the semantic content of the speaker's gestures diverged from that in his speech. Discourse primes were followed by picture probes that participants judged as being either related or unrelated to the preceding clip. Performance on this picture probe classification task was faster and more accurate after congruent than incongruent discourse primes. The effect of discourse congruency on response times was linearly related to measures of visuo-spatial, but not verbal, working memory capacity, as participants with greater visuo-spatial WM capacity benefited more from congruent gestures. In Experiments 2 and 3, participants performed the same picture probe classification task under conditions of high and low loads on concurrent visuo-spatial (Experiment 2) and verbal (Experiment 3) memory tasks. Effects of discourse congruency and verbal WM load were additive, while effects of discourse congruency and visuo-spatial WM load were interactive. Results suggest that congruent co-speech gestures facilitate multi-modal language comprehension, and indicate an important role for visuo-spatial WM in these speech-gesture integration processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Everyday Memory and Working Memory in Adolescents with Mild Intellectual Disability

    Science.gov (United States)

    Van der Molen, M. J.; Van Luit, J. E. H.; Van der Molen, Maurits W.; Jongmans, Marian J.

    2010-01-01

    Everyday memory and its relationship to working memory was investigated in adolescents with mild intellectual disability and compared to typically developing adolescents of the same age (CA) and younger children matched on mental age (MA). Results showed a delay on almost all memory measures for the adolescents with mild intellectual disability…

  3. Working memory capacity and addiction treatment outcomes in adolescents.

    Science.gov (United States)

    Houck, Jon M; Feldstein Ewing, Sarah W

    2018-01-01

    Brief addiction treatments including motivational interviewing (MI) have shown promise with adolescents, but the factors that influence treatment efficacy in this population remain unknown. One candidate is working memory, the ability to hold a fact or thought in mind. This is relevant, as in therapy, a client must maintain and manipulate ideas while working with a clinician. Working memory depends upon brain structures and functions that change markedly during neurodevelopment and that can be negatively impacted by substance use. In a secondary analysis of data from a clinical trial for adolescent substance use comparing alcohol/marijuana education and MI, we evaluated the relationship between working memory and three-month treatment-outcomes with the hypothesis that the relationship between intervention conditions and outcome would be moderated by working memory. With a diverse sample of adolescents currently using alcohol and/or marijuana (N = 153, 64.7% male, 70.6% Hispanic), we examined the relationship between baseline measures of working memory and alcohol and cannabis-related problem scores measured at the three-month follow-up. The results showed that lower working memory scores were associated with poorer treatment response only for alcohol use, and only within the education group. No relationship was found between working memory and treatment outcomes in the MI group. The results suggest that issues with working memory capacity may interfere with adolescents' ability to process and implement didactic alcohol and marijuana content in standard education interventions. These results also suggest that MI can be implemented equally effectively across the range of working memory functioning in youth.

  4. Working memory resources are shared across sensory modalities.

    Science.gov (United States)

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  5. Working memory for braille is shaped by experience.

    Science.gov (United States)

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-03-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  6. Working memory for braille is shaped by experience

    OpenAIRE

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-01-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  7. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  8. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  9. Greater Caregiving Risk, Better Infant Memory Performance?

    Science.gov (United States)

    Rifkin-Graboi, Anne; Quan, Jeffry; Richmond, Jenny; Goh, Shaun Kok Yew; Sim, Lit Wee; Chong, Yap Seng; Francois-Bureau, Jean; Chen, Helen; Qiu, Anqi

    2018-04-16

    Poor early life care often relates to cognitive difficulties. However, newer work suggests that in early-life, adversity may associate with enhanced or accelerated neurodevelopment. We examine associations between postnatal caregiving risks (i.e., higher self-reported postnatal-anxiety and lower observed maternal sensitivity) and infant relational memory (i.e. via deferred imitation and relational binding). Using subsamples of 67-181 infants (aged 433-477 post-conceptual days, or roughly five to seven months since birth) taking part in the GUSTO study, we found such postnatal caregiving risk significantly predictive of "better" performance on a relational binding task following a brief delay, after Bonferroni adjustments. Subsequent analyses suggest that the association between memory and these risks may specifically be apparent amongst infants spending at least 50% of their waking hours in the presence of their mothers. Our findings echo neuroimaging research concerning similar risk exposure and larger infant hippocampal volume, and likewise underscore the importance of considering developmental context in understanding early life experience. With this in mind, these findings caution against the use of cognitive outcomes as indices of experienced risk. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  10. Modeling the Role of Working Memory and Episodic Memory in Behavioral Tasks

    OpenAIRE

    Zilli, Eric A.; Hasselmo, Michael E.

    2008-01-01

    The mechanisms of goal-directed behavior have been studied using reinforcement learning theory, but these theoretical techniques have not often been used to address the role of memory systems in performing behavioral tasks. The present work addresses this shortcoming by providing a way in which working memory and episodic memory may be included in the reinforcement learning framework, then simulating the successful acquisition and performance of six behavioral tasks, drawn from or inspired by...

  11. Models of Working Memory

    National Research Council Canada - National Science Library

    Miyake, Akira

    1997-01-01

    Working memory is a basic cognitive mechanism (or set of mechanisms) that is responsible for keeping track of multiple task related goals and subgoals, or integrating multiple sources of information...

  12. The default mode network and the working memory network are not anti-correlated during all phases of a working memory task.

    Science.gov (United States)

    Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco

    2015-01-01

    The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.

  13. Symbiosis of Executive and Selective Attention in Working Memory

    Directory of Open Access Journals (Sweden)

    André eVandierendonck

    2014-08-01

    Full Text Available The notion of working memory was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated working memory system that controls task coordination. To that end, working memory models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in working memory activities. A model is proposed in which selective attention control is directly linked to the executive control part of the working memory system. The model assumes that apart from storage of declarative information, the system also includes an executive working memory module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met.. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  14. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers.

    Science.gov (United States)

    Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine

    2018-01-01

    The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.

  15. Emotional Working Memory and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Nicola Mammarella

    2014-01-01

    Full Text Available A number of recent studies have reported that working memory does not seem to show typical age-related deficits in healthy older adults when emotional information is involved. Differently, studies about the short-term ability to encode and actively manipulate emotional information in dementia of Alzheimer’s type are few and have yielded mixed results. Here, we review behavioural and neuroimaging evidence that points to a complex interaction between emotion modulation and working memory in Alzheimer’s. In fact, depending on the function involved, patients may or may not show an emotional benefit in their working memory performance. In addition, this benefit is not always clearly biased (e.g., towards negative or positive information. We interpret this complex pattern of results as a consequence of the interaction between multiple factors including the severity of Alzheimer’s disease, the nature of affective stimuli, and type of working memory task.

  16. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  17. Working, declarative and procedural memory in specific language impairment

    DEFF Research Database (Denmark)

    Lum, J. A. G.; Conti-Ramsden, G.; Page, D.

    2012-01-01

    at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed......According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which...... in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact...

  18. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2018-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading......-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. STUDY SAMPLE: Twenty experienced HA users ages 55-80 with large differences in reading span. RESULTS: For the listening span measurements, there was an influence of HA setting....... CONCLUSIONS: HA noise suppression may affect the recognition and recall of speech at positive SNRs, irrespective of individual reading span. Future work should improve the reliability of the auditory working memory measurements....

  19. Working memory, phonological awareness, and developing language skills

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole, S

    2008-01-01

    The relationship between working memory, verbal short-term memory, phonological awareness, and developing language skills was explored longitudinally in children growing up in a multilingual society. A sample of 121 children from Luxembourg were followed from the end of Kindergarten to 1st Grade, and completed multiple assessments of verbal short-term memory, complex working memory, phonological awareness, native and foreign vocabulary knowledge, language comprehension, and reading. Resu...

  20. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.

    Science.gov (United States)

    Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K

    2018-01-08

    Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.

  1. Concurrent performance of two memory tasks: evidence for domain-specific working memory systems.

    Science.gov (United States)

    Cocchini, Gianna; Logie, Robert H; Della Sala, Sergio; MacPherson, Sarah E; Baddeley, Alan D

    2002-10-01

    Previous studies of dual-task coordination in working memory have shown a lack of dual-task interference when a verbal memory task is combined with concurrent perceptuomotor tracking. Two experiments are reported in which participants were required to perform pairwise combinations of (1) a verbal memory task, a visual memory task, and perceptuomotor tracking (Experiment 1), and (2) pairwise combinations of the two memory tasks and articulatory suppression (Experiment 2). Tracking resulted in no disruption of the verbal memory preload over and above the impact of a delay in recall and showed only minimal disruption of the retention of the visual memory load. Performing an ongoing verbal memory task had virtually no impact on retention of a visual memory preload or vice versa, indicating that performing two demanding memory tasks results in little mutual interference. Experiment 2 also showed minimal disruption when the two memory tasks were combined, although verbal memory (but not visual memory) was clearly disrupted by articulatory suppression interpolated between presentation and recall. These data suggest that a multiple-component working memory model provides a better account for performance in concurrent immediate memory tasks than do theories that assume a single processing and storage system or a limited-capacity attentional system coupled with activated memory traces.

  2. Contrasting single and multi-component working-memory systems in dual tasking.

    Science.gov (United States)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Spatial working memory maintenance: does attention play a role?

    NARCIS (Netherlands)

    Chan, L.K.; Hayward, W.G.; Theeuwes, J.

    2009-01-01

    Recent studies have proposed that a common mechanism may underlie spatial attention and spatial working memory. One proposal is that spatial working memory is maintained by attention-based rehearsal [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of

  4. Challenges in the Detection of Working Memory and Attention Decrements among Overweight Adolescent Girls.

    Science.gov (United States)

    Bauer, Lance O; Manning, Kevin J

    2016-01-01

    The present study is unique in employing unusually difficult attention and working memory tasks to reveal subtle cognitive decrements among overweight/obese adolescents. It evaluated novel measures of background electroencephalographic (EEG) activity during one of the tasks and tested correlations of these and other measures with psychological and psychiatric predictors of obesity maintenance or progression. Working memory and sustained attention tasks were presented to 158 female adolescents who were rated on dichotomous (body mass index percentile working memory task. During the sustained attention task, overweight/obese adolescents exhibited more EEG frontal beta power as well as greater intraindividual variability in reaction time and beta power across task periods than their normal-weight peers. Secondary analyses showed that frontal beta power during the sustained attention task was positively correlated with anxiety, panic, borderline personality features, drug abuse, and loss of control over food intake. The findings suggest that working memory and sustained attention decrements do exist among overweight/obese adolescent girls. The reliable detection of the decrements may depend on the difficulty of the tasks as well as the manner in which performance and brain activity are measured. Future studies should examine the relevance of these decrements to dietary education efforts and treatment response. © 2016 S. Karger AG, Basel.

  5. Emotion, working memory task demands and individual differences predict behavior, cognitive effort and negative affect.

    Science.gov (United States)

    Storbeck, Justin; Davidson, Nicole A; Dahl, Chelsea F; Blass, Sara; Yung, Edwin

    2015-01-01

    We examined whether positive and negative affect motivates verbal and spatial working memory processes, respectively, which have implications for the expenditure of mental effort. We argue that when emotion promotes cognitive tendencies that are goal incompatible with task demands, greater cognitive effort is required to perform well. We sought to investigate whether this increase in cognitive effort impairs behavioural control over a broad domain of self-control tasks. Moreover, we predicted that individuals with higher behavioural inhibition system (BIS) sensitivities would report more negative affect within the goal incompatible conditions because such individuals report higher negative affect during cognitive challenge. Positive or negative affective states were induced followed by completing a verbal or spatial 2-back working memory task. All participants then completed one of three self-control tasks. Overall, we observed that conditions of emotion and working memory incompatibility (positive/spatial and negative/verbal) performed worse on the self-control tasks, and within the incompatible conditions individuals with higher BIS sensitivities reported more negative affect at the end of the study. The combination of findings suggests that emotion and working memory compatibility reduces cognitive effort and impairs behavioural control.

  6. An interference model of visual working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Breaking cycles of risk: The mitigating role of maternal working memory in associations among socioeconomic status, early caregiving, and children's working memory.

    Science.gov (United States)

    Suor, Jennifer H; Sturge-Apple, Melissa L; Skibo, Michael A

    2017-10-01

    Previous research has documented socioeconomic-related disparities in children's working memory; however, the putative proximal caregiving mechanisms that underlie these effects are less known. The present study sought to examine whether the effects of early family socioeconomic status on children's working memory were mediated through experiences of caregiving, specifically maternal harsh discipline and responsiveness. Utilizing a psychobiological framework of parenting, the present study also tested whether maternal working memory moderated the initial paths between the family socioeconomic context and maternal harsh discipline and responsiveness in the mediation model. The sample included 185 socioeconomically diverse mother-child dyads assessed when children were 3.5 and 5 years old. Results demonstrated that maternal harsh discipline was a unique mediator of the relation between early experiences of family socioeconomic adversity and lower working memory outcomes in children. Individual differences in maternal working memory emerged as a potent individual difference factor that specifically moderated the mediating influence of harsh discipline within low socioeconomic contexts. The findings have implications for early risk processes underlying deficits in child working memory outcomes and potential targets for parent-child interventions.

  8. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    Science.gov (United States)

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  9. Reflections on Working Memory: Are the Two Models Complementary?

    Science.gov (United States)

    Pascual-Leone, Juan

    2000-01-01

    Compares and contrasts working memory theory of Baddeley and theory of constructive operators of Pascual- Leone. Concludes that although the theory of constructive operators is complementary with working memory theory (explains developmental and individual differences that working memory theory cannot), the converse is not true; theory of…

  10. Training Planning and Working Memory in Third Graders

    Science.gov (United States)

    Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano

    2013-01-01

    Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…

  11. Verbal Working Memory in Children With Cochlear Implants

    Science.gov (United States)

    Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Results Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. Conclusions The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code. PMID:29075747

  12. Dynamic visual noise interferes with storage in visual working memory.

    Science.gov (United States)

    Dean, Graham M; Dewhurst, Stephen A; Whittaker, Annalise

    2008-01-01

    Several studies have demonstrated that dynamic visual noise (DVN) does not interfere with memory for random matrices. This has led to suggestions that (a) visual working memory is distinct from imagery, and (b) visual working memory is not a gateway between sensory input and long-term storage. A comparison of the interference effects of DVN with memory for matrices and colored textures shows that DVN can interfere with visual working memory, probably at a level of visual detail not easily supported by long-term memory structures or the recoding of the visual pattern elements. The results support a gateway model of visuospatial working memory and raise questions about the most appropriate ways to measure and model the different levels of representation of information that can be held in visual working memory.

  13. Working memory contents revive the neglected, but suppress the inhibited.

    Science.gov (United States)

    Han, Suk Won

    2015-12-01

    It is well known that attention is biased toward a stimulus matching working memory contents. However, it remains unknown whether the maintenance of information in working memory by itself is sufficient to create memory-driven attentional capture. Notably, in many previous studies showing the memory-driven attentional capture, the task settings might have explicitly or implicitly incentivized participants to strategically attend to a memory-matching stimulus. By innovating an experimental paradigm, the present study overcame this challenge and directly tested whether working memory contents capture attention in the absence of task-level attentional bias toward a memory-matching stimulus. I found that a stimulus that is usually outside the focus of attention, powerfully captured attention when it matched working memory contents, whereas a match between working memory and an inhibited stimulus suppressed attentional allocation toward the memory-matching stimulus. These findings suggest that in the absence of any task-level attentional bias toward memory-matching stimuli, attention is biased toward a memory-matching stimulus, but this memory-driven attentional capture is diminished when top-down inhibition is imposed on the stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  15. Social working memory: Neurocognitive networks and directions for future research

    Directory of Open Access Journals (Sweden)

    Meghan L Meyer

    2012-12-01

    Full Text Available Navigating the social world requires the ability to maintain and manipulate information about people’s beliefs, traits, and mental states. We characterize this capacity as social working memory. To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the ‘mentalizing network’ that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires social working memory and that both the mentalizing and canonical working memory neurocognitive networks support social working memory. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed.

  16. Dieting and Food Cue-Related Working Memory Performance

    OpenAIRE

    Meule, Adrian

    2016-01-01

    Executive functioning (e.g., working memory) is tightly intertwined with self-regulation. For example, food cue-elicited craving has been found to impair working memory performance. Furthermore, current dieters have been found to show lower working memory performance than non-dieters. Recent research, however, suggests that it is crucial to consider dieting success in addition to current dieting status or restrained eating in order to reveal cognitive mechanisms that are associated with succe...

  17. fMRI characterization of visual working memory recognition.

    Science.gov (United States)

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  18. Learning, working memory, and intelligence revisited.

    Science.gov (United States)

    Tamez, Elaine; Myerson, Joel; Hale, Sandra

    2008-06-01

    Based on early findings showing low correlations between intelligence test scores and learning on laboratory tasks, psychologists typically have dismissed the role of learning in intelligence and emphasized the role of working memory instead. In 2006, however, B.A. Williams developed a verbal learning task inspired by three-term reinforcement contingencies and reported unexpectedly high correlations between this task and Raven's Advanced Progressive Matrices (RAPM) scores [Williams, B.A., Pearlberg, S.L., 2006. Learning of three-term contingencies correlates with Raven scores, but not with measures of cognitive processing. Intelligence 34, 177-191]. The present study replicated this finding: Performance on the three-term learning task explained almost 25% of the variance in RAPM scores. Adding complex verbal working memory span, measured using the operation span task, did not improve prediction. Notably, this was not due to a lack of correlation between complex working memory span and RAPM scores. Rather, it occurred because most of the variance captured by the complex working memory span was already accounted for by the three-term learning task. Taken together with the findings of Williams and Pearlberg, the present results make a strong case for the role of learning in performance on intelligence tests.

  19. Working memory capacity and the spacing effect in cued recall.

    Science.gov (United States)

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2018-07-01

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  20. Verbal Working Memory in Children with Mild Intellectual Disabilities

    Science.gov (United States)

    Van der Molen, M. J.; Van Luit, J. E. H.; Jongmans, M. J.; Van der Molen, M. W.

    2007-01-01

    Background: Previous research into working memory of individuals with intellectual disabilities (ID) has established clear deficits. The current study examined working memory in children with mild ID (IQ 55-85) within the framework of the Baddeley model, fractionating working memory into a central executive and two slave systems, the phonological…

  1. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  2. Effects of aging on working memory performance and prefrontal cortex activity: A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.

  3. Gender differences in episodic memory and visual working memory including the effects of age.

    Science.gov (United States)

    Pauls, Franz; Petermann, Franz; Lepach, Anja Christina

    2013-01-01

    Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.

  4. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  5. Efficiency of working memory: Theoretical concept and practical application

    Directory of Open Access Journals (Sweden)

    Lalović Dejan

    2008-01-01

    Full Text Available Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the efficiency of working memory and general intelligence, the ability of reasoning, personality variables, as well as some socio-psychological phenomena. Special emphasis is placed on the links between the efficiency of working memory and certain aspects of pedagogical practice: acquiring the skill of reading, learning arithmetic and shedding light on the cause of general failure in learning at school. What is also provided are the suggestions that, in the light of knowledge about the development and limitations of working memory at school age, can be useful for teaching practice.

  6. Attention to information in working memory

    OpenAIRE

    Oberauer Klaus; Hein Laura

    2012-01-01

    Working memory retains information and makes it available for processing. People often need to hold several chunks of information available while concentrating on only one of them. This process requires selective attention to the contents of working memory. In this article we summarize evidence for both a broad focus of attention with a capacity of approximately four chunks and a narrow focus of attention that selects a single chunk at a time.

  7. Working Memory Intervention: A Reading Comprehension Approach

    Science.gov (United States)

    Perry, Tracy L.; Malaia, Evguenia

    2013-01-01

    For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…

  8. Differential Age Effects on Spatial and Visual Working Memory

    Science.gov (United States)

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  9. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    Science.gov (United States)

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432

  10. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    Science.gov (United States)

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.

  11. Ego Depletion Does Not Interfere With Working Memory Performance.

    Science.gov (United States)

    Singh, Ranjit K; Göritz, Anja S

    2018-01-01

    Ego depletion happens if exerting self-control reduces a person's capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance.

  12. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  13. Working Memory, Motivation, and Teacher-Initiated Learning

    Science.gov (United States)

    Brooks, David W.; Shell, Duane F.

    2006-01-01

    Working memory is where we "think" as we learn. A notion that emerges as a synthesis from several threads in the research literatures of cognition, motivation, and connectionism is that motivation in learning is the process whereby working memory resource allocation is instigated and sustained. This paper reviews much literature on motivation and…

  14. Processing speed and working memory span: their differential role in superficial and deep memory processes in schizophrenia.

    Science.gov (United States)

    Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S

    2011-05-01

    Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.

  15. Does learning to read shape verbal working memory?

    Science.gov (United States)

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.

  16. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    Science.gov (United States)

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  17. Working Memory and Learning: A Practical Guide for Teachers

    Science.gov (United States)

    Gathercole, Susan E.; Alloway, Tracy Packiam

    2008-01-01

    A good working memory is crucial to becoming a successful leaner, yet there is very little material available in an easy-to-use format that explains the concept and offers practitioners ways to support children with poor working memory in the classroom. This book provides a coherent overview of the role played by working memory in learning during…

  18. Spatial working memory load affects counting but not subitizing in enumeration.

    Science.gov (United States)

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  19. The Contribution of Verbal Working Memory to Deaf Children’s Oral and Written Production

    Science.gov (United States)

    Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia

    2015-01-01

    This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8–13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension test, the Wechsler Intelligence Scale for Children-Fourth Edition forward digit span task, and a reading span task. Oral and written stories were analyzed at the microstructural (i.e., clause) and macrostructural (discourse) levels. Hearing children’s stories scored higher than deaf children’s at both levels. Verbal working memory skills contributed to deaf children’s oral and written production over and above age and reading comprehension skills. Verbal rehearsal skills (forward digit span) contributed significantly to deaf children’s ability to organize oral and written stories at the microstructural level; they also accounted for unique variance at the macrostructural level in writing. Written story production appeared to involve greater verbal working memory resources than oral story production. PMID:25802319

  20. [Developmental changes in visuospatial working memory].

    Science.gov (United States)

    Oka, Makio; Takeuchi, Akihito; Morooka, Teruko; Ogino, Tatsuya; Ohtsuka, Yoko

    2010-07-01

    We investigated the developmental changes in visuospatial working memory using the Visuospatial Span Task (VST) and the Matrix Visuospatial Working Memory Test (VSWMT). VST is a short-term storage task, while VSWMT is a complex dual task. VSWMT requires the use of storage, processing, and selective attention, all of which are thought to be supported by the central executive (Baddeley). The subjects of this study were 60 typically developing children (43 boys and 17 girls) aged 6-14 years (average 10.4 years). For each task we evaluated span scores and the number of total passed trials, and investigated the changes that occurred with age. To further elucidate age-related changes in visuospatial working memory, we divided the subjects into three age groups (Group A: 6-8 years, Group B: 9-11 years, and Group C: 12-14 years of age), and statistically evaluated the differences between the groups. In both tasks, span scores and the number of total passed trials showed definite age-related changes from 6 to 14 years of age. Span scores and the number of total passed trials in VSMWT continued to increase until adolescence, with significant differences between the three age groups, while those in VST increased significantly between Groups A and B (the number of total passed trials only) and between Groups A and C (span scores and the number of total passed trials); there was no significant difference between Groups B and C, however. These results suggest that the network of the brain involved in visuospatial working memory gradually matures during early school years and adolescence, and that the basic mechanisms of this network exist by 6-7 years of age. Our results also show that VST and VSWMT are suitable tests for the evaluation of visuospatial working memory in childhood and adolescence.

  1. Modulation of working memory function by motivation through loss-aversion.

    Science.gov (United States)

    Krawczyk, Daniel C; D'Esposito, Mark

    2013-04-01

    Cognitive performance is affected by motivation. Few studies, however, have investigated the neural mechanisms of the influence of motivation through potential monetary punishment on working memory. We employed functional MRI during a delayed recognition task that manipulated top-down control demands with added monetary incentives to some trials in the form of potential losses of bonus money. Behavioral performance on the task was influenced by loss-threatening incentives in the form of faster and more accurate performance. As shown previously, we found enhancement of activity for relevant stimuli occurs throughout all task periods (e.g., stimulus encoding, maintenance, and response) in both prefrontal and visual association cortex. Further, these activation patterns were enhanced for trials with possible monetary loss relative to nonincentive trials. During the incentive cue, the amygdala and striatum showed significantly greater activation when money was at a possible loss on the trial. We also evaluated patterns of functional connectivity between regions responsive to monetary consequences and prefrontal areas responsive to the task. This analysis revealed greater delay period connectivity between and the left insula and prefrontal cortex with possible monetary loss relative to nonincentive trials. Overall, these results reveal that incentive motivation can modulate performance on working memory tasks through top-down signals via amplification of activity within prefrontal and visual association regions selective to processing the perceptual inputs of the stimuli to be remembered. Copyright © 2011 Wiley Periodicals, Inc.

  2. Changes in brain network efficiency and working memory performance in aging.

    Science.gov (United States)

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  3. The relationship between working memory and L2 reading comprehension

    Directory of Open Access Journals (Sweden)

    Mohammadtaghi Shahnazari-Dorcheh

    2014-08-01

    Full Text Available Since an important role for working memory has been found in the first language acquisition (e.g., Daneman, 1991 Daneman & Green, 1986 Waters & Caplan, 1996, research on the role of working memory is emerging as an area of concern for second language acquisition (e.g., Atkins & Baddeley, 1998 Miyake & Freidman, 1998 Robinson, 1995, 2002, 2005. The present study focused on the role of working memory capacity in the development of second language reading ability. 55 L1 Persian EFL learners at three proficiency levels from a private language school participated in this study. They completed a battery of reading and working memory measures. Memory measures included phonological short-term memory, and reading span test (RST. Reading measures included two expository reading comprehension tests. Multiple regression analysis was applied to determine whether there are any significant relationships between working memory capacity and reading measures. Results of this study indicated a significant relationship between working memory capacity (as measured by RST and reading ability at lower levels of proficiency.

  4. Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder.

    Science.gov (United States)

    Jogia, Jigar; Dima, Danai; Kumari, Veena; Frangou, Sophia

    2012-12-01

    Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems.

  5. [Working memory, phonological awareness and spelling hypothesis].

    Science.gov (United States)

    Gindri, Gigiane; Keske-Soares, Márcia; Mota, Helena Bolli

    2007-01-01

    Working memory, phonological awareness and spelling hypothesis. To verify the relationship between working memory, phonological awareness and spelling hypothesis in pre-school children and first graders. Participants of this study were 90 students, belonging to state schools, who presented typical linguistic development. Forty students were preschoolers, with the average age of six and 50 students were first graders, with the average age of seven. Participants were submitted to an evaluation of the working memory abilities based on the Working Memory Model (Baddeley, 2000), involving phonological loop. Phonological loop was evaluated using the Auditory Sequential Test, subtest 5 of Illinois Test of Psycholinguistic Abilities (ITPA), Brazilian version (Bogossian & Santos, 1977), and the Meaningless Words Memory Test (Kessler, 1997). Phonological awareness abilities were investigated using the Phonological Awareness: Instrument of Sequential Assessment (CONFIAS - Moojen et al., 2003), involving syllabic and phonemic awareness tasks. Writing was characterized according to Ferreiro & Teberosky (1999). Preschoolers presented the ability of repeating sequences of 4.80 digits and 4.30 syllables. Regarding phonological awareness, the performance in the syllabic level was of 19.68 and in the phonemic level was of 8.58. Most of the preschoolers demonstrated to have a pre-syllabic writing hypothesis. First graders repeated, in average, sequences of 5.06 digits and 4.56 syllables. These children presented a phonological awareness of 31.12 in the syllabic level and of 16.18 in the phonemic level, and demonstrated to have an alphabetic writing hypothesis. The performance of working memory, phonological awareness and spelling level are inter-related, as well as being related to chronological age, development and scholarity.

  6. The cognitive neuroscience of working memory.

    Science.gov (United States)

    D'Esposito, Mark; Postle, Bradley R

    2015-01-03

    For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

  7. Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.

    Science.gov (United States)

    Smithson, Lisa; Nicoladis, Elena

    2016-06-01

    Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.

  8. Spatial attention interacts with serial-order retrieval from verbal working memory.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim

    2013-09-01

    The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.

  9. A theory of working memory without consciousness or sustained activity

    Science.gov (United States)

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  10. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Memory – what is it and how it works?

    Directory of Open Access Journals (Sweden)

    Sanja Šešok

    2006-02-01

    Full Text Available Abstract: Memory system presents a basis for many cognitive functions and at the same time it itself depends on their normal function. The purpose of the article is to show how it works as an array of interacting systems, each capable of registring information, storing it, and making available by retrieval. In the case of the psychological study of memory, the most common model used for understanding memory functions is the time based model, which presume that memory can be divided into sensory memory, short-term or working memory and long-term memory. Memory is a process and the information processing approach to memory suggests that there are five processes involved in any type of memory: attention, encoding, storage, consolidation and retrieval. Several most common explanations of forgetting are described.

  12. Relationship Between Working Memory and English-Chinese Consecu-tive Interpreting

    Institute of Scientific and Technical Information of China (English)

    王磊; 陈莉; 徐晓娟

    2016-01-01

    Working memory is the system that actively holds multiple pieces of transitory information in the mind, where they can be manipulated. In interpreting, working memory is in charge of the storage and processing of immediate information, thus making an important factor in influencing interpreting quality. The role played by working memory capacity in interpreting re-mains to be a hotspot issue in the field of interpreting research.This thesis aims to investigate the relationship between working memory capacity and E-C consecutive interpreting by conducting two tests. The first test is working memory span test and the second one is E-C consecutive interpreting test. By comparing and analyzing the results of two tests, this thesis comes to the con-clusion that working memory capacity is positively correlated with E-C consecutive interpreting in terms of fluency and logic.

  13. Dissociation of Procedural and Working Memory in Pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    Walter T. Herbranson

    2016-07-01

    Full Text Available A new method was developed to concurrently investigate procedural memory and working memory in pigeons. Pigeons performed a sequence of keypecks across 3 response keys in a serial response task, with periodic choice probes for the location of a recently produced response. Procedural memory was operationally defined as decreasing response times to predictable cues in the sequence. Working memory was reflected by accurate responses to the choice probes. Changing the sequence of required keypecks to a random sequence interfered with procedural memory in the form of slowed response times, but did not prevent pigeons from effectively using working memory to remember specific cue locations. Conversely, changing exposure duration of to a cue location influenced working memory but had no effect on procedural memory. Double dissociations such as this have supported the multiple systems approach to the study of memory in cognitive psychology and neuroscience, and they encourage a similar approach in comparative psychology.

  14. The effect of rehearsal rate and memory load on verbal working memory.

    Science.gov (United States)

    Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark

    2015-01-15

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance.

    Science.gov (United States)

    Cho, Soohyun; Holyoak, Keith J; Cannon, Tyrone D

    2007-09-01

    We report a series of experiments using a pictorial analogy task designed to manipulate relational integration, interference resolution, and active maintenance simultaneously. The difficulty of the problems was varied in terms of the number of relations to be integrated, the need for interference resolution, and the duration of maintenance required to correctly solve the analogy. The participants showed decreases in performance when integrating multiple relations, as compared with a single relation, and when interference resolution was required in solving the analogy. When the participants were required to integrate multiple relations while simultaneously engaged in interference resolution, performance was worse, as compared with problems that incorporated either of these features alone. Maintenance of information across delays in the range of 1-4.5 sec led to greater decrements in visual memory, as compared with analogical reasoning. Misleading information caused interference when it had been necessarily attended to and maintained in working memory and, hence, had to be actively suppressed. However, sources of conflict within information that had not been attended to or encoded into working memory did not interfere with the ongoing controlled information processing required for relational integration. The findings provide evidence that relational integration and interference resolution depend on shared cognitive resources in working memory during analogical reasoning.

  16. Working memory capacity and redundant information processing efficiency.

    Science.gov (United States)

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  17. An effect of inhibitory load in children while keeping working memory load constant

    Directory of Open Access Journals (Sweden)

    Adele eDiamond

    2014-03-01

    Full Text Available People are slower and more error-prone when the correct response is away from a stimulus (incongruent than when it is towards a stimulus (congruent. Two reasons for this are possible. It could be caused by the requirement to inhibit the prepotent tendency to respond toward a stimulus, or by the order of task presentation causing difficulty switching from one rule to another especially if one does not efficiently delete the first rule from active working memory. This experiment (with 96 children [49 girls] 6-10 years old used the hearts and flowers task (a hybrid combining elements of Simon and Spatial Stroop tasks used in several studies with children: Davidson et al., 2006; Diamond et al., 2007; Edgin et al., 2010; Zaitchik et al., 2013 to differentiate between those two possibilities by counterbalancing order of task presentation. Half the children were presented with the congruent block first (the traditional order for the task, where the rule is to press on the same side as the stimulus and half with incongruent trials first (with the rule press on the side opposite the stimulus. The results, which were the same regardless of task order, clearly show that the increased inhibitory control demand is responsible for children’s decreased accuracy and slower responses in the incongruent block. Worse performance on incongruent trials when they came first cannot be accounted for by inefficient clearing of working memory or by task-switching accounts. Since working memory demands are no greater on the incongruent block when it is presented first than on the congruent block when presented first, yet performance was worse, results here indicate that increasing inhibitory demands alone is sufficient to impair children’s performance in the face of no change in working memory demands, suggesting that inhibition must be a separate mental function from working memory.

  18. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    Science.gov (United States)

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Working memory predicts children's analogical reasoning.

    Science.gov (United States)

    Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E

    2018-02-01

    Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The role of working memory in auditory selective attention.

    Science.gov (United States)

    Dalton, Polly; Santangelo, Valerio; Spence, Charles

    2009-11-01

    A growing body of research now demonstrates that working memory plays an important role in controlling the extent to which irrelevant visual distractors are processed during visual selective attention tasks (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). Recently, it has been shown that the successful selection of tactile information also depends on the availability of working memory (Dalton, Lavie, & Spence, 2009). Here, we investigate whether working memory plays a role in auditory selective attention. Participants focused their attention on short continuous bursts of white noise (targets) while attempting to ignore pulsed bursts of noise (distractors). Distractor interference in this auditory task, as measured in terms of the difference in performance between congruent and incongruent distractor trials, increased significantly under high (vs. low) load in a concurrent working-memory task. These results provide the first evidence demonstrating a causal role for working memory in reducing interference by irrelevant auditory distractors.

  1. Meta-analysis of the research impact of Baddeley’s multicomponent working memory model and Cowan’s embedded-processes model of working memory: A bibliometric mapping approach

    Directory of Open Access Journals (Sweden)

    Gruszka Aleksandra

    2016-04-01

    Full Text Available In this study bibliometric mapping method was employed to visualise the current research trends and the impact of the two most influential models of working memory, namely: A. D. Baddeley and G. J. Hitch’s (1974 multicomponent working memory model and N. Cowan’s (1988 embedded-processes model of working memory. Using VOSviewer software two maps were generated based on the index-term words extracted from the research papers citing Baddeley (2000 and Cowan (2001, respectively. The maps represent networks of co-occurrences of index terms and can be interpreted as an indication of the main research fields related to the examined models of WM. The results of the analysis revealed that the spheres of influence of the two main conceptualisations of WM are rather different than similar. Although the first two clusters, i.e. “brain mapping” and “higher-level cognition and development” are present in both maps, their relative importance varies. The remaining clusters are unique to each map. Baddeley’s theory seems to have a greater influence on “neuropsychology”, while Cowan’s theory - on basic research on “biological systems”, including the nervous system in humans and animals. The second difference between these theories concerns their relations to functions and dysfunctions associated with particular sensory modalities: in Baddelay’s theory with the “auditory modality” cluster, and in Cowan’s - with the “visual modality” one.

  2. Childhood Obesity and Academic Performance: The Role of Working Memory.

    Science.gov (United States)

    Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei

    2017-01-01

    The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10-13 years were analyzed for weight and height, of which 159 children (44 "obese," 23 "overweight," and 92 "normal weight") filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink.

  3. Stress Effects on Working Memory, Explicit Memory, and Implicit Memory for Neutral and Emotional Stimuli in Healthy Men

    OpenAIRE

    Luethi, Mathias; Meier, Beat; Sandi, Carmen

    2009-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  4. Selective attention on representations in working memory: cognitive and neural mechanisms.

    Science.gov (United States)

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  5. The impact of taxing working memory on negative and positive memories

    NARCIS (Netherlands)

    Engelhard, I.M.; van Uijen, S.L.; Van den Hout, M.A.

    2010-01-01

    BACKGROUND: Earlier studies have shown that horizontal eye movement (EM) during retrieval of a negative memory reduces its vividness and emotionality. This may be due to both tasks competing for working memory (WM) resources. This study examined whether playing the computer game "Tetris" also blurs

  6. Direct Access to Working Memory Contents

    NARCIS (Netherlands)

    Bialkova, S.E.; Oberauer, K.

    2010-01-01

    Abstract. In two experiments participants held in working memory (WM) three digits in three different colors, and updated individual digits with the results of arithmetic equations presented in one of the colors. In the memory-access condition, a digit from WM had to be used as the first number in

  7. How visual working memory contents influence priming of visual attention.

    Science.gov (United States)

    Carlisle, Nancy B; Kristjánsson, Árni

    2017-04-12

    Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.

  8. Storage of features, conjunctions and objects in visual working memory.

    Science.gov (United States)

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  9. Do Computerised Training Programmes Designed to Improve Working Memory Work?

    Science.gov (United States)

    Apter, Brian J. B.

    2012-01-01

    A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…

  10. Retrieval-practice task affects relationship between working memory capacity and retrieval-induced forgetting.

    Science.gov (United States)

    Storm, Benjamin C; Bui, Dung C

    2016-11-01

    Retrieving a subset of items from memory can cause forgetting of other items in memory, a phenomenon referred to as retrieval-induced forgetting (RIF). Individuals who exhibit greater amounts of RIF have been shown to also exhibit superior working memory capacity (WMC) and faster stop-signal reaction times (SSRTs), results which have been interpreted as suggesting that RIF reflects an inhibitory process that is mediated by the processes of executive control. Across four experiments, we sought to further elucidate this issue by manipulating the way in which participants retrieved items during retrieval practice and examining how the resulting effects of forgetting correlated with WMC (Experiments 1-3) and SSRT (Experiment 4). Significant correlations were observed when participants retrieved items from an earlier study phase (within-list retrieval practice), but not when participants generated items from semantic memory (extra-list retrieval practice). These results provide important new insight into the role of executive-control processes in RIF.

  11. Levels of processing and language modality specificity in working memory.

    Science.gov (United States)

    Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker

    2013-03-01

    Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Visual working memory capacity and the medial temporal lobe.

    Science.gov (United States)

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  13. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker

    2013-07-01

    It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.

  14. Working memory and attentional bias on reinforcing efficacy of food.

    Science.gov (United States)

    Carr, Katelyn A; Epstein, Leonard H

    2017-09-01

    Reinforcing efficacy of food, or the relationship between food prices and purchasing, is related to obesity status and energy intake in adults. Determining how to allocate resources for food is a decision making process influenced by executive functions. Attention to appetitive cues, as well as working memory capacity, or the ability to flexibly control attention while mentally retaining information, may be important executive functions involved in food purchasing decisions. In two studies, we examined how attention bias to food and working memory capacity are related to reinforcing efficacy of both high energy-dense and low energy-dense foods. The first study examined 48 women of varying body mass index (BMI) and found that the relationship between attentional processes and reinforcing efficacy was moderated by working memory capacity. Those who avoid food cues and had high working memory capacity had the lowest reinforcing efficacy, as compared to those with low working memory capacity. Study 2 systematically replicated the methods of study 1 with assessment of maintained attention in a sample of 48 overweight/obese adults. Results showed the relationship between maintained attention to food cues and reinforcing efficacy was moderated by working memory capacity. Those with a maintained attention to food and high working memory capacity had higher reinforcing efficacy than low working memory capacity individuals. These studies suggest working memory capacity moderated the relationship between different aspects of attention and food reinforcement. Understanding how decision making process are involved in reinforcing efficacy may help to identify future intervention targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Work stress, Chinese work values, and work well-being in the Greater China.

    Science.gov (United States)

    Lu, Luo; Kao, Shu-Fang; Siu, Oi-Ling; Lu, Chang-Qin

    2011-01-01

    Work values influence our attitudes and behavior at work, but they have rarely been explored in the context of work stress. The aim of this research was thus to test direct and moderating effects of Chinese work values (CWV) on relationships between work stressors and work well-being among employees in the Greater China region. A self-administered survey was conducted to collect data from three major cities in the region, namely Beijing, Hong Kong, and Taipei (N = 380). Work stressors were negatively related to work well-being, whereas CWV were positively related to work well-being. In addition, CWV also demonstrated moderating effects in some of the stressor-job satisfaction relationships.

  17. Working memory still needs verbal rehearsal.

    Science.gov (United States)

    Lucidi, Annalisa; Langerock, Naomi; Hoareau, Violette; Lemaire, Benoît; Camos, Valérie; Barrouillet, Pierre

    2016-02-01

    The causal role of verbal rehearsal in working memory has recently been called into question. For example, the SOB-CS (Serial Order in a Box-Complex Span) model assumes that there is no maintenance process for the strengthening of items in working memory, but instead a process of removal of distractors that are involuntarily encoded and create interference with memory items. In the present study, we tested the idea that verbal working memory performance can be accounted for without assuming a causal role of the verbal rehearsal process. We demonstrate in two experiments using a complex span task and a Brown-Peterson paradigm that increasing the number of repetitions of the same distractor (the syllable ba that was read aloud at each of its occurrences on screen) has a detrimental effect on the concurrent maintenance of consonants whereas the maintenance of spatial locations remains unaffected. A detailed analysis of the tasks demonstrates that accounting for this effect within the SOB-CS model requires a series of unwarranted assumptions leading to undesirable further predictions contradicted by available experimental evidence. We argue that the hypothesis of a maintenance mechanism based on verbal rehearsal that is impeded by concurrent articulation still provides the simplest and most compelling account of our results.

  18. Declarative and Procedural Working Memory: Common Principles, Common Capacity Limits?

    Directory of Open Access Journals (Sweden)

    Klus Oberauer

    2010-10-01

    Full Text Available Working memory is often described as a system for simultaneous storage and processing. Much research – and most measures of working-memory capacity – focus on the storage component only, that is, people's ability to recall or recognize items after short retention intervals. The mechanisms of processing information are studied in a separate research tradition, concerned with the selection and control of actions in simple choice situations, dual-task constellations, or task-switching setups. both research traditions investigate performance based on representations that are temporarily maintained in an active, highly accessible state, and constrained by capacity limits. In this article an integrated theoretical framework of declarative and procedural working memory is presented that relates the two domains of research to each other. Declarative working memory is proposed to hold representations available for processing (including recall and recognition, whereas procedural working memory holds representations that control processing (i. e., task sets, stimulus-response mappings, and executive control settings. The framework motivates two hypotheses: Declarative and procedural working memory have separate capacity limits, and they operate by analogous principles. The framework also suggests a new characterization of executive functions as the subset of processes governed by procedural working memory that has as its output a change in the conditions of operation of the working-memory system.

  19. Working memory, intelligence and reading ability in children

    NARCIS (Netherlands)

    de Jonge, P.; de Jong, P.F.

    1996-01-01

    The dimensions of working memory in children and the relationships between working memory capacity, reasoning and reading ability were investigated. Simple and complex span tests were administered to 280 grade four, five and six elementary school children. Simple span tests were hypothesized to

  20. A Bayesian hierarchical model for the measurement of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.

    Working memory is the memory system that allows for conscious storage and manipulation of information. The capacity of working memory is extremely limited. Measurements of this limit, and what affects it, are critical to understanding working memory. Cowan (2001) and Pashler (1988) suggested

  1. Working Memory in the Classroom: An Inside Look at the Central Executive.

    Science.gov (United States)

    Barker, Lauren A

    2016-01-01

    This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.

  2. Creativity and working memory capacity in sports: working memory capacity is not a limiting factor in creative decision making amongst skilled performers.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel

    2015-01-01

    The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.

  3. Rethinking the Connection between Working Memory and Language Impairment

    Science.gov (United States)

    Archibald, Lisa M. D.; Harder Griebeling, Katherine

    2016-01-01

    Background: Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. Aims: To examine the processing function of working memory in children with low language (LL) by employing tasks imposing…

  4. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  5. Working memory distortions of duration perception are modulated by attentional tags.

    Science.gov (United States)

    Pan, Yi; Hou, Xiu

    2016-03-01

    Recent research has shown that the contents of working memory can alter our perceptual experiences of visual matching stimuli. However, it is possible that different kinds of working memory representations may distort visual perception in different ways. In the present study, we associated working memory representations with different attentional tags and then examined their effects on perceived duration. The results showed that working memory representations prolonged apparent duration when they were tagged as a target and shortened perceived duration when they were tagged as a distractor. This is the first demonstration that attentional tags can modulate working memory effects on perceptual experience. We conclude that the influences of working memory on visual perception are determined not only by what information to be held in memory, but also by how the information is represented in memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2010-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  7. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2009-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  8. Working memory training to improve speech perception in noise across languages.

    Science.gov (United States)

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  9. Predictors of verbal working memory in children with cerebral palsy.

    NARCIS (Netherlands)

    Peeters, M.; Verhoeven, L.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  10. Predictors of verbal working memory in children with cerebral palsy

    NARCIS (Netherlands)

    Peeters, M.H.J.; Verhoeven, L.T.W.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  11. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  12. Social working memory: neurocognitive networks and directions for future research.

    Science.gov (United States)

    Meyer, Meghan L; Lieberman, Matthew D

    2012-01-01

    Navigating the social world requires the ability to maintain and manipulate information about people's beliefs, traits, and mental states. We characterize this capacity as social working memory (SWM). To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the "mentalizing network") that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires SWM and that both the mentalizing and canonical working memory neurocognitive networks support SWM. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed.

  13. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    Science.gov (United States)

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  14. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks.

    Science.gov (United States)

    Chen, S H Annabel; Desmond, John E

    2005-01-15

    Converging evidence has implicated the cerebellum in verbal working memory. The current fMRI study sought to further characterize cerebrocerebellar participation in this cognitive process by revealing regions of activation common to a verbal working task and an articulatory control task, as well as regions that are uniquely activated by working memory. Consistent with our model's predictions, load-dependent activations were observed in Broca's area (BA 44/6) and the superior cerebellar hemisphere (VI/CrusI) for both working memory and motoric rehearsal. In contrast, activations unique to verbal working memory were found in the inferior parietal lobule (BA 40) and the right inferior cerebellum hemisphere (VIIB). These findings provide evidence for two cerebrocerebellar networks for verbal working memory: a frontal/superior cerebellar articulatory control system and a parietal/inferior cerebellar phonological storage system.

  15. Working memory capacity predicts the beneficial effect of selective memory retrieval.

    Science.gov (United States)

    Schlichting, Andreas; Aslan, Alp; Holterman, Christoph; Bäuml, Karl-Heinz T

    2015-01-01

    Selective retrieval of some studied items can both impair and improve recall of the other items. This study examined the role of working memory capacity (WMC) for the two effects of memory retrieval. Participants studied an item list consisting of predefined target and nontarget items. After study of the list, half of the participants performed an imagination task supposed to induce a change in mental context, whereas the other half performed a counting task which does not induce such context change. Following presentation of a second list, memory for the original list's target items was tested, either with or without preceding retrieval of the list's nontarget items. Consistent with previous work, preceding nontarget retrieval impaired target recall in the absence of the context change, but improved target recall in its presence. In particular, there was a positive relationship between WMC and the beneficial, but not the detrimental effect of memory retrieval. On the basis of the view that the beneficial effect of memory retrieval reflects context-reactivation processes, the results indicate that individuals with higher WMC are better able to capitalise on retrieval-induced context reactivation than individuals with lower WMC.

  16. Working Memory in the Prefrontal Cortex

    Science.gov (United States)

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  17. Sensitivity to Referential Ambiguity in Discourse: The Role of Attention, Working Memory, and Verbal Ability.

    Science.gov (United States)

    Boudewyn, Megan A; Long, Debra L; Traxler, Matthew J; Lesh, Tyler A; Dave, Shruti; Mangun, George R; Carter, Cameron S; Swaab, Tamara Y

    2015-12-01

    The establishment of reference is essential to language comprehension. The goal of this study was to examine listeners' sensitivity to referential ambiguity as a function of individual variation in attention, working memory capacity, and verbal ability. Participants listened to stories in which two entities were introduced that were either very similar (e.g., two oaks) or less similar (e.g., one oak and one elm). The manipulation rendered an anaphor in a subsequent sentence (e.g., oak) ambiguous or unambiguous. EEG was recorded as listeners comprehended the story, after which participants completed tasks to assess working memory, verbal ability, and the ability to use context in task performance. Power in the alpha and theta frequency bands when listeners received critical information about the discourse entities (e.g., oaks) was used to index attention and the involvement of the working memory system in processing the entities. These measures were then used to predict an ERP component that is sensitive to referential ambiguity, the Nref, which was recorded when listeners received the anaphor. Nref amplitude at the anaphor was predicted by alpha power during the earlier critical sentence: Individuals with increased alpha power in ambiguous compared with unambiguous stories were less sensitive to the anaphor's ambiguity. Verbal ability was also predictive of greater sensitivity to referential ambiguity. Finally, increased theta power in the ambiguous compared with unambiguous condition was associated with higher working-memory span. These results highlight the role of attention and working memory in referential processing during listening comprehension.

  18. The generalizability of working-memory capacity in the sport domain.

    Science.gov (United States)

    Buszard, Tim; Masters, Rich Sw; Farrow, Damian

    2017-08-01

    Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Working Memory: Maintenance, Updating, and the Realization of Intentions

    Science.gov (United States)

    Nyberg, Lars; Eriksson, Johan

    2016-01-01

    Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287

  20. The Implications of Congenital Deafness for Working Memory.

    Science.gov (United States)

    Chalifoux, Lisa M.

    1991-01-01

    A. Baddeley's model of the working memory of congenitally deaf persons is examined in light of research on encoding by this population. It is concluded that a model of the working memory of the deaf must include subsystems for articulatory, sign, and visual encoding. (Author/DB)

  1. Stimulus-specific variability in color working memory with delayed estimation.

    Science.gov (United States)

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Wilson, Colin; Flombaum, Jonathan I

    2014-04-08

    Working memory for color has been the central focus in an ongoing debate concerning the structure and limits of visual working memory. Within this area, the delayed estimation task has played a key role. An implicit assumption in color working memory research generally, and delayed estimation in particular, is that the fidelity of memory does not depend on color value (and, relatedly, that experimental colors have been sampled homogeneously with respect to discriminability). This assumption is reflected in the common practice of collapsing across trials with different target colors when estimating memory precision and other model parameters. Here we investigated whether or not this assumption is secure. To do so, we conducted delayed estimation experiments following standard practice with a memory load of one. We discovered that different target colors evoked response distributions that differed widely in dispersion and that these stimulus-specific response properties were correlated across observers. Subsequent experiments demonstrated that stimulus-specific responses persist under higher memory loads and that at least part of the specificity arises in perception and is eventually propagated to working memory. Posthoc stimulus measurement revealed that rendered stimuli differed from nominal stimuli in both chromaticity and luminance. We discuss the implications of these deviations for both our results and those from other working memory studies.

  2. Age differences and format effects in working memory.

    Science.gov (United States)

    Foos, Paul W; Goolkasian, Paula

    2010-07-01

    Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.

  3. Different effects of color-based and location-based selection on visual working memory.

    Science.gov (United States)

    Li, Qi; Saiki, Jun

    2015-02-01

    In the present study, we investigated how feature- and location-based selection influences visual working memory (VWM) encoding and maintenance. In Experiment 1, cue type (color, location) and cue timing (precue, retro-cue) were manipulated in a change detection task. The stimuli were color-location conjunction objects, and binding memory was tested. We found a significantly greater effect for color precues than for either color retro-cues or location precues, but no difference between location pre- and retro-cues, consistent with previous studies (e.g., Griffin & Nobre in Journal of Cognitive Neuroscience, 15, 1176-1194, 2003). We also found no difference between location and color retro-cues. Experiment 2 replicated the color precue advantage with more complex color-shape-location conjunction objects. Only one retro-cue effect was different from that in Experiment 1: Color retro-cues were significantly less effective than location retro-cues in Experiment 2, which may relate to a structural property of multidimensional VWM representations. In Experiment 3, a visual search task was used, and the result of a greater location than color precue effect suggests that the color precue advantage in a memory task is related to the modulation of VWM encoding rather than of sensation and perception. Experiment 4, using a task that required only memory for individual features but not for feature bindings, further confirmed that the color precue advantage is specific to binding memory. Together, these findings reveal new aspects of the interaction between attention and VWM and provide potentially important implications for the structural properties of VWM representations.

  4. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  5. Auditory Verbal Working Memory as a Predictor of Speech Perception in Modulated Maskers in Listeners With Normal Hearing.

    Science.gov (United States)

    Millman, Rebecca E; Mattys, Sven L

    2017-05-24

    Background noise can interfere with our ability to understand speech. Working memory capacity (WMC) has been shown to contribute to the perception of speech in modulated noise maskers. WMC has been assessed with a variety of auditory and visual tests, often pertaining to different components of working memory. This study assessed the relationship between speech perception in modulated maskers and components of auditory verbal working memory (AVWM) over a range of signal-to-noise ratios. Speech perception in noise and AVWM were measured in 30 listeners (age range 31-67 years) with normal hearing. AVWM was estimated using forward digit recall, backward digit recall, and nonword repetition. After controlling for the effects of age and average pure-tone hearing threshold, speech perception in modulated maskers was related to individual differences in the phonological component of working memory (as assessed by nonword repetition) but only in the least favorable signal-to-noise ratio. The executive component of working memory (as assessed by backward digit) was not predictive of speech perception in any conditions. AVWM is predictive of the ability to benefit from temporal dips in modulated maskers: Listeners with greater phonological WMC are better able to correctly identify sentences in modulated noise backgrounds.

  6. Effects of chewing in working memory processing.

    Science.gov (United States)

    Hirano, Yoshiyuki; Obata, Takayuki; Kashikura, Kenichi; Nonaka, Hiroi; Tachibana, Atsumichi; Ikehira, Hiroo; Onozuka, Minoru

    2008-05-09

    It has been generally suggested that chewing produces an enhancing effect on cognitive performance-related aspects of memory by the test battery. Furthermore, recent studies have shown that chewing is associated with activation of various brain regions, including the prefrontal cortex. However, little is known about the relation between cognitive performances affected by chewing and the neuronal activity in specified regions in the brain. We therefore examined the effects of chewing on neuronal activities in the brain during a working memory task using fMRI. The subjects chewed gum, without odor and taste components, between continuously performed two- or three-back (n-back) working memory tasks. Chewing increased the BOLD signals in the middle frontal gyrus (Brodmann's areas 9 and 46) in the dorsolateral prefrontal cortex during the n-back tasks. Furthermore, there were more prominent activations in the right premotor cortex, precuneus, thalamus, hippocampus and inferior parietal lobe during the n-back tasks after the chewing trial. These results suggest that chewing may accelerate or recover the process of working memory besides inducing improvement in the arousal level by the chewing motion.

  7. Manipulations of attention dissociate fragile visual short-term memory from visual working memory

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Sligte, I.G.; Lamme, V.A.F.

    2011-01-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research

  8. The influence of levels of processing on recall from working memory and delayed recall tasks.

    Science.gov (United States)

    Loaiza, Vanessa M; McCabe, David P; Youngblood, Jessie L; Rose, Nathan S; Myerson, Joel

    2011-09-01

    Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading span task (Experiment 1) and an operation span task (Experiment 2) in order to assess the role of retrieval from secondary memory during complex span tasks. Immediate recall from both span tasks was greater for items studied under deep processing instructions compared with items studied under shallow processing instructions regardless of trial length. Recall was better for deep than for shallow levels of processing on delayed recall tests as well. These data are consistent with the primary-secondary memory framework, which suggests that to-be-remembered items are displaced from primary memory (i.e., the focus of attention) during the processing phases of complex span tasks and therefore must be retrieved from secondary memory. (c) 2011 APA, all rights reserved.

  9. Item-location binding in working memory: is it hippocampus-dependent?

    Science.gov (United States)

    Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D

    2014-07-01

    A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Efficiency of working memory: Theoretical concept and practical application

    OpenAIRE

    Lalović Dejan

    2008-01-01

    Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the...

  11. Do Interpreters Indeed Have Superior Working Memory in Interpreting

    Institute of Scientific and Technical Information of China (English)

    于飞

    2012-01-01

    With the frequent communications between China and western countries in the field of economy,politics and culture,etc,Inter preting becomes more and more important to people in all walks of life.This paper aims to testify the author’s hypothesis "professional interpreters have similar short-term memory with unprofessional interpreters,but they have superior working memory." After the illustration of literatures concerning with consecutive interpreting,short-term memory and working memory,experiments are designed and analysis are described.

  12. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  13. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia.

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  14. Short-term memory in Down syndrome: applying the working memory model.

    Science.gov (United States)

    Jarrold, C; Baddeley, A D

    2001-10-01

    This paper is divided into three sections. The first reviews the evidence for a verbal short-term memory deficit in Down syndrome. Existing research suggests that short-term memory for verbal information tends to be impaired in Down syndrome, in contrast to short-term memory for visual and spatial material. In addition, problems of hearing or speech do not appear to be a major cause of difficulties on tests of verbal short-term memory. This suggests that Down syndrome is associated with a specific memory problem, which we link to a potential deficit in the functioning of the 'phonological loop' of Baddeley's (1986) model of working memory. The second section considers the implications of a phonological loop problem. Because a reasonable amount is known about the normal functioning of the phonological loop, and of its role in language acquisition in typical development, we can make firm predictions as to the likely nature of the short-term memory problem in Down syndrome, and its consequences for language learning. However, we note that the existing evidence from studies with individuals with Down syndrome does not fit well with these predictions. This leads to the third section of the paper, in which we consider key questions to be addressed in future research. We suggest that there are two questions to be answered, which follow directly from the contradictory results outlined in the previous section. These are 'What is the precise nature of the verbal short-term memory deficit in Down syndrome', and 'What are the consequences of this deficit for learning'. We discuss ways in which these questions might be addressed in future work.

  15. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    Science.gov (United States)

    Voigt, Babett; Mahy, Caitlin E. V.; Ellis, Judi; Schnitzspahn, Katharina; Krause, Ivonne; Altgassen, Mareike; Kliegel, Matthias

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was…

  16. Memory retrieval of smoking-related images induce greater insula activation as revealed by an fMRI-based delayed matching to sample task.

    Science.gov (United States)

    Janes, Amy C; Ross, Robert S; Farmer, Stacey; Frederick, Blaise B; Nickerson, Lisa D; Lukas, Scott E; Stern, Chantal E

    2015-03-01

    Nicotine dependence is a chronic and difficult to treat disorder. While environmental stimuli associated with smoking precipitate craving and relapse, it is unknown whether smoking cues are cognitively processed differently than neutral stimuli. To evaluate working memory differences between smoking-related and neutral stimuli, we conducted a delay-match-to-sample (DMS) task concurrently with functional magnetic resonance imaging (fMRI) in nicotine-dependent participants. The DMS task evaluates brain activation during the encoding, maintenance and retrieval phases of working memory. Smoking images induced significantly more subjective craving, and greater midline cortical activation during encoding in comparison to neutral stimuli that were similar in content yet lacked a smoking component. The insula, which is involved in maintaining nicotine dependence, was active during the successful retrieval of previously viewed smoking versus neutral images. In contrast, neutral images required more prefrontal cortex-mediated active maintenance during the maintenance period. These findings indicate that distinct brain regions are involved in the different phases of working memory for smoking-related versus neutral images. Importantly, the results implicate the insula in the retrieval of smoking-related stimuli, which is relevant given the insula's emerging role in addiction. © 2013 Society for the Study of Addiction.

  17. Cognitive control in auditory working memory is enhanced in musicians

    DEFF Research Database (Denmark)

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J

    2010-01-01

    focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally...... hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task....... The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may...

  18. The influence of working memory capacity on experimental heat pain.

    Science.gov (United States)

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  19. Neural mechanisms of interference control in working memory capacity.

    Science.gov (United States)

    Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N

    2018-02-01

    The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.

  20. Predictors of Verbal Working Memory in Children with Cerebral Palsy

    Science.gov (United States)

    Peeters, Marieke; Verhoeven, Ludo; de Moor, Jan

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by means of a forced-recognition task. As precursors…

  1. The relationship between visual-spatial and auditory-verbal working memory span in Senegalese and Ugandan children.

    Directory of Open Access Journals (Sweden)

    Michael J Boivin

    Full Text Available BACKGROUND: Using the Kaufman Assessment Battery for Children (K-ABC Conant et al. (1999 observed that visual and auditory working memory (WM span were independent in both younger and older children from DR Congo, but related in older American children and in Lao children. The present study evaluated whether visual and auditory WM span were independent in Ugandan and Senegalese children. METHOD: In a linear regression analysis we used visual (Spatial Memory, Hand Movements and auditory (Number Recall WM along with education and physical development (weight/height as predictors. The predicted variable in this analysis was Word Order, which is a verbal memory task that has both visual and auditory memory components. RESULTS: Both the younger (8.5 yrs Ugandan children had auditory memory span (Number Recall that was strongly predictive of Word Order performance. For both the younger and older groups of Senegalese children, only visual WM span (Spatial Memory was strongly predictive of Word Order. Number Recall was not significantly predictive of Word Order in either age group. CONCLUSIONS: It is possible that greater literacy from more schooling for the Ugandan age groups mediated their greater degree of interdependence between auditory and verbal WM. Our findings support those of Conant et al., who observed in their cross-cultural comparisons that stronger education seemed to enhance the dominance of the phonological-auditory processing loop for WM.

  2. The relationship between visual-spatial and auditory-verbal working memory span in Senegalese and Ugandan children.

    Science.gov (United States)

    Boivin, Michael J; Bangirana, Paul; Shaffer, Rebecca C; Smith, Rebecca C

    2010-01-27

    Using the Kaufman Assessment Battery for Children (K-ABC) Conant et al. (1999) observed that visual and auditory working memory (WM) span were independent in both younger and older children from DR Congo, but related in older American children and in Lao children. The present study evaluated whether visual and auditory WM span were independent in Ugandan and Senegalese children. In a linear regression analysis we used visual (Spatial Memory, Hand Movements) and auditory (Number Recall) WM along with education and physical development (weight/height) as predictors. The predicted variable in this analysis was Word Order, which is a verbal memory task that has both visual and auditory memory components. Both the younger (8.5 yrs) Ugandan children had auditory memory span (Number Recall) that was strongly predictive of Word Order performance. For both the younger and older groups of Senegalese children, only visual WM span (Spatial Memory) was strongly predictive of Word Order. Number Recall was not significantly predictive of Word Order in either age group. It is possible that greater literacy from more schooling for the Ugandan age groups mediated their greater degree of interdependence between auditory and verbal WM. Our findings support those of Conant et al., who observed in their cross-cultural comparisons that stronger education seemed to enhance the dominance of the phonological-auditory processing loop for WM.

  3. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    Science.gov (United States)

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  4. The selective disruption of spatial working memory by eye movements.

    Science.gov (United States)

    Postle, Bradley R; Idzikowski, Christopher; Sala, Sergio Della; Logie, Robert H; Baddeley, Alan D

    2006-01-01

    In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book, these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory.

  5. The effects of working memory on brain-computer interface performance.

    Science.gov (United States)

    Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W

    2016-02-01

    The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Working Memory and Cognitive Styles in Adolescents' Attainment

    Science.gov (United States)

    Packiam Alloway, Tracy; Banner, Gloria E.; Smith, Patrick

    2010-01-01

    Background: Working memory, the ability to store and process information, is strongly related to learning outcomes. Aims: The aim of the present study is to extend previous research on early learning and investigate the relationship between working memory, cognitive styles, and attainment in adolescents using both national curriculum tests and…

  7. Working Memory Underpins Cognitive Development, Learning, and Education

    Science.gov (United States)

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…

  8. Motor learning and working memory in children born preterm: a systematic review.

    Science.gov (United States)

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Working Memory in Students with Mathematical Difficulties

    Science.gov (United States)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  10. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.

    Science.gov (United States)

    Nissim, Nicole R; O'Shea, Andrew M; Bryant, Vaughn; Porges, Eric C; Cohen, Ronald; Woods, Adam J

    2016-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance ( N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p frontal regions may underlie age-related decline of working memory function.

  11. Low-level lead exposure effects on spatial reference memory and working memory in rats

    Institute of Scientific and Technical Information of China (English)

    Xinhua Yang; Ping Zhou; Yonghui Li

    2009-01-01

    BACKGROUND: Studies have demonstrated that lead exposure can result in cognitive dysfunction and behavior disorders. However, lead exposure impairments vary under different experimental conditions.OBJECTIVE: To detect changes in spatial learning and memory following low-level lead exposure in rats, in Morris water maze test under the same experimental condition used to analyze lead exposure effects on various memory types and learning processes.DESIGN AND SETTING: The experiment was conducted at the Animal Laboratory, Institute of Psychology, Chinese Academy of Science between February 2005 and March 2006. One-way analysis of variance (ANOVA) and behavioral observations were performed.MATERIALS: Sixteen male, healthy, adult, Sprague Dawley rats were randomized into normal control and lead exposure groups (n = 8).METHODS: Rats in the normal control group were fed distilled water, and those in the lead exposure group were fed 250 mL of 0.05% lead acetate once per day. At day 28, all rats performed the Morris water maze test, consisting of four phases: space navigation, probe test, working memory test, and visual cue test.MAIN OUTCOME MEASURES: Place navigation in the Morris water maze was used to evaluate spatial learning and memory, probe trials for spatial reference memory, working memory test for spatial working memory, and visual cue test for non-spatial cognitive function. Perkin-Elmer Model 300 Atomic Absorption Spectrometer was utilized to determine blood lead levels in rats.RESULTS: (1) In the working memory test, the time to reach the platform remained unchanged between the control and lead exposure groups (F(1,1) = 0.007, P = 0.935). A visible decrease in escape latencies was observed in each group (P = 0.028). However, there was no significant difference between the two groups (F(1,1) = 1.869, P = 0.193). The working memory probe test demonstrated no change between the two groups in the time spent in the target quadrant during the working memory probe test

  12. Effects of emotional content on working memory capacity.

    Science.gov (United States)

    Garrison, Katie E; Schmeichel, Brandon J

    2018-02-13

    Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.

  13. Negative affect improves the quality of memories: trading capacity for precision in sensory and working memory.

    Science.gov (United States)

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2014-08-01

    Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. An evaluation of a working memory training scheme in older adults

    Directory of Open Access Journals (Sweden)

    Laura Patricia McAvinue

    2013-05-01

    Full Text Available Working memory is a cognitive process that is particularly vulnerable to decline with age. The current study sought to evaluate the efficacy of a working memory training scheme in improving memory in a group of older adults. A 5-week online training scheme was designed to provide training in the main components of Baddeley’s (2000 working memory model, namely auditory and visuospatial short-term and working memory. A group of older adults aged between 64 and 79 were randomly assigned to a trainee (n = 19 or control (n = 17 group, with trainees engaging in the adaptive training scheme and controls engaging in a non-adaptive version of the programme. Before and after training and at 3- and 6-month follow-up sessions, trainees and controls were asked to complete measures of short-term and working memory, long-term episodic memory, subjective ratings of memory and attention and achievement of goals set at the beginning of training. The results provided evidence of an expansion of auditory short-term memory span, which was maintained 6 months later, and transfer to long-term episodic memory but no evidence of improvement in working memory capacity per se. A serendipitous and intriguing finding of a relationship between time spent training, psychological stress and training gains provided further insight into individual differences in training gains in older adults.

  15. Working memory capacity predicts listwise directed forgetting in adults and children.

    Science.gov (United States)

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  16. Working Memory Training and Speech in Noise Comprehension in Older Adults

    Directory of Open Access Journals (Sweden)

    Rachel V. Wayne

    2016-03-01

    Full Text Available Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald & Nusbaum, 2014, and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg, Forssberg & Westerberg, 2002 in 24 older adults, assessing generalization to other working-memory tasks (near-transfer and to other cognitive domains (far-transfer using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter 1980. We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd, Best & Mason 2005. To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context and half were semantically anomalous (low-context. Subjects completed 25 sessions (0.5-1 hour each; 5 sessions/week of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects’ scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  17. Working Memory Training and Speech in Noise Comprehension in Older Adults.

    Science.gov (United States)

    Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  18. Working memory and new learning following pediatric traumatic brain injury.

    Science.gov (United States)

    Mandalis, Anna; Kinsella, Glynda; Ong, Ben; Anderson, Vicki

    2007-01-01

    Working memory (WM), the ability to monitor, process and maintain task relevant information on-line to respond to immediate environmental demands, is controlled by frontal systems (D'Esposito et al., 2006), which are particularly vulnerable to damage from a traumatic brain injury (TBI). This study employed the adult-based Working Memory model of Baddeley and Hitch (1974) to examine the relationship between working memory function and new verbal learning in children with TBI. A cross-sectional sample of 36 school-aged children with a moderate to severe TBI was compared to age-matched healthy Controls on a series of tasks assessing working memory subsystems: the Phonological Loop (PL) and Central Executive (CE). The TBI group performed significantly more poorly than Controls on the PL measure and the majority of CE tasks. On new learning tasks, the TBI group consistently produced fewer words than Controls across the learning and delayed recall phases. Results revealed impaired PL function related to poor encoding and acquisition on a new verbal learning task in the TBI group. CE retrieval deficits in the TBI group contributed to general memory dysfunction in acquisition, retrieval and recognition memory. These results suggest that the nature of learning and memory deficits in children with TBI is related to working memory impairment.

  19. Escaping Capture: Bilingualism Modulates Distraction from Working Memory

    Science.gov (United States)

    Hernandez, Mireia; Costa, Albert; Humphreys, Glyn W.

    2012-01-01

    We ask whether bilingualism aids cognitive control over the inadvertent guidance of visual attention from working memory and from bottom-up cueing. We compare highly-proficient Catalan-Spanish bilinguals with Spanish monolinguals in three visual search conditions. In the working memory (WM) condition, attention was driven in a top-down fashion by…

  20. Verbal Working Memory in Children with Cochlear Implants

    Science.gov (United States)

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose: Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants: Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method: A dual-component model of…

  1. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.

    Science.gov (United States)

    Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden

    2016-05-01

    The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.

  2. Selective updating of working memory content modulates meso-cortico-striatal activity.

    Science.gov (United States)

    Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S

    2011-08-01

    Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.

  3. Neural Networks for Time Perception and Working Memory

    Science.gov (United States)

    Üstün, Sertaç; Kale, Emre H.; Çiçek, Metehan

    2017-01-01

    Time is an important concept which determines most human behaviors, however questions remain about how time is perceived and which areas of the brain are responsible for time perception. The aim of this study was to evaluate the relationship between time perception and working memory in healthy adults. Functional magnetic resonance imaging (fMRI) was used during the application of a visual paradigm. In all of the conditions, the participants were presented with a moving black rectangle on a gray screen. The rectangle was obstructed by a black bar for a time period and then reappeared again. During different conditions, participants (n = 15, eight male) responded according to the instructions they were given, including details about time and the working memory or dual task requirements. The results showed activations in right dorsolateral prefrontal and right intraparietal cortical networks, together with the anterior cingulate cortex (ACC), anterior insula and basal ganglia (BG) during time perception. On the other hand, working memory engaged the left prefrontal cortex, ACC, left superior parietal cortex, BG and cerebellum activity. Both time perception and working memory were related to a strong peristriate cortical activity. On the other hand, the interaction of time and memory showed activity in the intraparietal sulcus (IPS) and posterior cingulate cortex (PCC). These results support a distributed neural network based model for time perception and that the intraparietal and posterior cingulate areas might play a role in the interface of memory and timing. PMID:28286475

  4. Visual working memory is more tolerant than visual long-term memory.

    Science.gov (United States)

    Schurgin, Mark W; Flombaum, Jonathan I

    2018-05-07

    Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Release of Inattentional Blindness by High Working Memory Load: Elucidating the Relationship between Working Memory and Selective Attention

    Science.gov (United States)

    de Fockert, Jan W.; Bremner, Andrew J.

    2011-01-01

    An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…

  6. Controlling attention to nociceptive stimuli with working memory.

    Directory of Open Access Journals (Sweden)

    Valéry Legrain

    Full Text Available BACKGROUND: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. METHODOLOGY AND PRINCIPAL FINDINGS: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials, tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory, reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. CONCLUSION AND SIGNIFICANCE: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal

  7. Working memory and flexibility in awareness and attention.

    Science.gov (United States)

    Bunting, Michael F; Cowan, Nelson

    2005-06-01

    We argue that attention and awareness form the basis of one type of working-memory storage. In contrast to models of working memory in which storage and retrieval occur effortlessly, we document that an attention-demanding goal conflict within a retrieval cue impairs recall from working memory. In a conceptual span task, semantic and color-name cues prompted recall of four consecutive words from a twelve-word list. The first-four, middle-four, and final-four words belonged to different semantic categories (e.g., body parts, animals, and tools) and were shown in different colors (e.g., red, blue, and green). In Experiment 1, the color of the cue matched that of cued items 75% of the time, and the rare mismatch impaired recall. In Experiment 2, though, the color of the cue matched that of the cued items only 25% of the time, and the now-more-frequent mismatches no longer mattered. These results are difficult to explain with passive storage alone and indicate that a processing difficulty impedes recall from working memory, presumably by distracting attention away from its storage function.

  8. Working Memory in the Service of Executive Control Functions.

    Science.gov (United States)

    Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh

    2015-01-01

    Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.

  9. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls.

    Science.gov (United States)

    Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J

    2017-06-01

    Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  11. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  12. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult?

    Science.gov (United States)

    Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2016-01-01

    Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will

  13. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung; Choi, Dae Seob

    2000-01-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  14. Functional MR imaging of working memory in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Dae Seob [Dongguk University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  15. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    Science.gov (United States)

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Maintenance and manipulation of information in schizophrenia: further evidence for impairment in the central executive component of working memory.

    Science.gov (United States)

    Kim, Junghoon; Glahn, David C; Nuechterlein, Keith H; Cannon, Tyrone D

    2004-06-01

    Impairments in working memory (WM) have been proposed to underlie various cognitive and functional impairments in schizophrenia. However, the nature and extent of the dysfunction remain unclear. The present study attempted to examine the integrity of sub-components of working memory in schizophrenia within the framework of the multiple-component working memory model proposed by Baddeley. Two sets of visuospatial and verbal delayed-response tasks were developed which had comparable formats and difficulties across domains. In Experiment 1, demands on the central executive (CE) were manipulated by requiring subjects either (1) to simultaneously maintain and transform information (maintenance-and-manipulation condition) or (2) just to maintain this information (maintenance-only condition). In Experiment 2, the amount of information to be maintained over the delay was parametrically varied to evaluate demands on the temporary maintenance component of working memory. Patients (N=16) performed worse than controls (N=16) in both conditions of Experiment 1; however, simultaneous maintenance and manipulation was associated with a significantly greater performance reduction in the patients. In Experiment 2, both patients (N=15) and controls (N=15) declined in performance, at equivalent rates, with increasing memory load. Parallel findings were observed for the verbal and visuospatial tasks. These results suggest that while both maintenance and central executive aspects of working memory are impaired in schizophrenic patients, the central executive may be more severely affected.

  17. What you say matters: exploring visual-verbal interactions in visual working memory.

    Science.gov (United States)

    Mate, Judit; Allen, Richard J; Baqués, Josep

    2012-01-01

    The aim of this study was to explore whether the content of a simple concurrent verbal load task determines the extent of its interference on memory for coloured shapes. The task consisted of remembering four visual items while repeating aloud a pair of words that varied in terms of imageability and relatedness to the task set. At test, a cue appeared that was either the colour or the shape of one of the previously seen objects, with participants required to select the object's other feature from a visual array. During encoding and retention, there were four verbal load conditions: (a) a related, shape-colour pair (from outside the experimental set, i.e., "pink square"); (b) a pair of unrelated but visually imageable, concrete, words (i.e., "big elephant"); (c) a pair of unrelated and abstract words (i.e., "critical event"); and (d) no verbal load. Results showed differential effects of these verbal load conditions. In particular, imageable words (concrete and related conditions) interfered to a greater degree than abstract words. Possible implications for how visual working memory interacts with verbal memory and long-term memory are discussed.

  18. Effects of load on the guidance of visual attention from working memory.

    Science.gov (United States)

    Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping

    2011-12-08

    An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Neurotensin receptor 1 gene (NTSR1 polymorphism is associated with working memory.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT, in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453 were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.

  20. INTERACTIONS BETWEEN WORKING MEMORY AND CREATIVITY: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Taís Crema Remoli

    2017-03-01

    Full Text Available Creativity and working memory are academic and professional success markers. Paradoxically, correlational studies do not always find associations between these constructs; some studies show positive associations between them and others show negative associations. Probably, the contradictory findings arise from different parameters, because of that it is important to identify them in order to have a more coherent understanding of this relationship. Thus, this systematic literature review aimed to answer the questions: “What is the relationship between working memory and creativity? Do update and serial recall mnemonic processes also interfere in the production of convergent or divergent thinking?” For this purpose, a survey of specific descriptors generated 384 articles found in Scopus, Web of Science and Pubmed databases, from which fifteen studies were selected. Despite the methodological variability between the selected studies, the results found suggest associations between working memory and creativity, which are explained by the attentional, inhibitory, analytical and motivational processes involved. A systematic review of these studies concluded that the characteristics of experimental tasks to study creativity and working memory used can influence the results of this association. It is also possible to infer that working memory overload can impair creative performance.

  1. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    Science.gov (United States)

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  2. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short-term memory from visual working memory.

    Science.gov (United States)

    Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F

    2011-05-01

    To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  4. Working memory load improves early stages of independent visual processing

    OpenAIRE

    Cocchi, Luca; Toepel, Ulrike; De Lucia, Marzia; Martuzzi, Roberto; Wood, Stephen J.; Carter, Olivia; Murray, Micah M.

    2010-01-01

    Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipula...

  5. Selective attention supports working memory maintenance by modulating perceptual processing of distractors.

    Science.gov (United States)

    Sreenivasan, Kartik K; Jha, Amishi P

    2007-01-01

    Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.

  6. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    Science.gov (United States)

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  7. Postural responses to specific types of working memory tasks

    NARCIS (Netherlands)

    Ramenzoni, V.C.; Riley, M.A.; Shockley, K.; Chiu, C.Y.P.

    2007-01-01

    Standing participants performed working memory tasks that varied along three dimensions: (1) type of information presented (verbal or visual); (2) the primary cognitive process engaged (encoding or rehearsal); and (3) interference that targeted the working memory components (phonological loop and

  8. Goal-neglect links Stroop interference with working memory capacity

    NARCIS (Netherlands)

    Morey, C.C.; Elliott, E.M.; Wiggers, J.; Eaves, S.L.; Shelton, J.T.; Mall, Jonathan

    2012-01-01

    Relationships between Stroop interference and working memory capacity may reflect individual differences in resolving conflict, susceptibility to goal neglect, or both of these factors. We compared relationships between working memory capacity and three Stroop tasks: a classic, printed color-word

  9. WORKING MEMORY IMPAIRMENT AS AN ENDOPHENOTYPIC MARKER OF A SCHIZOPHRENIA DIATHESIS.

    Science.gov (United States)

    Park, Sohee; Gooding, Diane C

    2014-09-01

    This chapter focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a review of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation), in terms of which aspects are likely to be the best candidates for endophenotypes. We consider the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this chapter, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.

  10. Working memory impairment as an endophenotypic marker of a schizophrenia diathesis

    Directory of Open Access Journals (Sweden)

    Sohee Park

    2014-09-01

    Full Text Available This review focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a consideration of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation, in terms of which aspects are likely to be the best candidates for endophenotypes. We examine the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this review, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.

  11. Confident failures: Lapses of working memory reveal a metacognitive blind spot.

    Science.gov (United States)

    Adam, Kirsten C S; Vogel, Edward K

    2017-07-01

    Working memory performance fluctuates dramatically from trial to trial. On many trials, performance is no better than chance. Here, we assessed participants' awareness of working memory failures. We used a whole-report visual working memory task to quantify both trial-by-trial performance and trial-by-trial subjective ratings of inattention to the task. In Experiment 1 (N = 41), participants were probed for task-unrelated thoughts immediately following 20% of trials. In Experiment 2 (N = 30), participants gave a rating of their attentional state following 25% of trials. Finally, in Experiments 3a (N = 44) and 3b (N = 34), participants reported confidence of every response using a simple mouse-click judgment. Attention-state ratings and off-task thoughts predicted the number of items correctly identified on each trial, replicating previous findings that subjective measures of attention state predict working memory performance. However, participants correctly identified failures on only around 28% of failure trials. Across experiments, participants' metacognitive judgments reliably predicted variation in working memory performance but consistently and severely underestimated the extent of failures. Further, individual differences in metacognitive accuracy correlated with overall working memory performance, suggesting that metacognitive monitoring may be key to working memory success.

  12. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    Science.gov (United States)

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  13. Social Working Memory: Neurocognitive networks and plasticity

    OpenAIRE

    Meyer, Meghan Leigh

    2014-01-01

    The social world is incredibly complex and the ability to keep track of various pieces of social information at once is imperative for success as a social species. Yet, how humans manage social information in mind has to date remained a mystery. On the one hand, psychological models of working memory, or the ability to maintain and manipulate information in mind, suggest that managing social information in mind would rely on generic working memory processes. However, recent research in social...

  14. Can we throw information out of visual working memory and does this leave informational residue in long-term memory?

    Directory of Open Access Journals (Sweden)

    Ashleigh Monette Maxcey

    2014-04-01

    Full Text Available Can we entirely erase a temporary memory representation from mind? This question has been addressed in several recent studies that tested the specific hypothesis that a representation can be erased from visual working memory based on a cue that indicated that the representation was no longer necessary for the task. In addition to behavioral results that are consistent with the idea that we can throw information out of visual working memory, recent neurophysiological recordings support this proposal. However, given the infinite capacity of long-term memory, it is unclear whether throwing a representation out of visual working memory really removes its effects on memory entirely. In this paper we advocate for an approach that examines our ability to erase memory representations from working memory, as well as possible traces that those erased representations leave in long-term memory.

  15. Evidence against decay in verbal working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lewandowsky, Stephan

    2013-05-01

    The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which memory could decay, was manipulated via search set size. This manipulation increased retention interval by up to 100% without having any effect on recall accuracy. This result held with and without articulatory suppression. Two experiments using a dual-task paradigm showed that the visual search process required central attention. Thus, even when memory maintenance by central attention and by articulatory rehearsal was prevented, a large delay had no effect on memory performance, contrary to the decay notion. Most previous experiments that manipulated the retention interval and the opportunity for maintenance processes in complex span have confounded these variables with time pressure during processing periods. Three further experiments identified time pressure as the variable that affected recall. We conclude that time-based decay does not contribute to the capacity limit of verbal working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Individual differences in children's working memory and writing skill.

    Science.gov (United States)

    Swanson, H L; Berninger, V W

    1996-11-01

    The purpose of this research is to address (a) whether individual differences in working memory (WM) and writing are related to a general or process-specific system, (b) whether WM tasks operate independently of phonological short-term memory (STM) on measures of writing and reading, and (c) whether working memory predicts variance in writing beyond that predicted by reading alone. The present study correlated several WM and phonological STM measures with writing and reading measures. The study showed among the memory measures that a four-factor model reflecting phonological STM, verbal WM span, executive processing, and visual-spatial WM span best fit the multivariate data set. Working memory was correlated significantly with a number of writing measures, particularly those related to text generation. WM measures contributed unique variance to writing that was independent of reading skill, and STM measures best predicted transcription processes and reading recognition, whereas WM measures best predicted text generation and reading comprehension. Both verbal and visual-spatial working memory measures predicted reading comprehension, whereas only WM measures that reflect executive processing significantly predicted writing. In general, the results suggest that individual differences in children's writing reflect a specific capacity system, whereas reading comprehension draws upon a multiple capacity system.

  17. Working memory in multilingual children: is there a bilingual effect?

    Science.gov (United States)

    Engel de Abreu, Pascale M J

    2011-07-01

    This research investigates whether early childhood bilingualism affects working memory performance in 6- to 8-year-olds, followed over a longitudinal period of 3 years. The study tests the hypothesis that bilinguals might exhibit more efficient working memory abilities than monolinguals, potentially via the opportunity a bilingual environment provides to train cognitive control by combating interference and intrusions from the non-target language. A total of 44 bilingual and monolingual children, matched on age, sex, and socioeconomic status, completed assessments of working memory (simple span and complex span tasks), fluid intelligence, and language (vocabulary and syntax). The data showed that the monolinguals performed significantly better on the language measures across the years, whereas no language group effect emerged on the working memory and fluid intelligence tasks after verbal abilities were considered. The study suggests that the need to manage several language systems in the bilingual mind has an impact on children's language skills while having little effects on the development of working memory.

  18. On the law relating processing to storage in working memory.

    Science.gov (United States)

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valérie

    2011-04-01

    Working memory is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of their interaction proposed by the most popular A. D. Baddeley and G. Hitch's (1974) multiple-component model is contradicted by facts, leaving unresolved one of the main issues of cognitive functioning. In this article, the author derive from the time-based resource-sharing model of working memory a mathematical function relating the cognitive load involved by concurrent processing to the amount of information that can be simultaneously maintained active in working memory. A meta-analysis from several experiments testing the effects of processing on storage corroborates the parameters of the predicted function, suggesting that it properly reflects the law relating the 2 functions of working memory. 2011 APA, all rights reserved

  19. Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.

    Science.gov (United States)

    Bree, Kathleen D; Beljan, Paul

    2016-01-01

    Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.

  20. ASSERT: Augmentation Grant on Working Memory Capacity

    National Research Council Canada - National Science Library

    Engle, Randall

    2000-01-01

    .... That work has resulted in numerous publications and conference presentations demonstrating that individuals who score in the bottom quartile on measures of working memory capacity show more errors...

  1. Executive and Perceptual Distraction in Visual Working Memory

    Science.gov (United States)

    2017-01-01

    The contents of visual working memory are likely to reflect the influence of both executive control resources and information present in the environment. We investigated whether executive attention is critical in the ability to exclude unwanted stimuli by introducing concurrent potentially distracting irrelevant items to a visual working memory paradigm, and manipulating executive load using simple or more demanding secondary verbal tasks. Across 7 experiments varying in presentation format, timing, stimulus set, and distractor number, we observed clear disruptive effects of executive load and visual distraction, but relatively minimal evidence supporting an interactive relationship between these factors. These findings are in line with recent evidence using delay-based interference, and suggest that different forms of attentional selection operate relatively independently in visual working memory. PMID:28414499

  2. Recollecting positive and negative autobiographical memories disrupts working memory.

    Science.gov (United States)

    Allen, Richard J; Schaefer, Alexandre; Falcon, Thomas

    2014-09-01

    The present article reports two experiments examining the impact of recollecting emotionally valenced autobiographical memories on subsequent working memory (WM) task performance. Experiment 1 found that negatively valenced recollection significantly disrupted performance on a supra-span spatial WM task. Experiment 2 replicated and extended these findings to a verbal WM task (digit recall), and found that both negative and positive autobiographical recollections had a detrimental effect on verbal WM. In addition, we observed that these disruptive effects were more apparent on early trials, immediately following autobiographical recollection. Overall, these findings show that both positive and negative affect can disrupt WM when the mood-eliciting context is based on autobiographical memories. Furthermore, these results indicate that the emotional disruption of WM can take place across different modalities of WM (verbal and visuo-spatial). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    Science.gov (United States)

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  4. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Directory of Open Access Journals (Sweden)

    Aaron T. Mattfeld

    2016-01-01

    Full Text Available Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI. Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  5. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Science.gov (United States)

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  6. White matter hyperintensities and working memory : An explorative study

    NARCIS (Netherlands)

    van Harten, Barbera; Weinstein, Henry C.; Scheltens, Philip; Sergeant, Joseph A.; Scherder, Erik J. A.; Oosterman, J

    2008-01-01

    White matter hyperintensities (WMH) are commonly observed in elderly people and may have the most profound effect on executive functions, including working memory. Surprisingly, the Digit Span backward, a frequently employed working memory task, reveals no association with WMH. In the present study,

  7. Content-specific working memory modulation of the attentional blink

    NARCIS (Netherlands)

    Akyürek, Elkan G.; Abedian-Amiri, Ali; Ostermeier, Sonja M.

    2011-01-01

    Three experiments were conducted to investigate the effects of working memory content on temporal attention in a rapid serial visual presentation attentional blink paradigm. It was shown that categorical similarity between working memory content and the target stimuli pertaining to the attentional

  8. Working memory assessment in schizophrenia and its correlation with executive functions ability.

    Science.gov (United States)

    Berberian, Arthur A; Trevisan, Bruna T; Moriyama, Tais S; Montiel, José M; Oliveira, José Ari C; Seabra, Alessandra G

    2009-09-01

    Working memory impairment is common in schizophrenia and is possibly a cause of multiple features of the disorder. However few studies have replicated such findings of impairment patterns in Brazilian samples. The main target of this study was to assess auditory and visual working memory in patients with schizophrenia, to assess if they work as separate systems, and to correlate working memory deficits with executive functions. Twenty subjects with schizophrenia and twenty healthy subjects matched by gender, age, and schooling have participated. The abilities assessed were auditory and visual working memory, selective attention, inhibitory control, cognitive flexibility, and planning. Patients showed declines in all measures evaluated, except for a measure reaction time of inhibitory control. Auditory working memory was correlated to selective attention, inhibition, flexibility and planning while Visual working memory to planning and flexibility. The present study suggests that working memory and executive functions deficits are present in patients with schizophrenia in the Brazilian sample evaluated. Alterations in executive functions may lead to incapacity of operation of processes of working memory. These findings may contribute to delineate and develop new strategies of schizophrenia treatment in the Brazilian population.

  9. Sex differences in visual-spatial working memory: A meta-analysis.

    Science.gov (United States)

    Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean

    2017-04-01

    Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.

  10. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Science.gov (United States)

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  11. Working memory for conjunctions relies on the medial temporal lobe.

    Science.gov (United States)

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  12. Distinct Transfer Effects of Training Different Facets of Working Memory Capacity

    Science.gov (United States)

    von Bastian, Claudia C.; Oberauer, Klaus

    2013-01-01

    The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…

  13. Working Memory and Binding in Sentence Recall

    Science.gov (United States)

    Baddeley, A. D.; Hitch, G. J.; Allen, R. J.

    2009-01-01

    A series of experiments explored whether chunking in short-term memory for verbal materials depends on attentionally limited executive processes. Secondary tasks were used to disrupt components of working memory and chunking was indexed by the sentence superiority effect, whereby immediate recall is better for sentences than word lists. To…

  14. Accessibility Limits Recall from Visual Working Memory

    Science.gov (United States)

    Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay

    2017-01-01

    In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…

  15. Working memory maintenance is sufficient to reduce state anxiety.

    Science.gov (United States)

    Balderston, Nicholas L; Quispe-Escudero, David; Hale, Elizabeth; Davis, Andrew; O'Connell, Katherine; Ernst, Monique; Grillon, Christian

    2016-11-01

    According to the attentional control theory (ACT) proposed by Eysenck and colleagues, anxiety interferes with cognitive processing by prioritizing bottom-up attentional processes over top-down attentional processes, leading to competition for access to limited resources in working memory, particularly the central executive (Eysenck, Derakshan, Santos, & Calvo, ). However, previous research using the n-back working memory task suggests that working memory load also reduces state anxiety. Assuming that similar mechanisms underlie the effect of anxiety on cognition, and the effect of cognition on anxiety, one possible implication of the ACT would suggest that the reduction of state anxiety with increasing working memory load is driven by activation of central executive attentional control processes. We tested this hypothesis using the Sternberg working memory paradigm, where maintenance processes can be isolated from central executive processes (Altamura et al., ; Sternberg, ). Consistent with the n-back results, subjects showed decreased state anxiety during the maintenance period of high-load trials relative to low-load trials, suggesting that maintenance processes alone are sufficient to achieve this state anxiety reduction. Given that the Sternberg task does not require central executive engagement, these results are not consistent with an implication of the ACT where the cognition/anxiety relationship and anxiety/cognition relationship are mediated by similar central executive mechanisms. Instead, we propose an extension of the ACT such that engaging working memory maintenance suppresses state anxiety in a load-dependent manner. Furthermore, we hypothesize that the efficacy of this effect may moderate the effect of trait anxiety on cognition. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Different effects of executive and visuospatial working memory on visual consciousness.

    Science.gov (United States)

    De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip

    2015-11-01

    Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.

  17. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.; Sligte, I.G.; Vries, J.G. de; Cohen, M.S.; Lamme, V.A.F.

    2015-01-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F.

  18. Neural correlates of visual short-term memory dissociate between fragile and working memory representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Sligte, I.G.; de Vries, J.G.; Cohen, M.X.; Lamme, V.A.F.

    2015-01-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F.

  19. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    Science.gov (United States)

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  1. Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2016-12-01

    During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.

  2. Central and Peripheral Components of Working Memory Storage

    Science.gov (United States)

    Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.

    2014-01-01

    This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488

  3. Working Memory Load and Negative Picture Processing: Neural and Behavioral Associations With Panic, Social Anxiety, and Positive Affect.

    Science.gov (United States)

    MacNamara, Annmarie; Jackson, T Bryan; Fitzgerald, Jacklynn M; Hajcak, Greg; Phan, K Luan

    2018-04-22

    Internalizing disorders such as anxiety may be characterized by an imbalance between bottom-up (stimulus-driven) and top-down (goal-directed) attention. The late positive potential (LPP) can be used to assess these processes when task-irrelevant negative and neutral pictures are presented within a working memory paradigm. Prior work using this paradigm has found that working memory load reduces the picture-elicited LPP across participants; however, anxious individuals showed a reduced effect of working memory load on the LPP, suggesting increased distractibility. The current study assessed transdiagnostic associations between specific symptom dimensions of anxiety, the LPP, and behavior in a clinically representative, heterogeneous group of 76 treatment-seeking patients with internalizing disorders, who performed a working memory task interspersed with negative and neutral pictures. As expected, negative pictures enhanced the LPP, and working memory load reduced the LPP. Participants with higher social anxiety showed increased LPPs to negative stimuli during early and late portions of picture presentation. Panic symptoms were associated with reduced LPPs to negative pictures compared with neutral pictures as well as a reduced effect of working memory load on the LPP during the late time window. Reduced positive affect was associated with greater behavioral interference from negative pictures. Hypervigilance for negative stimuli was uniquely explained by social anxiety symptoms, whereas panic symptoms were associated with the opposing effect-blunted processing/avoidance of these stimuli. Panic symptoms were uniquely associated with reduced top-down control. Results reveal distinct associations between neural reactivity and anxiety symptom dimensions that transcend traditional diagnostic boundaries. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. How to assess gaming-induced benefits on attention and working memory

    OpenAIRE

    Mishra, Jyoti; Bavelier, Daphné; Gazzaley, Adam

    2012-01-01

    Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extra...

  5. Perspectives on working memory: introduction to the special issue.

    Science.gov (United States)

    Logie, Robert H; Cowan, Nelson

    2015-04-01

    More than 40 years ago, Baddeley and Hitch (1974) published an article with a wealth of experimentation and theorization on working memory, the small amount of information held in mind and often used within cognitive processes such as language comprehension and production, reasoning, and problem solving. We honor this seminal accomplishment in the present special issue, and take this opportunity to provide an introduction to our perspectives on the origin of the theory of working memory, how it has affected our work, what may be coming in the near future, and how the research articles in the present issue contribute to several related themes within the clearly thriving field of working memory.

  6. Variation in Working Memory Capacity and Temporal-Contextual Retrieval from Episodic Memory

    Science.gov (United States)

    Spillers, Gregory J.; Unsworth, Nash

    2011-01-01

    Unsworth and Engle (2007) recently proposed a model of working memory capacity characterized by, among other things, the ability to conduct a strategic, cue-dependent search of long-term memory. Although this ability has been found to mediate individual variation in a number of higher order cognitive tasks, the component processes involved remain…

  7. Attention allocation: Relationships to general working memory or specific language processing.

    Science.gov (United States)

    Archibald, Lisa M D; Levee, Tyler; Olino, Thomas

    2015-11-01

    Attention allocation, updating working memory, and language processing are interdependent cognitive tasks related to the focused direction of limited resources, refreshing and substituting information in the current focus of attention, and receiving/sending verbal communication, respectively. The current study systematically examined the relationship among executive attention, working memory executive skills, and language abilities while adjusting for individual differences in short-term memory. School-age children completed a selective attention task requiring them to recall whether a presented shape was in the same place as a previous target shape shown in an array imposing a low or high working memory load. Results revealed a selective attention cost when working above but not within memory span capacity. Measures of general working memory were positively related to overall task performance, whereas language abilities were related to response time. In particular, higher language skills were associated with faster responses under low load conditions. These findings suggest that attentional control and storage demands have an additive impact on working memory resources but provide only limited evidence for a domain-general mechanism in language learning. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.