WorldWideScience

Sample records for greater spatial heterogeneity

  1. Biotic Drivers of Spatial Heterogeneity and Implications for River Ecosystems

    Science.gov (United States)

    Wohl, Ellen

    2017-04-01

    Rivers throughout the northern hemisphere have been simplified and homogenized by the removal of beavers and instream wood, along with numerous forms of channel engineering and flow regulation. Loss of spatial heterogeneity in river corridors - channels and floodplains - affects downstream fluxes of water, sediment, organic matter, and nutrients, as well as stream metabolism, biomass, and biodiversity. Recent work in streams of the Colorado Rocky Mountains illustrates how the presence of beavers and instream wood can facilitate spatial heterogeneity by creating stable, persistent, multithread channel planform and high channel-floodplain and channel-hyporheic zone connectivity. This spatial heterogeneity facilitates retention of water in pools, floodplain wetlands, and hyporheic storage. Suspended sediment, particulate organic matter (POM), and solutes are also more likely to be retained in these stream segments than in more uniform stream segments with greater downstream conveyance. Retention of POM and solutes equates to greater volumes of organic carbon storage per unit valley length and greater rates of nitrogen uptake. Spatially heterogeneous stream segments also exhibit greater biomass and biodiversity of aquatic macroinvertebrates, salmonid fish, and riparian spiders than do more uniform stream segments. These significant differences in stream form and function are unlikely to be unique to this field area and can provide a conceptual model for understanding and restoring ecosystem functions in other rivers.

  2. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  3. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  4. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  5. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    International Nuclear Information System (INIS)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-01-01

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  6. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  7. Spatial heterogeneity in liquid–liquid phase transition

    International Nuclear Information System (INIS)

    Duan Yun-Rui; Li Tao; Wu Wei-Kang; Li Jie; Zhou Xu-Yan; Liu Si-Da; Li Hui

    2017-01-01

    Molecular dynamics simulations are performed to investigate the liquid–liquid phase transition (LLPT) and the spatial heterogeneity in Al–Pb monotectic alloys. The results reveal that homogeneous liquid Al–Pb alloy undergoes an LLPT, separating into Al-rich and Pb-rich domains, which is quite different from the isocompositional liquid water with a transition between low-density liquid (LDL) and high-density liquid (HDL). With spatial heterogeneity becoming large, LLPT takes place correspondingly. The relationship between the cooling rate, relaxation temperature and percentage of Al and the spatial heterogeneity is also reported. This study may throw light on the relationship between the structure heterogeneity and LLPT, which provides novel strategies to control the microstructures in the fabrication of the material with high performance. (paper)

  8. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  9. Spatial preference heterogeneity in forest recreation

    DEFF Research Database (Denmark)

    Abildtrup, Jens; Garcia, Serge; Olsen, Søren Bøye

    2013-01-01

    In this study, we analyze the preferences for recreational use of forests in Lorraine (Northeastern France), applying stated preference data. Our approach allows us to estimate individual-specific preferences for recreational use of different forest types. These estimates are used in a second stage...... in the estimation of welfare economic values for parking and picnic facilities in the analyzed model. The results underline the importance of considering spatial heterogeneity of preferences carrying out economic valuation of spatial-delineated environmental goods and that the spatial variation in willingness...... of the analysis where we test whether preferences depend on access to recreation sites. We find that there is significant preference heterogeneity with respect to most forest attributes. The spatial analysis shows that preferences for forests with parking and picnic facilities are correlated with having access...

  10. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  11. Spatial Factor Analysis for Aerosol Optical Depth in Metropolises in China with Regard to Spatial Heterogeneity

    Directory of Open Access Journals (Sweden)

    Hui Shi

    2018-04-01

    Full Text Available A substantial number of studies have analyzed how driving factors impact aerosols, but they have been little concerned with the spatial heterogeneity of aerosols and the factors that impact aerosols. The spatial distributions of the aerosol optical depth (AOD retrieved by Moderate Resolution Imaging Spectrometer (MODIS data at 550-nm and 3-km resolution for three highly developed metropolises, the Beijing-Tianjin-Hebei (BTH region, the Yangtze River Delta (YRD, and the Pearl River Delta (PRD, in China during 2015 were analyzed. Different degrees of spatial heterogeneity of the AOD were found, which were indexed by Moran’s I index giving values of 0.940, 0.715, and 0.680 in BTH, YRD, and PRD, respectively. For the spatial heterogeneity, geographically weighted regression (GWR was employed to carry out a spatial factor analysis, where terrain, climate condition, urban development, and vegetation coverage were taken as the potential driving factors. The results of the GWR imply varying relationships between the AOD and the factors. The results were generally consistent with existing studies, but the results suggest the following: (1 Elevation increase would more likely lead to a strong negative impact on aerosols (with most of the coefficients ranging from −1.5~0 in the BTH, −1.5~0 in the YRD, and −1~0 in the PRD in the places with greater elevations where the R-squared values are always larger than 0.5. However, the variation of elevations cannot explain the variation of aerosols in the places with relatively low elevations (with R-squared values approximately 0.1, ranging from 0 to 0.3, and approximately 0.1 in the BTH, YRD, and PRD, such as urban areas in the BTH and YRD. (2 The density of the built-up areas made a strong and positive impact on aerosols in the urban areas of the BTH (R-squared larger than 0.5, while the R-squared dropped to 0.1 in the places far away from the urban areas. (3 The vegetation coverage led to a stronger

  12. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  13. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  14. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  15. The impact of strain-specific immunity on Lyme disease incidence is spatially heterogeneous.

    Science.gov (United States)

    Khatchikian, Camilo E; Nadelman, Robert B; Nowakowski, John; Schwartz, Ira; Wormser, Gary P; Brisson, Dustin

    2017-12-01

    Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne infection in the US. Recent studies have demonstrated that the incidence of human Lyme disease would have been even greater were it not for the presence of strain-specific immunity, which protects previously infected patients against subsequent infections by the same B. burgdorferi strain. Here, spatial heterogeneity is incorporated into epidemiological models to accurately estimate the impact of strain-specific immunity on human Lyme disease incidence. The estimated reduction in the number of Lyme disease cases is greater in epidemiologic models that explicitly include the spatial distribution of Lyme disease cases reported at the county level than those that utilize nationwide data. strain-specific immunity has the greatest epidemiologic impact in geographic areas with the highest Lyme disease incidence due to the greater proportion of people that have been previously infected and have developed strain-specific immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quantification of Spatial Heterogeneity in Old Growth Forst of Korean Pine

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    Spatial hetergeneity is a very important issue in studying functions and processes of ecological systems at various scales. Semivariogram analysis is an effective technique to summarize spatial data, and quantification of sptail heterogeneity. In this paper, we propose some principles to use semivariograms to characterize and compare spatial heterogeneity of...

  17. Long-term spatial heterogeneity in mallard distribution in the Prairie pothole region

    Science.gov (United States)

    Janke, Adam K.; Anteau, Michael J.; Stafford, Joshua D.

    2017-01-01

    The Prairie Pothole Region (PPR) of north-central United States and south-central Canada supports greater than half of all breeding mallards (Anas platyrhynchos) annually counted in North America and is the focus of widespread conservation and research efforts. Allocation of conservation resources for this socioeconomically important population would benefit from an understanding of the nature of spatiotemporal variation in distribution of breeding mallards throughout the 850,000 km2 landscape. We used mallard counts from the Waterfowl Breeding Population and Habitat Survey to test for spatial heterogeneity and identify high- and low-abundance regions of breeding mallards over a 50-year time series. We found strong annual spatial heterogeneity in all years: 90% of mallards counted annually were on an average of only 15% of surveyed segments. Using a local indicator of spatial autocorrelation, we found a relatively static distribution of low-count clusters in northern Montana, USA, and southern Alberta, Canada, and a dynamic distribution of high-count clusters throughout the study period. Distribution of high-count clusters shifted southeast from northwestern portions of the PPR in Alberta and western Saskatchewan, Canada, to North and South Dakota, USA, during the latter half of the study period. This spatial redistribution of core mallard breeding populations was likely driven by interactions between environmental variation that created favorable hydrological conditions for wetlands in the eastern PPR and dynamic land-use patterns related to upland cropping practices and government land-retirement programs. Our results highlight an opportunity for prioritizing relatively small regions within the PPR for allocation of wetland and grassland conservation for mallard populations. However, the extensive spatial heterogeneity in core distributions over our study period suggests such spatial prioritization will have to overcome challenges presented by dynamic land

  18. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Thorsten eRudroff

    2014-05-01

    Full Text Available We used positron emission tomography/computed tomography (PET/CT and [18F]-FDG to test the hypothesis that glucose uptake (GU heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 yrs and six old (77 ± 6 yrs men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD for knee extensors and flexors was greater for the old (35.3 ± 3.3 % than the young (28.6 ± 2.4 % (P = 0.006. Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P= 0.004. In a multiple regression model, knee extensor muscle volume was a predictor (partial r = - 0.87; P = 0.001 of GU heterogeneity for old men (R2 = 0.78; P < 0.001, and MVC force predicted GU heterogeneity for young men (partial r = - 0.95, P < 0.001. The findings demonstrate that glucose uptake is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy.

  19. Modelling firm heterogeneity with spatial 'trends'

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, C. [North Dakota State University, Fargo, ND (United States). Dept. of Agricultural Business & Applied Economics

    2004-04-15

    The hypothesis underlying this article is that firm heterogeneity can be captured by spatial characteristics of the firm (similar to the inclusion of a time trend in time series models). The hypothesis is examined in the context of modelling electric generation by coal powered plants in the presence of firm heterogeneity.

  20. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  1. Capturing spatial heterogeneity of soil organic carbon under changing climate

    Science.gov (United States)

    Mishra, U.; Fan, Z.; Jastrow, J. D.; Matamala, R.; Vitharana, U.

    2015-12-01

    The spatial heterogeneity of the land surface affects water, energy, and greenhouse gas exchanges with the atmosphere. Designing observation networks that capture land surface spatial heterogeneity is a critical scientific challenge. Here, we present a geospatial approach to capture the existing spatial heterogeneity of soil organic carbon (SOC) stocks across Alaska, USA. We used the standard deviation of 556 georeferenced SOC profiles previously compiled in Mishra and Riley (2015, Biogeosciences, 12:3993-4004) to calculate the number of observations that would be needed to reliably estimate Alaskan SOC stocks. This analysis indicated that 906 randomly distributed observation sites would be needed to quantify the mean value of SOC stocks across Alaska at a confidence interval of ± 5 kg m-2. We then used soil-forming factors (climate, topography, land cover types, surficial geology) to identify the locations of appropriately distributed observation sites by using the conditioned Latin hypercube sampling approach. Spatial correlation and variogram analyses demonstrated that the spatial structures of soil-forming factors were adequately represented by these 906 sites. Using the spatial correlation length of existing SOC observations, we identified 484 new observation sites would be needed to provide the best estimate of the present status of SOC stocks in Alaska. We then used average decadal projections (2020-2099) of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change to investigate whether the location of identified observation sites will shift/change under future climate. Our results showed 12-41 additional observation sites (depending on emission scenarios) will be required to capture the impact of projected climatic conditions by 2100 on the spatial heterogeneity of Alaskan SOC stocks. Our results represent an ideal distribution

  2. Evaluation on island ecological vulnerability and its spatial heterogeneity.

    Science.gov (United States)

    Chi, Yuan; Shi, Honghua; Wang, Yuanyuan; Guo, Zhen; Wang, Enkang

    2017-12-15

    The evaluation on island ecological vulnerability (IEV) can help reveal the comprehensive characteristics of the island ecosystem and provide reference for controlling human activities on islands. An IEV evaluation model which reflects the land-sea dual features, natural and anthropogenic attributes, and spatial heterogeneity of the island ecosystem was established, and the southern islands of Miaodao Archipelago in North China were taken as the study area. The IEV, its spatial heterogeneity, and its sensitivities to the evaluation elements were analyzed. Results indicated that the IEV was in status of mild vulnerability in the archipelago scale, and population pressure, ecosystem productivity, environmental quality, landscape pattern, and economic development were the sensitive elements. The IEV showed significant spatial heterogeneities both in land and surrounding waters sub-ecosystems. Construction scale control, optimization of development allocation, improvement of exploitation methods, and reasonable ecological construction are important measures to control the IEV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  4. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  5. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  6. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    International Nuclear Information System (INIS)

    Valous, Nektarios A.; Lahrmann, Bernd; Halama, Niels; Grabe, Niels; Bergmann, Frank; Jäger, Dirk

    2016-01-01

    Purpose: The interactions of neoplastic cells with each other and the microenvironment are complex. To understand intratumoral heterogeneity, subtle differences should be quantified. Main factors contributing to heterogeneity include the gradient ischemic level within neoplasms, action of microenvironment, mechanisms of intercellular transfer of genetic information, and differential mechanisms of modifications of genetic material/proteins. This may reflect on the expression of biomarkers in the context of prognosis/stratification. Hence, a rigorous approach for assessing the spatial intratumoral heterogeneity of histological biomarker expression with accuracy and reproducibility is required, since patterns in immunohistochemical images can be challenging to identify and describe. Methods: A quantitative method that is useful for characterizing complex irregular structures is lacunarity; it is a multiscale technique that exhaustively samples the image, while the decay of its index as a function of window size follows characteristic patterns for different spatial arrangements. In histological images, lacunarity provides a useful measure for the spatial organization of a biomarker when a sampling scheme is employed and relevant features are computed. The proposed approach quantifies the segmented proliferative cells and not the textural content of the histological slide, thus providing a more realistic measure of heterogeneity within the sample space of the tumor region. The aim is to investigate in whole sections of primary pancreatic neuroendocrine neoplasms (pNENs), using whole-slide imaging and image analysis, the spatial intratumoral heterogeneity of Ki-67 immunostains. Unsupervised learning is employed to verify that the approach can partition the tissue sections according to distributional heterogeneity. Results: The architectural complexity of histological images has shown that single measurements are often insufficient. Inhomogeneity of distribution depends

  7. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors.

    Science.gov (United States)

    Valous, Nektarios A; Lahrmann, Bernd; Halama, Niels; Bergmann, Frank; Jäger, Dirk; Grabe, Niels

    2016-06-01

    The interactions of neoplastic cells with each other and the microenvironment are complex. To understand intratumoral heterogeneity, subtle differences should be quantified. Main factors contributing to heterogeneity include the gradient ischemic level within neoplasms, action of microenvironment, mechanisms of intercellular transfer of genetic information, and differential mechanisms of modifications of genetic material/proteins. This may reflect on the expression of biomarkers in the context of prognosis/stratification. Hence, a rigorous approach for assessing the spatial intratumoral heterogeneity of histological biomarker expression with accuracy and reproducibility is required, since patterns in immunohistochemical images can be challenging to identify and describe. A quantitative method that is useful for characterizing complex irregular structures is lacunarity; it is a multiscale technique that exhaustively samples the image, while the decay of its index as a function of window size follows characteristic patterns for different spatial arrangements. In histological images, lacunarity provides a useful measure for the spatial organization of a biomarker when a sampling scheme is employed and relevant features are computed. The proposed approach quantifies the segmented proliferative cells and not the textural content of the histological slide, thus providing a more realistic measure of heterogeneity within the sample space of the tumor region. The aim is to investigate in whole sections of primary pancreatic neuroendocrine neoplasms (pNENs), using whole-slide imaging and image analysis, the spatial intratumoral heterogeneity of Ki-67 immunostains. Unsupervised learning is employed to verify that the approach can partition the tissue sections according to distributional heterogeneity. The architectural complexity of histological images has shown that single measurements are often insufficient. Inhomogeneity of distribution depends not only on percentage

  8. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Valous, Nektarios A. [Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120 (Germany); Lahrmann, Bernd; Halama, Niels; Grabe, Niels [Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany); Bergmann, Frank [Institute of Pathology, Heidelberg University Hospital, Heidelberg 69120 (Germany); Jäger, Dirk [Department of Medical Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120, Germany and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany)

    2016-06-15

    Purpose: The interactions of neoplastic cells with each other and the microenvironment are complex. To understand intratumoral heterogeneity, subtle differences should be quantified. Main factors contributing to heterogeneity include the gradient ischemic level within neoplasms, action of microenvironment, mechanisms of intercellular transfer of genetic information, and differential mechanisms of modifications of genetic material/proteins. This may reflect on the expression of biomarkers in the context of prognosis/stratification. Hence, a rigorous approach for assessing the spatial intratumoral heterogeneity of histological biomarker expression with accuracy and reproducibility is required, since patterns in immunohistochemical images can be challenging to identify and describe. Methods: A quantitative method that is useful for characterizing complex irregular structures is lacunarity; it is a multiscale technique that exhaustively samples the image, while the decay of its index as a function of window size follows characteristic patterns for different spatial arrangements. In histological images, lacunarity provides a useful measure for the spatial organization of a biomarker when a sampling scheme is employed and relevant features are computed. The proposed approach quantifies the segmented proliferative cells and not the textural content of the histological slide, thus providing a more realistic measure of heterogeneity within the sample space of the tumor region. The aim is to investigate in whole sections of primary pancreatic neuroendocrine neoplasms (pNENs), using whole-slide imaging and image analysis, the spatial intratumoral heterogeneity of Ki-67 immunostains. Unsupervised learning is employed to verify that the approach can partition the tissue sections according to distributional heterogeneity. Results: The architectural complexity of histological images has shown that single measurements are often insufficient. Inhomogeneity of distribution depends

  9. Spatially correlated heterogeneous aspirations to enhance network reciprocity

    Science.gov (United States)

    Tanimoto, Jun; Nakata, Makoto; Hagishima, Aya; Ikegaya, Naoki

    2012-02-01

    Perc & Wang demonstrated that aspiring to be the fittest under conditions of pairwise strategy updating enhances network reciprocity in structured populations playing 2×2 Prisoner's Dilemma games (Z. Wang, M. Perc, Aspiring to the fittest and promoted of cooperation in the Prisoner's Dilemma game, Physical Review E 82 (2010) 021115; M. Perc, Z. Wang, Heterogeneous aspiration promotes cooperation in the Prisoner's Dilemma game, PLOS one 5 (12) (2010) e15117). Through numerical simulations, this paper shows that network reciprocity is even greater if heterogeneous aspirations are imposed. We also suggest why heterogeneous aspiration fosters network reciprocity. It distributes strategy updating speed among agents in a manner that fortifies the initially allocated cooperators' clusters against invasion. This finding prompted us to further enhance the usual heterogeneous aspiration cases for heterogeneous network topologies. We find that a negative correlation between degree and aspiration level does extend cooperation among heterogeneously structured agents.

  10. Advances in nonmarket valuation econometrics: Spatial heterogeneity in hedonic pricing models and preference heterogeneity in stated preference models

    Science.gov (United States)

    Yoo, Jin Woo

    Counties. The spatial-lag (SLM), the spatial error (SEM) and the spatial error component (SEC) models were compared. A geographically weighted regression (GWR) model is estimated to study the spatial heterogeneity of the marginal implicit prices of ACE impact within each county. New hybrid spatial hedonic models, the GWR-SEC and a modified GWR-SEM, are estimated such that both spatial autocorrelation and heterogeneity are accounted. The results show that the coefficient of land under easement contract varies spatially within one county, but not within the other county studied. Also, ACE's are found to have both positive and negative impacts on the values of nearby residential properties. Among global spatial models, the SEM fit better than the SLM and the SEC. Statistical goodness of fit measures showed that the GWR-SEC model fit better than the GWR or the GWR-SEC model. Finally, the GWR-SEC showed spatial autocorrelation is stronger in one county than in the other county.

  11. Spatial heterogeneity in response of male greater sage-grouse lek attendance to energy development.

    Directory of Open Access Journals (Sweden)

    Andrew J Gregory

    Full Text Available Landscape modification due to rapidly expanding energy development, in particular oil and gas, in the westernUSA, have prompted concerns over how such developments may impact wildlife. One species of conservation concern across much of the Intermountain West is the greater sage-grouse (Centrocercusurophasianus. Sage-grouse have been petitioned for listing under provisions of the Endangered Species Act 7 times and the state of Wyoming alone represents 64% of the extant sage-grouse population in the eastern portion of their range. Consequently, the relationship between sage-grouse populations and oil and gas development in Wyoming is an important component to managing the long-term viability of this species. We used 814 leks from the Wyoming Game and Fish Department's lek survey database and well pad data from the Wyoming Oil and Gas Conservation Commission to evaluate changes in sage-grouse lek counts as a function of oil and gas development since 1991.From 1991-2011 we found that oil and gas well-pad density increased 3.6-fold across the state and was associated with a 24% decline in the number of male sage-grouse. Using a spatial and temporally structured analysis via Geographically Weighted Regression, we found a 1-to-4 year time lag between development density and lek decline. Sage-grouse also responded to development densities at multiple spatial neighborhoods surrounding leks, including broad scales of 10 km. However, sage-grouse lek counts do not always decline as a result of oil and gas development. We found similar development densities resulting in different sage-grouse lek count responses, suggesting that development density alone is insufficient to predict the impacts that oil and gas development have on sage-grouse. Finally, our analysis suggests a maximum development density of 1 well-pad within 2 km of leks to avoid measurable impacts within 1 year, and <6 well-pads within 10 km of leks to avoid delayed impacts.

  12. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  13. Functional classification of spatially heterogeneous environments: the Land Cover Mosaic approach in remote sensing

    NARCIS (Netherlands)

    Obbink, M.H.

    2011-01-01

    Tropical rainforest areas are difficult to classify in the digital analysis of remote sensing data because of spatial heterogeneity. Often many technical solutions are adopted to reduce the ‘problem’ of spatial heterogeneity. This thesis describes theory and methods that now use this

  14. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    Science.gov (United States)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained

  15. Self-Organization, Urban Transformation, and Spatial Planning in Greater Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Yovi Dzulhijjah Rahmawati

    2015-09-01

    Full Text Available Penelitian ini bertujuan untuk mengidentifikasi peran sistem perencanaan tata ruang dalam menghadapi proses perorganisasian diri, sebagaimana dibuktikan oleh transformasi perkotaan yang kompleks di wilayah Jakarta. Wilayah Jakarta adalah salah satu wilayah megapolitan di Asia Tenggara yang mengalami proses transformasi yang cepat. Sangat disayangkan bahwa sistem perencanaan tata ruang yang ada sekarang di wilayah Jakarta belum mampu merespon transformasi kota secara non-linier. Kekurangan ini terbukti dari ketidaksinkronan antara dokumen-dokumen perencanaan tata ruang dan perubahan tata guna lahan perkotaan yang diperkuat dengan proses pengorganisasian diri. Perbedaan antara situasi empiris dan dokumen-dokumen perencanaan tata ruang yang ada telah menghasilkan ketidakcocokan antara sistem perencanaan tata ruang dengan sistem tata ruang di wilayah Jakarta. Ketidakcocokan ini terjadi karena sistem perencanaan tata ruang saat ini tidak mempertimbangkan ketidakpastian di masa depan. Situasi ini mengindikasikan adanya ‘fuzziness’ dalam implementasi sistem dan proses perencanaan tata ruang, sementara transformasi perkotaan telah berkembang sedemikian kompleksnya dan membutuhkan respon yang cepat dan tepat. Untuk dapat merespon ketidakcocokan ini, sistem perencanaan tata ruang di wilayah Jakarta harus lebih memperhatikan sistem perkotaan yang berkembang dalam proses yang tidak linear.Kata kunci. Pengorganisasian diri, transformasi perkotaan, ketidaklinieran, sistem perencanaan, Megapolitan Jakarta. This study aimed to identify the role of spatial planning in facing self-organizing processes as evidenced by a complex urban transformation in Greater Jakarta. Greater Jakarta is one of the mega urban-regions in Southeast Asia that are undergoing a rapid urban transformation process. This urban transformation has been developing through a non-linear transition. Unfortunately, the current spatial planning system in Greater Jakarta is not yet adequately

  16. Spatial Heterogeneity and Sources of Soil Carbon in Southern African Savannas

    Science.gov (United States)

    Macko, S.; Wang, L.; Okin, G.

    2007-12-01

    Soil organic carbon (SOC) is one of the largest and most dynamic reservoirs of C on Earth, with nearly twice as much C stored in SOC than in the biosphere and atmosphere combined. SOC storage in global tropical savannas constitutes approximately 56 Gt of C, which rises to 216 Gt of C (i.e., about 17% of the terrestrial non- agricultural SOC), when woodlands, shrublands, and desert scrub are included. Savannas cover about 20% of the global land surface, including about one-half of Africa, Australia and South America. The shared dominance of trees and grasses in savannas, the dominant physiognomy in southern Africa, add more complexity to soil C pool partitioning and dynamics than is found in landscapes with a single physiognomy. Here, the spatial variability of the soil C pool was investigated with particular emphasis on understanding the contribution to SOC from trees and grasses at two savanna sites of the Kalahari Transect, one wet and the other dry. Using a combination of stable isotope techniques and geostatistics, the results showed that spatial patterns of soil δ13 C exist and were related to the distributions of woody (C3) and herbaceous (C4) vegetation at both sites. Heterogeneity of the sources of SOC, as well as heterogeneity in the amount of SOC, was greater at the dry site relative to the wet site. At the dry site, the grasses were the major contributor to soil C whereas in the wet site, woody vegetation was the major contributor, regardless of the location with respect to woody canopies.

  17. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-09-06

    The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.

  19. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  20. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise

    International Nuclear Information System (INIS)

    Zhou, Changsong; Kurths, Juergen; Hu, Bambi

    2001-01-01

    We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh--Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the array enhances the coherence. Our results have the implication that generic heterogeneity and background noise can play a constructive role to enhance the time precision of firing in neural systems

  1. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-12-01

    Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    Science.gov (United States)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  3. Semantic Metadata for Heterogeneous Spatial Planning Documents

    Science.gov (United States)

    Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.

    2016-09-01

    Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  4. Longitudinal study of spatially heterogeneous emphysema progression in current smokers with chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Naoya Tanabe

    Full Text Available BACKGROUND: Cigarette smoke is the main risk factor for emphysema, which is a key pathology in chronic obstructive pulmonary disease (COPD. Low attenuation areas (LAA in computed tomography (CT images reflect emphysema, and the cumulative size distribution of LAA clusters follows a power law characterized by the exponent D. This property of LAA clusters can be explained by model simulation, where mechanical force breaks alveolar walls causing local heterogeneous lung tissue destruction. However, a longitudinal CT study has not investigated whether continuous smoking causes the spatially heterogeneous progression of emphysema. METHODS: We measured annual changes in ratios of LAA (LAA%, D and numbers of LAA clusters (LAN in CT images acquired at intervals of ≥ 3 years from 22 current and 31 former smokers with COPD to assess emphysema progression. We constructed model simulations using CT images to morphologically interpret changes in current smokers. RESULTS: D was decreased in current and former smokers, whereas LAA% and LAN were increased only in current smokers. The annual changes in LAA%, D, and LAN were greater in current, than in former smokers (1.03 vs. 0.37%, p=0.008; -0.045 vs. -0.01, p=0.004; 13.9 vs. 1.1, p=0.007, respectively. When LAA% increased in model simulations, the coalescence of neighboring LAA clusters decreased D, but the combination of changes in D and LAN in current smokers could not be explained by the homogeneous emphysema progression model despite cluster coalescence. Conversely, a model in which LAAs heterogeneously increased and LAA clusters merged somewhat in relatively advanced emphysematous regions could reflect actual changes. CONCLUSIONS: Susceptibility to parenchymal destruction induced by continuous smoking is not uniform over the lung, but might be higher in local regions of relatively advanced emphysema. These could result in the spatially heterogeneous progression of emphysema in current smokers.

  5. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Directory of Open Access Journals (Sweden)

    Bronwyn Price

    Full Text Available In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha and landscape (100-1000s ha scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  6. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Science.gov (United States)

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  7. Spatial heterogeneity of metabolism in skeletal muscle in vivo studied by 31P-NMR spectroscopy

    International Nuclear Information System (INIS)

    Challiss, R.A.J.; Blackledge, M.J.; Radda, G.K.

    1988-01-01

    Phase modulated rotating-frame imaging, a localization technique for phosphorus nuclear magnetic resonance spectroscopy, has been applied to obtain information on heterogeneity of phosphorus-containing metabolites in skeletal muscle of the rat in vivo. The distal muscles of the rat hindlimb have been studied at rest and during steady-state isometric twitch contraction; the use of a transmitter surface coil and an electrically isolated, orthogonal receiver Helmholtz coil ensure accurate spatial assignment (1 mm resolution). At rest, intracellular pH was higher and PCr/(PCr + P i ) was lower in deeper muscle compared with superficial muscle of the distal hindlimb. Upon steady-state stimulation, the relatively more alkaline pH of deep muscle was maintained, whereas greater changes in PCr/(PCr + P i ) and P i /ATP occurred in the superficial muscle layer. This method allows rapid (75 min for each spectral image) acquisition of quantitative information on metabolic heterogeneity in vivo

  8. SEMANTIC METADATA FOR HETEROGENEOUS SPATIAL PLANNING DOCUMENTS

    Directory of Open Access Journals (Sweden)

    A. Iwaniak

    2016-09-01

    Full Text Available Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa. The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  9. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition or nine ramets (with intraspecific competition of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity and two heterogeneous ones differing in patch size (large and small patch treatments. The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants.

  10. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  11. Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest

    Science.gov (United States)

    Varassin, Isabela Galarda; Sazima, Marlies

    2012-08-01

    Interactions between plants and their pollinators are influenced by environmental heterogeneity, resulting in small-scale variations in interactions. This may influence pollinator co-existence and plant reproductive success. This study, conducted at the Estação Biológica de Santa Lúcia (EBSL), a remnant of the Atlantic Forest in southeastern Brazil, investigated the effect of small-scale spatial variations on the interactions between bromeliads and their pollinators. Overall, hummingbirds pollinated 19 of 23 bromeliad species, of which 11 were also pollinated by bees and/or butterflies. However, spatial heterogeneity unrelated to the spatial location of plots or bromeliad species abundance influenced the presence of pollinators. Hummingbirds were the most ubiquitous pollinators at the high-elevation transect, with insect participation clearly declining as transect elevation increased. In the redundancy analysis, the presence of the hummingbird species Phaethornis eurynome, Phaethornis squalidus, Ramphodon naevius, and Thalurania glaucopis, and the butterfly species Heliconius erato and Heliconius nattereri in each plot was correlated with environmental factors such as bromeliad and tree abundance, and was also correlated with horizontal diversity. Since plant-pollinator interactions varied within the environmental mosaics at the study site, this small-scale environmental heterogeneity may relax competition among pollinators, and may explain the high diversity of bromeliads and pollinators generally found in the Atlantic Forest.

  12. Heterogeneous game resource distributions promote cooperation in spatial prisoner's dilemma game

    Science.gov (United States)

    Cui, Guang-Hai; Wang, Zhen; Yang, Yan-Cun; Tian, Sheng-Wen; Yue, Jun

    2018-01-01

    In social networks, individual abilities to establish interactions are always heterogeneous and independent of the number of topological neighbors. We here study the influence of heterogeneous distributions of abilities on the evolution of individual cooperation in the spatial prisoner's dilemma game. First, we introduced a prisoner's dilemma game, taking into account individual heterogeneous abilities to establish games, which are determined by the owned game resources. Second, we studied three types of game resource distributions that follow the power-law property. Simulation results show that the heterogeneous distribution of individual game resources can promote cooperation effectively, and the heterogeneous level of resource distributions has a positive influence on the maintenance of cooperation. Extensive analysis shows that cooperators with large resource capacities can foster cooperator clusters around themselves. Furthermore, when the temptation to defect is high, cooperator clusters in which the central pure cooperators have larger game resource capacities are more stable than other cooperator clusters.

  13. Characterizing Traffic Conditions from the Perspective of Spatial-Temporal Heterogeneity

    Directory of Open Access Journals (Sweden)

    Peichao Gao

    2016-03-01

    Full Text Available Traffic conditions are usually characterized from the perspective of travel time or the average vehicle speed in the field of transportation, reflecting the congestion degree of a road network. This article provides a method from a new perspective to characterize traffic conditions; the perspective is based on the heterogeneity of vehicle speeds. A novel measurement, the ratio of areas (RA in a rank-size plot, is included in the proposed method to capture the heterogeneity. The proposed method can be performed from the perspective of both spatial heterogeneity and temporal heterogeneity, being able to characterize traffic conditions of not only a road network but also a single road. Compared with methods from the perspective of travel time, the proposed method can characterize traffic conditions at a higher frequency. Compared to methods from the perspective of the average vehicle speed, the proposed method takes account of the heterogeneity of vehicle speeds. The effectiveness of the proposed method has been demonstrated with real-life traffic data of Shenzhen (a coastal urban city in China, and the advantage of the proposed RA has been verified by comparisons to similar measurements such as the ht-index and the CRG index.

  14. Suitable Methods in Spatial Pattern Analysis of Heterogeneous Wild Pistachio (Pistacia atlantica Desf. Woodlands in Zagros, Iran

    Directory of Open Access Journals (Sweden)

    Y. Erfanifard

    2014-12-01

    Full Text Available Spatial pattern of trees in forests reveals how trees interact with each other and their environment. Spatial structure of trees in forest ecosystems is affected by environmental heterogeneity that leads to their heterogeneous distribution. This study was aimed to investigate the appropriate methods to analyze spatial pattern of heterogeneous wild pistachio woodlands in Zagros, Iran. A 40-ha pure stand of wild pistachio trees (Pistacia atlantica Desf. was selected in Wild Pistachio Research Forest in Fars Province for this purpose. The Kolmogrov-Smirnov test of goodness-of-fit of inhomogeneous Poisson point process showed that the distribution of wild pistachio trees was significantly heterogeneous (α=0.05. Inhomogeneous Ripley's K-, L-, and G-functions were applied beside their homogeneous forms. Inhomogeneous Ripley's K- and L-functions showed that wild pistachio trees were primarily clumped and dispersedly distributed thereafter, while g(r not only showed these results but also well expressed the detailed changes in spatial scale. The results of inappropriate homogeneous functions in the study area showed that all three functions expressed the primary clumping of the trees more than it was and their dispersed pattern as clumped. In general, it was concluded that inhomogeneous functions should be applied to analyze the spatial pattern of heterogeneous wild pistachio trees in the study area and it is recommended to develop g(r applications due to its more detailed information

  15. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  16. Spatial Assessment of Road Traffic Injuries in the Greater Toronto Area (GTA: Spatial Analysis Framework

    Directory of Open Access Journals (Sweden)

    Sina Tehranchi

    2017-03-01

    Full Text Available This research presents a Geographic Information Systems (GIS and spatial analysis approach based on the global spatial autocorrelation of road traffic injuries for identifying spatial patterns. A locational spatial autocorrelation was also used for identifying traffic injury at spatial level. Data for this research study were acquired from Canadian Institute for Health Information (CIHI based on 2004 and 2011. Moran’s I statistics were used to examine spatial patterns of road traffic injuries in the Greater Toronto Area (GTA. An assessment of Getis-Ord Gi* statistic was followed as to identify hot spots and cold spots within the study area. The results revealed that Peel and Durham have the highest collision rate for other motor vehicle with motor vehicle. Geographic weighted regression (GWR technique was conducted to test the relationships between the dependent variable, number of road traffic injury incidents and independent variables such as number of seniors, low education, unemployed, vulnerable groups, people smoking and drinking, urban density and average median income. The result of this model suggested that number of seniors and low education have a very strong correlation with the number of road traffic injury incidents.

  17. Spatial heterogeneity and air pollution removal by an urban forest

    Science.gov (United States)

    Francisco J. Escobedo; David J. Nowak

    2009-01-01

    Estimates of air pollution removal by the urban forest have mostly been based on mean values of forest structure variables for an entire city. However, the urban forest is not uniformly distributed across a city because of biophysical and social factors. Consequently, air pollution removal function by urban vegetation should vary because of this spatial heterogeneity....

  18. Breast Cancer Spatial Heterogeneity in Near-Infrared Spectra and the Prediction of Neoadjuvant Chemotherapy Response

    Science.gov (United States)

    Santoro, Ylenia

    Breast cancer accounts for more than 20% of all female cancers. Many of these patients receive neoadjuvant chemotherapy (NAC) to reduce the size of the tumor before surgery and to anticipate the efficacy of treatments for after the procedure. Breast cancer is a heterogeneous disease that comes in several clinical and histological forms. The prediction of the efficacy of chemotherapy would potentially select good candidates who would respond while excluding poor candidates who would not benefit from treatment. In this work we investigate the possibility of noninvasively predicting chemotherapy response prior to treatment based on optical biomarkers obtained from tumor spatial heterogeneities of spectral features measured using Diffuse Optical Spectroscopy. We describe an algorithm to calculate an index that characterizes spatial differences in broadband near-infrared absorption spectra of tumor-containing breast tissue. Patient-specific tumor spatial heterogeneities are visualized through a Heterogeneity Spectrum (HS). HS is a biomarker that can be attributed to different molecular distributions within the tumor. To classify lesion heterogeneities, we built a Heterogeneity Index (HI) from the HS by weighing specific absorption bands. It has been shown that NAC response is potentially related to tumor heterogeneity. Therefore, we correlate the HI obtained prior to treatment with the final response to NAC. In this thesis we also present a novel digital parallel frequency domain system for tissue imaging. The systems employs a supercontinuum laser with high brightness, and a photomultiplier with a large detection area, both allowing a deep penetration with extremely low power on the sample. The digital parallel acquisition is performed through the use of the Flimbox and it decreases the time required for standard serial systems that need to scan through all modulation frequencies. The all-digital acquisition removes analog noise, avoids the analog mixer and it does not

  19. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  20. Effect of heterogeneous investments on the evolution of cooperation in spatial public goods game.

    Science.gov (United States)

    Huang, Keke; Wang, Tao; Cheng, Yuan; Zheng, Xiaoping

    2015-01-01

    Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game.

  1. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  2. Stochastic heterogeneous interaction promotes cooperation in spatial prisoner's dilemma game.

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    Full Text Available Previous studies mostly investigate player's cooperative behavior as affected by game time-scale or individual diversity. In this paper, by involving both time-scale and diversity simultaneously, we explore the effect of stochastic heterogeneous interaction. In our model, the occurrence of game interaction between each pair of linked player obeys a random probability, which is further described by certain distributions. Simulations on a 4-neighbor square lattice show that the cooperation level is remarkably promoted when stochastic heterogeneous interaction is considered. The results are then explained by investigating the mean payoffs, the mean boundary payoffs and the transition probabilities between cooperators and defectors. We also show some typical snapshots and evolution time series of the system. Finally, the 8-neighbor square lattice and BA scale-free network results indicate that the stochastic heterogeneous interaction can be robust against different network topologies. Our work may sharpen the understanding of the joint effect of game time-scale and individual diversity on spatial games.

  3. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy.

    Science.gov (United States)

    Rajon, E; Venner, S; Menu, F

    2009-10-01

    Diversified bet-hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life-history traits defined as diversified bet-hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet-hedging dormancy strategies in a metapopulation using a two-patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet-hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet-hedging strategies that we hope will encourage new empirical studies of this topic.

  4. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    Science.gov (United States)

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  5. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    Science.gov (United States)

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation

  6. Integration of Landscape Metrics and Variograms to Characterize and Quantify the Spatial Heterogeneity Change of Vegetation Induced by the 2008 Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-06-01

    Full Text Available The quantification of spatial heterogeneity can be used to examine the structure of ecological systems. The 2008 Wenchuan earthquake caused severe vegetation damage. In addition to simply detecting change, the magnitude of changes must also be examined. Remote sensing and geographic information system techniques were used to produce landscape maps before and after the earthquake and analyze the spatial-temporal change of the vegetation pattern. Landscape metrics were selected to quantify the spatial heterogeneity in a categorical map at both the class and landscape levels. The results reveal that the Wenchuan earthquake greatly increased the heterogeneity in the study area. In particular, forests experienced the most fragmentation among all of the landscape types. In addition, spatial heterogeneity in a numerical map was studied by using variogram analysis of normalized difference vegetation indices derived from Landsat images. In comparison to before the earthquake, the spatial variability after the earthquake had doubled. The structure of the spatial heterogeneity represented by the range of normalized difference vegetation index (NDVI variograms also changed due to the earthquake. Moreover, the results of the NDVI variogram analysis of three contrasting landscapes, which were farmland, broadleaved forest, and coniferous forest, confirm that the earthquake produced spatial variability and changed the structure of the landscapes. Regardless of before or after the earthquake, farmland sites are the most heterogeneous among the three landscapes studied.

  7. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  8. Isotopic evidence for the spatial heterogeneity of the planktonic food webs in the transition zone between river and lake ecosystems

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    2013-12-01

    Full Text Available Resources and organisms in food webs are distributed patchily. The spatial structure of food webs is important and critical to understanding their overall structure. However, there is little available information about the small-scale spatial structure of food webs. We investigated the spatial structure of food webs in a lake ecosystem at the littoral transition zone between an inflowing river and a lake. We measured the carbon isotope ratios of zooplankton and particulate organic matter (POM; predominantly phytoplankton in the littoral zone of a saline lake. Parallel changes in the δ 13C values of zooplankton and their respective POMs indicated that there is spatial heterogeneity of the food web in this study area. Lake ecosystems are usually classified at the landscape level as either pelagic or littoral habitats. However, we showed small-scale spatial heterogeneity among planktonic food webs along an environmental gradient. Stable isotope data is useful for detecting spatial heterogeneity of habitats, populations, communities, and ecosystems.

  9. The effects of spatial heterogeneity and subsurface lateral transfer on evapotranspiration estimates in large scale Earth system models

    Science.gov (United States)

    Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.

    2017-12-01

    Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.

  10. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  11. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  12. Directional growth of a clonal bromeliad species in response to spatial habitat heterogeneity

    NARCIS (Netherlands)

    Sampaio, M.C.; Araujo, T.F.; Scarano, F.R.; Stuefer, J.F.

    2004-01-01

    Habitat selection by directional growth of plants has previously been investigated but field evidence for this phenomenon is extremely scarce. In this study we demonstrate directional clonal growth in Aechmea nudicaulis, a monocarpic, perennial bromeliad native to spatially heterogeneous sandy

  13. The epidemiology and small-scale spatial heterogeneity of urinary schistosomiasis in Lusaka province, Zambia

    Directory of Open Access Journals (Sweden)

    Christopher Simoonga

    2008-11-01

    Full Text Available In line with the aims of the “National Bilharzia Control Programme” and the “School Health and Nutrition Programme” in Zambia, a study on urinary schistosomiasis was conducted in 20 primary schools of Lusaka province to further our understanding of the epidemiology of the infection, and to enhance spatial targeting of control. We investigated risk factors associated with urinary schistosomiasis, and examined small-scale spatial heterogeneity in prevalence, using data collected from 1,912 schoolchildren, 6 to 15-year-old, recruited from 20 schools in Kafue and Luangwa districts. The risk factors identified included geographical location, altitude, normalized difference vegetation index (NDVI, maximum temperature, age, sex of the child and intermediate host snail abundance. Three logistic regression models were fitted assuming different random effects to allow for spatial structuring. The mean prevalence rate was 9.6%, with significance difference between young and older children (odds ratio (OR = 0.71; 95% confidence interval (CI = 0.51-0.96. The risk of infection was related to intermediate host snail abundance (OR = 1.03; 95% CI = 1.00-1.05 and vegetation cover (OR = 1.04; 95% CI = 1.00-1.07. Schools located either on the plateau and the valley also differed in prevalence and intensity of infection for moderate infection to none (OR = 1.64; 95% CI = 1.36- 1.96. The overall predictive performance of the spatial random effects model was higher than the ordinary logistic regression. In addition, evidence of heterogeneity of the infection risk was found at the micro-geographical level. A sound understanding of small-scale heterogeneity, caused by spatial aggregation of schoolchildren, is important to inform health planners for implementing control schistosomiasis interventions.

  14. Revealing spatially heterogeneous relaxation in a model nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shiwang; Bocharova, Vera [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Mirigian, Stephen; Schweizer, Kenneth S. [Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Carrillo, Jan-Michael Y.; Sumpter, Bobby G. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokolov, Alexei P., E-mail: sokolov@utk.edu [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Chemistry, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no “glassy” layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk T{sub g}. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  15. Study of an optimization approach for a disposal tunnel layout, taking into account the geological environment with spatially heterogeneous characteristics

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2009-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favourable from the perspective of long-term safety and ones that are less favourable. In order that the spatially heterogeneous environment itself may be utilized most effectively as a natural barrier system, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a variable disposal tunnel layout. The optimization approach minimizes the number of locations where major water-conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability.

  16. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  17. OpenCL Implementation of a Parallel Universal Kriging Algorithm for Massive Spatial Data Interpolation on Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-06-01

    Full Text Available In some digital Earth engineering applications, spatial interpolation algorithms are required to process and analyze large amounts of data. Due to its powerful computing capacity, heterogeneous computing has been used in many applications for data processing in various fields. In this study, we explore the design and implementation of a parallel universal kriging spatial interpolation algorithm using the OpenCL programming model on heterogeneous computing platforms for massive Geo-spatial data processing. This study focuses primarily on transforming the hotspots in serial algorithms, i.e., the universal kriging interpolation function, into the corresponding kernel function in OpenCL. We also employ parallelization and optimization techniques in our implementation to improve the code performance. Finally, based on the results of experiments performed on two different high performance heterogeneous platforms, i.e., an NVIDIA graphics processing unit system and an Intel Xeon Phi system (MIC, we show that the parallel universal kriging algorithm can achieve the highest speedup of up to 40× with a single computing device and the highest speedup of up to 80× with multiple devices.

  18. Accounting for Landscape Heterogeneity Improves Spatial Predictions of Tree Vulnerability to Drought

    Science.gov (United States)

    Schwantes, A. M.; Parolari, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.; Pelak, N. F., III; Porporato, A. M.

    2017-12-01

    Globally, as climate change continues, forest vulnerability to droughts and heatwaves is increasing, but vulnerability differs regionally and locally depending on landscape position. However, most models used in forecasting forest responses to heatwaves and droughts do not incorporate relevant spatial processes. To improve predictions of spatial tree vulnerability, we employed a non-linear stochastic model of soil moisture dynamics across a landscape, accounting for spatial differences in aspect, topography, and soils. Our unique approach integrated plant hydraulics and landscape processes, incorporating effects from lateral redistribution of water using a topographic index and radiation and temperature differences attributable to aspect. Across a watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus ashei. We compared our results to a detailed spatial dataset of drought-impacted areas (>25% canopy loss) derived from remote sensing during the severe 2011 drought. We then projected future dynamic water stress through the 21st century using climate projections from 10 global climate models under two scenarios, and compared models with and without landscape heterogeneity. Within this watershed, 42% of J. ashei dominated systems were impacted by the 2011 drought. Modeled dynamic water stress tracked these spatial patterns of observed drought-impacted areas. Total accuracy increased from 59%, when accounting only for soil variability, to 73% when including lateral redistribution of water and radiation and temperature effects. Dynamic water stress was projected to increase through the 21st century, with only minimal buffering from the landscape. During the hotter and more severe droughts projected in the 21st century, up to 90% of the watershed crossed a dynamic water stress threshold associated with canopy loss in 2011. Favorable microsites may exist across a landscape where trees can persist; however, if future droughts are

  19. Impact of spatially correlated pore-scale heterogeneity on drying porous media

    Science.gov (United States)

    Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran

    2017-07-01

    We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.

  20. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Roland F Schwarz

    2015-02-01

    Full Text Available The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease.Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo, censored after 26 October 2013. Outcome measures were overall survival (OS and progression-free survival (PFS. There were marked differences in the degree of clonal expansion (CE between patients (median 0.74, interquartile range 0.66-1.15, and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003. Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy.This study demonstrates that quantitative measures of intra

  1. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia; Staal, M.; Bucs, Szilard; Van Loosdrecht, M.C.M.; Vrouwenvelder, Johannes S.

    2016-01-01

    the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulatedComparison of the inlet and outlet position of the MFS showed a more (i) heterogeneous biofilm distribution and a (ii) higher biological activity at the inlet side (first 2.5 cm) for all cross-flow velocities. The lowest cross-flow velocity had

  2. When homogeneity meets heterogeneity: the geographically weighted regression with spatial lag approach to prenatal care utilization

    Science.gov (United States)

    Shoff, Carla; Chen, Vivian Yi-Ju; Yang, Tse-Chuan

    2014-01-01

    Using geographically weighted regression (GWR), a recent study by Shoff and colleagues (2012) investigated the place-specific risk factors for prenatal care utilization in the US and found that most of the relationships between late or not prenatal care and its determinants are spatially heterogeneous. However, the GWR approach may be subject to the confounding effect of spatial homogeneity. The goal of this study is to address this concern by including both spatial homogeneity and heterogeneity into the analysis. Specifically, we employ an analytic framework where a spatially lagged (SL) effect of the dependent variable is incorporated into the GWR model, which is called GWR-SL. Using this innovative framework, we found evidence to argue that spatial homogeneity is neglected in the study by Shoff et al. (2012) and the results are changed after considering the spatially lagged effect of prenatal care utilization. The GWR-SL approach allows us to gain a place-specific understanding of prenatal care utilization in US counties. In addition, we compared the GWR-SL results with the results of conventional approaches (i.e., OLS and spatial lag models) and found that GWR-SL is the preferred modeling approach. The new findings help us to better estimate how the predictors are associated with prenatal care utilization across space, and determine whether and how the level of prenatal care utilization in neighboring counties matters. PMID:24893033

  3. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    Directory of Open Access Journals (Sweden)

    Silvia Pajares

    2016-09-01

    Full Text Available Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content at local scale (meters occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b determined soil chemical parameters, and (c identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+ and anions (HCO ${}_{3}^{-}$ 3 − , Cl−, SO ${}_{4}^{2-}$ 4 2 − content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  4. Spatial heterogeneity of climate change as an experiential basis for skepticism.

    Science.gov (United States)

    Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle

    2017-01-03

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.

  5. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia

    Science.gov (United States)

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-01-01

    Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a

  6. Spatial heterogeneities and variability of karst hydro-system : insights from geophysics

    Science.gov (United States)

    Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.

    2017-12-01

    Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.

  7. Spatial heterogeneity of tungsten transmutation in a fusion device

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  8. Temporal and spatial heterogeneity of soil CO2 efflux in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Kurajdová, Jana; Acosta, Manuel; Pavelka, Marian

    2006-01-01

    Roč. 2006, č. 19 (2006), s. 1 ISSN 1803-1013 R&D Projects: GA MŠk OC 627.001 Institutional research plan: CEZ:AV0Z60870520 Keywords : soil CO2 efflux * Norway spruce stand * temperature * spatial and temporal heterogeneity * stand density Subject RIV: ED - Physiology

  9. Poverty and social exclusion: An alternative spatial explanation

    Directory of Open Access Journals (Sweden)

    Krzysztofik Robert

    2017-03-01

    Full Text Available Poverty and social exclusion remain some of the biggest concerns in the face of obtaining social sustainability. In this respect, the continuing immense spatial differences between individual localities of seemingly similar characteristics have puzzled social scientists for decades. In quest for a better understanding, this article highlights the role of spatial heterogeneity as a factor conducive to the formation of functionally derelict areas, which in turn play a crucial role in the formation of spatial mismatch. Using two case studies from Poland, one from a big city and one from a small village, we explore the relationality between the phenomena of spatial heterogeneity, functional dereliction and spatial mismatch, whose mutual reinforcement seems to lead to a specific kind of deprivation in terms of scale and intensity. Special attention is paid to the role of spatial heterogeneity, which under certain conditions is capable of changing from being a developmental stimulant to becoming a destimulant. We argue that taking greater account of the intricate historical contexts responsible for the resistance of some pressing socio-economic problems is key to breaking the deadlock in the implementation of ineffective sustainability policies.

  10. Carex sempervirens tussocks induce spatial heterogeneity in litter decomposition, but not in soil properties, in a subalpine grassland in the Central Alps

    Science.gov (United States)

    Fei-Hai Yu; Martin Schutz; Deborah S. Page-Dumroese; Bertil O. Krusi; Jakob Schneller; Otto Wildi; Anita C. Risch

    2011-01-01

    Tussocks of graminoids can induce spatial heterogeneity in soil properties in dry areas with discontinuous vegetation cover, but little is known about the situation in areas with continuous vegetation and no study has tested whether tussocks can induce spatial heterogeneity in litter decomposition. In a subalpine grassland in the Central Alps where vegetation cover is...

  11. Platform for Quantitative Evaluation of Spatial Intratumoral Heterogeneity in Multiplexed Fluorescence Images.

    Science.gov (United States)

    Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra

    2017-11-01

    We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Exploring dynamical complexity in diffusion driven predator-prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    In this paper, dynamical complexities in two reaction-diffusion (RD) model systems are explored. A spatial heterogeneity in the form of linear spatial gradient in the reproductive growth rate of the phytoplankton is incorporated in both the model systems. Extra mortality of the zooplankton due to toxin production by the phytoplankton is included in the second reaction diffusion model system. Effect of toxin production and spatial heterogeneity in the model systems are studied. Toxin production does not seem to have an appreciable effect on the asymptotic dynamics of the model systems. On the other hand, spatial heterogeneity does influence the dynamics. In particular, it increases the frequency of occurrence of chaos as evident from two dimensional parameter scans. Both these model systems display short term recurrent chaos [Rai V. Chaos in natural populations: edge or wedge? Ecol Complex 2004;1: 127-38] as they reside on 'edges of chaos' (EOC) [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. This suggests that the ecological systems have a tendency to evolve to EOC. The study corroborates the inferences drawn from an earlier study by Rai and Upadhyay [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. The system's dynamics is largely unpredictable and admits bursts of short-term predictability.

  13. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources

    Science.gov (United States)

    Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.

    2013-01-01

    Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.

  14. The effect of spatial heterogeneity on the extinction transition in stochastic population dynamics

    International Nuclear Information System (INIS)

    Kessler, David A; Shnerb, Nadav M

    2009-01-01

    Stochastic logistic-type growth on a static heterogeneous substrate is studied both above and below the drift-induced delocalization transition. Using agent-based simulations, the delocalization of the highest eigenfunction of the deterministic operator is connected with the large N limit of the stochastic theory. It is seen that the localization length of the deterministic theory controls the divergence of the spatial correlation length with N at the transition. It is argued that, in the presence of a strong wind, the extinction transition belongs to the directed percolation universality class, as any finite colony made of discrete agents is washed away from a heterogeneity with compact support. Some of the difficulties in the analysis of the extinction transition in the presence of a weak wind, where there is a localized active state, are discussed.

  15. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  16. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  17. Spatial Heterogeneity of Water Quality in a Highly Degraded Tropical Freshwater Ecosystem

    Science.gov (United States)

    Zambrano, Luis; Contreras, Victoria; Mazari-Hiriart, Marisa; Zarco-Arista, Alba E.

    2009-02-01

    Awareness of environmental heterogeneity in ecosystems is critical for management and conservation. We used the Xochimilco freshwater system to describe the relationship between heterogeneity and human activities. This tropical aquatic ecosystem south of Mexico City is comprised of a network of interconnected canals and lakes that are influenced by agricultural and urban activities. Environmental heterogeneity was characterized by spatially extensive surveys within four regions of Xochimilco during rainy and dry seasons over 2 years. These surveys revealed a heterogeneous system that was shallow (1.1 m, SD = 0.4 ), warm (17°C, SD = 2.9), well oxygenated (5.0 mg l-1, SD = 3), turbid (45.7 NTU SD = 26.96), and extremely nutrient-rich (NO3-N = 15.9 mg l-1, SD=13.7; NH4-N = 2.88 mg l-1, SD = 4.24; and PO4-P = 8.3 mg l-1, SD = 2.4). Most of the variables were not significantly different between years, but did differ between seasons, suggesting a dynamic system within a span of a year but with a high resilience over longer periods of time. Maps were produced using interpolations to describe distributions of all variables. There was no correlation between individual variables and land use. Consequently, we searched for relationships using all variables together by generating a combined water quality index. Significant differences in the index were apparent among the four regions. Index values also differed within individual region and individual water bodies (e.g., within canals), indicating that Xochimilco has high local heterogeneity. Using this index on a map helped to relate water quality to human activities and provides a simple and clear tool for managers and policymakers.

  18. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    Science.gov (United States)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  19. Determining the spatial heterogeneity underlying racial and ethnic differences in timely mammography screening

    Directory of Open Access Journals (Sweden)

    Joseph Gibbons

    2016-11-01

    Full Text Available Abstract Background The leading cause of cancer death for women worldwide continues to be breast cancer. Early detection through timely mammography has been recognized to increase the probability of survival. While mammography rates have risen for many women in recent years, disparities in screening along racial/ethnic lines persist across nations. In this paper, we argue that the role of local context, as identified through spatial heterogeneity, is an unexplored dynamic which explains some of the gaps in mammography utilization by race/ethnicity. Methods We apply geographically weighted regression methods to responses from the 2008 Public Health Corporations’ Southeastern Household Health Survey, to examine the spatial heterogeneity in mammograms in the Philadelphia metropolitan area. Results We find first aspatially that minority identity, in fact, increases the odds of a timely mammogram: 74% for non-Hispanic Blacks and 80% for Hispanic/Latinas. However, the geographically weighted regression confirms the relation of race/ethnicity to mammograms varies by space. Notably, the coefficients for Hispanic/Latinas are only significant in portions of the region. In other words, the increased odds of a timely mammography we found are not constant spatially. Other key variables that are known to influence timely screening, such as the source of healthcare and social capital, measured as community connection, also vary by space. Conclusions These results have ramifications globally, demonstrating that the influence of individual characteristics which motivate, or inhibit, cancer screening may not be constant across space. This inconsistency calls for healthcare practitioners and outreach services to be mindful of the local context in their planning and resource allocation efforts.

  20. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Tellier Aurélien

    2011-11-01

    Full Text Available Abstract Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes. It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur

  1. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Science.gov (United States)

    Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline

    2015-01-01

    How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of

  2. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Directory of Open Access Journals (Sweden)

    Robin Cristofari

    Full Text Available How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the

  3. Spatially heterogeneous land cover/land use and climatic risk factors of tick-borne feline cytauxzoonosis.

    Science.gov (United States)

    Raghavan, Ram K; Almes, Kelli; Goodin, Doug G; Harrington, John A; Stackhouse, Paul W

    2014-07-01

    Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for cats in the Midwestern United States, and no vaccine or effective treatment options exist. Prevention based on knowledge of risk factors is therefore vital. Associations of different environmental factors, including recent climate were evaluated as potential risk factors for cytauxzoonosis using Geographic Information Systems (GIS). There were 69 cases determined to be positive for cytauxzoonosis based upon positive identification of C. felis within blood film examinations, tissue impression smears, or histopathologic examination of tissues. Negative controls totaling 123 were selected from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C. felis within blood films, impression smears, or histopathologic examination of tissues. Additional criteria to rule out C. felis among controls were the presence of regenerative anemia, cytologic examination of blood marrow or lymph node aspirate, other causative agent diagnosed, or survival of 25 days or greater after testing. Potential environmental determinants were derived from publicly available sources, viz., US Department of Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape metrics), and NASA (climate). Candidate variables were screened using univariate logistic models with a liberal p value (0.2), and associations with cytauxzoonosis were modeled using a global multivariate logistic model (p<0.05). Spatial heterogeneity among significant variables in the study region was modeled using a geographically weighted regression (GWR) approach. Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions recorded during the 9(th) week prior to case arrival, and an interaction variable, "diurnal temperature range × percent mixed forest area" were significant risk factors for

  4. A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    International Nuclear Information System (INIS)

    Barbee, David L; Holden, James E; Nickles, Robert J; Jeraj, Robert; Flynn, Ryan T

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised by partial volume effects which may affect treatment prognosis, assessment or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discovery LS at positions of increasing radii from the scanner's center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method's correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three-dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated

  5. Characterizing heterogeneity of disease incidence in a spatial hierarchy: a case study from a decade of observations of fusarium head blight of wheat.

    Science.gov (United States)

    Kriss, A B; Paul, P A; Madden, L V

    2012-09-01

    A multilevel analysis of heterogeneity of disease incidence was conducted based on observations of Fusarium head blight (caused by Fusarium graminearum) in Ohio during the 2002-11 growing seasons. Sampling consisted of counting the number of diseased and healthy wheat spikes per 0.3 m of row at 10 sites (about 30 m apart) in a total of 67 to 159 sampled fields in 12 to 32 sampled counties per year. Incidence was then determined as the proportion of diseased spikes at each site. Spatial heterogeneity of incidence among counties, fields within counties, and sites within fields and counties was characterized by fitting a generalized linear mixed model to the data, using a complementary log-log link function, with the assumption that the disease status of spikes was binomially distributed conditional on the effects of county, field, and site. Based on the estimated variance terms, there was highly significant spatial heterogeneity among counties and among fields within counties each year; magnitude of the estimated variances was similar for counties and fields. The lowest level of heterogeneity was among sites within fields, and the site variance was either 0 or not significantly greater than 0 in 3 of the 10 years. Based on the variances, the intracluster correlation of disease status of spikes within sites indicated that spikes from the same site were somewhat more likely to share the same disease status relative to spikes from other sites, fields, or counties. The estimated best linear unbiased predictor (EBLUP) for each county was determined, showing large differences across the state in disease incidence (as represented by the link function of the estimated probability that a spike was diseased) but no consistency between years for the different counties. The effects of geographical location, corn and wheat acreage per county, and environmental conditions on the EBLUP for each county were not significant in the majority of years.

  6. Addressing the Externalities from Genetically Modified Pollen Drift on a Heterogeneous Landscape

    Directory of Open Access Journals (Sweden)

    Mattia C. Mancini

    2016-10-01

    Full Text Available Genetically modified (GM crops have single or multiple genes introduced to obtain crop characteristics that cannot be obtained through conventional breeding. Pollen mediated gene flow from GM to non-GM crops causes some crops planted as non-GM to become GM, and this imposes economic losses on farmers who planted a non-GM crop but then have to sell the harvest on a GM market. The economic losses that result when both crops are grown together depend on the institutional arrangements and the type of property rights in place. We analyze how the spatial heterogeneity of a farmer’s fields affects the land allocation between buffers, the GM, and the non-GM crop based on cross-pollination and initial assignment of property rights. Greater spatial heterogeneity reduces the possibility of coexistence of crops on the landscape and increases the economic losses. Buffer zones enforced to reduce cross-pollination result in less coexistence on heterogeneous landscapes.

  7. Spatial and temporal distribution of solute leaching in heterogeneous soils: analysis and application to multisampler lysimeter data

    NARCIS (Netherlands)

    Rooij, de G.H.; Stagnitti, F.

    2002-01-01

    Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of

  8. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem

    NARCIS (Netherlands)

    Lesschen, J.P.; Cammeraat, L.H.; Kooijman, A.M.; van Wesemael, B.

    2008-01-01

    To mitigate erosion on abandoned fields in semi-arid ecosystems, it is important to understand how vegetation and soil properties and patterns develop after land abandonment. Our objective was to investigate the development of spatial heterogeneity in vegetation and soil properties after land

  9. Spatial heterogeneity in utilities, equity and collective efficiency: the case of rural electrification and demand side management

    International Nuclear Information System (INIS)

    Nadaud, F.

    2005-11-01

    This thesis has for object the evolution of the economic optimum in the electric industry under spatial equity constraint that present a strong spatial heterogeneity of its supply conditions. One analyses the evolution of the rural electrification regime in France both in terms of economic and social efficiency. We examine the rationality of extending the sectoral optimization under equity constraint to the rationalization of electricity end-uses in the heterogeneous space of rural electricity supply. To this question are given two responses. The firsts pertains to modify the incentives in the institutional regime of rural electrification so the MDE may be integrated in the strategies of rural electrification syndicates. One inspire from incentives mechanisms of the anglo-saxon DSM practice. The second is statistical zoning method of demand and distribution grid whose object is to localize action basins for large scale MDE projects. (author)

  10. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir

    Czech Academy of Sciences Publication Activity Database

    Rychtecký, Pavel; Znachor, Petr

    2011-01-01

    Roč. 663, č. 1 (2011), s. 175-186 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GP206/07/P407; GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : phytoplankton * reservoir * spatial heterogeneity * seasonal succession * functional classification * f lood event Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.784, year: 2011

  11. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Tom L Schmidt

    2017-05-01

    Full Text Available Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2, we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2 produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.

  12. Social vulnerability to heat in Greater Atlanta, USA: spatial pattern of heat, NDVI, socioeconomics and household composition

    Science.gov (United States)

    Sim, Sunhui

    2017-10-01

    The purpose of the article is evaluating spatial patterns of social vulnerability to heat in Greater Atlanta in 2015. The social vulnerability to heat is an index of socioeconomic status, household composition, land surface temperature and normalized differential vegetation index (NDVI). Land surface temperature and NDVI were derived from the red, NIR and thermal infrared (TIR) of a Landsat OLI/TIRS images collected on September 14, 2015. The research focus is on the variation of heat vulnerability in Greater Atlanta. The study found that heat vulnerability is highly clustered spatially, resulting in "hot spots" and "cool spots". The results show significant health disparities. The hotspots of social vulnerability to heat occurred in neighborhoods with lower socioeconomic status as measured by low education, low income and more poverty, greater proportion of elderly people and young children. The findings of this study are important for identifying clusters of heat vulnerability and the relationships with social factors. These significant results provide a basis for heat intervention services.

  13. The effects of spatial and temporal heterogeneity on the population dynamics of four animal species in a Danish landscape

    Directory of Open Access Journals (Sweden)

    Forchhammer Mads C

    2009-06-01

    Full Text Available Abstract Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms

  14. Improving Understanding of Spatial Heterogeneity in Mountain Ecohydrology with Multispectral Unmanned Aerial Systems (UAS).

    Science.gov (United States)

    Wigmore, O.; Molotch, N. P.

    2017-12-01

    Mountain regions are a critical component of the hydrologic system. These regions are extremely heterogeneous, with dramatic topographic, climatic, ecologic and hydrologic variations occurring over very short distances. This heterogeneity makes understanding changes in these environments difficult. Commonly used satellite data are often too coarse to resolve processes at appropriate scales and point measurements are typically unrepresentative of the wider region. The rapid rise of Unmanned Aerial Systems (UAS) offers a potential solution to the scale-related inadequacies of satellite and ground-based observing systems. Using UAS, spatially distributed datasets can be collected at high resolution (i.e. cm), on demand, and can therefore facilitate improved understanding of mountain ecohydrology. We deployed a custom built multispectral - visible (RGB), near infrared (NIR) and thermal infrared (TIR) - UAS at a weekly interval over the Niwot Ridge Long Term Ecological Research (NWT LTER) saddle catchment at 3500masl in the Colorado Rockies. This system was used to map surface water pathways, land cover and topography, and quantify ecohydrologic variables including, snow depth, vegetation productivity and surface soil moisture at 5-50cm resolution across an 80ha study area. This presentation will discuss the techniques, methods and merits of using UAS derived multispectral data for ecohydrologic research in mountain regions. We will also present preliminary findings from our survey time series at NWT LTER and a discussion of the potential insights that these datasets can provide. Key questions to be addressed are: 1) how does spatial variability in snow depth impact soil moisture and vegetation productivity, 2) how can UAS help us to identify ecohydrologic `hotspots' and `hot moments' across heterogeneous landscapes.

  15. The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    KAUST Repository

    Lorenzi, Tommaso

    2018-05-08

    We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy.

  16. The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    KAUST Repository

    Lorenzi, Tommaso; Venkataraman, Chandrasekhar; Lorz, Alexander; Chaplain, Mark A.J.

    2018-01-01

    We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy.

  17. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    Science.gov (United States)

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved

  18. Spatial heterogeneity of soils of the Cerrado-Pantanal ecotone

    Directory of Open Access Journals (Sweden)

    Isabela Codolo de Lucena

    Full Text Available In areas of the Cerrado-Pantanal ecotone in Brazil, the soil displays features which are inherent to the processes of soil formation, both of the Central Plateau and the Pantanal Plain. Given this premise, the area should be noteworthy for its high level of edaphic heterogeneity. The present study aimed to determine the physical, chemical and physico-hydric attributes that best explain the heterogeneity of soils in areas of the Cerrado-Pantanal ecotone, and to assess whether these attributes differ between the studied fragments and between the Cerrado soils of the Central Plateau and of the Pantanal Plain. One hundred and sixty soil samples were collected and 11 profiles described for five areas of the Cerrado-Pantanal ecotone (15º43' S, 56º04' W. The following classes were identified: typic Concretionary Petric Plinthosol; typic Lithoplintic Petric Plinthosol; typic dystrophic Yellow Latosol; dystrophic Yellow Latosol with plinthite, the last three not yet having been described for this region. The chemical attributes CEC, M, OM, K, P, Mg, Ca and Mn explained 40.49% of the variability of the soils in the region under study, whether differing or not between the studied fragments. Spatial distribution of the attributes varied between random and aggregated, with the chemical attributes CEC, K, Ca and Mg being similar to soils of the Pantanal Plain. Whereas Al, P and Mn, as well as the hydric variables, were similar to the Plateau. On the other hand, the average organic matter content, pH, gravel and pebbles, were characteristic of both the Plateau and the Plain.

  19. Using a data-constrained model of home range establishment to predict abundance in spatially heterogeneous habitats.

    Directory of Open Access Journals (Sweden)

    Mark C Vanderwel

    Full Text Available Mechanistic modelling approaches that explicitly translate from individual-scale resource selection to the distribution and abundance of a larger population may be better suited to predicting responses to spatially heterogeneous habitat alteration than commonly-used regression models. We developed an individual-based model of home range establishment that, given a mapped distribution of local habitat values, estimates species abundance by simulating the number and position of viable home ranges that can be maintained across a spatially heterogeneous area. We estimated parameters for this model from data on red-backed vole (Myodes gapperi abundances in 31 boreal forest sites in Ontario, Canada. The home range model had considerably more support from these data than both non-spatial regression models based on the same original habitat variables and a mean-abundance null model. It had nearly equivalent support to a non-spatial regression model that, like the home range model, scaled an aggregate measure of habitat value from local associations with habitat resources. The home range and habitat-value regression models gave similar predictions for vole abundance under simulations of light- and moderate-intensity partial forest harvesting, but the home range model predicted lower abundances than the regression model under high-intensity disturbance. Empirical regression-based approaches for predicting species abundance may overlook processes that affect habitat use by individuals, and often extrapolate poorly to novel habitat conditions. Mechanistic home range models that can be parameterized against abundance data from different habitats permit appropriate scaling from individual- to population-level habitat relationships, and can potentially provide better insights into responses to disturbance.

  20. Hierarchical population monitoring of greater sage-grouse (Centrocercus urophasianus) in Nevada and California—Identifying populations for management at the appropriate spatial scale

    Science.gov (United States)

    Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Wann, Gregory T.; Aldridge, Cameron L.; Hanser, Steven E.; Doherty, Kevin E.; O'Donnell, Michael S.; Edmunds, David R.; Espinosa, Shawn P.

    2017-08-10

    Population ecologists have long recognized the importance of ecological scale in understanding processes that guide observed demographic patterns for wildlife species. However, directly incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate scale is critical to the development of management actions that can attenuate or reverse population declines. We describe a novel example of a monitoring framework for estimating annual rates of population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, and compared trends across nested spatial scales. We identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial

  1. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  2. Coexistence of two freshwater turtle species along a Mediterranean stream: The role of spatial and temporal heterogeneity

    Science.gov (United States)

    Segurado, Pedro; Figueiredo, Diogo

    2007-09-01

    In the Iberian Peninsula the European pond turtle ( Emys orbicularis) and the Mediterranean pond turtle ( Mauremys leprosa) share many freshwater habitats, in particular Mediterranean streams. Whether and how these two species divide space within those habitats is poorly known in part due to the very low abundance of E. orbicularis at most syntopic sites. The spatial coexistence of these two species was studied along a 1.3 km reach of a typical Mediterranean stream based on data from trapping sessions and basking counts. The effect of the hydrological regime on differences in space use between species was also assessed. Spatial associations between species and between each species and microhabitat descriptors were estimated using a permutation procedure to account for spatial autocorrelation. Differences in the use of space were also estimated using a resample technique to account for the small sample sizes of E. orbicularis. Results indicate that E. orbicularis shows a preference for temporary, shallow, well vegetated and sandy reaches, while M. leprosa is less selective regarding microhabitat. Differences between E. orbicularis and juveniles of M. leprosa were less obvious. The high spatial heterogeneity of Mediterranean streams may be responsible for the persistence of viable populations of E. orbicularis as well as favouring the coexistence of the two turtle species. Therefore, stream habitat management and conservation plans for E. orbicularis should give priority to the maintenance of high levels of heterogeneity along Mediterranean streams.

  3. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century.

    Science.gov (United States)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-25

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  4. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  5. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    Science.gov (United States)

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  6. Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kassahun Alemu

    Full Text Available BACKGROUND: Malaria elimination requires successful nationwide control efforts. Detecting the spatiotemporal distribution and mapping high-risk areas are useful to effectively target pockets of malaria endemic regions for interventions. OBJECTIVE: The aim of the study was to identify patterns of malaria distribution by space and time in unstable malaria transmission areas in northwest Ethiopia. METHODS: Data were retrieved from the monthly reports stored in the district malaria offices for the period between 2003 and 2012. Eighteen districts in the highland and fringe malaria areas were included and geo-coded for the purpose of this study. The spatial data were created in ArcGIS10 for each district. The Poisson model was used by applying Kulldorff methods using the SaTScan™ software to analyze the purely temporal, spatial and space-time clusters of malaria at a district levels. RESULTS: The study revealed that malaria case distribution has spatial, temporal, and spatiotemporal heterogeneity in unstable transmission areas. Most likely spatial malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR =197764.1, p<0.001. Significant spatiotemporal malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR=197764.1, p<0.001 between 2003/1/1 and 2012/12/31. A temporal scan statistics identified two high risk periods from 2009/1/1 to 2010/12/31 (LLR=72490.5, p<0.001 and from 2003/1/1 to 2005/12/31 (LLR=26988.7, p<0.001. CONCLUSION: In unstable malaria transmission areas, detecting and considering the spatiotemporal heterogeneity would be useful to strengthen malaria control efforts and ultimately achieve elimination.

  7. Biophysical, infrastructural and social heterogeneities explain spatial distribution of waterborne gastrointestinal disease burden in Mexico City

    Science.gov (United States)

    Baeza, Andrés; Estrada-Barón, Alejandra; Serrano-Candela, Fidel; Bojórquez, Luis A.; Eakin, Hallie; Escalante, Ana E.

    2018-06-01

    Due to unplanned growth, large extension and limited resources, most megacities in the developing world are vulnerable to hydrological hazards and infectious diseases caused by waterborne pathogens. Here we aim to elucidate the extent of the relation between the spatial heterogeneity of physical and socio-economic factors associated with hydrological hazards (flooding and scarcity) and the spatial distribution of gastrointestinal disease in Mexico City, a megacity with more than 8 million people. We applied spatial statistics and multivariate regression analyses to high resolution records of gastrointestinal diseases during two time frames (2007–2009 and 2010–2014). Results show a pattern of significant association between water flooding events and disease incidence in the city center (lowlands). We also found that in the periphery (highlands), higher incidence is generally associated with household infrastructure deficiency. Our findings suggest the need for integrated and spatially tailored interventions by public works and public health agencies, aimed to manage socio-hydrological vulnerability in Mexico City.

  8. On the spatial distribution of the transpiration and soil moisture of a Mediterranean heterogeneous ecosystem in water-limited conditions.

    Science.gov (United States)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Albertson, John D.; Oren, Ram

    2014-05-01

    Mediterranean ecosystems are characterized by a strong heterogeneity, and often by water-limited conditions. In these conditions contrasting plant functional types (PFT, e.g. grass and woody vegetation) compete for the water use. Both the vegetation cover spatial distribution and the soil properties impact the soil moisture (SM) spatial distribution. Indeed, vegetation cover density and type affects evapotranspiration (ET), which is the main lack of the soil water balance in these ecosystems. With the objective to carefully estimate SM and ET spatial distribution in a Mediterranean water-limited ecosystem and understanding SM and ET relationships, an extended field campaign is carried out. The study was performed in a heterogeneous ecosystem in Orroli, Sardinia (Italy). The experimental site is a typical Mediterranean ecosystem where the vegetation is distributed in patches of woody vegetation (wild olives mainly) and grass. Soil depth is low and spatially varies between 10 cm and 40 cm, without any correlation with the vegetation spatial distribution. ET, land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. But in heterogeneous ecosystems a key assumption of the eddy covariance theory, the homogeneity of the surface, is not preserved and the ET estimate may be not correct. Hence, we estimate ET of the woody vegetation using the thermal dissipation method (i.e. sap flow technique) for comparing the two methodologies. Due the high heterogeneity of the vegetation and soil properties of the field a total of 54 sap flux sensors were installed. 14 clumps of wild olives within the eddy covariance footprint were identified as the most representative source of flux and they were instrumented with the thermal dissipation probes. Measurements of diameter at the height of sensor installation (height of 0.4 m above ground) were recorded in all the clumps. Bark thickness and sapwood depth were measured on several

  9. Leveraging Mechanism Simplicity and Strategic Averaging to Identify Signals from Highly Heterogeneous Spatial and Temporal Ozone Data

    Science.gov (United States)

    Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.

    2017-12-01

    We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.

  10. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  11. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several

  12. What causes the spatial heterogeneity of bacterial flora in the intestine of zebrafish larvae?

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2018-06-07

    Microbial flora in the intestine has been thoroughly investigated, as it plays an important role in the health of the host. Jemielita et al. (2014) showed experimentally that Aeromonas bacteria in the intestine of zebrafish larvae have a heterogeneous spatial distribution. Although bacterial aggregation is important biologically and clinically, there is no mathematical model describing the phenomenon and its mechanism remains largely unknown. In this study, we developed a computational model to describe the heterogeneous distribution of bacteria in the intestine of zebrafish larvae. The results showed that biological taxis could cause the bacterial aggregation. Intestinal peristalsis had the effect of reducing bacterial aggregation through mixing function. Using a scaling argument, we showed that the taxis velocity of bacteria must be larger than the sum of the diffusive velocity and background bulk flow velocity to induce bacterial aggregation. Our model and findings will be useful to further the scientific understanding of intestinal microbial flora. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Effects of spatial attention on motion discrimination are greater in the left than right visual field.

    Science.gov (United States)

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the dorsal and ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the dorsal stream. Published by Elsevier Ltd.

  14. Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.; White, Gary C.; Harris, Richard B.; Cherry, Steve; Keating, Kim A.; Moody, Dave; Servheen, Christopher

    2006-01-01

    During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded in range. Understanding temporal, environmental, and spatial variables responsible for this change is useful in evaluating what likely influenced grizzly bear demographics in the GYE and where future management efforts might benefit conservation and management. We used recent data from radio-marked bears to estimate reproduction (1983–2002) and survival (1983–2001); these we combined into models to evaluate demographic vigor (lambda [λ]). We explored the influence of an array of individual, temporal, and spatial covariates on demographic vigor.

  15. Bacteria and game theory: the rise and fall of cooperation in spatially heterogeneous environments.

    Science.gov (United States)

    Lambert, Guillaume; Vyawahare, Saurabh; Austin, Robert H

    2014-08-06

    One of the predictions of game theory is that cooperative behaviours are vulnerable to exploitation by selfish individuals, but this result seemingly contradicts the survival of cooperation observed in nature. In this review, we will introduce game theoretical concepts that lead to this conclusion and show how the spatial competition dynamics between microorganisms can be used to model the survival and maintenance of cooperation. In particular, we focus on how Escherichia coli bacteria with a growth advantage in stationary phase (GASP) phenotype maintain a proliferative phenotype when faced with overcrowding to gain a fitness advantage over wild-type populations. We review recent experimental approaches studying the growth dynamics of competing GASP and wild-type strains of E. coli inside interconnected microfabricated habitats and use a game theoretical approach to analyse the observed inter-species interactions. We describe how the use of evolutionary game theory and the ideal free distribution accurately models the spatial distribution of cooperative and selfish individuals in spatially heterogeneous environments. Using bacteria as a model system of cooperative and selfish behaviours may lead to a better understanding of the competition dynamics of other organisms-including tumour-host interactions during cancer development and metastasis.

  16. Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity

    Science.gov (United States)

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa

    2011-01-01

    The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is

  17. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil

    Czech Academy of Sciences Publication Activity Database

    Štursová, Martina; Bárta, J.; Šantrůčková, H.; Baldrian, Petr

    2016-01-01

    Roč. 92, č. 12 (2016), fiw185 ISSN 0168-6496 R&D Projects: GA ČR GA526/08/0751; GA ČR(CZ) GA16-08916S Institutional support: RVO:61388971 Keywords : spatial heterogeneity * litter * soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  18. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  19. Resource heterogeneity and foraging behaviour of cattle across spatial scales

    Directory of Open Access Journals (Sweden)

    Demment Montague W

    2009-04-01

    Full Text Available Abstract Background Understanding the mechanisms that influence grazing selectivity in patchy environments is vital to promote sustainable production and conservation of cultivated and natural grasslands. To better understand how patch size and spatial dynamics influence selectivity in cattle, we examined grazing selectivity under 9 different treatments by offering alfalfa and fescue in patches of 3 sizes spaced with 1, 4, and 8 m between patches along an alley. We hypothesized that (1 selectivity is driven by preference for the forage species that maximizes forage intake over feeding scales ranging from single bites to patches along grazing paths, (2 that increasing patch size enhances selectivity for the preferred species, and that (3 increasing distances between patches restricts selectivity because of the aggregation of scale-specific behaviours across foraging scales. Results Cows preferred and selected alfalfa, the species that yielded greater short-term intake rates (P Conclusion We conclude that patch size and spacing affect components of intake rate and, to a lesser extent, the selectivity of livestock at lower hierarchies of the grazing process, particularly by enticing livestock to make more even use of the available species as patches are spaced further apart. Thus, modifications in the spatial pattern of plant patches along with reductions in the temporal and spatial allocation of grazing may offer opportunities to improve uniformity of grazing by livestock and help sustain biodiversity and stability of plant communities.

  20. The effect of heterogeneity on invasion in spatial epidemics

    DEFF Research Database (Denmark)

    Neri, Franco M; Bates, Anne; Füchtbauer, Winnie Sophie

    2011-01-01

    Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established “percolation...... paradigm” to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia...

  1. Temporal and spatial heterogeneity in lacustrine δ13CDIC and δ18ODO signatures in a large mid-latitude temperate lake

    Directory of Open Access Journals (Sweden)

    Jane DRUMMOND

    2010-08-01

    Full Text Available Modelling limnetic carbon processes is necessary for accurate global carbon models and stable isotope analysis can provide additional insight of carbon flow pathways. This research examined the spatial and temporal complexity of carbon cycling in a large temperate lake. Dissolved inorganic carbon (DIC is utilised by photosynthetic organisms and dissolved oxygen (DO is used by heterotrophic organisms during respiration. Thus the spatial heterogeneity in the pelagic metabolic balance in Loch Lomond, Scotland was investigated using a combined natural abundance isotope technique. The isotopic signatures of dissolved inorganic carbon (δ13CDIC and dissolved oxygen (δ18ODO were measured concurrently on four different dates between November 2004 and September 2005. We measured isotopic variation over small and large spatial scales, both horizontal distance and depth. δ13CDIC and δ18ODO changed over a seasonal cycle, becoming concurrently more positive (negative in the summer (winter months, responding to increased photosynthetic and respiratory rates, respectively. With increasing depth, δ13CDIC became more negative and δ18ODO more positive, reflecting the shift to a respiration-dominated system. The horizontal distribution of δ13CDIC and δ18ODO in the epilimnion was heterogeneous. In general, the south basin had the most positive δ13CDIC, becoming more negative with increasing latitude, except in winter when the opposite pattern was observed. Areas of local variation were often observed near inflows. Clearly δ13CDIC and δ18ODO can show large spatial heterogeneity, as a result of varying metabolic balance coupled with inflow proximity and thus single point sampling to extrapolate whole lake metabolic patterns can result in error when modelling large lake systems Whilst we advise caution when using single point representation, we also show that this combined isotopic approach has potential to assist in constructing detailed lake carbon models.

  2. The supply of general practitioners across local areas: accounting for spatial heterogeneity.

    Science.gov (United States)

    McIsaac, Michelle; Scott, Anthony; Kalb, Guyonne

    2015-10-03

    The geographic distribution of general practitioners (GPs) remains persistently unequal in many countries despite notable increases in overall supply. This paper explores how the factors associated with the supply of general practitioners (GPs) are aligned with the arbitrary geographic boundaries imposed by the use of spatially referenced GP supply data. Data on GP supply in postcodes within Australia are matched to data on the population characteristics and levels of amenities in postcodes. Tobit regression models are used that examine the associations between GP supply and postcode characteristics, whilst accounting for spatial heterogeneity. The results demonstrate that GPs do not consider space in a one-dimensional sense. Location choice is related to both neighbourhood-specific factors, such as hospitals, and broader area factors, such as area income and proximity to private schools. Although the proportion of females and elderly were related to GPs supply, mortality rate was not. This paper represents the first attempt to map the factors influencing GP supply to the appropriate geographic level at which GPs may be considering that factor. We suggest that both neighbourhood and broader regional characteristics can influence GPs' locational choices. This finding is highly relevant to the design and evaluation of relocation incentive programmes.

  3. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    Science.gov (United States)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous

  4. Spatial Heterogeneity of Sustainable Transportation Offer Values: A Comparative Analysis of Nantes Urban and Periurban/Rural Areas (France

    Directory of Open Access Journals (Sweden)

    Julie Bulteau

    2018-02-01

    Full Text Available Innovative solutions have been implemented to promote sustainable mobility in urban areas. In the Nantes area (northwestern part of France, alternatives to single-occupant car use have increased in the past few years. In the urban area, there is an efficient public transport supply, including tramways and a “busway” (Bus Rapid Transit, as well as bike-sharing services. In periurban and rural areas, there are carpool areas, regional buses and the new “tram-train” lines. In this article, we focus on the impact on house prices of these “sustainable” transportation infrastructures and policies, in order to evaluate their values. The implicit price of these sustainable transport offers was estimated through hedonic price functions describing the Nantes urban and periurban/rural housing markets. Spatial regression models (SAR, SEM, SDM and GWR were carried out to capture the effect of both spatial autocorrelation and spatial heterogeneity. The results show patterns of spatial heterogeneity of transportation offer implicit prices at two scales: (i between urban and periurban/rural areas, as well as (ii within each territory. In the urban area, the distance to such offers was significantly associated with house prices. These associations varied by type of transportation system (positive for tramway and railway stations and negative for bike-sharing stations. In periurban and rural areas, having a carpool area in a 1500-m buffer around the home was negatively associated with house prices, while having a regional bus station in a 500-m buffer was non-significant. Distance to the nearest railway station was negatively associated with house prices. These findings provide research avenues to help public policy-makers promote sustainable mobility and pave the way for more locally targeted interventions.

  5. The fate of pesticides in soil and aquifers from a small-scale point of view: Does microbial and spatial heterogeneity have an impact?

    DEFF Research Database (Denmark)

    Aamand, J.; Badawi, N.; Rosenbom, Annette Elisabeth

    Millions of tonnes of pesticides are used each year worldwide in agricultural production resulting in pollution of groundwater aquifers. There is, however, a striking contrast between the input levels (up to several kg per hectare) and the contaminant concentrations detected in groundwater, which...... are normally in the microgram to nanogram per litre range. Resent research has revealed a large spatial variation in pesticide mineralisation potentials, but little is known about how these variations/heterogeneities affect the fate of contaminants. We analysed how mineralisation potentials of phenoxy acid...... herbicides (MCPA, 2,4-D) were spatially distributed in soil, subsoil, and groundwater aquifers using a 96-well microplate mineralisation assay. In the top soil, all samples showed rapid mineralisation following Monod mineralisation kinetics. In the subsoil sediments, a more heterogeneous distribution...

  6. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    Science.gov (United States)

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large

  7. Noninvasive In-Vivo Quantification of Mechanical Heterogeneity of Invasive Breast Carcinomas.

    Directory of Open Access Journals (Sweden)

    Tengxiao Liu

    Full Text Available Heterogeneity is a hallmark of cancer whether one considers the genotype of cancerous cells, the composition of their microenvironment, the distribution of blood and lymphatic microvasculature, or the spatial distribution of the desmoplastic reaction. It is logical to expect that this heterogeneity in tumor microenvironment will lead to spatial heterogeneity in its mechanical properties. In this study we seek to quantify the mechanical heterogeneity within malignant and benign tumors using ultrasound based elasticity imaging. By creating in-vivo elastic modulus images for ten human subjects with breast tumors, we show that Young's modulus distribution in cancerous breast tumors is more heterogeneous when compared with tumors that are not malignant, and that this signature may be used to distinguish malignant breast tumors. Our results complement the view of cancer as a heterogeneous disease on multiple length scales by demonstrating that mechanical properties within cancerous tumors are also spatially heterogeneous.

  8. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    Science.gov (United States)

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  9. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  10. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach.

    Science.gov (United States)

    Ali, Ghaffar

    2018-09-01

    Climate change is a multidimensional phenomenon, which has various implications for the environment and socio-economic conditions of the people. Its effects are deeper in an agrarian economy which is susceptible to the vagaries of nature. Therefore, climate change directly impacts the society in different ways, and society must pay the cost. Focusing on this truth, the main objective of this research was to investigate the empirical changes and spatial heterogeneity in the climate of Pakistan in real terms using time series data. Climate change and variability in Pakistan, over time, were estimated from 1961 to 2014 using all the climate variables for the very first time. Several studies were available on climate change impacts, mitigation, and adaptation; however, it was difficult to observe exactly how much change occurred in which province and when. A multidisciplinary approach was utilized to estimate the absolute change through a combination of environmental, econometric, and remote sensing methods. Moreover, the Autoregressive Distributed Lag (ARDL) model was used to ascertain the extent of variability in climate change and information was digitalized through ground truthing. Results showed that the average temperature of Pakistan increased by 2°C between 1960 and 1987 and 4°C between 1988 and 2014, and R 2 was 0.978. The rate of temperature increased 0.09°C between 1960 and 2014. The mean annual precipitation of Pakistan increased by 478mm, and its R 2 were 0.34-0.64. The mean annual humidity of Pakistan increased by 2.94%, and the rate of humidity has been increased by 0.97% from 1988 to 2014. Notably, Sindh and Balochistan provinces have shown a significant spatial heterogeneity regarding the increase in precipitation. Statistically all variables are significant. This would serve as a baseline information for climate change-related studies in Pakistan and its application in different sectors. This would also serve the plant breeders and policymakers of

  11. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems

    Science.gov (United States)

    S. T. A. Pickett; M. L. Cadenasso; E. J. Rosi-Marshall; Ken Belt; P. M. Groffman; Morgan Grove; E. G. Irwin; S. S. Kaushal; S. L. LaDeau; C. H. Nilon; C. M. Swan; P. S. Warren

    2016-01-01

    Urban areas are understood to be extraordinarily spatially heterogeneous. Spatial heterogeneity, and its causes, consequences, and changes, are central to ecological science. The social sciences and urban design and planning professions also include spatial heterogeneity as a key concern. However, urban ecology, as a pursuit that integrates across these disciplines,...

  12. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field

    Science.gov (United States)

    Franklin, Rima B.; Mills, Aaron L.

    2003-01-01

    To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  13. Different places, different stories: A study of the spatial heterogeneity of county-level fertility in China

    Directory of Open Access Journals (Sweden)

    Donghui Wang

    2017-08-01

    Full Text Available Background: China has been characterized by persistently low fertility rates since the 1990s. Existing literature has examined the relationship between fertility levels and social, economic, and policy-related determinants. However, the possible spatial variation in these relationships has not been investigated. Objective: The purpose of this study is to examine the potential spatially varying relationships between county-level fertility rates and policy and socioeconomic factors in China. Methods: Using geocoded 2010 county-level census data, this study adopts the geographically weighted regression (GWR method to identify place-specific relationships between county-level total fertility rate (TFR and socioeconomic and policy-related factors. Conclusions: We find that relationships between TFR and widely used social, economic, and policy-related factors (rural Hukou, ethnic minority, female education, net migration rate, poor living standard, sex ratio at birth, fertility policy compliance ratio vary spatially in terms of direction, strength, and magnitude. This spatial variation is largely due to differences in local characteristics. The differences between and the complexities of localities cannot be told by a single story of either government intervention or socioeconomic development. Contribution: This study extends existing fertility research on China by explicitly recognizing the spatial heterogeneity in the impact of policy and socioeconomic factors on the local fertility rate. This study sets the stage for future research that will contextually analyze varying fertility rates at the subnational level in China and other countries.

  14. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  15. Statistical Estimation of Heterogeneities: A New Frontier in Well Testing

    Science.gov (United States)

    Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.

    2001-12-01

    Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.

  16. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  17. Accounting for spatially heterogeneous conditions in local-scale surveillance strategies: case study of the biosecurity insect pest, grape phylloxera (Daktulosphaira vitifoliae (Fitch)).

    Science.gov (United States)

    Triska, Maggie D; Powell, Kevin S; Collins, Cassandra; Pearce, Inca; Renton, Michael

    2018-04-29

    Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted surveillance that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local-scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance strategies compared to current, standard surveillance strategies. Time to detection, spread within and spread beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable to the invading pest in comparison to standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera as phylloxera is a complex pest with multiple genotypes that influence spread and detectability. Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. Additionally, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. This article is protected by copyright. All rights reserved.

  18. Effect of Heterogeneity in Initial Geographic Distribution on Opinions’ Competitiveness

    Directory of Open Access Journals (Sweden)

    Alexander S. Balankin

    2015-05-01

    Full Text Available Spin dynamics on networks allows us to understand how a global consensus emerges out of individual opinions. Here, we are interested in the effect of heterogeneity in the initial geographic distribution of a competing opinion on the competitiveness of its own opinion. Accordingly, in this work, we studied the effect of spatial heterogeneity on the majority rule dynamics using a three-state spin model, in which one state is neutral. Monte Carlo simulations were performed on square lattices divided into square blocks (cells. Accordingly, one competing opinion was distributed uniformly among cells, whereas the spatial distribution of the rival opinion was varied from the uniform to heterogeneous, with the median-to-mean ratio in the range from 1 to 0. When the size of discussion group is odd, the uncommitted agents disappear completely after  3.30 ± 0.05 update cycles, and then the system evolves in a two-state regime with complementary spatial distributions of two competing opinions. Even so, the initial heterogeneity in the spatial distribution of one of the competing opinions causes a decrease of this opinion competitiveness. That is, the opinion with initially heterogeneous spatial distribution has less probability to win, than the opinion with the initially uniform spatial distribution, even when the initial concentrations of both opinions are equal. We found that although the time to consensus , the opinion’s recession rate is determined during the first 3.3 update cycles. On the other hand, we found that the initial heterogeneity of the opinion spatial distribution assists the formation of quasi-stable regions, in which this opinion is dominant. The results of Monte Carlo simulations are discussed with regard to the electoral competition of political parties.

  19. Ecological arrangement of floro-faunistic heterogeneity of northern Eurasia

    Directory of Open Access Journals (Sweden)

    Ravkin Yury Solomonovich

    2017-03-01

    In general, the results of cluster analysis of the heterogeneity of fauna and flora in northern Eurasia confirm with the concept on the spatial variability of flora and fauna in this region presented earlier. However, nonparametric statistical methods enable not only to confirm some previous conclusions, but to reject some of them as well as to show the low informative value of the number of common concepts, for example, about the significance of the Urals and the Yenisei as borders in fauna and flora heterogeneity. In the distinguished sub-regions a number of regions belong to a greater of lesser extent to certain zones and sub-zones (45 – 100% in each taxon, although their composition never coincides completely with zonal and sub-zonal one. Due to the difference in tolerance of animals and plants the boundary lines run out on the basis of plants do not always coincide with floristic and faunistic ones. At that, some diagonal displacements are retraced in relation to the natural zone boundaries; they are associated with various reactions of different species to the heat supply of the territory. The received results coincide with those received by climatic zoning to a greater extent than by complex physical geographic one.

  20. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical

  1. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  2. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region

    Directory of Open Access Journals (Sweden)

    Xihua Yang

    2015-01-01

    Full Text Available This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE, mean relative error (MRE, root mean squared error (RMSE, and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS. The IDW method was then used to produce forty-year (1990–2009 and 2040–2059 time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR. The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.

  3. Spatial heterogeneity of soils of the Cerrado-Pantanal ecotone

    OpenAIRE

    Lucena, Isabela Codolo de; Amorim, Ricardo Santos Silva; Lobo, Francisco de Almeida; Baldoni, Raquel Negrão; Matos, Dalva Maria da Silva

    2014-01-01

    In areas of the Cerrado-Pantanal ecotone in Brazil, the soil displays features which are inherent to the processes of soil formation, both of the Central Plateau and the Pantanal Plain. Given this premise, the area should be noteworthy for its high level of edaphic heterogeneity. The present study aimed to determine the physical, chemical and physico-hydric attributes that best explain the heterogeneity of soils in areas of the Cerrado-Pantanal ecotone, and to assess whether these attributes ...

  4. Inefficiency, heterogeneity and spillover effects in maternal care in India: a spatial stochastic frontier analysis.

    Science.gov (United States)

    Kinfu, Yohannes; Sawhney, Monika

    2015-03-25

    Institutional delivery is one of the key and proven strategies to reduce maternal deaths. Since the 1990s, the government of India has made substantial investment on maternal care to reduce the huge burden of maternal deaths in the country. However, despite the effort access to institutional delivery in India remains below the global average. In addition, even in places where health investments have been comparable, inter- and intra-state difference in access to maternal care services remain wide and substantial. This raises a fundamental question on whether the sub-national units themselves differ in terms of the efficiency with which they use available resources, and if so, why? Data obtained from round 3 of the country's District Level Health and Facility Survey was analyzed to measure the level and determinants of inefficiency of institutional delivery in the country. Analysis was conducted using spatial stochastic frontier models that correct for heterogeneity and spatial interactions between sub-national units. Inefficiency differences in maternal care services between and within states are substantial. The top one third of districts in the country has a mean efficiency score of 90 per cent or more, while the bottom 10 per cent of districts exhibit mean inefficiency score of as high as over 75 per cent or more. Overall mean inefficiency is about 30 per cent. The result also reveals the existence of both heterogeneity and spatial correlation in institutional delivery in the country. Given the high level of inefficiency in the system, further progress in improving coverage of institutional delivery in the country should focus both on improving the efficiency of resource utilization--especially where inefficiency levels are extremely high--and on bringing new resources in to the system. The additional investment should specifically focus on those parts of the country where coverage rates are still low but efficiency levels are already at a high level. In

  5. Carrying capacity in a heterogeneous environment with habitat connectivity.

    Science.gov (United States)

    Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David

    2017-09-01

    A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.

  6. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage.

    Directory of Open Access Journals (Sweden)

    Brady J Mattsson

    Full Text Available Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  7. A further analysis of the role of heterogeneity in coevolutionary spatial games

    Science.gov (United States)

    Cardinot, Marcos; Griffith, Josephine; O'Riordan, Colm

    2018-03-01

    Heterogeneity has been studied as one of the most common explanations of the puzzle of cooperation in social dilemmas. A large number of papers have been published discussing the effects of increasing heterogeneity in structured populations of agents, where it has been established that heterogeneity may favour cooperative behaviour if it supports agents to locally coordinate their strategies. In this paper, assuming an existing model of a heterogeneous weighted network, we aim to further this analysis by exploring the relationship (if any) between heterogeneity and cooperation. We adopt a weighted network which is fully populated by agents playing both the Prisoner's Dilemma or the Optional Prisoner's Dilemma games with coevolutionary rules, i.e., not only the strategies but also the link weights evolve over time. Surprisingly, results show that the heterogeneity of link weights (states) on their own does not always promote cooperation; rather cooperation is actually favoured by the increase in the number of overlapping states and not by the heterogeneity itself. We believe that these results can guide further research towards a more accurate analysis of the role of heterogeneity in social dilemmas.

  8. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Pennsylvania State Univ., State College, PA (United States); Li, Li [Pennsylvania State Univ., State College, PA (United States)

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in natural systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport

  9. Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids

    Science.gov (United States)

    Breyta, Rachel; Black, Allison; Kaufman, John; Kurath, Gael

    2016-01-01

    The aquatic rhaboviral pathogen infectious hematopoietic necrosis virus (IHNV) causes acute disease in juvenile fish of a number of populations of Pacific salmonid species. Heavily managed in both marine and freshwater environments, these fish species are cultured during the juvenile stage in freshwater conservation hatcheries, where IHNV is one of the top three infectious diseases that cause serious morbidity and mortality. Therefore, a comprehensive study of viral genetic surveillance data representing 2590 field isolates collected between 1958 and 2014 was conducted to determine the spatial and temporal patterns of IHNV in the Pacific Northwest of the contiguous United States. Prevalence of infection varied over time, fluctuating over a rough 5–7 year cycle. The genetic analysis revealed numerous subgroups of IHNV, each of which exhibited spatial heterogeneity. Within all subgroups, dominant genetic types were apparent, though the temporal patterns of emergence of these types varied among subgroups. Finally, the affinity or fidelity of subgroups to specific host species also varied, where UC subgroup viruses exhibited a more generalist profile and all other subgroups exhibited a specialist profile. These complex patterns are likely synergistically driven by numerous ecological, pathobiological, and anthropogenic factors. Since only a few anthropogenic factors are candidates for managed intervention aimed at improving the health of threatened or endangered salmonid fish populations, determining the relative impact of these factors is a high priority for future studies.

  10. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    Science.gov (United States)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  11. The role of spatial heterogeneity of the environment in soil fauna recovery after fires

    Science.gov (United States)

    Gongalsky, K. B.; Zaitsev, A. S.

    2016-12-01

    Forest fires are almost always heterogeneous, leaving less-disturbed sites that are potentially suitable as habitats for soil-dwelling creatures. The recovery of large soil animal communities after fires is therefore dependent on the spatial structure of the burned habitats. The role of locally less disturbed sites in the survival of soil macrofauna communities along with traditionally considered immigration from the surrounding undisturbed habitats is shown by the example of burnt areas located in three geographically distant regions of European Russia. Such unburned soil cover sites (perfugia) occupy 5-10% of the total burned habitats. Initially, perfugia are characterized by much higher (200-300% of the average across a burned area) diversity and abundance of soil fauna. A geostatistical method made it possible to estimate the perfugia size for soil macrofauna at 3-8 m.

  12. Spatial and temporal heterogeneity in a subtropical reservoir and their effects over the benthic macroinvertebrate community

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme de Souza Beghelli

    2014-09-01

    Full Text Available AIM: The objective of the present study was to demonstrate the influences of the environment spatial heterogeneity on benthic macroinvertebrates considering transverse and longitudinal gradients as also seasonality. METHODS: Four samplings were performed: two in the wet and two in the dry season in the riverine, transitional and lacustrine zones in the littoral and profundal regions of Itupararanga reservoir, SP, Brazil. Abiotic characterization of the water and of the sediment was performed. The biotic characterization was based on richness, dominance, diversity, and density of organisms, as well as on the relative abundance of predominant taxa. Two-way ANOSIM analyses were performed for both biotic and abiotic components, in order to test the significance of the differences in the longitudinal and transverse directions as well as of the differences between seasons. RESULTS: Compartmentalization was present in both directions, longitudinal and transverse. In a general way, the littoral region presented higher diversity values when compared with the profundal region, and the riverine zone presented high densities and high percentage of taxons, which usually indicate organic pollution. The differentiation between the transitional and lacustrine zones was determined mainly by taxonomic composition. Seasonality was also observed and the transportation of small particles, the entrance of nutrients, and the presence of macrophytes were considered as determinants for differentiation. CONCLUSIONS: Together, these results demonstrate the responses of benthic macroinvertebrate communities considering distinct sources of variation: longitudinal heterogeneity, determined by the increasing distance from the forming rivers that leads to a gradient of physical and chemical conditions; transverse heterogeneity, determined by the proximity with the land environment and depth differences. Seasonal heterogeneity was recorded during the period of this research and

  13. Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game

    Science.gov (United States)

    Fan, Ruguo; Zhang, Yingqing; Luo, Ming; Zhang, Hongjuan

    2017-01-01

    Heterogeneity has attracted mounting attention across multiple disciplines and is confirmed to be a greater promoter of cooperation. It is often the case that the heterogeneity always exists in investment and payoff allocation concurrently instead of separately. In addition, the factors that affect heterogeneous investment and payoff allocation are various. Inspired by this, this paper extends the previous models by incorporating heterogeneous investment and payoff allocation into the typical PGG model to further investigate the incentive mechanisms of cooperative behavior. In order to better understand the model, three different feedback mechanisms, namely the wealth-preference mechanism, the social-self-preference mechanism, and the mixed-preference mechanism, are addressed. The former two mechanisms correspond to the case of single factor and the latter corresponds to the case of double factors. The numerical simulations indicate that feedback mechanism by bridging the connections between the investment and the payoff allocation can reduce the free-rider problem. Furthermore, it is found that the cooperative frequency and average payoff perform better in the case of the mixed-preference mechanism where players will not only take previous payoff feedback as well as current investment but also their social status into their game decision-making process. In addition, full cooperation and profitability over all players can be promoted by means of increasing r or reducing α. At last, compared with another two classic networks, the extent of cooperation is promoted under the structures of the BA scale free networks.

  14. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.

    2015-01-01

    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  15. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease.

    Science.gov (United States)

    Kalloniatis, Michael; Khuu, Sieu K

    2016-07-01

    To test the hypothesis that visual field assessment in ocular disease measured with target stimuli within or close to complete spatial summation results in larger threshold elevation compared to when measured with the standard Goldmann III target size. The hypothesis predicts a greater loss will be identified in ocular disease. Additionally, we sought to develop a theoretical framework that would allow comparisons of thresholds with disease progression when using different Goldmann targets. The Humphrey Field Analyser (HFA) 30-2 grid was used in 13 patients with early/established optic nerve disease using the current Goldmann III target size or a combination of the three smallest stimuli (target size I, II and III). We used data from control subjects at each of the visual field locations for the different target sizes to establish the number of failed points (events) for the patients with optic nerve disease, as well as global indices for mean deviation (MD) and pattern standard deviation (PSD). The 30-2 visual field testing using alternate target size stimuli showed that all 13 patients displayed more defects (events) compared to the standard Goldmann III target size. The median increase for events was seven additional failed points: (range 1-26). The global indices also increased when the new testing approach was used (MD -3.47 to -6.25 dB and PSD 4.32 to 6.63 dB). Spatial summation mapping showed an increase in critical area (Ac) in disease and overall increase in thresholds when smaller target stimuli were used. When compared to the current Goldmann III paradigm, the use of alternate sized targets within the 30-2 testing protocol revealed a greater loss in patients with optic nerve disease for both event analysis and global indices (MD and PSD). We therefore provide evidence in a clinical setting that target size is important in visual field testing. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  16. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches

    NARCIS (Netherlands)

    Helbich, M; Griffith, D

    2016-01-01

    Real estate policies in urban areas require the recognition of spatial heterogeneity in housing prices to account for local settings. In response to the growing number of spatially varying coefficient models in housing applications, this study evaluated four models in terms of their spatial patterns

  17. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    Science.gov (United States)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  18. Mixed-Severity Fire Fosters Heterogeneous Spatial Patterns of Conifer Regeneration in a Dry Conifer Forest

    Directory of Open Access Journals (Sweden)

    Sparkle L. Malone

    2018-01-01

    Full Text Available We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11–12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving trees, in three 4-ha plots following the 2002 Hayman Fire. Residual tree density ranged from 167 to 197 trees ha−1 (TPH, and these trees were clustered at distances up to 30 m. Post-fire regenerating conifers, which ranged in density from 241 to 1036 TPH, were also clustered at distances up to at least 30 m. Moreover, residual tree locations drove post-fire regenerating conifer locations, with the two showing a pattern of repulsion. Topography and post-fire sprouting tree species locations further drove post-fire conifer regeneration locations. These results provide a foundation for anticipating how the reintroduction of mixed-severity fire may affect long-term forest structure, and also yield insights into how historical mixed-severity fire may have regulated the spatially heterogeneous conditions commonly described for pre-settlement dry conifer forests of Colorado and elsewhere.

  19. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals

    International Nuclear Information System (INIS)

    Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi

    2015-01-01

    Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. - Highlights: • Adverse health effects are associated with size segregated atmospheric PM. • Seasonal and spatial variability of PM induced ROS determined in Hong Kong city. • Coarse PM ranks top in ROS generation on per volume and mass basis. • Traffic site demonstrated as source of potent inducer of cell toxicity. • No consistent seasonal difference observed for fine and coarse PM. - Heterogeneous PM-induced ROS distribution was observed in a city. Several water-soluble metals were associated with the ROS generation but with different degree from different sites

  20. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    Science.gov (United States)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  1. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    Science.gov (United States)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  2. Spatial heterogeneity in fishing creates de facto refugia for endangered Celtic Sea elasmobranchs.

    Directory of Open Access Journals (Sweden)

    Samuel Shephard

    Full Text Available The life history characteristics of some elasmobranchs make them particularly vulnerable to fishing mortality; about a third of all species are listed by the IUCN as Threatened or Near Threatened. Marine Protected Areas (MPAs have been suggested as a tool for conservation of elasmobranchs, but they are likely to be effective only if such populations respond to fishing impacts at spatial-scales corresponding to MPA size. Using the example of the Celtic Sea, we modelled elasmobranch biomass (kg h(-1 in fisheries-independent survey hauls as a function of environmental variables and 'local' (within 20 km radius fishing effort (h y(-1 recorded from Vessel Monitoring Systems data. Model selection using AIC suggested strongest support for linear mixed effects models in which the variables (i fishing effort, (ii geographic location and (iii demersal fish assemblage had approximately equal importance in explaining elasmobranch biomass. In the eastern Celtic Sea, sampling sites that occurred in the lowest 10% of the observed fishing effort range recorded 10 species of elasmobranch including the critically endangered Dipturus spp. The most intensely fished 10% of sites had only three elasmobranch species, with two IUCN listed as Least Concern. Our results suggest that stable spatial heterogeneity in fishing effort creates de facto refugia for elasmobranchs in the Celtic Sea. However, changes in the present fisheries management regime could impair the refuge effect by changing fisher's behaviour and displacing effort into these areas.

  3. Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals.

    Directory of Open Access Journals (Sweden)

    Oleg E Osadchii

    Full Text Available Non-uniform shortening of the action potential duration (APD90 in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV vs. the left ventricular (LV chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the

  4. Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals.

    Science.gov (United States)

    Osadchii, Oleg E

    2018-01-01

    Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak

  5. A cooperative game-theoretic framework for negotiating marine spatial allocation agreements among heterogeneous players.

    Science.gov (United States)

    Kyriazi, Zacharoula; Lejano, Raul; Maes, Frank; Degraer, Steven

    2017-02-01

    Marine spatial allocation has become, in recent decades, a political flashpoint, fuelled by political power struggles, as well as the continuously increasing demand for marine space by both traditional and emerging marine uses. To effectively address this issue, we develop a decision-making procedure, that facilitates the distribution of disputed areas of specific size among heterogeneous players in a transparent and ethical way, while considering coalitional formations through coexistence. To do this, we model players' alternative strategies and payoffs within a cooperative game-theoretic framework. Depending on whether transferable utility (TU) or non-transferable utility (NTU) is the more appropriate assumption, we illustrate the use of the TU Shapley value and the Lejano's fixed point NTU Shapley value to solve for the ideal allocations. The applicability and effectiveness of the process has been tested in a case study area, the Dogger Bank Special Area of Conservation in the North Sea, which involves three totally or partially conflicting activities, i.e. fishing, nature conservation and wind farm development. The findings demonstrate that the process is capable of providing a unique, fair and equitable division of space Finally, among the two solution concepts proposed the fixed point NTU Shapley value manages to better address the heterogeneity of the players and thus to provide a more socially acceptable allocation that favours the weaker player, while demonstrating the importance of the monetary valuation attributed by each use to the area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Accounting for small scale heterogeneity in ecohydrologic watershed models

    Science.gov (United States)

    Burke, W.; Tague, C.

    2017-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  7. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  8. Mass Spectrometry Imaging for the Investigation of Intratumor Heterogeneity.

    Science.gov (United States)

    Balluff, B; Hanselmann, M; Heeren, R M A

    2017-01-01

    One of the big clinical challenges in the treatment of cancer is the different behavior of cancer patients under guideline therapy. An important determinant for this phenomenon has been identified as inter- and intratumor heterogeneity. While intertumor heterogeneity refers to the differences in cancer characteristics between patients, intratumor heterogeneity refers to the clonal and nongenetic molecular diversity within a patient. The deciphering of intratumor heterogeneity is recognized as key to the development of novel therapeutics or treatment regimens. The investigation of intratumor heterogeneity is challenging since it requires an untargeted molecular analysis technique that accounts for the spatial and temporal dynamics of the tumor. So far, next-generation sequencing has contributed most to the understanding of clonal evolution within a cancer patient. However, it falls short in accounting for the spatial dimension. Mass spectrometry imaging (MSI) is a powerful tool for the untargeted but spatially resolved molecular analysis of biological tissues such as solid tumors. As it provides multidimensional datasets by the parallel acquisition of hundreds of mass channels, multivariate data analysis methods can be applied for the automated annotation of tissues. Moreover, it integrates the histology of the sample, which enables studying the molecular information in a histopathological context. This chapter will illustrate how MSI in combination with statistical methods and histology has been used for the description and discovery of intratumor heterogeneity in different cancers. This will give evidence that MSI constitutes a unique tool for the investigation of intratumor heterogeneity, and could hence become a key technology in cancer research. © 2017 Elsevier Inc. All rights reserved.

  9. The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities.

    Science.gov (United States)

    Pedruski, Michael T; Arnott, Shelley E

    2011-05-01

    Habitat connectivity and regional heterogeneity represent two factors likely to affect biodiversity across different spatial scales. We performed a 3 × 2 factorial design experiment to investigate the effects of connectivity, heterogeneity, and their interaction on artificial pond communities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) scales. Despite expectations that the effects of connectivity would depend on levels of regional heterogeneity, no significant interactions were found for any diversity index investigated at any spatial scale. While observed responses of biodiversity to connectivity and heterogeneity depended to some extent on the diversity index and spatial partitioning formula used, the general pattern shows that these factors largely act at the β scale, as opposed to the α or γ scales. We conclude that the major role of connectivity in aquatic invertebrate communities is to act as a homogenizing force with relatively little effect on diversity at the α or γ levels. Conversely, heterogeneity acts as a force maintaining differences between communities.

  10. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    Science.gov (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  11. Imaging metabolic heterogeneity in cancer.

    Science.gov (United States)

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  12. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater

  13. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers

    Directory of Open Access Journals (Sweden)

    Daniel M Spagnolo

    2016-01-01

    Full Text Available Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI, which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different

  14. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    Science.gov (United States)

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km 2 area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  15. The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation.

    Science.gov (United States)

    Irwin, Elena G; Bockstael, Nancy E

    2007-12-26

    We investigate the dynamics and spatial distribution of land use fragmentation in a rapidly urbanizing region of the United States to test key propositions regarding the evolution of sprawl. Using selected pattern metrics and data from 1973 and 2000 for the state of Maryland, we find significant increases in developed and undeveloped land fragmentation but substantial spatial heterogeneity as well. Estimated fragmentation gradients that describe mean fragmentation as a function of distance from urban centers confirm the hypotheses that fragmentation rises and falls with distance and that the point of maximum fragmentation shifted outward over time. However, rather than outward increases in sprawl balanced by development infill, we find substantial and significant increases in mean fragmentation values along the entire urban-rural gradient. These findings are in contrast to the results of Burchfield et al. [Burchfield M, Overman HG, Puga D, Turner MA (2006) Q J Econ 121:587-633], who conclude that the extent of sprawl remained roughly unchanged in the Unites States between 1976 and 1992. As demonstrated here, both the data and pattern measure used in their study are systematically biased against recording low-density residential development, the very land use that we find is most strongly associated with fragmentation. Other results demonstrate the association between exurban growth and increasing fragmentation and the systematic variation of fragmentation with nonurban factors. In particular, proximity to the Chesapeake Bay is negatively associated with fragmentation, suggesting that an attraction effect associated with this natural amenity has concentrated development.

  16. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  17. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  18. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki; Santamarina, Carlos

    2017-01-01

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  19. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  20. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.

    Science.gov (United States)

    O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan

    2015-01-15

    Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.

  1. A Robust Profitability Assessment Tool for Targeting Agricultural Investments in Developing Countries: Modeling Spatial Heterogeneity and Uncertainty

    Science.gov (United States)

    Quinn, J. D.; Zeng, Z.; Shoemaker, C. A.; Woodard, J.

    2014-12-01

    In sub-Saharan Africa, where the majority of the population earns their living from agriculture, government expenditures in many countries are being re-directed to the sector to increase productivity and decrease poverty. However, many of these investments are seeing low returns because they are poorly targeted. A geographic tool that accounts for spatial heterogeneity and temporal variability in the factors of production would allow governments and donors to optimize their investments by directing them to farmers for whom they are most profitable. One application for which this is particularly relevant is fertilizer recommendations. It is well-known that soil fertility in much of sub-Saharan Africa is declining due to insufficient nutrient inputs to replenish those lost through harvest. Since fertilizer application rates in sub-Saharan Africa are several times smaller than in other developing countries, it is often assumed that African farmers are under-applying fertilizer. However, this assumption ignores the risk farmers face in choosing whether or how much fertilizer to apply. Simply calculating the benefit/cost ratio of applying a given level of fertilizer in a particular year over a large, aggregated region (as is often done) overlooks the variability in yield response seen at different sites within the region, and at the same site from year to year. Using Ethiopia as an example, we are developing a 1 km resolution fertilizer distribution tool that provides pre-season fertilizer recommendations throughout the agricultural regions of the country, conditional on seasonal climate forecasts. By accounting for spatial heterogeneity in soil, climate, market and travel conditions, as well as uncertainty in climate and output prices at the time a farmer must purchase fertilizer, this stochastic optimization tool gives better recommendations to governments, fertilizer companies, and aid organizations looking to optimize the welfare benefits achieved by their

  2. Assembly-level analysis of heterogeneous Th–Pu PWR fuel

    International Nuclear Information System (INIS)

    Zainuddin, Nurjuanis Zara; Parks, Geoffrey T.; Shwageraus, Eugene

    2017-01-01

    Highlights: • We directly compare homogeneous and heterogeneous Th–Pu fuel. • Examine whether there is an increase in Pu incineration in the latter. • Homogeneous fuel was able to achieve much higher Pu incineration. • In the heterogeneous case, U-233 breeding is faster (larger power fraction), thus decreasing incineration of Pu. - Abstract: This study compares homogeneous and heterogeneous thorium–plutonium (Th–Pu) fuel assemblies (with high Pu content – 20 wt%), and examines whether there is an increase in Pu incineration in the latter. A seed-blanket configuration based on the Radkowsky thorium reactor concept is used for the heterogeneous assembly. This separates the thorium blanket from the uranium seed, or in this case a plutonium seed. The seed supplies neutrons to the subcritical thorium blanket which encourages the in situ breeding and burning of "2"3"3U, allowing the fuel to stay critical for longer, extending burnup of the fuel. While past work on Th–Pu seed-blanket units shows superior Pu incineration compared to conventional U–Pu mixed oxide fuel, there is no literature to date that directly compares the performance of homogeneous and heterogeneous Th–Pu assembly configurations. Use of exactly the same fuel loading for both configurations allows the effects of spatial separation to be fully understood. It was found that the homogeneous fuel with and without burnable poisons was able to achieve much higher Pu incinerations than the heterogeneous fuel configurations, while still attaining a reasonably high discharge burnup. This is because in the heterogeneous cases, "2"3"3U breeding is faster, thereby contributing to a much larger fraction of total power produced by the assembly. In contrast, "2"3"3U build-up is slower in the homogeneous case and therefore Pu burning is greater. This "2"3"3U begins to contribute a significant fraction of power produced only towards the end of life, thus extending criticality, allowing more Pu to

  3. Spatial Heterogeneity of Typical Ecosystem Services and Their Relationships in Different Ecological–Functional Zones in Beijing–Tianjin–Hebei Region, China

    Directory of Open Access Journals (Sweden)

    Zhen Xie

    2017-12-01

    Full Text Available Recognizing changes in ecosystem services (ES and their relationships is the basis of achieving sustainable regional development. Regional collaborative development has become the core strategy of the development of the Beijing–Tianjin–Hebei (BTH region. However, sub regions have different ecological changes and relationships. Here, we quantify and map ES, including water yield, sediment retention, carbon sequestration and grain productive capacity in 2000, 2005, 2010 and 2015, using several biophysical models and explore the relationships of spatial correction, trade-offs and synergies among multiple ES in different spatial scales. Results across the four years show that the quality and variation tendency of ES from each region are spatially heterogeneous. The relationship between ES that are not significant in the entire region shows different correlations in individual ecological–functional zones. From the perspective of regional disparity, the effect of land use factor and correlative mechanisms among ES are analyzed. To observe the spatiotemporal variations and relationships of ES in individual regions, land use management policies are proposed on the basis of the results of the relationships among ES.

  4. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    Science.gov (United States)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  5. Genetic differentiation across multiple spatial scales of the Red Sea of the corals Stylophora pistillata and Pocillopora verrucosa

    KAUST Repository

    Monroe, Alison

    2015-12-01

    Observing populations at different spatial scales gives greater insight into the specific processes driving genetic differentiation and population structure. Here we determined population connectivity across multiple spatial scales in the Red Sea to determine the population structures of two reef building corals Stylophora pistillata and Pocillopora verrucosa. The Red sea is a 2,250 km long body of water with extremely variable latitudinal environmental gradients. Mitochondrial and microsatellite markers were used to determine distinct lineages and to look for genetic differentiation among sampling sites. No distinctive population structure across the latitudinal gradient was discovered within this study suggesting a phenotypic plasticity of both these species to various environments. Stylophora pistillata displayed a heterogeneous distribution of three distinct genetic populations on both a fine and large scale. Fst, Gst, and Dest were all significant (p-value<0.05) and showed moderate genetic differentiation between all sampling sites. However this seems to be byproduct of the heterogeneous distribution, as no distinct genetic population breaks were found. Stylophora pistillata showed greater population structure on a fine scale suggesting genetic selection based on fine scale environmental variations. However, further environmental and oceanographic data is needed to make more inferences on this structure at small spatial scales. This study highlights the deficits of knowledge of both the Red Sea and coral plasticity in regards to local environmental conditions.

  6. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.

    Science.gov (United States)

    Khalili-Mahani, Najmeh; van Osch, Matthias J; de Rooij, Mark; Beckmann, Christian F; van Buchem, Mark A; Dahan, Albert; van Gerven, Johannes M; Rombouts, Serge A R B

    2014-03-01

    Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs. Copyright © 2012 Wiley Periodicals, Inc.

  7. Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages

    Science.gov (United States)

    Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça

    2017-11-01

    Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.

  8. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  9. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  10. Understanding the Role of Built Environment in Reducing Vehicle Miles Traveled Accounting for Spatial Heterogeneity

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2014-01-01

    Full Text Available In recent years, increasing concerns over climate change and transportation energy consumption have sparked research into the influences of urban form and land use patterns on motorized travel, notably vehicle miles traveled (VMT. However, empirical studies provide mixed evidence of the influence of the built environment on travel. In particular, the role of density after controlling for the confounding factors (e.g., land use mix, average block size, and distance from CBD still remains unclear. The object of this study is twofold. First, this research provides additional insights into the effects of built environment factors on the work-related VMT, considering urban form measurements at both the home location and workplace simultaneously. Second, a cross-classified multilevel model using Bayesian approach is applied to account for the spatial heterogeneity across spatial units. Using Washington DC as our study area, the home-based work tour in the AM peak hours is used as the analysis unit. Estimation results confirmed the important role that the built environment at both home and workplace plays in affecting work-related VMT. In particular, the results reveal that densities at the workplace have more important roles than that at home location. These findings confirm that urban planning and city design should be part of the solution in stabilizing global climate and energy consumption.

  11. Spatial heterogeneity in utilities, equity and collective efficiency: the case of rural electrification and demand side management; Heterogeneite spatiale d'un service de reseau, equite et efficacite collective: la distribution rurale d'electricite et la maitrise de la demande

    Energy Technology Data Exchange (ETDEWEB)

    Nadaud, F

    2005-11-15

    This thesis has for object the evolution of the economic optimum in the electric industry under spatial equity constraint that present a strong spatial heterogeneity of its supply conditions. One analyses the evolution of the rural electrification regime in France both in terms of economic and social efficiency. We examine the rationality of extending the sectoral optimization under equity constraint to the rationalization of electricity end-uses in the heterogeneous space of rural electricity supply. To this question are given two responses. The firsts pertains to modify the incentives in the institutional regime of rural electrification so the MDE may be integrated in the strategies of rural electrification syndicates. One inspire from incentives mechanisms of the anglo-saxon DSM practice. The second is statistical zoning method of demand and distribution grid whose object is to localize action basins for large scale MDE projects. (author)

  12. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  13. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    Science.gov (United States)

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity

  14. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture

    Directory of Open Access Journals (Sweden)

    Gloria Bordogna

    2016-05-01

    Full Text Available Currently, the best practice to support land planning calls for the development of Spatial Data Infrastructures (SDI capable of integrating both geospatial datasets and time series information from multiple sources, e.g., multitemporal satellite data and Volunteered Geographic Information (VGI. This paper describes an original OGC standard interoperable SDI architecture and a geospatial data and metadata workflow for creating and managing multisource heterogeneous geospatial datasets and time series, and discusses it in the framework of the Space4Agri project study case developed to support the agricultural sector in Lombardy region, Northern Italy. The main novel contributions go beyond the application domain for which the SDI has been developed and are the following: the ingestion within an a-centric SDI, potentially distributed in several nodes on the Internet to support scalability, of products derived by processing remote sensing images, authoritative data, georeferenced in-situ measurements and voluntary information (VGI created by farmers and agronomists using an original Smart App; the workflow automation for publishing sets and time series of heterogeneous multisource geospatial data and relative web services; and, finally, the project geoportal, that can ease the analysis of the geospatial datasets and time series by providing complex intelligent spatio-temporal query and answering facilities.

  15. Remotely Sensed Estimation of Net Primary Productivity (NPP and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2017-07-01

    Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.

  16. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  17. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.

    Science.gov (United States)

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  18. Spatial Heterogeneity, Scale, Data Character and Sustainable Transport in the Big Data Era

    Science.gov (United States)

    Jiang, Bin

    2018-04-01

    In light of the emergence of big data, I have advocated and argued for a paradigm shift from Tobler's law to scaling law, from Euclidean geometry to fractal geometry, from Gaussian statistics to Paretian statistics, and - more importantly - from Descartes' mechanistic thinking to Alexander's organic thinking. Fractal geometry falls under the third definition of fractal - that is, a set or pattern is fractal if the scaling of far more small things than large ones recurs multiple times (Jiang and Yin 2014) - rather than under the second definition of fractal, which requires a power law between scales and details (Mandelbrot 1982). The new fractal geometry is more towards living geometry that "follows the rules, constraints, and contingent conditions that are, inevitably, encountered in the real world" (Alexander et al. 2012, p. 395), not only for understanding complexity, but also for creating complex or living structure (Alexander 2002-2005). This editorial attempts to clarify why the paradigm shift is essential and to elaborate on several concepts, including spatial heterogeneity (scaling law), scale (or the fourth meaning of scale), data character (in contrast to data quality), and sustainable transport in the big data era.

  19. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    Science.gov (United States)

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  20. Investigation on generalized Variational Nodal Methods for heterogeneous nodes

    International Nuclear Information System (INIS)

    Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei

    2017-01-01

    Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core

  1. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  2. Imaging Tumor Response and Tumoral Heterogeneity in Non-Small Cell Lung Cancer Treated With Antiangiogenic Therapy: Comparison of the Prognostic Ability of RECIST 1.1, an Alternate Method (Crabb), and Image Heterogeneity Analysis.

    Science.gov (United States)

    Yip, Connie; Tacelli, Nunzia; Remy-Jardin, Martine; Scherpereel, Arnaud; Cortot, Alexis; Lafitte, Jean-Jacques; Wallyn, Frederic; Remy, Jacques; Bassett, Paul; Siddique, Musib; Cook, Gary J R; Landau, David B; Goh, Vicky

    2015-09-01

    We aimed to assess computed tomography (CT) intratumoral heterogeneity changes, and compared the prognostic ability of the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, an alternate response method (Crabb), and CT heterogeneity in non-small cell lung cancer treated with chemotherapy with and without bevacizumab. Forty patients treated with chemotherapy (group C) or chemotherapy and bevacizumab (group BC) underwent contrast-enhanced CT at baseline and after 1, 3, and 6 cycles of chemotherapy. Radiologic response was assessed using RECIST 1.1 and an alternate method. CT heterogeneity analysis generating global and locoregional parameters depicting tumor image spatial intensity characteristics was performed. Heterogeneity parameters between the 2 groups were compared using the Mann-Whitney U test. Associations between heterogeneity parameters and radiologic response with overall survival were assessed using Cox regression. Global and locoregional heterogeneity parameters changed with treatment, with increased tumor heterogeneity in group BC. Entropy [group C: median -0.2% (interquartile range -2.2, 1.7) vs. group BC: 0.7% (-0.7, 3.5), P=0.10] and busyness [-27.7% (-62.2, -5.0) vs. -11.5% (-29.1, 92.4), P=0.10] showed a greater reduction in group C, whereas uniformity [1.9% (-8.0, 9.8) vs. -5.0% (-13.9, 5.6), P=0.10] showed a relative increase after 1 cycle but did not reach statistical significance. Two (9%) and 1 (6%) additional responders were identified using the alternate method compared with RECIST in group C and group BC, respectively. Heterogeneity parameters were not significant prognostic factors. The alternate response method described by Crabb identified more responders compared with RECIST. However, both criteria and baseline imaging heterogeneity parameters were not prognostic of survival.

  3. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  4. Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning

    Science.gov (United States)

    Polinsky, Naomi; Perez, Jasmin; Grehl, Mora; McCrink, Koleen

    2017-01-01

    Longitudinal spatial language intervention studies have shown that greater exposure to spatial language improves children's performance on spatial tasks. Can short naturalistic, spatial language interactions also evoke improved spatial performance? In this study, parents were asked to interact with their child at a block wall exhibit in a…

  5. A Hybrid Method for Interpolating Missing Data in Heterogeneous Spatio-Temporal Datasets

    Directory of Open Access Journals (Sweden)

    Min Deng

    2016-02-01

    Full Text Available Space-time interpolation is widely used to estimate missing or unobserved values in a dataset integrating both spatial and temporal records. Although space-time interpolation plays a key role in space-time modeling, existing methods were mainly developed for space-time processes that exhibit stationarity in space and time. It is still challenging to model heterogeneity of space-time data in the interpolation model. To overcome this limitation, in this study, a novel space-time interpolation method considering both spatial and temporal heterogeneity is developed for estimating missing data in space-time datasets. The interpolation operation is first implemented in spatial and temporal dimensions. Heterogeneous covariance functions are constructed to obtain the best linear unbiased estimates in spatial and temporal dimensions. Spatial and temporal correlations are then considered to combine the interpolation results in spatial and temporal dimensions to estimate the missing data. The proposed method is tested on annual average temperature and precipitation data in China (1984–2009. Experimental results show that, for these datasets, the proposed method outperforms three state-of-the-art methods—e.g., spatio-temporal kriging, spatio-temporal inverse distance weighting, and point estimation model of biased hospitals-based area disease estimation methods.

  6. Dealing with spatial heterogeneity

    Science.gov (United States)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  7. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    Science.gov (United States)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  8. Dorso-medial and ventro-lateral functional specialization of the human retrosplenial complex in spatial updating and orienting.

    Science.gov (United States)

    Burles, Ford; Slone, Edward; Iaria, Giuseppe

    2017-04-01

    The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.

  9. Identification of spatial variability and heterogeneity of the Culebra dolomite at the waste isolation pilot plant site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1991-01-01

    The Culebra dolomite is an heterogeneous, locally fractured medium whose transmissivity varies over seven orders of magnitude in the vicinity of the Waste isolation Pilot Plant (WIPP) site in southeastern New Mexico, USA. The spatial distribution of hydraulic properties within the Culebra has been defined by performing 150 hydraulic tests at 41 well locations. Different scales of tests are performed to provide data for different purposes. Small-scale tests such as drillstem tests and slug tests, and intermediate-scale pumping tests provide point data useful in developing initial parameters for numerical modeling. Large-scale pumping tests provide information on the distribution of fractures between widely spaced wells, and also provide data for model calibration. Tracer tests provide data on transport mechanisms needed for transport modeling. 7 figs.; 16 refs

  10. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  11. Extreme Threshold Failures Within a Heterogeneous Elastic Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the Groningen Gas Field

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.

    2017-12-01

    Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.

  12. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    Science.gov (United States)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  13. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Science.gov (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  14. Combining observations of channel network contraction and spatial discharge variation to inform spatial controls on baseflow in Birch Creek, Catskill Mountains, USA

    Directory of Open Access Journals (Sweden)

    Stephen B. Shaw

    2017-08-01

    New hydrological insights: For the 31 different sub-channels, baseflow discharge per unit drainage area and per unit stream length were highly variable, even during periods of higher moisture storage when all channels were active. Simple mapping of the active channels would not have recognized these sizable spatial differences in discharge contribution. Previous studies of hydrologic scaling in the Catskills have noted the likelihood of heterogeneity in discharge below a threshold of approximately 3–8 km2. This study provides direct documentation of such heterogeneity at smaller spatial scales. When considering perennial and ephemeral streams, such heterogeneity was not well explained by standard topographic, geologic, or meteorological factors. We suggest the heterogeneity may arise from difficult to map fine-scale variations in subsurface properties.

  15. Principal factors of soil spatial heterogeneity and ecosystem services at the Central Chernozemic Region of Russia

    Science.gov (United States)

    Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    The essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central Chernozemic Region of Russia which is not only one of the biggest «food baskets» in RF but very important regulator of ecosystem principal services at the European territory of Russia. The original spatial heterogeneity of dominated here forest-steppe and steppe Chernozems and the other soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and more than 1000-year history of human impacts. The carried out long-term researches of representative natural, rural and urban landscapes in Kursk, Orel, Tambov and Voronezh oblasts give us the regional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. The validation and ranging of the limiting factors of ESCP regulation and development, ecosystem principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional and local GIS, soil spatial patterns mapping, traditional regression kriging, correlation tree models. The outcomes of statistical modeling show the essential amplification of erosion, dehumification and CO2 emission, acidification and alkalization, disaggregation and overcompaction processes due to violation of agroecologically sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the famous Russian Chernozems begin to lose not only their unique natural features of (around 1 m of humus horizon, 4-6% of Corg and favorable agrophysical features), but traditional soil cover patterns, ecosystem services and agroecological functions. Key-site monitoring

  16. Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains

    Directory of Open Access Journals (Sweden)

    Xiaozheng Duan

    2016-06-01

    Full Text Available We use Monte Carlo simulations to investigate the interactions between cationic semiflexible polymer chains and a model fluid lipid monolayer composed of charge-neutral phosphatidyl-choline (PC, tetravalent anionic phosphatidylinositol 4,5-bisphosphate (PIP2, and univalent anionic phosphatidylserine (PS lipids. In particular, we explore how chain rigidity and polymer concentration influence the spatial rearrangement and mobility heterogeneity of the monolayer under the conditions where the cationic polymers anchor on the monolayer. We find that the anchored cationic polymers only sequester the tetravalent PIP2 lipids at low polymer concentrations, where the interaction strength between the polymers and the monolayer exhibits a non-monotonic dependence on the degree of chain rigidity. Specifically, maximal anchoring occurs at low polymer concentrations, when the polymer chains have an intermediate degree of rigidity, for which the PIP2 clustering becomes most enhanced and the mobility of the polymer/PIP2 complexes becomes most reduced. On the other hand, at sufficiently high polymer concentrations, the anchoring strength decreases monotonically as the chains stiffen—a result that arises from the pronounced competitions among polymer chains. In this case, the flexible polymers can confine all PIP2 lipids and further sequester the univalent PS lipids, whereas the stiffer polymers tend to partially dissociate from the monolayer and only sequester smaller PIP2 clusters with greater mobilities. We further illustrate that the mobility gradient of the single PIP2 lipids in the sequestered clusters is sensitively modulated by the cooperative effects between anchored segments of the polymers with different rigidities. Our work thus demonstrates that the rigidity and concentration of anchored polymers are both important parameters for tuning the regulation of anionic lipids.

  17. Plio-Pleistocene climate change and geographic heterogeneity in plant diversity-environment relationships

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Normand, Signe; Skov, Flemming

    2009-01-01

    Plio-Pleistocene climate change may have induced geographic heterogeneity in plant species richness-environment relationships in Europe due to greater in situ species survival and speciation rates in southern Europe. We formulate distinct hypotheses on how Plio-Pleistocene climate change may have...... affected richness-topographic heterogeneity and richness-water-energy availability relationships, causing steeper relationships in southern Europe. We investigated these hypotheses using data from Atlas Florae Europaeae on the distribution of 3069 species and geographically weighted regression (GWR). Our...... analyses showed that plant species richness generally increased with topographic heterogeneity (ln-transformed altitudinal range) and actual evapotranspiration (AET). We also found evidence for strong geographic heterogeneity in the species richness-environment relationship, with a greater increase...

  18. Identification of spatial variability and heterogeneity of the Culebra dolomite at the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1990-01-01

    The Culebra dolomite is a heterogeneous, locally fractured medium whose transmissivity varies over seven orders of magnitude in the vicinity of the Waste Isolation Pilot Plant site in southeastern New Mexico, USA. The spatial distribution of hydraulic properties within the Culebra has been defined by performing 150 hydraulic tests at 41 well locations. Different scales of tests are performing 150 hydraulic tests at 41 well locations. Different scales of tests are performed to provide data for different purposes. Small-scale tests such as drillstem tests and slug tests, and short, intermediate-scale pumping tests provide point data useful in developing initial parameters for numerical modeling. Large-scale pumping tests provide information on the distribution of fractures between widely spaced wells, and also provide data for model calibration. Tracer tests provide data on transport mechanisms needed for transport modeling. 16 refs., 7 figs

  19. A heterogeneous stochastic FEM framework for elliptic PDEs

    International Nuclear Information System (INIS)

    Hou, Thomas Y.; Liu, Pengfei

    2015-01-01

    We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage

  20. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    Science.gov (United States)

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management

  1. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across

  2. Electrical resistivity sounding to study water content distribution in heterogeneous soils

    Science.gov (United States)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to assess ER sounding applicability to study soil water distribution in spatially heterogeneous soils. The 30x30-m study plot was located at ...

  3. Study to optimize a disposal tunnel layout taking into account heterogeneous characteristics of the geological environment

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2007-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favorable from the perspective of long-term safety and ones that are less favorable. In order that the spatially heterogeneous environment itself may be utilized most effectively as an NBS, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a 'variable disposal tunnel layout'. The optimization approach minimizes the number of locations where major water conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability. (author)

  4. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals.

    Science.gov (United States)

    Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi

    2015-03-01

    Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. SpatEntropy: Spatial Entropy Measures in R

    OpenAIRE

    Altieri, Linda; Cocchi, Daniela; Roli, Giulia

    2018-01-01

    This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...

  6. Investigating spatial self-shielding and temperature effects for homogeneous and double heterogeneous pebble models with MCNP

    International Nuclear Information System (INIS)

    Li, J.; Nuenighoff; Pohl, C.; Allelein, H.J.

    2010-01-01

    The gas-cooled, high temperature reactor (HTR) represents a valuable option for the future development of nuclear technology, because of its excellent safety features. One main safety feature is the negative temperature coefficient which is due to the Doppler broadening of the (n,y) resonance absorption cross section. A second important effect is the spatial self-shielding due to the double heterogeneous geometry of a pebble bed reactor. At FZ-Juelich two reactor analysis codes have been developed: VSOP for core design and MGT for transient analysis. Currently an update of the nuclear cross section libraries to ENDF/B-VII.0 of both codes takes place. In order to take the temperature dependency as well as the spatial self-shielding into account the absorption cross sections σ (n,y) for the resonance absorbers like 232 Th and 238 U have to be provided as function of incident neutron energy, temperature and nuclide concentration. There are two reasons for choosing the Monte-Carlo approach to calculate group wise cross sections. First, the former applied ZUT-DGL code to generate the resonance cross section tables for MGT is so far not able to handle the new resonance description based on Reich-Moore instead of Single-level Breit-Wigner. Second, the rising interest in PuO 2 fuel motivated an investigation on the generation of group wise cross sections describing thermal resonances of 240 Pu and 242 Pu. (orig.)

  7. Socio Economic Status and Traumatic Brain Injury amongst Pediatric Populations: A Spatial Analysis in Greater Vancouver

    Directory of Open Access Journals (Sweden)

    Ofer Amram

    2015-12-01

    Full Text Available Introduction: Within Canada, injuries are the leading cause of death amongst children fourteen years of age and younger, and also one of the leading causes of morbidity. Low Socio Economic Status (SES seems to be a strong indicator of a higher prevalence of injuries. This study aims to identify hotspots for pediatric Traumatic Brain Injury (TBI and examines the relationship between SES and pediatric TBI rates in greater Vancouver, British Columbia (BC, Canada. Methods: Pediatric TBI data from the BC Trauma Registry (BCTR was used to identify all pediatric TBI patients admitted to BC hospitals between the years 2000 and 2013. Spatial analysis was used to identify hotspots for pediatric TBI. Multivariate analysis was used to distinguish census variables that were correlated with rates of injury. Results: Six hundred and fifty three severe pediatric TBI injuries occurred within the BC Lower Mainland between 2000 and 2013. High rates of injury were concentrated in the East, while low rate clusters were most common in the West of the region (more affluent neighborhoods. A low level of education was the main predictor of a high rate of injury (OR = 1.13, 95% CI = 1.03–1.23, p-Value 0.009. Conclusion: While there was a clear relationship between different SES indicators and pediatric TBI rates in greater Vancouver, income-based SES indicators did not serve as good predictors within this region.

  8. Large-Scale Spatial Dynamics of Intertidal Mussel (

    NARCIS (Netherlands)

    Folmer, E.O.; Drent, J.; Troost, K.; Büttger, H.; Dankers, N.; Jansen, J.; van Stralen, M.; Millat, G.; Herlyn, M.; Philippart, C.J.M.

    2014-01-01

    Intertidal blue mussel beds are important for the functioning and community composition of coastal ecosystems. Modeling spatial dynamics of intertidal mussel beds is complicated because suitable habitat is spatially heterogeneously distributed and recruitment and loss are hard to predict. To get

  9. The Determinants of VAT Introduction : A Spatial Duration Analysis

    NARCIS (Netherlands)

    Cizek, P.; Lei, J.; Ligthart, J.E.

    2012-01-01

    Abstract: The spatial survival models typically impose frailties, which characterize unobserved heterogeneity, to be spatially correlated. This specification relies highly on a pre-determinate covariance structure of the errors. However, the spatial effect may not only exist in the unobserved

  10. Spatial distribution of enzyme driven reactions at micro-scales

    Science.gov (United States)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  11. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    Science.gov (United States)

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  12. Spatial and temporal heterogeneities of Aedes albopictus density in La Reunion Island: rise and weakness of entomological indices.

    Science.gov (United States)

    Boyer, Sebastien; Foray, Coralie; Dehecq, Jean-Sebastien

    2014-01-01

    Following the 2006 Chikungunya disease in La Reunion, questions were raised concerning the monitoring survey of Aedes albopictus populations and the entomological indexes used to evaluate population abundance. The objectives of the present study were to determine reliable productivity indexes using a quantitative method to improve entomological surveys and mosquito control measures on Aedes albopictus. Between 2007 and 2011, 4 intervention districts, 24 cities, 990 areas and over 850,000 houses were used to fulfil those objectives. Four indexes including the classical Stegomyia index (House Index, Container Index, Breteau Index) plus an Infested Receptacle Index were studied in order to determine whether temporal (year, month, week) and/or spatial (districts, cities, areas) heterogeneities existed. Temporal variations have been observed with an increase of Ae. albopictus population density over the years, and a seasonality effect with a highest population during the hot and wet season. Spatial clustering was observed at several scales with an important autocorrelation at the area scale. Moreover, the combination among these results and the breeding site productivity obtained during these 5 years allowed us to propose recommendations to monitor Aedes albopictus by eliminating not the most finding sites but the most productive ones. As the other strategies failed in La Reunion, this new approach should should work better.

  13. Spatial and temporal heterogeneities of Aedes albopictus density in La Reunion Island: rise and weakness of entomological indices.

    Directory of Open Access Journals (Sweden)

    Sebastien Boyer

    Full Text Available Following the 2006 Chikungunya disease in La Reunion, questions were raised concerning the monitoring survey of Aedes albopictus populations and the entomological indexes used to evaluate population abundance. The objectives of the present study were to determine reliable productivity indexes using a quantitative method to improve entomological surveys and mosquito control measures on Aedes albopictus. Between 2007 and 2011, 4 intervention districts, 24 cities, 990 areas and over 850,000 houses were used to fulfil those objectives. Four indexes including the classical Stegomyia index (House Index, Container Index, Breteau Index plus an Infested Receptacle Index were studied in order to determine whether temporal (year, month, week and/or spatial (districts, cities, areas heterogeneities existed. Temporal variations have been observed with an increase of Ae. albopictus population density over the years, and a seasonality effect with a highest population during the hot and wet season. Spatial clustering was observed at several scales with an important autocorrelation at the area scale. Moreover, the combination among these results and the breeding site productivity obtained during these 5 years allowed us to propose recommendations to monitor Aedes albopictus by eliminating not the most finding sites but the most productive ones. As the other strategies failed in La Reunion, this new approach should should work better.

  14. Spatial patterns in accretion on barrier-island salt marshes

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P.

    2011-01-01

    On minerogenic barrier-island salt marshes, sedimentation is spatially heterogeneous. Although the main forcing factors for sedimentation are known, much less is known about the characteristic sizes of this spatial patterning. Such patterning gives information on the spatial component of salt-marsh

  15. Hydraulic fracturing in anisotropic and heterogeneous rocks

    NARCIS (Netherlands)

    Valliappan, V.; Remmers, J.J.C.; Barnhoorn, A.; Smeulders, D.M.J.

    2017-01-01

    In this paper, we present a two dimensional model for modelling the hydraulic fracture process in anisotropic and heterogeneous rocks. The model is formulated using extended finite elements (XFEM) in combination with Newton-Raphson method for spatial and Euler's implicit scheme for time. The

  16. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems

    Science.gov (United States)

    Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.

    2018-05-01

    We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.

  17. Temporal and spatial moments for solute transport in heterogeneous porous media

    International Nuclear Information System (INIS)

    Naff, R.L.

    1990-01-01

    Variation in the velocity field results in dispersion of a tracer cloud relative to the mean advective transport of the tracer. A major cause of variation in the velocity field is variation in the hydraulic conductivity field in clastic aquifers is stratification, whereby the rate of change in the hydraulic conductivity is much greater in the vertical direction than in the horizontal direction. Dispersion, under these circumstances, is not governed strictly by a Fickian flux, but by a more complicated integral expression involving the gradient of the mean concentration. Because a pulse input of conservative tracer is assumed in the investigations summarized in this paper, it is possible to derive both spatial and temporal moments; these moments are compared with those from a classical Fickian flux where a macrodispersivity has been adopted. By numerical Laplace inversion, it also is possible to obtain concentration profiles of the mean tracer as it moves downgradient through an imperfectly stratified aquifer. These results generally indicate that a classical Fickian flux provides a good simulation of the mean concentration after the center of mass of the cloud has moved at least 20 length scales from the point of injection. (Author) (10 refs., 2 tabs., 10 figs.)

  18. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    Directory of Open Access Journals (Sweden)

    Leland S Hu

    Full Text Available Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM. Contrast-enhanced MRI (CE-MRI targets enhancing core (ENH but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT, despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients. The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients.Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  19. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    Science.gov (United States)

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  20. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  1. [Spatial pattern of forest biomass and its influencing factors in the Great Xing'an Mountains, Heilongjiang Province, China].

    Science.gov (United States)

    Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng

    2014-04-01

    Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.

  2. Interpreting Carbon Fluxes from a Spatially Heterogeneous Peatland with Thawing Permafrost: Scaling from Plant Community Scale to Ecosystem Scale

    Science.gov (United States)

    Harder, S. R.; Roulet, N. T.; Strachan, I. B.; Crill, P. M.; Persson, A.; Pelletier, L.; Watt, C.

    2014-12-01

    Various microforms, created by spatial differential thawing of permafrost, make up the subarctic heterogeneous Stordalen peatland complex (68°22'N, 19°03'E), near Abisko, Sweden. This results in significantly different peatland vegetation communities across short distances, as well as differences in wetness, temperature and peat substrates. We have been measuring the spatially integrated CO2, heat and water vapour fluxes from this peatland complex using eddy covariance and the CO2 exchange from specific plant communities within the EC tower footprint since spring 2008. With this data we are examining if it is possible to derive the spatially integrated ecosystem-wide fluxes from community-level simple light use efficiency (LUE) and ecosystem respiration (ER) models. These models have been developed using several years of continuous autochamber flux measurements for the three major plant functional types (PFTs) as well as knowledge of the spatial variability of the vegetation, water table and active layer depths. LIDAR was used to produce a 1 m resolution digital evaluation model of the complex and the spatial distribution of PFTs was obtained from concurrent high-resolution digital colour air photography trained from vegetation surveys. Continuous water table depths have been measured for four years at over 40 locations in the complex, and peat temperatures and active layer depths are surveyed every 10 days at more than 100 locations. The EC footprint is calculated for every half-hour and the PFT based models are run with the corresponding environmental variables weighted for the PFTs within the EC footprint. Our results show that the Sphagnum, palsa, and sedge PFTs have distinctly different LUE models, and that the tower fluxes are dominated by a blend of the Sphagnum and palsa PFTs. We also see a distinctly different energy partitioning between the fetches containing intact palsa and those with thawed palsa: the evaporative efficiency is higher and the Bowen

  3. Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach

    Science.gov (United States)

    Peter Baas; Jacqueline E. Mohan; David Markewitz; Jennifer D. Knoepp

    2014-01-01

    The high level of spatial and temporal heterogeneity in soil N cycling processes hinders our ability to develop an ecosystem-wide understanding of this cycle. This study examined how incorporating an intensive assessment of spatial variability for soil moisture, C, nutrients, and soil texture can better explain ecosystem N cycling at the plot scale. Five sites...

  4. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  5. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy.

    Science.gov (United States)

    Scheiner, Samuel M

    2014-02-01

    One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet-hedging. I used an individual-based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life-history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life-history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet-hedging, but not in a simple linear fashion. I found higher-order interactions between life-history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.

  6. Spatial characteristics of white matter abnormalities in schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); S.M. Ehrlich (Stefan); B.C. Ho (Beng ); D.S. Manoach (Dara); A. Caprihan (Arvind); S.C. Schulz (S. Charles); N.C. Andreasen; R.L. Gollub (Randy); V.D. Calhoun (Vince); V. Magnotta

    2013-01-01

    textabstractThere is considerable evidence implicating brain white matter (WM) abnormalities in the pathophysiology of schizophrenia; however, the spatial localization of WM abnormalities reported in the existing studies is heterogeneous. Thus, the goal of this study was to quantify the spatial

  7. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  8. Search in spatial scale-free networks

    International Nuclear Information System (INIS)

    Thadakamalla, H P; Albert, R; Kumara, S R T

    2007-01-01

    We study the decentralized search problem in a family of parameterized spatial network models that are heterogeneous in node degree. We investigate several algorithms and illustrate that some of these algorithms exploit the heterogeneity in the network to find short paths by using only local information. In addition, we demonstrate that the spatial network model belongs to a classof searchable networks for a wide range of parameter space. Further, we test these algorithms on the US airline network which belongs to this class of networks and demonstrate that searchability is a generic property of the US airline network. These results provide insights on designing the structure of distributed networks that need effective decentralized search algorithms

  9. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres

    NARCIS (Netherlands)

    Wong, L.H.; Kurniawan, Nicholas A.; Too, H.-P.; Rajagopalan, R.

    2014-01-01

    Characterization of the rheological properties of heterogeneous biopolymers is important not only to understand the effect of substrate elasticity on cell behaviors, but also to provide insights into mechanical changes during cellular remodeling of the environment. Conventional particle-tracking

  10. Spatialization of the impacts of the economic regulation of the greenhouse in the agricultural sector

    International Nuclear Information System (INIS)

    Jayet, P.A.

    2004-02-01

    This report addresses the issue of the spatialization of the impacts of greenhouse gas mitigation policies in the agricultural sector. Generally speaking, the objective is to reach a compromise between large-scale macro-economic modelling approaches - which often overlook the spatial variability of emissions and abatement costs - and field-scale biophysical modelling approaches. The studies carried out in the course of this project rely for the most part on a supply-side oriented economic model of the EU agriculture based on micro-economic concepts, mathematical programming and optimization. The analysis of spatial implications of GHG mitigation polices relies on the use of Geographic Information Systems (GIS), which allows for spatial integration of the results provided by the economic model. We first carry out a comprehensive assessment of the emission sources of methane and nitrous oxide for the EU agriculture at a regional scale (FADN regions, scale at which data that feed the economic model are available). The abatement supply from the agricultural sector is derived from this assessment by simulating the impact of a first-best instrument (namely an emission tax). We therefore estimate the marginal abatement cost curves for all sources and at the farm-type level. The heterogeneity of abatement costs is discussed both at the regional scale (spatially defined) and at the farm-type level (non spatially-defined). Our results show that the spatial heterogeneity of abatement costs is of crucial importance in the design of GHG mitigation policies. The greater is the heterogeneity of abatement costs, the larger is the efficiency loss associated with non incentive-based instruments. We estimate this efficiency loss in the case of uniform quotas. Down-scaling the economic and environmental results from the FADN-region scale to a finer scale requires the linking of the simulation results with geo-referenced databases and GIS tools. This has been carried out for a test

  11. Do neighbours influence value-added-tax introduction? A spatial duration analysis

    NARCIS (Netherlands)

    Cizek, Pavel; Lei, J.; Ligthart, J.E.

    The spatial survival models typically impose frailties, which characterize unobserved heterogeneity, to be spatially correlated. However, the spatial effect may not only exist in the unobserved errors, but it can also be present in the baseline hazards and the dependent variables. A new spatial

  12. Spatial Heterogeneity of Climate Change Effects on Dominant Height of Larch Plantations in Northern and Northeastern China

    Directory of Open Access Journals (Sweden)

    Hao Zang

    2016-07-01

    Full Text Available Determining the response of dominant height growth to climate change is important for understanding adaption strategies. Based on 550 permanent plots from a national forest inventory and climate data across seven provinces and three climate zones, we developed a climate-sensitive dominant height growth model under a mixed-effects model framework. The mean temperature of the wettest quarter and precipitation of the wettest month were found to be statistically significant explanatory variables that markedly improved model performance. Generally, future climate change had a positive effect on stand dominant height in northern and northeastern China, but the effect showed high spatial variability linked to local climatic conditions. The range in dominant height difference between the current climate and three future BC-RCP scenarios would change from −0.61 m to 1.75 m (−6.9% to 13.5% during the period 2041–2060 and from −1.17 m to 3.28 m (−9.1% to 41.0% during the period 2061–2080 across provinces. The impacts of climate change on stand dominant height decreased as stand age increased. Forests in cold and warm temperate zones had a smaller decrease in dominant height, owing to climate change, compared with those in the mid temperate zone. Overall, future climate change could impact dominant height growth in northern and northeastern China. As spatial heterogeneity of climate change affects dominant height growth, locally specific mitigation measures should be considered in forest management.

  13. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    Science.gov (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  14. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  15. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  16. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis.

    Science.gov (United States)

    Carrasco-Escobar, Gabriel; Gamboa, Dionicia; Castro, Marcia C; Bangdiwala, Shrikant I; Rodriguez, Hugo; Contreras-Mancilla, Juan; Alava, Freddy; Speybroeck, Niko; Lescano, Andres G; Vinetz, Joseph M; Rosas-Aguirre, Angel; Llanos-Cuentas, Alejandro

    2017-08-14

    Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.

  17. Fog modelling during the ParisFog campaign: predictive approach and spatial heterogeneity effect

    International Nuclear Information System (INIS)

    Zhang, Xiaojing

    2010-01-01

    In fog or low clouds modeling, the accurate comprehension of the interaction among the turbulence, the microphysics and the radiation is still an important issue in improvement of numerical prediction quality. The improvement of fog modeling is important both in forecasting in transportation and in industrial domain by reason of their discharges atmospheric (cooling tower, smog...). The 1D version of Code-Saturne has been used for the numerical simulation with the observational data from the ParisFog campaign, which took place at the SIRTA site during 2006-2007 winter. The comparison between the simulation and observation shows that the model is able to reproduce correctly the fog evolution from its formation to its dissipation. The sensitivity analysis of the behavior of the different parameterizations shows that the fog dynamic is sensible to the turbulence closure, the fog water content to the sedimentation processes and the fog droplet spectrum to the nucleation scheme. The performance of a long-period simulation in forecasting mode shows that the robustness of the model and the contribution of the coupling by nudging and a mesoscale model in 36 hours advance. The 3D version of Code-Saturne allows us to study the effect of spatial heterogeneity on the fog formation. Firstly, the simulations have been performed within a homogeneous horizontal domain with RANS mode. And then, the surface roughness in different type of surface and the building area will be taken into account. (author) [fr

  18. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  19. SEASONAL DIFFERENCES IN SPATIAL SCALES OF CHLOROPHYLL-A CONCENTRATION IN LAKE TAIHU,CHINA

    Directory of Open Access Journals (Sweden)

    Y. Bao

    2012-08-01

    Full Text Available Spatial distribution of chlorophyll-a (chla concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL and Distributed chla (chlaD, seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.

  20. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  1. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  2. Correcting for spatial heterogeneity in plant breeding experiments with P-splines

    NARCIS (Netherlands)

    Rodríguez-Álvarez, María Xosé; Boer, Martin P.; Eeuwijk, van Fred A.; Eilers, Paul H.C.

    2018-01-01

    An important aim of the analysis of agricultural field experiments is to obtain good predictions for genotypic performance, by correcting for spatial effects. In practice these corrections turn out to be complicated, since there can be different types of spatial effects; those due to management

  3. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    Science.gov (United States)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  4. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper

    We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases....

  5. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods.

    Science.gov (United States)

    Wang, Yiyi; Kockelman, Kara M

    2013-11-01

    This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-specific heterogeneity, correlation across response types, and spatial autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate model and a spatial model (without cross-severity correlation), both in terms of fit and inference. Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or incapacitating) and non-severe crash rates reflects latent covariates that have impacts across severity levels but are more local in nature (such as lighting conditions and local sight obstructions), along with spatially lagged cross correlation. Results also suggest greater mixing of residences and commercial land uses is associated with higher pedestrian crash risk across different severity levels, ceteris paribus, presumably since such access produces more potential conflicts between pedestrian and vehicle movements. Interestingly, network densities show variable effects, and sidewalk provision is associated with lower severe-crash rates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling Transport of Cesium in Grimsel Granodiorite With Micrometer Scale Heterogeneities and Dynamic Update of Kd

    Science.gov (United States)

    Voutilainen, Mikko; Kekäläinen, Pekka; Siitari-Kauppi, Marja; Sardini, Paul; Muuri, Eveliina; Timonen, Jussi; Martin, Andrew

    2017-11-01

    Transport and retardation of cesium in Grimsel granodiorite taking into account heterogeneity of mineral and pore structure was studied using rock samples overcored from an in situ diffusion test at the Grimsel Test Site. The field test was part of the Long-Term Diffusion (LTD) project designed to characterize retardation properties (diffusion and distribution coefficients) under in situ conditions. Results of the LTD experiment for cesium showed that in-diffusion profiles and spatial concentration distributions were strongly influenced by the heterogeneous pore structure and mineral distribution. In order to study the effect of heterogeneity on the in-diffusion profile and spatial concentration distribution, a Time Domain Random Walk (TDRW) method was applied along with a feature for modeling chemical sorption in geological materials. A heterogeneous mineral structure of Grimsel granodiorite was constructed using X-ray microcomputed tomography (X-μCT) and the map was linked to previous results for mineral specific porosities and distribution coefficients (Kd) that were determined using C-14-PMMA autoradiography and batch sorption experiments, respectively. After this the heterogeneous structure contains information on local porosity and Kd in 3-D. It was found that the heterogeneity of the mineral structure on the micrometer scale affects significantly the diffusion and sorption of cesium in Grimsel granodiorite at the centimeter scale. Furthermore, the modeled in-diffusion profiles and spatial concentration distributions show similar shape and pattern to those from the LTD experiment. It was concluded that the use of detailed structure characterization and quantitative data on heterogeneity can significantly improve the interpretation and evaluation of transport experiments.

  7. A nonlocal spatial model for Lyme disease

    Science.gov (United States)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  8. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

    Directory of Open Access Journals (Sweden)

    Rachael Natrajan

    2016-02-01

    Full Text Available The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D in solid tumors, termed the tumor ecosystem diversity index (EDI, using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3 breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2 breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52. Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.To our knowledge, this is the first

  9. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  10. When is educational specialization heterogeneity related to creativity in research and development teams? Transformational leadership as a moderator.

    Science.gov (United States)

    Shin, Shung J; Zhou, Jing

    2007-11-01

    The authors examined conditions under which teams' educational specialization heterogeneity was positively related to team creativity. Using a sample of 75 research and development teams, the authors theorized and found that transformational leadership and educational specialization heterogeneity interacted to affect team creativity in such a way that when transformational leadership was high, teams with greater educational specialization heterogeneity exhibited greater team creativity. In addition, teams' creative efficacy mediated this moderated relationship among educational specialization heterogeneity, transformational leadership, and team creativity. The authors discuss the implications of these results for research and practice. (c) 2007 APA

  11. Multifractal spatial patterns and diversity in an ecological succession.

    Directory of Open Access Journals (Sweden)

    Leonardo Ariel Saravia

    Full Text Available We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions D(q. Using D(q we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D(1 as an index of successional stage. We did not find cycles but the values of D(1 showed an increasing trend as the succession developed and the biomass was higher. D(1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D(1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas.

  12. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Science.gov (United States)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  13. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    Science.gov (United States)

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  14. [Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].

    Science.gov (United States)

    Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming

    2014-02-01

    The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.

  15. Testing spatial heterogeneity with stock assessment models

    DEFF Research Database (Denmark)

    Jardim, Ernesto; Eero, Margit; Silva, Alexandra

    2018-01-01

    sub-populations and applied to two case studies, North Sea cod (Gadus morua) and Northeast Atlantic sardine (Sardina pilchardus). Considering that the biological components of a population can be partitioned into discrete spatial units, we extended this idea into a property of additivity of sub......, the better the diffusion process will be detected. On the other hand it showed that weak to moderate diffusion processes are not easy to identify and large differences between sub-populations productivities may be confounded with weak diffusion processes. The application to North Sea cod and Atlantic sardine...... exemplified how much insight can be gained. In both cases the results obtained were sufficiently robust to support the regional analysis....

  16. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    Science.gov (United States)

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  17. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Umeda, Izumi O.; Tani, Kotaro; Tsuda, Keisuke

    2012-01-01

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111 In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111 In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111 In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  18. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    Science.gov (United States)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  19. Poverty targeting with heterogeneous endowments: a micro-simulation analysis of a less-favourded Ethiopian village

    NARCIS (Netherlands)

    Kuiper, M.H.; Ruben, R.

    2005-01-01

    Spatially-targeted programs for poverty reduction in less-favoured areas are typically constrained by a large heterogeneity amongst households in terms of the quantity and quality of available resources. The objective of this paper is to explore in a stylized manner the role of heterogeneous

  20. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    Science.gov (United States)

    Strauß, Magdalena E; Mezzetti, Maura; Leorato, Samantha

    2017-05-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

  1. Spatial analysis of weed patterns

    NARCIS (Netherlands)

    Heijting, S.

    2007-01-01

    Keywords: Spatial analysis, weed patterns, Mead’s test, space-time correlograms, 2-D correlograms, dispersal, Generalized Linear Models, heterogeneity, soil, Taylor’s power law. Weeds in agriculture occur in patches. This thesis is a contribution to the characterization of this patchiness, to its

  2. Green's Function and Stress Fields in Stochastic Heterogeneous Continua

    Science.gov (United States)

    Negi, Vineet

    Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.

  3. Acute Effects of Nitrogen Dioxide on Cardiovascular Mortality in Beijing: An Exploration of Spatial Heterogeneity and the District-specific Predictors

    Science.gov (United States)

    Luo, Kai; Li, Runkui; Li, Wenjing; Wang, Zongshuang; Ma, Xinming; Zhang, Ruiming; Fang, Xin; Wu, Zhenglai; Cao, Yang; Xu, Qun

    2016-12-01

    The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33-2.45%], 2.07% (95% CI: 1.23-2.91%) and 1.95% (95% CI: 1.16-2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.

  4. Method of assessing heterogeneity in images

    Science.gov (United States)

    Jacob, Richard E.; Carson, James P.

    2016-08-23

    A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.

  5. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    Science.gov (United States)

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  6. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    International Nuclear Information System (INIS)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten

    2017-01-01

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.

  7. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    Science.gov (United States)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten

    2017-11-01

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.

  8. Targeting resources within diverse, heterogeneous and dynamic farming systems: Towards a ‘uniquely African green revolution’

    NARCIS (Netherlands)

    Tittonell, P.A.; Vanlauwe, B.; Misiko, M.; Giller, K.E.

    2011-01-01

    Smallholder farms in sub-Saharan Africa (SSA) are highly diverse and heterogeneous, often operating in complex socio-ecological environments. Much of the heterogeneity within the farming systems is caused by spatial soil variability, which results in its turn from the interaction between inherent

  9. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland

    Directory of Open Access Journals (Sweden)

    T. J. Bohn

    2013-10-01

    Full Text Available We used a process-based model to examine the role of spatial heterogeneity of surface and sub-surface water on the carbon budget of the wetlands of the West Siberian Lowland over the period 1948–2010. We found that, while surface heterogeneity (fractional saturated area had little overall effect on estimates of the region's carbon fluxes, sub-surface heterogeneity (spatial variations in water table depth played an important role in both the overall magnitude and spatial distribution of estimates of the region's carbon fluxes. In particular, to reproduce the spatial pattern of CH4 emissions recorded by intensive in situ observations across the domain, in which very little CH4 is emitted north of 60° N, it was necessary to (a account for CH4 emissions from unsaturated wetlands and (b use spatially varying methane model parameters that reduced estimated CH4 emissions in the northern (permafrost half of the domain (and/or account for lower CH4 emissions under inundated conditions. Our results suggest that previous estimates of the response of these wetlands to thawing permafrost may have overestimated future increases in methane emissions in the permafrost zone.

  10. Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers

    Directory of Open Access Journals (Sweden)

    Hachey Mark

    2009-10-01

    Full Text Available Abstract Background The ability to evaluate geographic heterogeneity of cancer incidence and mortality is important in cancer surveillance. Many statistical methods for evaluating global clustering and local cluster patterns are developed and have been examined by many simulation studies. However, the performance of these methods on two extreme cases (global clustering evaluation and local anomaly (outlier detection has not been thoroughly investigated. Methods We compare methods for global clustering evaluation including Tango's Index, Moran's I, and Oden's I*pop; and cluster detection methods such as local Moran's I and SaTScan elliptic version on simulated count data that mimic global clustering patterns and outliers for cancer cases in the continental United States. We examine the power and precision of the selected methods in the purely spatial analysis. We illustrate Tango's MEET and SaTScan elliptic version on a 1987-2004 HIV and a 1950-1969 lung cancer mortality data in the United States. Results For simulated data with outlier patterns, Tango's MEET, Moran's I and I*pop had powers less than 0.2, and SaTScan had powers around 0.97. For simulated data with global clustering patterns, Tango's MEET and I*pop (with 50% of total population as the maximum search window had powers close to 1. SaTScan had powers around 0.7-0.8 and Moran's I has powers around 0.2-0.3. In the real data example, Tango's MEET indicated the existence of global clustering patterns in both the HIV and lung cancer mortality data. SaTScan found a large cluster for HIV mortality rates, which is consistent with the finding from Tango's MEET. SaTScan also found clusters and outliers in the lung cancer mortality data. Conclusion SaTScan elliptic version is more efficient for outlier detection compared with the other methods evaluated in this article. Tango's MEET and Oden's I*pop perform best in global clustering scenarios among the selected methods. The use of SaTScan for

  11. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo

    2015-01-01

    -dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  12. Modeling fine-scale geological heterogeneity-examples of sand lenses in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio

    2013-01-01

    that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality......Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated...... on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images...

  13. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  14. Team Heterogeneity in Startups and its Development over Time

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Müller, Bettina

    We investigate the workforce heterogeneity of startups with respect to education, age and wages. Our explorative study uses data on the population of 1,614 Danish firms founded in 1998. We track these firms until 2001 which enables us to analyze changes in workforce composition over time. Such a ......We investigate the workforce heterogeneity of startups with respect to education, age and wages. Our explorative study uses data on the population of 1,614 Danish firms founded in 1998. We track these firms until 2001 which enables us to analyze changes in workforce composition over time....... Our result holds both for non-knowledge-based and, to a lesser extent, knowledge-based startups. This seems surprising since a vast management literature advocates heterogeneous teams. The difficulties associated with workforce heterogeneity (like affective conflict or coordination cost) as well...... as “homophily” (people’s inclination to bound with others with similar characteristics) hence appear to generally overweigh the benefits of heterogeneity (like greater variety in perspectives or more creativity). We also document that workforces become more heterogeneous over time startups add workers...

  15. Statistical characterization of Earth’s heterogeneities from seismic scattering

    Science.gov (United States)

    Zheng, Y.; Wu, R.

    2009-12-01

    The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.

  16. Effects of preference heterogeneity among landowners on spatial conservation prioritization.

    Science.gov (United States)

    Nielsen, Anne Sofie Elberg; Strange, Niels; Bruun, Hans Henrik; Jacobsen, Jette Bredahl

    2017-06-01

    The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual-level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners' willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner-choice model provides an example of moving toward more implementable conservation planning. © 2016 Society for Conservation Biology.

  17. Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape.

    Directory of Open Access Journals (Sweden)

    Clémentine Fritsch

    Full Text Available Concepts and developments for a new field in ecotoxicology, referred to as "landscape ecotoxicology," were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula. Total and CaCl(2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl(2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc. are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our

  18. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    Science.gov (United States)

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  19. Geostatistical description of geological heterogeneity in clayey till as input for improved characterization of contaminated sites

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K.E.S.; Renard, P.

    2010-01-01

    In low-permeability clay tills subsurface transport is governed by preferential flow in sand lenses and fractures. A proper geological model requires the integration of these features, i.e. the spatial distribution of the geological heterogeneities. Detailed mapping of sand lenses has been done...... at a clay till outcrop in Denmark to characterise the shapes and the spatial variability. Further, geostatistics were applied to simulate the distribution and to develop a heterogeneity model that can be incorporated into an existing geological model of, for example, a contaminated site....

  20. Tumor spatial heterogeneity in myxoid-containing soft tissue using texture analysis of diffusion-weighted MRI.

    Directory of Open Access Journals (Sweden)

    Hyun Su Kim

    Full Text Available The objective of this study was to examine the tumor spatial heterogeneity in myxoid-containing soft-tissue tumors (STTs using texture analysis of diffusion-weighted imaging (DWI. A total of 40 patients with myxoid-containing STTs (23 benign and 17 malignant were included in this study. The region of interest (ROI was manually drawn on the apparent diffusion coefficient (ADC map. For texture analysis, the global (mean, standard deviation, skewness, and kurtosis, regional (intensity variability and size-zone variability, and local features (energy, entropy, correlation, contrast, homogeneity, variance, and maximum probability were extracted from the ADC map. Student's t-test was used to test the difference between group means. Analysis of covariance (ANCOVA was performed with adjustments for age, sex, and tumor volume. The receiver operating characteristic (ROC analysis was performed to compare diagnostic performances. Malignant myxoid-containing STTs had significantly higher kurtosis (P = 0.040, energy (P = 0.034, correlation (P<0.001, and homogeneity (P = 0.003, but significantly lower contrast (P<0.001 and variance (P = 0.001 compared with benign myxoid-containing STTs. Contrast showed the highest area under the curve (AUC = 0.923, P<0.001, sensitivity (94.12%, and specificity (86.96%. Our results reveal the potential utility of texture analysis of ADC maps for differentiating benign and malignant myxoid-containing STTs.

  1. Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared

    Directory of Open Access Journals (Sweden)

    T. Fauchez

    2017-07-01

    Full Text Available This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR brightness temperatures (BTs at the top of the atmosphere (TOA as a function of spatial resolution from 50 m to 10 km. A realistic 3-D cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloud-top and base altitudes at 10 and 12 km, respectively, consisting of aggregate column crystals of Deff = 20 µm, and 3-D thermal infrared radiative transfer (RT is simulated with the 3DMCPOL code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB and the (ii horizontal radiative transport (HRT leading to the independent pixel approximation error (IPAE. A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial-resolution results (above ∼ 250 m with averaged values of up to 5–7 K, while the IPAE mainly impacts the high-spatial-resolution results (below ∼ 250 m with average values of up to 1–2 K. A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 m. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial

  2. Intratumor heterogeneity alters most effective drugs in designed combinations.

    Science.gov (United States)

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2014-07-22

    The substantial spatial and temporal heterogeneity observed in patient tumors poses considerable challenges for the design of effective drug combinations with predictable outcomes. Currently, the implications of tissue heterogeneity and sampling bias during diagnosis are unclear for selection and subsequent performance of potential combination therapies. Here, we apply a multiobjective computational optimization approach integrated with empirical information on efficacy and toxicity for individual drugs with respect to a spectrum of genetic perturbations, enabling derivation of optimal drug combinations for heterogeneous tumors comprising distributions of subpopulations possessing these perturbations. Analysis across probabilistic samplings from the spectrum of various possible distributions reveals that the most beneficial (considering both efficacy and toxicity) set of drugs changes as the complexity of genetic heterogeneity increases. Importantly, a significant likelihood arises that a drug selected as the most beneficial single agent with respect to the predominant subpopulation in fact does not reside within the most broadly useful drug combinations for heterogeneous tumors. The underlying explanation appears to be that heterogeneity essentially homogenizes the benefit of drug combinations, reducing the special advantage of a particular drug on a specific subpopulation. Thus, this study underscores the importance of considering heterogeneity in choosing drug combinations and offers a principled approach toward designing the most likely beneficial set, even if the subpopulation distribution is not precisely known.

  3. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research

    OpenAIRE

    Milchenko, Mikhail; Snyder, Abraham Z.; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L.; Fouke, Sarah Jost; Marcus, Daniel S.

    2016-01-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis.

  4. Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting

    NARCIS (Netherlands)

    Schroter, M.; Remme, R.P.; Sumarga, E.; Barton, D.N.; Hein, L.G.

    2015-01-01

    Assessment of ecosystem services through spatial modelling plays a key role in ecosystem accounting. Spatial models for ecosystem services try to capture spatial heterogeneity with high accuracy. This endeavour, however, faces several practical constraints. In this article we analyse the trade-offs

  5. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Science.gov (United States)

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  6. Spatial Statistical Data Fusion (SSDF)

    Science.gov (United States)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is

  7. Surface current double-heterogeneous multilayer multicell methodology

    International Nuclear Information System (INIS)

    Stepanek, J.; Segev, M.

    1991-01-01

    A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered. Second, starting from the surface cosine-current formulation, a two-zone three-layer multicell formalism for reduction of heterogeneous flux expressions to equivalent homogeneous flux expression for table method was developed. This formalism allows an infinite, as well as a limited, number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first-and second-heterogeneity cell types is quite general. The 'outer' (right side) as well as 'inner' (left side) Dancoff probabilities can be calculated for any particular layer. An accurate, efficient, and compact interpolation procedure is developed to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices. The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells. (author) 1 fig., 2 tabs., 10 refs

  8. Discontinuous finite element and characteristics methods for neutrons transport equation solution in heterogeneous grids

    International Nuclear Information System (INIS)

    Masiello, E.

    2006-01-01

    The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)

  9. EFFECTS OF HETEROGENIETY ON SPATIAL PATTERN ANALYSIS OF WILD PISTACHIO TREES IN ZAGROS WOODLANDS, IRAN

    Directory of Open Access Journals (Sweden)

    Y. Erfanifard

    2014-10-01

    Full Text Available Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf. trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0–50 m than actually existed and an aggregation at scales of 150–200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  10. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    Science.gov (United States)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  11. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    Science.gov (United States)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  12. Spatial heterogeneity of malaria in Indian reserves of Southwestern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Santos Ricardo

    2008-11-01

    Full Text Available Abstract Background Malaria constitutes a major cause of morbidity in the Brazilian Amazon where an estimated 6 million people are considered at high risk of transmission. Indigenous peoples in the Amazon are particularly vulnerable to potentially epidemic disease such as malaria; notwithstanding, very little is known about the epidemiology of malaria in Indian reservations of the region. The aim of this paper is to present a spatial analysis of malaria cases over a four-year time period (2003–2006 among indigenous peoples of the Brazilian State of Rondônia, southwestern Amazon, by using passive morbidity data (results from Giemsa-stained thick blood smears gathered from the National Malaria Epidemiologic Surveillance System databank. Results A total of 4,160 cases of malaria were recorded in 14 Indian reserves in the State of Rondônia between 2003 and 2006. In six reservations no cases of malaria were reported in the period. Overall, P. vivax accounted for 76.18 of malaria cases reported in the indigenous population of Rondônia. The P. vivax/P. falciparum ratio for the period was 3.78. Two reserves accounted for over half of the cases reported for the total indigenous population in the period – Roosevelt and Pacaas Novas – with a total of 1,646 (39.57% and 1,145 (27.52% cases, respectively. Kernel mapping of malaria mean Annual Parasite Index – API according to indigenous reserves and environmental zones revealed a heterogeneous pattern of disease distribution, with one clear area of high risk of transmission comprising reservations of west Rondônia along the Guaporé-Madeira River basins, and another high risk area to the east, on the Roosevelt reserve. Conclusion By means of kernel mapping, it was shown that malaria risk varies widely between Indian reserves and environmental zones defined on the basis of predominant ecologic characteristics and land use patterns observed in the southwestern Brazilian Amazon. The geographical

  13. Farmers' willingness to provide ecosystem services and effects of their spatial distribution

    DEFF Research Database (Denmark)

    Broch, Stine Wamberg; Strange, Niels; Jacobsen, Jette Bredahl

    2013-01-01

    The supply of ecosystem goods and services is spatially heterogeneous and the provision of such goods and services is also influenced by landowners' willingness to provide. This is particularly the case in countries such as Denmark where many properties are privately owned. However, little...... attention has previously been given to the relationship between farmers' willingness to provide a good or service and the spatial heterogeneity associated with their demand. In this study farmers' willingness to participate in afforestation contracts are investigated using a choice experiment of various...

  14. Method for accounting for macroscopic heterogeneities in reactor material balance generation in fuel cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bagdatlioglu, Cem, E-mail: cemb@utexas.edu; Schneider, Erich

    2016-06-15

    Highlights: • Describes addition of spatially dependent power sharing to a previous methodology. • The methodology is used for calculating the input and output isotopics and burnup. • Generalizes to simulate reactors with strong spatial and flux heterogeneities. • Presents cases where the old approach would not have been sufficient. - Abstract: This paper describes the addition of spatially dependent power sharing to a methodology used for calculating the input and output isotopics and burnup of nuclear reactors within a nuclear fuel cycle simulator. Neutron balance and depletion calculations are carried out using pre-calculated fluence-based libraries. These libraries track the transmutation and neutron economy evolution of unit masses of nuclides available in input fuel. The work presented in the paper generalizes the method to simulate reactors that contain more than one type of fuel as well as strong spatial and flux heterogeneities, for instance breeders with a driver–blanket configuration. To achieve this, spatial flux calculations are used to determine the fluence-dependent relative average fluxes inside macroscopic spatial regions. These fluxes are then used to determine the average power of macroscopic spatial regions as well as to more accurately calculate region-specific transmutation rates. The paper presents several cases where the fluence based approach alone would not have been sufficient to determine results.

  15. Micro-scale heterogeneity of spiders (Arachnida: Araneae) in the ...

    African Journals Online (AJOL)

    Coarse-scale studies that focus on species distributions and richness neglect heterogeneity that may be present at finer scales. Studies of arthropod assemblage structure at fine (1 × 1 km) scales are rare, but important, because these are the spatial levels at which real world applications are viable. Here we investigate ...

  16. Measuring the value of air quality: application of the spatial hedonic model.

    Science.gov (United States)

    Kim, Seung Gyu; Cho, Seong-Hoon; Lambert, Dayton M; Roberts, Roland K

    2010-03-01

    This study applies a hedonic model to assess the economic benefits of air quality improvement following the 1990 Clean Air Act Amendment at the county level in the lower 48 United States. An instrumental variable approach that combines geographically weighted regression and spatial autoregression methods (GWR-SEM) is adopted to simultaneously account for spatial heterogeneity and spatial autocorrelation. SEM mitigates spatial dependency while GWR addresses spatial heterogeneity by allowing response coefficients to vary across observations. Positive amenity values of improved air quality are found in four major clusters: (1) in East Kentucky and most of Georgia around the Southern Appalachian area; (2) in a few counties in Illinois; (3) on the border of Oklahoma and Kansas, on the border of Kansas and Nebraska, and in east Texas; and (4) in a few counties in Montana. Clusters of significant positive amenity values may exist because of a combination of intense air pollution and consumer awareness of diminishing air quality.

  17. Single-molecule resolution of protein dynamics on polymeric membrane surfaces: the roles of spatial and population heterogeneity.

    Science.gov (United States)

    Langdon, Blake B; Mirhossaini, Roya B; Mabry, Joshua N; Sriram, Indira; Lajmi, Ajay; Zhang, Yanxia; Rojas, Orlando J; Schwartz, Daniel K

    2015-02-18

    Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations

  18. Spatial Distribution of Coffee Wilt Disease Under Roguing and Replanting Conditions: A Case Study from Kaweri Estate in Uganda.

    Science.gov (United States)

    Pinard, F; Makune, S E; Campagne, P; Mwangi, J

    2016-11-01

    Based on time and spatial dynamic considerations, this study evaluates the potential role of short- and long-distance dispersal in the spread of coffee wilt disease (CWD) in a large commercial Robusta coffee estate in Uganda (Kaweri, 1,755 ha) over a 4-year period (2008 to 2012). In monthly surveys, total disease incidence, expansion of infection foci, and the occurrence of isolated infected trees were recorded and submitted to spatial analysis. Incidence was higher and disease progression faster in old coffee plantings compared with young plantings, indicating a lack of efficiency of roguing for reducing disease development in old plantings. At large spatial scale (approximately 1 km), Moran indices (both global and local) revealed the existence of clusters characterized by contrasting disease incidences. This suggested that local environmental conditions were heterogeneous or there were spatial interactions among blocks. At finer spatial scale (approximately 200 m), O-ring statistics revealed positive correlation between distant infection sites across distances as great as 60 m. Although these observations indicate the role of short-distance dispersal in foci expansion, dispersal at greater distances (>20 m) appeared to also contribute to both initiation of new foci and disease progression at coarser spatial scales. Therefore, our results suggested the role of aerial dispersal in CWD progression.

  19. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    Science.gov (United States)

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.

  20. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    Science.gov (United States)

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  1. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  2. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    Science.gov (United States)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal

  3. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    Science.gov (United States)

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  4. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    Directory of Open Access Journals (Sweden)

    Lucia Russo

    Full Text Available Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a an artificial forest of randomly distributed density of vegetation, and (b a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  5. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  6. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    José Manuel Fernández-Guisuraga

    2018-02-01

    Full Text Available This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas.

  7. The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal.

    Directory of Open Access Journals (Sweden)

    Daniel E Impoinvil

    Full Text Available To identify potential environmental drivers of Japanese Encephalitis virus (JE transmission in Nepal, we conducted an ecological study to determine the spatial association between 2005 Nepal JE incidence, and climate, agricultural, and land-cover variables at district level.District-level data on JE cases were examined using Local Indicators of Spatial Association (LISA analysis to identify spatial clusters from 2004 to 2008 and 2005 data was used to fit a spatial lag regression model with climate, agriculture and land-cover variables.Prior to 2006, there was a single large cluster of JE cases located in the Far-West and Mid-West terai regions of Nepal. After 2005, the distribution of JE cases in Nepal shifted with clusters found in the central hill areas. JE incidence during the 2005 epidemic had a stronger association with May mean monthly temperature and April mean monthly total precipitation compared to mean annual temperature and precipitation. A parsimonious spatial lag regression model revealed, 1 a significant negative relationship between JE incidence and April precipitation, 2 a significant positive relationship between JE incidence and percentage of irrigated land 3 a non-significant negative relationship between JE incidence and percentage of grassland cover, and 4 a unimodal non-significant relationship between JE Incidence and pig-to-human ratio.JE cases clustered in the terai prior to 2006 where it seemed to shift to the Kathmandu region in subsequent years. The spatial pattern of JE cases during the 2005 epidemic in Nepal was significantly associated with low precipitation and the percentage of irrigated land. Despite the availability of an effective vaccine, it is still important to understand environmental drivers of JEV transmission since the enzootic cycle of JEV transmission is not likely to be totally interrupted. Understanding the spatial dynamics of JE risk factors may be useful in providing important information to the

  8. Analysis of the Coupled Influence of Hydraulic Conductivity and Porosity Heterogeneity on Probabilistic Risk Analysis

    Science.gov (United States)

    Libera, A.; Henri, C.; de Barros, F.

    2017-12-01

    Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.

  9. Spatial and temporal variability of hyperspectral signatures of terrain

    Science.gov (United States)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

  10. Promoting landscape heterogeneity to improve the biodiversity benefits of certified palm oil production: Evidence from Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Badrul Azhar

    2015-01-01

    Full Text Available The Roundtable on Sustainable Palm Oil (RSPO is responsible for the certification of palm oil producers that comply with sustainability standards. However, it is not known whether RSPO-certified plantations are effective in maintaining biodiversity. Focusing on Peninsular Malaysia, we show that both RSPO-certified plantations and uncertified large-scale plantations are characterized by very low levels of landscape heterogeneity. By contrast, heterogeneity measures were many times higher in palm oil producing smallholdings, despite their lack of RSPO certification. The low heterogeneity of large-scale oil palm plantations, including those certified by the RSPO, is likely to severely limit their value for biodiversity conservation. Uncertified smallholdings, in contrast, are much more heterogeneous and therefore hold substantially greater promise for the integration of palm oil production and biodiversity conservation than large-scale plantations. With oil palm agriculture further expanding, certification schemes should mandate producers to improve biodiversity conservation through landscape management that promotes greater landscape heterogeneity.

  11. Role of investment heterogeneity in the cooperation on spatial public goods game.

    Science.gov (United States)

    Yuan, Wu-Jie; Xia, Cheng-Yi

    2014-01-01

    Public cooperation plays a significant role in the survival and maintenance of biological species, to elucidate its origin thus becomes an interesting question from various disciplines. Through long-term development, the public goods game has proven to be a useful tool, where cooperator making contribution can beat again the free-rides. Differentiating from the traditional homogeneous investment, individual trend of making contribution is more likely affected by the investment level of his neighborhood. Based on this fact, we here investigate the impact of heterogeneous investment on public cooperation, where the investment sum is mapped to the proportion of cooperators determined by parameter α. Interestingly, we find, irrespective of interaction networks, that the increment of α (increment of heterogeneous investment) is beneficial for promoting cooperation and even guarantees the complete cooperation dominance under weak replication factor. While this promotion effect can be attributed to the formation of more robust cooperator clusters and shortening END period. Moreover, we find that this simple mechanism can change the potential interaction network, which results in the change of phase diagrams. We hope that our work may shed light on the understanding of the cooperative behavior in other social dilemmas.

  12. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    Science.gov (United States)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark

  13. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    fracture. The transport properties of these fractures were adjusted to be consistent with the STT1b tracer transport experiment of the Aespoe TRUE-1 in situ transport experiment. For most of the cases simulated, transport aperture, e (m), was correlated to transmissivity, T (m 2 /s), according to e = 15xT 0.6 . This relationship was established based on the results of simulation of STT1b tracer experiments inside the Base case stochastic field fracture. For Case 5, a range of alternative relationships between aperture and transmissivity were considered. Values for transverse dispersion were simulated between 0.01 m and 10 m. The value of 0.01 m represents a 'typical' value of transverse dispersion from the literature, estimated as approximately 1% of the travel distance. The value of 10 is extreme, and is approximately ten times greater than the upper bound realistic value of 1 m (10% of the travel distance). Simulations were carried out primarily for a basically one-dimensional flow field in the plane of the fracture. This boundary condition was implemented by applying no flow boundaries on the north and south edges of the fracture, and heads of 0.5 m and 0 m to the west and east edges of the fracture respectively. The breakthrough statistics t 5 , t 50 , and t 95 , correspond to the time for 5%, 50%, and 95% mass recovery respectively. These results are based on a correlation between transmissivity and transport aperture et 15 T0.6. For this correlation, and the range of spatial transmissivity fields considered in Case 1, changes in transverse dispersion did not produce a significant change in the mean conservative tracer breakthrough times, although it did somewhat decrease the standard deviation. For the simple, channelized fracture considered in Case 5, this same aperture-transmissivity relationship also produced relatively small impacts of even large values of transverse dispersivity. However, when this channelized fracture is given a constant aperture the tracer

  14. Heterogeneity of long-history migration predicts emotion recognition accuracy.

    Science.gov (United States)

    Wood, Adrienne; Rychlowska, Magdalena; Niedenthal, Paula M

    2016-06-01

    Recent work (Rychlowska et al., 2015) demonstrated the power of a relatively new cultural dimension, historical heterogeneity, in predicting cultural differences in the endorsement of emotion expression norms. Historical heterogeneity describes the number of source countries that have contributed to a country's present-day population over the last 500 years. People in cultures originating from a large number of source countries may have historically benefited from greater and clearer emotional expressivity, because they lacked a common language and well-established social norms. We therefore hypothesized that in addition to endorsing more expressive display rules, individuals from heterogeneous cultures will also produce facial expressions that are easier to recognize by people from other cultures. By reanalyzing cross-cultural emotion recognition data from 92 papers and 82 cultures, we show that emotion expressions of people from heterogeneous cultures are more easily recognized by observers from other cultures than are the expressions produced in homogeneous cultures. Heterogeneity influences expression recognition rates alongside the individualism-collectivism of the perceivers' culture, as more individualistic cultures were more accurate in emotion judgments than collectivistic cultures. This work reveals the present-day behavioral consequences of long-term historical migration patterns and demonstrates the predictive power of historical heterogeneity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    Science.gov (United States)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  16. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Energy Technology Data Exchange (ETDEWEB)

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  17. How to handle spatial heterogeneity in hydrological models.

    Science.gov (United States)

    Loritz, Ralf; Neuper, Malte; Gupta, Hoshin; Zehe, Erwin

    2017-04-01

    The amount of data we observe in our environmental systems is larger than ever. This leads to a new kind of problem where hydrological modelers can have access to large datasets with various quantitative and qualitative observations but are uncertain about the information content with respect to the hydrological functioning of a landscape. For example digital elevation models obviously contain plenty of information about the topography of a landscape; however the question of relevance for Hydrology is how much of this information is important for the hydrological functioning of a landscape. This kind of question is not limited to topography and we can ask similar questions when handling distributed rainfall data or geophysical images. In this study we would like to show how one can separate dominant patterns in the landscape from idiosyncratic system details. We use a 2D numerical hillslope model in combination with an extensive research data set to test a variety of different model setups that are built upon different landscape characteristics and run by different rainfalls measurements. With the help of information theory based measures we can identify and learn how much heterogeneity is really necessary for successful hydrological simulations and how much of it we can neglect.

  18. The emergence of spatial cyberinfrastructure.

    Science.gov (United States)

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  19. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  20. Life history traits and exploitation affect the spatial mean-variance relationship in fish abundance.

    Science.gov (United States)

    Kuo, Ting-chun; Mandal, Sandip; Yamauchi, Atsushi; Hsieh, Chih-hao

    2016-05-01

    Fishing is expected to alter the spatial heterogeneity of fishes. As an effective index to quantify spatial heterogeneity, the exponent b in Taylor's power law (V = aMb) measures how spatial variance (V) varies with changes in mean abundance (M) of a population, with larger b indicating higher spatial aggregation potential (i.e., more heterogeneity). Theory predicts b is related with life history traits, but empirical evidence is lacking. Using 50-yr spatiotemporal data from the California Current Ecosystem, we examined fishing and life history effects on Taylor's exponent by comparing spatial distributions of exploited and unexploited fishes living in the same environment. We found that unexploited species with smaller size and generation time exhibit larger b, supporting theoretical prediction. In contrast, this relationship in exploited species is much weaker, as the exponents of large exploited species were higher than unexploited species with similar traits. Our results suggest that fishing may increase spatial aggregation potential of a species, likely through degrading their size/age structure. Results of moving-window cross-correlation analyses on b vs. age structure indices (mean age and age evenness) for some exploited species corroborate our findings. Furthermore, through linking our findings to other fundamental ecological patterns (occupancy-abundance and size-abundance relationships), we provide theoretical arguments for the usefulness of monitoring the exponent b for management purposes. We propose that age/size-truncated species might have lower recovery rate in spatial occupancy, and the spatial variance-mass relationship of a species might be non-linear. Our findings provide theoretical basis explaining why fishery management strategy should be concerned with changes to the age and spatial structure of exploited fishes.

  1. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  2. Biodiversity, productivity, and the spatial insurance hypothesis revisited

    Science.gov (United States)

    Shanafelt, David W.; Dieckmann, Ulf; Jonas, Matthias; Franklin, Oskar; Loreau, Michel; Perrings, Charles

    2015-01-01

    Accelerating rates of biodiversity loss have led ecologists to explore the effects of species richness on ecosystem functioning and the flow of ecosystem services. One explanation of the relationship between biodiversity and ecosystem functioning lies in the spatial insurance hypothesis, which centers on the idea that productivity and stability increase with biodiversity in a temporally varying, spatially heterogeneous environment. However, there has been little work on the impact of dispersal where environmental risks are more or less spatially correlated, or where dispersal rates are variable. In this paper, we extend the original Loreau model to consider stochastic temporal variation in resource availability, which we refer to as “environmental risk,” and heterogeneity in species dispersal rates. We find that asynchronies across communities and species provide community-level stabilizing effects on productivity, despite varying levels of species richness. Although intermediate dispersal rates play a role in mitigating risk, they are less effective in insuring productivity against global (metacommunity-level) than local (individual community-level) risks. These results are particularly interesting given the emergence of global sources of risk such as climate change or the closer integration of world markets. Our results offer deeper insights into the Loreau model and new perspectives on the effectiveness of spatial insurance in the face of environmental risks. PMID:26100182

  3. The 3-D global spatial data model foundation of the spatial data infrastructure

    CERN Document Server

    Burkholder, Earl F

    2008-01-01

    Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements. Modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure offers a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This groundbreaking spatial model incorporates both a functional model and a stochastic model to connect the physical world to the ECEF rectangular system. Combining horizontal and vertical data into a single, three-dimensional database, this authoritative monograph provides a logical development of theoretical concepts and practical tools that can be used to handle spatial data mo...

  4. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  5. Use of a multigrid technique to study effects of limited sampling of heterogeneity on transport prediction

    International Nuclear Information System (INIS)

    Cole, C.R.; Foote, H.P.

    1987-02-01

    Reliable ground water transport prediction requires accurate spatial and temporal characterization of a hydrogeologic system. However, cost constraints and the desire to maintain site integrity by minimizing drilling can restrict the amount of spatial sampling that can be obtained to resolve the flow parameter variability associated with heterogeneities. This study quantifies the errors in subsurface transport predictions resulting from incomplete characterization of hydraulic conductivity heterogeneity. A multigrid technique was used to simulate two-dimensional flow velocity fields with high resolution. To obtain these velocity fields, the finite difference code MGRID, which implements a multigrid solution technique, was applied to compute stream functions on a 256-by-256 grid for a variety of hypothetical systems having detailed distributions of hydraulic conductivity. Spatial variability in hydraulic conductivity distributions was characterized by the components in the spectrum of spatial frequencies. A low-pass spatial filtering technique was applied to the base case hydraulic conductivity distribution to produce a data set with lower spatial frequency content. Arrival time curves were then calculated for filtered hydraulic conductivity distribution and compared to base case results to judge the relative importance of the higher spatial frequency components. Results indicate a progression from multimode to single-mode arrival time curves as the number and extent of distinct flow pathways are reduced by low-pass filtering. This relationship between transport predictions and spatial frequencies was used to judge the consequences of sampling the hydraulic conductivity with reduced spatial resolution. 22 refs., 17 figs

  6. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able

  7. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Science.gov (United States)

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  8. On transport in formations of large heterogeneity scales

    International Nuclear Information System (INIS)

    Dagan, Gedeon

    1990-01-01

    It has been suggested that in transport through heterogeneous aquifers, the effective dispersivity increases with the travel distance, since plumes encounter heterogeneity of increasing scales. This conclusion is underlain, however, by the assumption of ergodicity. If the plume is viewed as made up of different particles, this means that these particles move independently from a statistical point of view. To satisfy ergodicity the solute body has to be of a much larger extent than heterogeneity scales. Thus, if the latter are increasing for ever and the solute body is finite, ergodicity cannot be obeyed. To demonstrate this thesis we relate to the two-dimensional heterogeneity associated with transmissivity variations in the horizontal plane. First, the effective dispersion coefficient is defined as half the rate of change of the expected value of the solute body second spatial moment relative to its centroid. Subsequently the asymptotic large time limit of dispersivity is evaluated in terms of the log transmissivity integral scale and of the dimensions of the initial solute body in the direction of mean flow and normal to it. It is shown that for a thin plume aligned with the mean flow the effective dispersivity is zero and the effect of heterogeneity is a slight and finite expansion determined solely by the solute body size. In the case of a solute body transverse to the mean flow the effective dispersivity is different from zero, but has a maximal value which is again dependent on the solute body size and not on the heterogeneity scale. It is concluded that from a theoretical standpoint and for the definition of dispersivity adopted here for non-ergodic conditions, the claim of ever-increasing dispersivity with travel distance is not valid for the scale of heterogeneity analyzed here. (Author) (21 refs., 6 figs.)

  9. Physical Heterogeneity and Aquatic Community Function in ...

    Science.gov (United States)

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.

  10. Quantifying Landscape Spatial Pattern: What Is the State of the Art?

    Science.gov (United States)

    Eric J. Gustafson

    1998-01-01

    Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...

  11. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  12. Upscaling of Constitutive Relations In Unsaturated Heterogeneous Porous Media

    International Nuclear Information System (INIS)

    Liu, H. H.; Bodvarsson, G. S.

    2001-01-01

    When numerical model are used for modeling field scale flow and transport processes in the subsurface, the problem of ''upscaling'' arises. Typical scales, corresponding to spatial resolutions of subsurface heterogeneity in numerical models, are generally much larger than the measurement scale of the parameters and physical processes involved. The upscaling problems is, then, one of assigning parameters to gridblock scale based on parameter values measured on small scales. The focus of this study is to develop an approach to determine large-scale (upscaled) constitutive relations (relationships among relative permeability, capillary pressure and saturation) from small-scale measurements for porous media for a range of air entry values that are typical for the tuff matrix in the unsaturated zone of Yucca Mountain. For porous media with large air entry values, capillary forces play a key role in determining spatial water distribution at large-scales. Therefore, a relatively uniform capillary pressure approximately exists even for a large gridblock scale under steady state flow conditions. Based on these reasoning, we developed formulations that relate upscaled constitutive relations to ones measured at core-scale. Numerical experiments with stochastically generated heterogeneous porous media were used to evaluate the upscaling formulations

  13. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    Science.gov (United States)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  14. Spatial distributions of niche-constructing populations

    Directory of Open Access Journals (Sweden)

    Xiaozhuo Han

    2015-12-01

    Full Text Available Niche construction theory regards organisms not only as the object of natural selection but also an active subject that can change their own selective pressure through eco-evolutionary feedbacks. Through reviewing the existing works on the theoretical models of niche construction, here we present the progress made on how niche construction influences genetic structure of spatially structured populations and the spatial-temporal dynamics of metapopulations, with special focuses on mathematical models and simulation methods. The majority of results confirmed that niche construction can significantly alter the evolutionary trajectories of structured populations. Organism-environmental interactions induced by niche construction can have profound influence on the dynamics, competition and diversity of metapopulations. It can affect fine-scale spatially distribution of species and spatial heterogeneity of the environment. We further propose a few research directions with potentials, such as applying adaptive dynamics or spatial game theory to explore the effect of niche construction on phenotypic evolution and diversification.

  15. Patterns in the distribution of vegetation in paramo areas: heterogeneity and spacial dependence

    OpenAIRE

    Arellano-P., Henry; Rangel-CH, J. Orlando

    2012-01-01

    Two methods of exploratory spatial data analysis (ESDA), analysis of spatial heterogeneity and dependence (auto-correlation), - - were applied to the cover patterns from ten paramo localities in the Central and Eastern cordilleras of Colombia. Among the localities studied, the high montane region of the Serrania de Perija, the paramo region of the Los Nevados National Park, and the paramo region under management of CORPOGUAVIO showed a good state of conservation and satisfactory level of conn...

  16. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    Science.gov (United States)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of

  17. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocyst in a patchwise charged heterogeneous micromodel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan; Zhang, Changyong; Hu, Dehong; Kuhlenschmidt, Mark S.; Kuhlenschmidt, Theresa B.; Mylon, Steven E.; Kong, Rong; Bhargava, Rohit; Nguyen, Thanh H.

    2013-02-04

    The role of collector surface charge heterogeneity on transport of Cryptosporidium parvum oocyst and carboxylate microsphere in 2-dimensional micromodels was studied. The cylindrical silica collectors within the micromodels were coated with 0, 10, 20, 50 and 100% Fe2O3 patches. The experimental values of average single collector removal efficiencies (η) of the Fe2O3 patches and on the entire collectors were determined. In the presence of significant (>3500 kT) Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier between the microspheres and the silica collectors at pH 5.8 and 8.1, the values of η determined for Fe2O3 patches were significantly less (p < 0.05, t-test) than that obtained for collectors coated entirely with Fe2O3. However, η on Fe2O3 patches for microspheres at pH 4.4 and for oocysts at pH 5.8 and 8.1, where the DLVO energy barrier was relatively small (ca. 200-360 kT), were significantly greater (p < 0.05, t-test) than that on the collectors coated entirely with Fe2O3. The dependence of η determined for Fe2O3 patches on the DLVO energy barrier indicated the importance of periodic favorable and unfavorable electrostatic interactions between colloids and collectors with alternating Fe2O3 and silica patches. Differences between experimentally determined η and that predicted by a patchwise geochemical heterogeneous model was observed, but can be explained by the model’s lack of consideration for the spatial distribution of charge heterogeneity on the collector surface and colloid migration on patchwise heterogeneous collectors.

  18. The geological basis and the representation of spatial variability in sedimentary heterogeneous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Franklin, D.J.; Jones, P.I.R.; Macleod, E.J.; Porter, J.D.

    1998-01-01

    The impact of different conceptual models was investigated of the heterogeneity of the Sherwood Sandstone Group (SSG) at Sellafield on calculations of flow and transport. Detailed models of the heterogeneity of the Undifferentiated St Bees Sandstone (USBS) of the SSG were produced. The models took into account directly the geological structures at the facies level. The software package STORM (STOchastic Reservoir Modelling), was used to construct the models. The data required by the model are those that characterise the geometry of the channel bodies and the properties of the various sub-facies within the channels. It was found that for the case in which all of the variability was within channels, the larger scale permeabilities did not exhibit any significant correlation structure. The up-scaled effective permeabilities also exhibited correlation lengths that were comparable with the channel dimensions. Flow and transport calculations were also performed on 90 realizations of a detailed facies scale three-dimensional representation of a larger block of the USBS. The results are broadly consistent with the analytical results for transport through a random permeability field. (R.P.)

  19. Discontinuous finite element and characteristics methods for neutrons transport equation solution in heterogeneous grids; Resolution de l'equation du transport des neutrons par les methodes des elements finis discontinus et des caracteristiques structurees appliquees a des maillages heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, E

    2006-07-01

    The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)

  20. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China.

    Science.gov (United States)

    Qian, Hong; Chen, Shengbin; Zhang, Jin-Long

    2017-07-17

    Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.

  1. Spatial snowdrift game in heterogeneous agent systems with co-evolutionary strategies and updating rules

    International Nuclear Information System (INIS)

    Xia Hai-Jiang; Li Ping-Ping; Ke Jian-Hong; Lin Zhen-Quan

    2015-01-01

    We propose an evolutionary snowdrift game model for heterogeneous systems with two types of agents, in which the inner-directed agents adopt the memory-based updating rule while the copycat-like ones take the unconditional imitation rule; moreover, each agent can change his type to adopt another updating rule once the number he sequentially loses the game at is beyond his upper limit of tolerance. The cooperative behaviors of such heterogeneous systems are then investigated by Monte Carlo simulations. The numerical results show the equilibrium cooperation frequency and composition as functions of the cost-to-benefit ratio r are both of plateau structures with discontinuous steplike jumps, and the number of plateaux varies non-monotonically with the upper limit of tolerance ν T as well as the initial composition of agents f a0 . Besides, the quantities of the cooperation frequency and composition are dependent crucially on the system parameters including ν T , f a0 , and r. One intriguing observation is that when the upper limit of tolerance is small, the cooperation frequency will be abnormally enhanced with the increase of the cost-to-benefit ratio in the range of 0 < r < 1/4. We then probe into the relative cooperation frequencies of either type of agents, which are also of plateau structures dependent on the system parameters. Our results may be helpful to understand the cooperative behaviors of heterogenous agent systems. (paper)

  2. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    International Nuclear Information System (INIS)

    Larsen, E W; Zika, M R

    1999-01-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance

  3. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies.

    Science.gov (United States)

    Herberg, Maria; Zerjatke, Thomas; de Back, Walter; Glauche, Ingmar; Roeder, Ingo

    2015-06-01

    Pluripotent embryonic stem cells (ESCs) have the potential to differentiate into cells of all three germ layers. This unique property has been extensively studied on the intracellular, transcriptional level. However, ESCs typically form clusters of cells with distinct size and shape, and establish spatial structures that are vital for the maintenance of pluripotency. Even though it is recognized that the cells' arrangement and local interactions play a role in fate decision processes, the relations between transcriptional and spatial patterns have not yet been studied. We present a systems biology approach which combines live-cell imaging, quantitative image analysis, and multiscale, mathematical modeling of ESC growth. In particular, we develop quantitative measures of the morphology and of the spatial clustering of ESCs with different expression levels and apply them to images of both in vitro and in silico cultures. Using the same measures, we are able to compare model scenarios with different assumptions on cell-cell adhesions and intercellular feedback mechanisms directly with experimental data. Applying our methodology to microscopy images of cultured ESCs, we demonstrate that the emerging colonies are highly variable regarding both morphological and spatial fluorescence patterns. Moreover, we can show that most ESC colonies contain only one cluster of cells with high self-renewing capacity. These cells are preferentially located in the interior of a colony structure. The integrated approach combining image analysis with mathematical modeling allows us to reveal potential transcription factor related cellular and intercellular mechanisms behind the emergence of observed patterns that cannot be derived from images directly. © 2015 International Society for Advancement of Cytometry.

  4. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  5. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  6. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  7. Analytic Investigation Into Effect of Population Heterogeneity on Parameter Ratio Estimates

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Carlone, Marco; Warkentin, Brad; Fallone, B. Gino

    2007-01-01

    Purpose: A homogeneous tumor control probability (TCP) model has previously been used to estimate the α/β ratio for prostate cancer from clinical dose-response data. For the ratio to be meaningful, it must be assumed that parameter ratios are not sensitive to the type of tumor control model used. We investigated the validity of this assumption by deriving analytic relationships between the α/β estimates from a homogeneous TCP model, ignoring interpatient heterogeneity, and those of the corresponding heterogeneous (population-averaged) model that incorporated heterogeneity. Methods and Materials: The homogeneous and heterogeneous TCP models can both be written in terms of the geometric parameters D 50 and γ 50 . We show that the functional forms of these models are similar. This similarity was used to develop an expression relating the homogeneous and heterogeneous estimates for the α/β ratio. The expression was verified numerically by generating pseudo-data from a TCP curve with known parameters and then using the homogeneous and heterogeneous TCP models to estimate the α/β ratio for the pseudo-data. Results: When the dominant form of interpatient heterogeneity is that of radiosensitivity, the homogeneous and heterogeneous α/β estimates differ. This indicates that the presence of this heterogeneity affects the value of the α/β ratio derived from analysis of TCP curves. Conclusions: The α/β ratio estimated from clinical dose-response data is model dependent-a heterogeneous TCP model that accounts for heterogeneity in radiosensitivity will produce a greater α/β estimate than that resulting from a homogeneous TCP model

  8. Vortex forcing model for turbulent flow over spanwise-heterogeneous topogrpahies: scaling arguments and similarity solution

    Science.gov (United States)

    Anderson, William; Yang, Jianzhi

    2017-11-01

    Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.

  9. Employing Measures of Heterogeneity and an Object-Based Approach to Extrapolate Tree Species Distribution Data

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-07-01

    Full Text Available Information derived from high spatial resolution remotely sensed data is critical for the effective management of forested ecosystems. However, high spatial resolution data-sets are typically costly to acquire and process and usually provide limited geographic coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to provide the spectral or spatial detail required for certain types of products and applications, offer inexpensive, comprehensive landscape-level coverage. This study assessed using an object-based approach to extrapolate detailed tree species heterogeneity beyond the extent of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using image segments, regression trees established ecologically decipherable relationships between tree species heterogeneity and the spectral properties of Landsat segments. The spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm, 5 (i.e., SWIR: 1.55–1.75 µm and 7 (SWIR: 2.08–2.35 µm were consistently selected as predictor variables, explaining approximately 50% of variance in richness and diversity. Results have important ramifications for ongoing management initiatives in the study area and are applicable to wide range of applications.

  10. A reduce and replace strategy for suppressing vector-borne diseases: insights from a stochastic, spatial model.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    Full Text Available Two basic strategies have been proposed for using transgenic Aedes aegypti mosquitoes to decrease dengue virus transmission: population reduction and population replacement. Here we model releases of a strain of Ae. aegypti carrying both a gene causing conditional adult female mortality and a gene blocking virus transmission into a wild population to assess whether such releases could reduce the number of competent vectors. We find this "reduce and replace" strategy can decrease the frequency of competent vectors below 50% two years after releases end. Therefore, this combined approach appears preferable to releasing a strain carrying only a female-killing gene, which is likely to merely result in temporary population suppression. However, the fixation of anti-pathogen genes in the population is unlikely. Genetic drift at small population sizes and the spatially heterogeneous nature of the population recovery after releases end prevent complete replacement of the competent vector population. Furthermore, releasing more individuals can be counter-productive in the face of immigration by wild-type mosquitoes, as greater population reduction amplifies the impact wild-type migrants have on the long-term frequency of the anti-pathogen gene. We expect the results presented here to give pause to expectations for driving an anti-pathogen construct to fixation by relying on releasing individuals carrying this two-gene construct. Nevertheless, in some dengue-endemic environments, a spatially heterogeneous decrease in competent vectors may still facilitate decreasing disease incidence.

  11. Discontinuous finite element and characteristics methods for neutrons transport equation solution in heterogeneous grids; Resolution de l'equation du transport des neutrons par les methodes des elements finis discontinus et des caracteristiques structurees appliquees a des maillages heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, E

    2006-07-01

    The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)

  12. Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis.

    Science.gov (United States)

    Berger, Torsten W; Muras, Alexander

    Release of stored sulfur may delay the recovery of soil pH from Acid Rain. It is hypothesized that analyzing the micro-spatial heterogeneity of soil columns downhill of a beech stem enables predictions of soil recovery as a function of historic acid loads and time. We demonstrated in a very simplified approach, how these two different factors may be untangled from each other using synthetic data. Thereafter, we evaluated the stated hypothesis based upon chemical soil data with increasing distance from the stem of beech trees. It is predicted that the top soil will recover from acid deposition, as already recorded in the infiltration zone of stemflow near the base of the stem. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed.

  13. Diversity and spatial heterogeneity of mangrove associated sponges of Curaçao and Aruba

    NARCIS (Netherlands)

    Hunting, E.R.; van Soest, R.W.M.; van der Geest, H.G.; Vos, A.; Debrot, A.O.

    2008-01-01

    Sponges are major epibionts of mangrove roots in the Caribbean. Mangrove sponge communities in the Caribbean mainly consist of species that are typical to this habitat and community compositions often differ from those found on coral reefs nearby. Heterogeneity in species distributions between

  14. Spatial and Temporal Variability in Biogenic Gas Accumulation and Release in The Greater Everglades at Multiple Scales of Measurement

    Science.gov (United States)

    McClellan, M. D.; Cornett, C.; Schaffer, L.; Comas, X.

    2017-12-01

    of gas traps fitted with time-lapse cameras. This research seeks to better understand the spatial and temporal variability of biogenic gas content within wetlands from the Greater Everglades Watershed. Such understanding may help to identify potential hotspots (both in space and time) and their implication for the flux estimates used as input in climate models.

  15. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  16. Local consequences of national policies - a spatial analysis of preferences for forest access reduction

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Elberg; Lundhede, Thomas; Jacobsen, Jette Bredahl

    2016-01-01

    Stated preference studies eliciting welfare economic consequence of national policies, are often not considering the spatial variation in supply and demand. This spatial variation may however cause large distributional heterogeneity of policy changes. In this study, we use a choice experiment to ...

  17. Spatial early warning signals in a lake manipulation

    Science.gov (United States)

    Butitta, Vince L.; Carpenter, Stephen R.; Loken, Luke; Pace, Michael L.; Stanley, Emily H.

    2017-01-01

    Rapid changes in state have been documented for many of Earth's ecosystems. Despite a growing toolbox of methods for detecting declining resilience or early warning indicators (EWIs) of ecosystem transitions, these methods have rarely been evaluated in whole-ecosystem trials using reference ecosystems. In this study, we experimentally tested EWIs of cyanobacteria blooms based on changes in the spatial structure of a lake. We induced a cyanobacteria bloom by adding nutrients to an experimental lake and mapped fine-resolution spatial patterning of cyanobacteria using a mobile sensor platform. Prior to the bloom, we detected theoretically predicted spatial EWIs based on variance and spatial autocorrelation, as well as a new index based on the extreme values. Changes in EWIs were not discernible in an unenriched reference lake. Despite the fluid environment of a lake where spatial heterogeneity driven by biological processes may be overwhelmed by physical mixing, spatial EWIs detected an approaching bloom suggesting the utility of spatial metrics for signaling ecological thresholds.

  18. Modelling long-distance seed dispersal in heterogeneous landscapes.

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.

    2008-01-01

    1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our

  19. Prescribed burning consumes key forest structural components: implications for landscape heterogeneity.

    Science.gov (United States)

    Holland, Greg J; Clarke, Michael F; Bennett, Andrew F

    2017-04-01

    Prescribed burning to achieve management objectives is a common practice in fire-prone regions worldwide. Structural components of habitat that are combustible and slow to develop are particularly susceptible to change associated with prescribed burning. We used an experimental, "whole-landscape" approach to investigate the effect of differing patterns of prescribed burning on key habitat components (logs, stumps, dead trees, litter cover, litter depth, and understorey vegetation). Twenty-two landscapes (each ~100 ha) were selected in a dry forest ecosystem in southeast Australia. Experimental burns were conducted in 16 landscapes (stratified by burn extent) while six served as untreated controls. We measured habitat components prior to and after burning. Landscape burn extent ranged from 22% to 89% across the 16 burn treatments. With the exception of dead standing trees (no change), all measures of habitat components declined as a consequence of burning. The degree of loss increased as the extent to which a landscape was burned also increased. Prescribed burning had complex effects on the spatial heterogeneity (beta diversity) of structural components within landscapes. Landscapes that were more heterogeneous pre-fire were homogenized by burning, while those that were more homogenous pre-fire tended to display greater differentiation post-burning. Thus, the notion that patch mosaic burning enhances heterogeneity at the landscape-scale depends on prior conditions. These findings have important management implications. Where prescribed burns must be undertaken, effects on important resources can be moderated via control of burn characteristics (e.g., burn extent). Longer-term impacts of prescribed burning will be strongly influenced by the return interval, given the slow rate at which some structural components accumulate (decades to centuries). Management of habitat structural components is important given the critical role they play in (1) provision of habitat

  20. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  1. Smoothly varying in-plane stiffness heterogeneity evaluated under uniaxial tensile stress

    Science.gov (United States)

    J.M. Considine; F. Pierron; K.T. Turner; P. Lava; X. Tang

    2017-01-01

    Identification of spatially varying stiffness is a challenging, but important, research topic in the mechanics of materials and can provide the necessary information for material suitability, damage, and process control, especially for high‐value applications. One homogeneous and 3 heterogeneous virtual field method (VFM) formulations were used to create a methodology...

  2. The effects of floodplain soil heterogeneity on meander planform shape

    Science.gov (United States)

    Motta, D.; Abad, J. D.; Langendoen, E. J.; GarcíA, M. H.

    2012-09-01

    Past analytical studies of meander planform development have mostly focused on the complexity of the governing equations, i.e., hydrodynamics, and less so on the stream bank resistance to erosion, whose spatial heterogeneity is difficult to describe deterministically. This motivated the use of a Monte Carlo approach to examine the effects of floodplain soils and their distribution on planform development, with the goal of including bank erosion properties in the analysis. Simulated bank erosion rates are controlled by the resistance to hydraulic erosion of the bank soils using an excess shear stress approach. The spatial distribution of critical shear stress across the floodplain is delineated on a rectangular, equidistant grid with varying degrees of variability. The corresponding erodibility coefficient is computed using a field-derived empirical relation. For a randomly disturbed distribution, in which the mean resistance to erosion exponentially increases away from the valley centerline, two relevant parameters are identified: the standard deviation of the critical shear stress distribution, which controls skewness and variability of the channel centerline, and the cross-valley increase in soil resistance, which constrains lateral migration and also affects bend skewness. For a purely random distribution, migrated centerlines exhibit larger variability for increasing spatial scales of floodplain soil heterogeneity. For equal stochastic variability of the corresponding governing parameters, relating meander migration to hydraulic erosion of the bank soils produces more variability and shape complexity than the "classic" bank migration approach of Ikeda et al. (1981), which relates migration rate to excess velocity at the outer bank. Finally, the proposed stochastic approach provides a foundation for estimating a suitable spatial density of measurements to characterize the physical properties of floodplain soils and vegetation.

  3. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  4. Characterization of Soil Heterogeneity Across Scales in an Intensively Investigated Soil Volume

    Science.gov (United States)

    Patterson, Matthew; Gimenez, Daniel; Nemes, Attila; Dathe, Annette; French, Helen; Bloem, Esther; Koestel, John; Jarvis, Nick

    2016-04-01

    Heterogeneous water flow in undisturbed soils is a natural occurrence that is complex to model due to potential changes in hydraulic properties in soils over changes in space. The use of geophysical methods, such as Electrical Resistivity Tomography (ERT), can provide a minimally-invasive approximation of the spatial heterogeneity of the soil. This spatial distribution can then be combined with measured hydraulic properties to inform a model. An experiment was conducted on an Intensively Investigated Soil Volume (IISV), with dimensions of 2m x 1m x 0.8m, located in an agricultural field that is part of the Gryteland catchment in Ås, Norway. The location of the IISV was determined through surface ERT runs at two sequential resolutions. The first run was used to find an area of higher apparent electrical resistivity in a 23.5 x 11.5 m area with 0.5 m spacing. The second run measured apparent electrical resistivity in a 4.7 x 1 m area with 0.1 m spacing, from which the final IISV volume was derived. Distinct features found in the higher resolution run of the IISV, including a recent tire track from a harvester, were used as a spatial reference point for the installation of 20 pairs of TDR probes and tensiometers. The instruments measured water content, temperature and pressure potential at 10 minute intervals and ran continuously for a period of two weeks. After completion of the data collection the IISV was intensively sampled, with 30 samples taken for bulk density, 62 for hydraulic property measurements, and 20 to be used for both CT scanning and hydraulic property measurements. The measurement of hydraulic properties is ongoing and retention will be measured in the 0 - 100 cm range on a sand table, and from 100 - approx. 900 cm with an automated evaporation method. The formation of spatial clusters to represent the soil heterogeneity as relatively homogeneous units based on mesoscale properties like apparent electrical resistivity, bulk density, texture, in

  5. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  6. sGD: software for estimating spatially explicit indices of genetic diversity.

    Science.gov (United States)

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  7. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  8. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Science.gov (United States)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  9. Heterogeneous distribution of prokaryotes and viruses at the microscale in a tidal sediment

    DEFF Research Database (Denmark)

    Carreira, Cátia; Larsen, Morten; Glud, Ronnie

    2013-01-01

    In this study we show for the first time the microscale (mm) 2- and 3-dimensional spatial distribution and abundance of prokaryotes, viruses, and oxygen in a tidal sediment. Prokaryotes and viruses were highly heterogeneously distributed with patches of elevated abundances surrounded by areas of ...

  10. Characterizing hydrogeologic heterogeneity using lithologic data

    International Nuclear Information System (INIS)

    Flach, G.P.; Hamm, L.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.

    1995-01-01

    Large-scale (> 1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three-dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt + clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling. The approach is demonstrated using a finite-element groundwater flow model of a Savannah River Site solid radioactive and hazardous waste burial ground. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud and calcareous sediment that exhibit abrupt facies changes over short distances

  11. The geological basis and the representation of spatial variability in fractured media

    International Nuclear Information System (INIS)

    Mazurek, M.; Gautschi, A.; Zuidema, P.

    1998-01-01

    Spatial variability of features and parameters relevant for contaminant transport modelling occurs on all scales of interest for the quantification of processes that govern solute migration, typically decimeters to hundreds of meters. Two types of spatial variability are distinguished, namely the internal heterogeneity of each individual water-conducting feature (e.g. the complex architecture of a fault) and the larger-scale heterogeneity that results from the groundwater flow through different types of water-conducting features along the flow-path from the repository to the discharge areas. An up-scaling procedure is required to obtain hydraulic parameters and the properties of the overall flow-path, whereas the heterogeneity of many other geologic features (geometry of flow and matrix porosity, mineralogy, etc.) can be fed directly into coupled codes that quantify radionuclide transport. The procedures needed to derive conceptual models integrating geological and hydraulic field measurements and observations at a given site are illustrated by examples from both crystalline and sedimentary rock formations. (author)

  12. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    Science.gov (United States)

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r 2  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in

  13. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  14. Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies

    Science.gov (United States)

    Ferguson, Elaine A.; Hampson, Katie; Cleaveland, Sarah; Consunji, Ramona; Deray, Raffy; Friar, John; Haydon, Daniel T.; Jimenez, Joji; Pancipane, Marlon; Townsend, Sunny E.

    2015-12-01

    Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010-2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements.

  15. Stability of faults with heterogeneous friction properties and effective normal stress

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul

    2018-05-01

    Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework

  16. Implications of Future Water Use Efficiency for Ecohydrological Responses to Climate Change and Spatial Heterogeneity of Atmospheric CO2 in China

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2013-01-01

    Full Text Available As the atmospheric carbon dioxide (CO2 increases substantially, the spatial distribution of atmospheric CO2 should be considered when estimating the effects of CO2 on the carbon and water cycle coupling of terrestrial ecosystems. To evaluate this effect on future ecohydrological processes, the spatial-temporal patterns of CO2 were established over 1951 - 2099 according to the IPCC emission scenarios SRES A2 and SRES B1. Thereafter, water use efficiency (WUE was used (i.e., Net Primary Production/Evaportranspiration as an indicator to quantify the effects of climate change and uneven CO2 fertilization in China. We carried out several simulated experiments to estimate WUE under different future scenarios using a land process model (Integrated Biosphere Simulator, IBIS. Results indicated that the geographical distributions of averaged WUE have considerable differences under a heterogeneous atmospheric CO2 condition. Under the SRES A2 scenario, WUE decreased slightly with a 5% value in most areas of the southeastern and northwestern China during the 2050s, while decreasing by approximately 15% in southeastern China during the 2090s. During the period of the 2050s under SRES B1 scenario, the change rate of WUE was similar with that under SRES A2 scenario, but the WUE has a more moderate decreasing trend than that under the SRES A2 scenario. In all, the ecosystems in median and low latitude areas had a weakened effect on resisting extreme climate event such as drought. Conversely, the vegetation in a boreal forest had an enhanced buffering capability to tolerate drought events.

  17. Three-phase flow in heterogeneous wettability porous media; Deplacements triphasiques en milieux poreux de mouillabilite heterogene

    Energy Technology Data Exchange (ETDEWEB)

    Jaffrennou-Laroche, C

    1998-11-26

    Better understanding and modelling of three-phase flow through porous media is of great interest, especially for improved oil recovery methods such as gas injection processes. Early theoretical and experimental studies have already demonstrated that the wettability characteristics of the solid surface and the spreading characteristics of the fluid system hold the key roles. This observation is confirmed by our theoretical results using DLP theory on the stability and the thickness of static oil films. In most of the works related to three-phase flow processes, homogeneous wettability is assumed. There exist only a few studies demonstrating the tremendous impact of the wettability heterogeneities on gas injection. The objective of the present work is twofold: to demonstrate the effect of small scale wettability heterogeneities on gas injection efficiency, and to develop a tool to predict this impact for various patterns and spatial distributions. To this end an experimental investigation in transparent glass micro-models is performed and a theoretical simulator is developed. Secondary and tertiary gas injections are performed for different heterogeneity patterns obtained by selective silane grafting. Displacement sequences are video-recorded and fluid saturations are determined by image analysis. Visualization of the displacement mechanisms provides the network model with the basic rules for water/oil and water/oil/gas motion. In water/oil displacement, drainage and imbibition occur according to the local wettability. Three-phase displacement is dominated by drainage mechanisms. The simulator allows the flow of oil through wetting films in the oil-wet regions and through spreading films on water in the water-wet regions. The effect of the wettability heterogeneities on: displacement mechanisms, sweep efficiency, and fluid distribution in three-phase gas injection is clearly demonstrated and successfully described by the network simulator. (author) 175 refs.

  18. Landscape evaluation of heterogeneous areas using fuzzy sets

    Directory of Open Access Journals (Sweden)

    Ralf-Uwe Syrbe

    1998-02-01

    Full Text Available Landscape evaluation is an interesting field for fuzzy approaches, because it happens on the transition line between natural and social systems. Both are very complex. Therefore, transformation of scientific results to politically significant statements on environmental problems demands intelligent support. Particularly landscape planners need methods to gather natural facts of an area and assess them in consideration of its meaning to society as a whole. Since each land unit is heterogeneous, a special methodology is necessary. Such an evaluation technique was developed within a Geographical Information System (ARC/INFO. The methodology combines several known methods with fuzzy approaches to catch the intrinsic fuzziness of ecological systems as well as the heterogeneity of landscape. Additionally, a way will be discussed to vary the fuzzy inference in order to consider spatial relations of various landscape elements. Fuzzy logic is used to process the data uncertainty, to simulate the vagueness of knowledge about ecological functionality, and to model the spatial structure of landscape. Fuzzy sets describe the attributes of thematically defined land units and their assessment results. In this way, the available information will be preserved in their full diversity. The fuzzy operations are executed by AML-programs (ARC/INFO Macro Language. With such a tight coupling, it is possible to use the geographical functions (neighbourhoods, distances, etc. of GIS within the fuzzy system directly.

  19. Heterogeneity and scale of sustainable development in cities.

    Science.gov (United States)

    Brelsford, Christa; Lobo, José; Hand, Joe; Bettencourt, Luís M A

    2017-08-22

    Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals.

  20. Heterogeneity and scale of sustainable development in cities

    Science.gov (United States)

    Brelsford, Christa; Lobo, José; Hand, Joe

    2017-01-01

    Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals. PMID:28461489

  1. Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces

    Directory of Open Access Journals (Sweden)

    Christie Klimas

    2016-08-01

    Full Text Available This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core. We quantified and valued natural capital (tree and soil carbon stocks ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction and disservices (greenhouse gas emissions and soil soluble reactive phosphorus within a 30-hectare heterogeneous green space that included approximately 13% wetland, 13% prairie, 16% forest, and 55% subdivision. We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1000+ per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual greenhouse gas emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie. Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public urban or suburban lots may benefit from careful consideration of small-scale variability.

  2. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  3. Communicating why land surface heterogeneity matters

    Science.gov (United States)

    Tague, C.; Burke, W.; Bart, R. R.; Turpin, E.; Wood, T.; Gordon, D.

    2017-12-01

    As hydrologic scientists, we know that land surface heterogeneity can have nuanced and sometimes dramatic impacts on the water cycle. Land surface characteristics, including the structure and composition of vegetation and soil storage and drainage properties, alter how incoming precipitation is translated into streamflow and evapotranspiration. Land surface heterogeneity can explain why this partitioning of incoming precipitation cannot always be computed by a simple water budget calculation. We also know that land surface characteristics are dynamic - vegetation grows and changes with fire, disease and human actions and these changes will alter the partitioning of water - how much so, however depends itself on other site characteristics - soil water storage and the timing and magnitude of precipitation. This complex impact of space-time dynamics on the water cycle is something we need to effectively communicate to non-experts. For example, we may want to explain why sometimes forest management practices increase water availability but sometimes they don't - or why the impacts of urbanization or fire are location specific. If we do not communicate these dependencies we risk over-simplifying and eroding scientific credibility when observed effects don't match simple generalizations. On the other hand excessive detail can overwhelm and disengage audiences. So how do we help different communities public, private landowners, other scientists, NGOs, governments to better understand the role of space-time heterogeneity. To address this issue, we present some results from ongoing work that looks at the impact of fuel treatment of forest ecohydrology. This work stem from a collaboration between an ecohydrologic modeling team, social-scientists, a visual artist and compute graphics students. We use a coupled model, validated with field measurements, to show why spatial heterogeneity matters for understanding the impact of fuel treatments on the water cycle for the Sierra

  4. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change

    Science.gov (United States)

    Fullerton, A.H.; Torgersen, Christian E.; Lawer, J.J.; Steel, E. A.; Ebersole, J.L.; Lee, S.Y.

    2018-01-01

    Climate-change driven increases in water temperature pose challenges for aquatic organisms. Predictions of impacts typically do not account for fine-grained spatiotemporal thermal patterns in rivers. Patches of cooler water could serve as refuges for anadromous species like salmon that migrate during summer. We used high-resolution remotely sensed water temperature data to characterize summer thermal heterogeneity patterns for 11,308 km of second–seventh-order rivers throughout the Pacific Northwest and northern California (USA). We evaluated (1) water temperature patterns at different spatial resolutions, (2) the frequency, size, and spacing of cool thermal patches suitable for Pacific salmon (i.e., contiguous stretches ≥ 0.25 km, ≤ 15 °C and ≥ 2 °C, aooler than adjacent water), and (3) potential influences of climate change on availability of cool patches. Thermal heterogeneity was nonlinearly related to the spatial resolution of water temperature data, and heterogeneity at fine resolution ( 2.7 and  5.7 and < 49.4 km. Thermal heterogeneity varied among rivers, some of which had long uninterrupted stretches of warm water ≥ 20 °C, and others had many smaller cool patches. Our models predicted little change in future thermal heterogeneity among rivers, but within-river patterns sometimes changed markedly compared to contemporary patterns. These results can inform long-term monitoring programs as well as near-term climate-adaptation strategies.

  5. Monitoring eye movements to investigate the picture superiority effect in spatial memory.

    Science.gov (United States)

    Cattaneo, Zaira; Rosen, Mitchell; Vecchi, Tomaso; Pelz, Jeff B

    2008-01-01

    Spatial memory is usually better for iconic than for verbal material. Our aim was to assess whether such effect is related to the way iconic and verbal targets are viewed when people have to memorize their locations. Eye movements were recorded while participants memorized the locations of images or words. Images received fewer, but longer, gazes than words. Longer gazes on images might reflect greater attention devoted to images due to their higher sensorial distinctiveness and/or generation with images of an additional phonological code beyond the visual code immediately available. We found that words were scanned mainly from left to right while a more heterogeneous scanning strategy characterized encoding of images. This suggests that iconic configurations tend to be maintained as global integrated representations in which all the item/location pairs are simultaneously present whilst verbal configurations are maintained through more sequential processes.

  6. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Science.gov (United States)

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  7. Spatially explicit animal response to composition of habitat

    Science.gov (United States)

    Benjamin P. Pauli; Nicholas P. McCann; Patrick A. Zollner; Robert Cummings; Jonathan H. Gilbert; Eric J. Gustafson

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-...

  8. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy feedstocks in Iowa, USA

    Science.gov (United States)

    The positive association between habitat heterogeneity and species diversity has been well-documented for many taxa at various spatial and temporal scales, and the maintenance of habitat heterogeneity in agricultural landscapes has been promoted as a key strategy in efforts to conserve biodiversity....

  9. Overview on Clinical Relevance of Intra-Tumor Heterogeneity.

    Science.gov (United States)

    Stanta, Giorgio; Bonin, Serena

    2018-01-01

    Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.

  10. Overview on Clinical Relevance of Intra-Tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Giorgio Stanta

    2018-04-01

    Full Text Available Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.

  11. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  12. Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk.

    Science.gov (United States)

    Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; Mies, Carolyn; Feldman, Michael; Rosen, Mark; Kontos, Despina

    2013-01-01

    Breast tumors are heterogeneous lesions. Intra-tumor heterogeneity presents a major challenge for cancer diagnosis and treatment. Few studies have worked on capturing tumor heterogeneity from imaging. Most studies to date consider aggregate measures for tumor characterization. In this work we capture tumor heterogeneity by partitioning tumor pixels into subregions and extracting heterogeneity wavelet kinetic (HetWave) features from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to obtain the spatiotemporal patterns of the wavelet coefficients and contrast agent uptake from each partition. Using a genetic algorithm for feature selection, and a logistic regression classifier with leave one-out cross validation, we tested our proposed HetWave features for the task of classifying breast cancer recurrence risk. The classifier based on our features gave an ROC AUC of 0.78, outperforming previously proposed kinetic, texture, and spatial enhancement variance features which give AUCs of 0.69, 0.64, and 0.65, respectively.

  13. Lessons from the restructuring of the Danish planning system and its impact on the Greater Copenhagen Region

    DEFF Research Database (Denmark)

    Galland, Daniel

    2013-01-01

    This paper explores the rise and decay of regional planning policies and institutions in the Greater Copenhagen Region (GCR) since the postwar era. The paper develops an understanding based on spatial selectivity and spatial rescaling as regards the fluctuating planning context in the GCR through...

  14. From medium heterogeneity to flow and transport: A time-domain random walk approach

    Science.gov (United States)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  15. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  16. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  17. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence

    Science.gov (United States)

    Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian

    2018-01-01

    We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the

  18. Multiscale characteristics of mechanical and mineralogical heterogeneity using nanoindentation and Maps Mineralogy in Mancos Shale

    Science.gov (United States)

    Yoon, H.; Mook, W. M.; Dewers, T. A.

    2017-12-01

    Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by

  19. Catchment heterogeneity controls emergent archetype concentration-discharge relationships

    Science.gov (United States)

    Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.

    2017-12-01

    Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.

  20. Spatiotemporal Heterogeneity of Dissolved Organic Carbon in Waters and Soils in a Snow-dominated Headwater Catchment: Investigations at Reynolds Creek Critical Zone Observatory, Owyhee County, Idaho

    Science.gov (United States)

    Radke, A. G.; Godsey, S.; Lohse, K. A.; Huber, D. P.; Patton, N. R.; Holbrook, S.

    2017-12-01

    The non-uniform distribution of precipitation in snowmelt-driven systems—the result of blowing and drifting snow—is a primary driver of spatial heterogeneity in vegetative communities and soil development. Snowdrifts may increase bedrock weathering below them, creating deeper soils and the potential for greater fracture flow. These snowdrift areas are also commonly more productive than the snow-starved, scoured areas where wind has removed snow. Warming-induced changes in the fraction of precipitation falling as snow, and therefore subject to drifting, may significantly affect carbon dynamics on multiple timescales. The focus of this study is to understand the coupled hydrological and carbon dynamics in a heterogeneous, drift-dominated watershed. We seek to determine the paths of soil water and groundwater in a small headwater catchment (Reynolds Mountain East, Reynolds Creek Critical Zone Observatory, Idaho, USA). Additionally, we anticipate quantifying the flux of dissolved organic carbon through these paths, and relate this to zones of greater vegetative productivity. We deduce likely flowpaths through a combination of soil water, groundwater, and precipitation characterization. Along a transect running from a snowdrift to the stream, we measure hydrometric and hydrochemical signatures of flow throughout the snowmelt period and summer. We then use end-member-mixing analysis to interpret flowpaths in light of inferred subsurface structure derived from drilling and electrical resistance tomography transects. Preliminary results from soil moisture sensors suggest that increased bedrock weathering creates pathways by which snowmelt bypasses portions of the soil, further increasing landscape heterogeneity. Further analysis will identify seasonal changes in carbon sourcing for this watershed, but initial indications are that spring streamwater is sourced primarily from soil water, with close associations between soil carbon and DOC.

  1. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard

    2015-01-01

    inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...... and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed...

  2. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    Science.gov (United States)

    Lee, Hyungseok; Cho, Dong-Woo

    2016-07-05

    Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.

  3. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    Science.gov (United States)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport

  4. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland.

    Science.gov (United States)

    Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Arni; Räsänen, Katja

    2013-09-01

    Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments - favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.

  5. Detecting the Land-Cover Changes Induced by Large-Physical Disturbances Using Landscape Metrics, Spatial Sampling, Simulation and Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2009-08-01

    Full Text Available The objectives of the study are to integrate the conditional Latin Hypercube Sampling (cLHS, sequential Gaussian simulation (SGS and spatial analysis in remotely sensed images, to monitor the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial heterogeneity and variability. The multiple NDVI images demonstrate that spatial patterns of disturbed landscapes were successfully delineated by spatial analysis such as variogram, Moran’I and landscape metrics in the study area. The hybrid method delineates the spatial patterns and spatial variability of landscapes caused by these large disturbances. The cLHS approach is applied to select samples from Normalized Difference Vegetation Index (NDVI images from SPOT HRV images in the Chenyulan watershed of Taiwan, and then SGS with sufficient samples is used to generate maps of NDVI images. In final, the NDVI simulated maps are verified using indexes such as the correlation coefficient and mean absolute error (MAE. Therefore, the statistics and spatial structures of multiple NDVI images present a very robust behavior, which advocates the use of the index for the quantification of the landscape spatial patterns and land cover change. In addition, the results transferred by Open Geospatial techniques can be accessed from web-based and end-user applications of the watershed management.

  6. Assessing absorbed dose heterogeneities for organ S-value calculation in mice

    International Nuclear Information System (INIS)

    Mauxion, T.; Villoing, D.; Marcatili, S.; Garcia, M.P.; Poirot, M.; Bardies, M.; Suhard, J.; Barbet, J.

    2015-01-01

    Full text of publication follows. Introduction and aim: S-values calculated according to the MIRD scheme strongly depend on the size of source/target regions and particle ranges (1). Several mean organ S-values were recently calculated for mice in the context of targeted radionuclide therapy and molecular imaging (2). However, the heterogeneity of energy deposition at the sub-organ level is seldom taken into account and the relevance of mean organ S-values is not systematically evaluated. This study aims at assessing spatial variations associated to mean S-values for small animals to estimate energy deposition heterogeneity at the sub-organ or voxel level. Materials and methods: a 29 g-mouse-model generated at high spatial sampling (200*200*200 μm 3 ) from the Moby software was used to calculate S-values for several radionuclides of interest (3). Monte Carlo simulations were performed with GATE (v6.2), in which specific corrections were implemented and validated to improve the accuracy of voxel energy-scoring. Mean S-values and standard deviations were calculated from 3D-voxel-based energy deposition maps for several source/target organ pairs. As the standard deviation associated to the mean S-value in a given target organ includes both spatial and statistical fluctuations, we simulated an increasing number of primary particles (typically from 10 6 to 10 10 ) to estimate the impact of relative statistical/spatial fluctuations for several source/target pairs. A spatial dispersion factor (HS-value for Heterogeneity of S-value) was obtained when the standard deviation converged to a stable value. Results: several HS-values calculated for source organs were significant in case of self-irradiation for all considered radionuclides, but remained very low as compared to values obtained for short and large source/target distances. For example, for 131 I sources located in the thyroid, S(thyroid - thyroid)=1.80*10 -9 Gy.Bq -1 .s -1 and HS(thyroid - thyroid)=3.09*10 -10 Gy

  7. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition.

    Science.gov (United States)

    Smith, Joshua B; Laatsch, Lauren J; Beasley, James C

    2017-08-31

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate of arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.

  8. Enhanced Deforestation Mapping in North Korea using Spatial-temporal Image Fusion Method and Phenology-based Index

    Science.gov (United States)

    Jin, Y.; Lee, D.

    2017-12-01

    North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods

  9. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    Science.gov (United States)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  10. Spatial transcriptomics: paving the way for tissue-level systems biology.

    Science.gov (United States)

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of tissue heterogeneity on quantification in positron emission tomography

    International Nuclear Information System (INIS)

    Blomqvist, G.; Lammertsma, A.A.; Mazoyer, B.; Wienhard, K.

    1995-01-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR glc in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k 2 and k 3 for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k on .B max could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B max was found to be insensitive while K d was very sensitive to tissue heterogeneity. (orig.)

  12. Effect of tissue heterogeneity on quantification in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, G [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A A [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d` Orsay and Antenne d` Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  13. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    International Nuclear Information System (INIS)

    Martz, H.E.; Decman, B.J.; Roberson, G.P.; Levai, F.

    1997-01-01

    Traditional gamma safeguards measurements have usually been performed using a segmented gamma scanning (SGS) system. The accuracy of this technique relies on the assumption that the sample matrix and the activity are both uniform for a segment. Waste barrels are often highly heterogeneous, span a wide range of composition and matrix type. The primary sources of error are all directly or indirectly related to a non-uniform measurement response associated with unknown radioactive source spatial distribution and heterogeneity of the matrix. These errors can be significantly reduced by some imaging techniques that measure exact spatial locations of sources and attenuation maps. In this paper we describe a joint R ampersand D effort between the Lawrence Livermore National Laboratory (LLNL) and the Institute of Nuclear Techniques (INT) of the Technical University, Budapest, to compare results obtained by two different gamma-ray nondestructive assay (NDA) systems used for imaging waste barrels. The basic principles are the same, but the approaches are different. Key factors to judge the adequacy of a method are the detection limit and the accuracy. Test drums representing waste to be measured are used to determine basic parameters of these techniques

  14. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    Science.gov (United States)

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  15. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    Science.gov (United States)

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity.

    Science.gov (United States)

    Santos-Vega, Mauricio; Martinez, Pamela P; Pascual, Mercedes

    2016-10-01

    Urbanization and climate change are the two major environmental challenges of the 21st century. The dramatic expansion of cities around the world creates new conditions for the spread, surveillance, and control of infectious diseases. In particular, urban growth generates pronounced spatial heterogeneity within cities, which can modulate the effect of climate factors at local spatial scales in large urban environments. Importantly, the interaction between environmental forcing and socioeconomic heterogeneity at local scales remains an open area in infectious disease dynamics, especially for urban landscapes of the developing world. A quantitative and conceptual framework on urban health with a focus on infectious diseases would benefit from integrating aspects of climate forcing, population density, and level of wealth. In this paper, we review what is known about these drivers acting independently and jointly on urban infectious diseases; we then outline elements that are missing and would contribute to building such a framework. © 2016 New York Academy of Sciences.

  17. 3D spatial information infrastructure : The case of Port Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.

    2012-01-01

    The development and maintenance of the infrastructure, facilities, logistics and other assets of the Port of Rotterdam requires a broad spectrum of heterogeneous information. This information concerns features, which are spatially distributed above ground, underground, in the air and in the water.

  18. 3D Spatial Information Infrastructure for the Port of Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.; Boersma, A.J.; Mulder, A.; Goos, J.

    2013-01-01

    The maintenance of the complex infrastructure and facilities of Port of Rotterdam is based on large amounts of heterogeneous information. Almost all activities of the Port require spatial information about features above- and under- ground. Current information systems are department and data

  19. Regional Convergence of Income: Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Vera Ivanovna Ivanova

    2014-12-01

    Full Text Available Russia has a huge territory and a strong interregional heterogeneity, so we can assume that geographical factors have a significant impact on the pace of economic growth in Russian regions. Therefore the article is focused on the following issues: 1 correlation between comparative advantages of geographical location and differences in growth rates; 2 impact of more developed regions on their neighbors and 3 correlation between economic growth of regions and their spatial interaction. The article is devoted to the empirical analysis of regional per capita incomes from 1996 to 2012 and explores the dynamics of the spatial autocorrelation of regional development indicator. It is shown that there is a problem of measuring the intensity of spatial dependence: factor value of Moran’s index varies greatly depending on the choice of the matrix of distances. In addition, with the help of spatial econometrics the author tests the following hypotheses: 1 there is convergence between regions for a specified period; 2 the process of beta convergence is explained by the spatial arrangement of regions and 3 there is positive impact of market size on regional growth. The author empirically confirmed all three hypotheses

  20. Visual EKF-SLAM from Heterogeneous Landmarks.

    Science.gov (United States)

    Esparza-Jiménez, Jorge Othón; Devy, Michel; Gordillo, José L

    2016-04-07

    Many applications require the localization of a moving object, e.g., a robot, using sensory data acquired from embedded devices. Simultaneous localization and mapping from vision performs both the spatial and temporal fusion of these data on a map when a camera moves in an unknown environment. Such a SLAM process executes two interleaved functions: the front-end detects and tracks features from images, while the back-end interprets features as landmark observations and estimates both the landmarks and the robot positions with respect to a selected reference frame. This paper describes a complete visual SLAM solution, combining both point and line landmarks on a single map. The proposed method has an impact on both the back-end and the front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM (the management of a map composed of both point and line landmarks); from this perspective, the comparison between landmark parametrizations and the evaluation of how the heterogeneity improves the accuracy on the camera localization, the development of a front-end active-search process for linear landmarks integrated into SLAM and the experimentation methodology.

  1. Agent-based land markets: Heterogeneous agents, land proces and urban land use change

    NARCIS (Netherlands)

    Filatova, Tatiana; Parker, Dawn C.; van der Veen, A.; Amblard, F.

    2007-01-01

    We construct a spatially explicit agent-based model of a bilateral land market. Heterogeneous agents form their bid and ask prices for land based on the utility that they obtain from a certain location (houte/land) and base on the state of the market (an excess of demand or supply). We underline the

  2. Perspectives of Spatial Scale in a Wildland Forest Epidemic

    Science.gov (United States)

    W.W. Dillon; S.E. Haas; D.M. Rizzo; R.K. Meentemeyer

    2014-01-01

    The challenge of observing interactions between plant pathogens, their hosts, and environmental heterogeneity across multiple spatial scales commonly limits our ability to understand and manage wildland forest epidemics. Using the forest pathogen Phytophthora ramorum as a case study, we established 20 multiscale field sites to analyze how host-...

  3. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  4. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.

    Science.gov (United States)

    Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S

    2010-03-01

    Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an

  5. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    Science.gov (United States)

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  8. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities.

    Science.gov (United States)

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.

  9. Heterogeneous analysis of non-uniform neutron field formation

    International Nuclear Information System (INIS)

    Zagrebaev, A.M.; Fedosov, A.M.

    1979-01-01

    Investigated are the specific features of spatial-energy neutron distribution formation in the transient zone between regions, operating at different levels of energy release with accounting for the real structure of fuel element lattice and control elements in the channel reactors of high power. Presented are the calculation results, obtained by heterogeneous method in the two-group monopole approximation by means of the HETLAT code. The analysis, based on the homogeneous model shows, that the efficiency of the transient zone in forming neutron flux qradient can be increased by introducing an additional interlayer of moderator between the layers with extreme multiplying properties. It is stressed, that the most favourable from the point of view of energy release uniformity in zones and width of the transient zone is the variant in which neutron flux gradient is carried out by moving the control elements on the boundaries of regions while the internal rows of control elements create the conditions for flattening the energy release in the zones. The result obtained corresponds to the recommendation on optimal control, coming from the Pontryagin maximum principle. The analysis of neutron field formation using heterogeneous models mainly proves the conclusions following from homogeneous calculations using the maximum principle. At the same time quantitative results for the zones of small dimensions (less than 10 migration lengths) with a vividly expressed heterogeneous structure essentially differ from the forecast, obtained on the basis of the simplified homogeneous one-group model. The heterogeneous analysis shows possibilities for further optimization of the transient zone structure with account of the control element location

  10. Spatial correlation analysis of urban traffic state under a perspective of community detection

    Science.gov (United States)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  11. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater augusta, maine

    Science.gov (United States)

    Yang, Q.; Jung, H.B.; Culbertson, C.W.; Marvinney, R.G.; Loiselle, M.C.; Locke, D.B.; Cheek, H.; Thibodeau, H.; Zheng, Yen

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed, and 31% of the sampled wells have arsenic concentrations >10 ??g/L. The probability of [As] exceeding 10 ??g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (???40%). This probability differs significantly (p bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium, and high arsenic occurrences in four cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (???1135 km2) are at risk of exposure to >10 ??g/L arsenic in groundwater. ?? 2009 American Chemical Society.

  12. Using GIS for spatial exploratory analysis of borehole data: a ...

    African Journals Online (AJOL)

    Groundwater is an inimitable resource that provides water to communities especially in arid and semi-arid regions. However, the spatial variability of the resource as well as the heterogeneity and complex nature of aquifer systems that store groundwater presents difficulties for groundwater development. Thus ...

  13. Food web heterogeneity and succession in created saltmarshes

    Science.gov (United States)

    Nordstrom, M C; Demopoulos, Amanda W.J.; Whitcraft, CR; Rismondo, A.; McMillan, P.; Gonzales, J P; Levin, L A

    2015-01-01

    1. Ecological restoration must achieve functional as well as structural recovery. Functional metrics for reestablishment of trophic interactions can be used to complement traditional monitoring of structural attributes. In addition, topographic effects on food web structure provide added information within a restoration context; often, created sites may require spatial heterogeneity to effectively match structure and function of natural habitats. 2. We addressed both of these issues in our study of successional development of benthic food web structure, with focus on bottom–up driven changes in macroinvertebrate consumer assemblages in the salt marshes of the Venice Lagoon, Italy. We combined quantified estimates of the changing community composition with stable isotope data (13C:12C and 15N:14N) to compare the general trophic structure between created (2–14 years) marshes and reference sites and along topographic elevation gradients within salt marshes. 3. Macrofaunal invertebrate consumers exhibited local, habitat-specific trophic patterns. Stable isotope-based trophic structure changed with increasing marsh age, in particular with regards to mid-elevation (Salicornia) habitats. In young marshes, the mid-elevation consumer signatures resembled those of unvegetated ponds. The mid elevation of older and natural marshes had a more distinct Salicornia-zone food web, occasionally resembling that of the highest (Sarcocornia-dominated) elevation. In summary, this indicates that primary producers and availability of vascular plant detritus structure consumer trophic interactions and the flow of carbon. 4. Functionally different consumers, subsurface-feeding detritivores (Oligochaeta) and surface grazers (Hydrobia sp.), showed distinct but converging trajectories of isotopic change over time, indicating that successional development may be asymmetric between ‘brown’ (detrital) guilds and ‘green’ (grazing) guilds in the food web. 5. Synthesis and applications

  14. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  15. Expression of FAP, ADAM12, WISP1, and SOX11 is heterogeneous in aggressive fibromatosis and spatially relates to the histologic features of tumor activity

    International Nuclear Information System (INIS)

    Misemer, Benjamin S; Skubitz, Amy P N; Carlos Manivel, J; Schmechel, Stephen C; Cheng, Edward Y; Henriksen, Jonathan C; Koopmeiners, Joseph S; Corless, Christopher L; Skubitz, Keith M

    2014-01-01

    Aggressive fibromatosis (AF) represents a group of tumors with a variable and unpredictable clinical course, characterized by a monoclonal proliferation of myofibroblastic cells. The optimal treatment for AF remains unclear. Identification and validation of genes whose expression patterns are associated with AF may elucidate biological mechanisms in AF, and aid treatment selection. This study was designed to examine the protein expression by immunohistochemistry (IHC) of four genes, ADAM12, FAP, SOX11, and WISP1, that were found in an earlier study to be uniquely overexpressed in AF compared with normal tissues. Digital image analysis was performed to evaluate inter- and intratumor heterogeneity, and correlate protein expression with histologic features, including a histopathologic assessment of tumor activity, defined by nuclear chromatin density ratio (CDR). AF tumors exhibited marked inter- and intratumor histologic heterogeneity. Pathologic assessment of tumor activity and digital assessment of average nuclear size and CDR were all significantly correlated. IHC revealed protein expression of all four genes. IHC staining for ADAM12, FAP, and WISP1 correlated with CDR and was higher, whereas SOX11 staining was lower in tumors with earlier recurrence following excision. All four proteins were expressed, and the regional variation in tumor activity within and among AF cases was demonstrated. A spatial correlation between protein expression and nuclear morphology was observed. IHC also correlated with the probability of recurrence following excision. These proteins may be involved in AF pathogenesis and the corresponding pathways could serve as potential targets of therapy

  16. Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails

    DEFF Research Database (Denmark)

    Meli, Mattia; Auclerc, Apolline; Palmqvist, Annemette

    2013-01-01

    Contamination of soil with toxic heavy metals poses a major threat to the environment and human health. Anthropogenic sources include smelting of ores, municipal wastes, fertilizers, and pesticides. In assessing soil quality and the environmental and ecological risk of contamination with heavy...... metals, often homogeneous contamination of the soil is assumed. However, soils are very heterogeneous environments. Consequently, both contamination and the response of soil organisms can be assumed to be heterogeneous. This might have consequences for the exposure of soil organisms...

  17. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Science.gov (United States)

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  18. Spatial Models of Prebiotic Evolution: Soup Before Pizza?

    Science.gov (United States)

    Scheuring, István; Czárán, Tamás; Szabó, Péter; Károlyi, György; Toroczkai, Zoltán

    2003-10-01

    The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality (speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows (`soup') and surface dynamics (`pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

  19. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.

    Science.gov (United States)

    Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan

    2017-12-06

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.

  20. An LES study on the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL)

    Science.gov (United States)

    Kang, S. L.; Chun, J.; Kumar, A.

    2015-12-01

    We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.

  1. How Spatial Relationships Influence Economic Preferences for Wind Power—A Review

    Directory of Open Access Journals (Sweden)

    Lauren Knapp

    2015-06-01

    Full Text Available An increasing number of studies in the environmental and resource economic literature suggest that preferences for changes or improvements in environmental amenities, from water quality to recreation, are spatially heterogeneous. One of these effects in particular, distance decay, suggests that respondents exhibit a higher willingness to pay (WTP the closer they live to a proposed environmental improvement and vice versa. The importance of spatial effects cannot be underestimated. Several of these studies find significant biases in aggregate WTP values, and therefore social welfare, from models that disregard spatial factors. This relationship between spatial aspects and preferences, however, remains largely ignored in the non-market valuation literature applied to valuing preferences for renewable energy, generally, and wind power, specifically. To our knowledge, fourteen peer-reviewed studies have been conducted to estimate stated preferences (SP for onshore and/or offshore wind development, yet less than half of those utilize any measure to account for the relationship between spatial effects and preferences. Fewer still undertake more robust measures that account for these spatially dependent relationships, such as via GIS, outside incorporating a single ‘distance’ attribute within the choice experiment (CE referenda. This paper first reviews the methodologies of the SP wind valuation studies that have integrated measure(s to account for spatial effects. We then categorize these effects into three dimensions—distance to a proposed wind project, distance to existing wind project(s, and cumulative effects—supporting each with a discussion of significant findings, including those found in the wind hedonic and acceptance literature. Policy implications that can be leveraged to maximize social welfare when siting future wind projects as well as recommendations for additional research to control for preference spatial heterogeneity in wind

  2. Assessment of the ripple effects and spatial heterogeneity of total losses in the capital of China after a great catastrophic shock

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-03-01

    introduce the sectors' losses caused by the 2008 Wenchuan earthquake (2008 WCE in Beijing, utilizing the Adaptive Regional Input–Output (ARIO model and the Inter-regional ripple effect (IRRE model. The purpose is to assess the ripple effects of indirect economic loss and spatial heterogeneity of both direct and indirect economic loss at the scale of the smallest administrative divisions of China (streets, villages, and towns. The results indicate that the district of Beijing with the most severe indirect economic loss is the Chaoyang District; the finance and insurance industry (15, see Table 1 of Chaowai Street suffers the most in the Chaoyang District, which is 1.46 times that of its direct economic loss. During 2008–2014, the average annual GDP (gross domestic product growth rate of Beijing was decreased 3.63 % by the catastrophe. Compared with the 8 % of GDP growth rate target, the decreasing GDP growth rate is a significant and noticeable economic impact, and it can be efficiently mitigated by increasing rescue effort and by supporting the industries which are located in the seriously damaged regions.

  3. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available Soil loss tolerance (T value is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a, and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  4. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    Science.gov (United States)

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A

    2015-01-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    Science.gov (United States)

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  6. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    Science.gov (United States)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  7. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.

    1979-01-01

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  8. Spatial Structure of Modern Moscow

    Directory of Open Access Journals (Sweden)

    Daria V. Goloukhova

    2015-01-01

    Full Text Available The article is focused on the spatial structure of modern Moscow and features distinguishing it from the cities of Western Europe and the US. The city has hybrid spatial structure combining elements which emerged on different stages of the city development. In the 14th century two tendencies appeared: the prestige of the city centre and opposition of Western districts as more prestigious to Eastern districts as less prestigious. Crucial spatial characteristics emerged in the Soviet era and up to now they define the image of Moscow. Firstly, it's a peculiar density profile. Population density in post-socialist cities tends to increase as we move further from the city centre while in Western European cities population density is the highest in central districts. Secondly, elementary units of Moscow spatial structure are so called micro-districts (neighbourhoods. The concept of a microdistrict was very popular with Soviet urban planners and widely applied in the residential construction. Another peculiarity of Moscow spatial structure is social heterogeneity of districts and absence of ethnic quarters or ghettos. Furthermore, significant part of the city area is occupied by former industrials zones which are not used anymore and need to be reconstructed. With transition to market economy a number of spatial changes emerged. They were partly related to the large-scale privatization, infill construction and lack of effective urban planning policy. In conclusion the article states the need for the new model of spatial organization which would take into account the specifics of Russian reality.

  9. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    Directory of Open Access Journals (Sweden)

    L. Xu

    2016-02-01

    Full Text Available The composition of PM1 (particulate matter with diameter less than 1 µm in the greater London area was characterized during the Clean Air for London (ClearfLo project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS were deployed at a rural site (Detling, Kent and an urban site (North Kensington, London. The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  10. Group heterogeneity increases the risks of large group size: a longitudinal study of productivity in research groups.

    Science.gov (United States)

    Cummings, Jonathon N; Kiesler, Sara; Bosagh Zadeh, Reza; Balakrishnan, Aruna D

    2013-06-01

    Heterogeneous groups are valuable, but differences among members can weaken group identification. Weak group identification may be especially problematic in larger groups, which, in contrast with smaller groups, require more attention to motivating members and coordinating their tasks. We hypothesized that as groups increase in size, productivity would decrease with greater heterogeneity. We studied the longitudinal productivity of 549 research groups varying in disciplinary heterogeneity, institutional heterogeneity, and size. We examined their publication and citation productivity before their projects started and 5 to 9 years later. Larger groups were more productive than smaller groups, but their marginal productivity declined as their heterogeneity increased, either because their members belonged to more disciplines or to more institutions. These results provide evidence that group heterogeneity moderates the effects of group size, and they suggest that desirable diversity in groups may be better leveraged in smaller, more cohesive units.

  11. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Micco, Maura; Lakhman, Yulia; Meier, Andreas A.; Sosa, Ramon; Hricak, Hedvig; Sala, Evis [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Veeraraghavan, Harini; Deasy, Joseph [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Nougaret, Stephanie [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Service de Radiologie, Institut Regional du Cancer de Montpellier, Montpellier (France); INSERM, U1194, Institut de Recherche en Cancerologie de Montpellier (IRCM), Montpellier (France); Soslow, Robert A.; Weigelt, Britta [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Levine, Douglas A. [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); Aghajanian, Carol; Snyder, Alexandra [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States)

    2017-09-15

    To evaluate the associations between clinical outcomes and radiomics-derived inter-site spatial heterogeneity metrics across multiple metastatic lesions on CT in patients with high-grade serous ovarian cancer (HGSOC). IRB-approved retrospective study of 38 HGSOC patients. All sites of suspected HGSOC involvement on preoperative CT were manually segmented. Gray-level correlation matrix-based textures were computed from each tumour site, and grouped into five clusters using a Gaussian Mixture Model. Pairwise inter-site similarities were computed, generating an inter-site similarity matrix (ISM). Inter-site texture heterogeneity metrics were computed from the ISM and compared to clinical outcomes. Of the 12 inter-site texture heterogeneity metrics evaluated, those capturing the differences in texture similarities across sites were associated with shorter overall survival (inter-site similarity entropy, similarity level cluster shade, and inter-site similarity level cluster prominence; p ≤ 0.05) and incomplete surgical resection (similarity level cluster shade, inter-site similarity level cluster prominence and inter-site cluster variance; p ≤ 0.05). Neither the total number of disease sites per patient nor the overall tumour volume per patient was associated with overall survival. Amplification of 19q12 involving cyclin E1 gene (CCNE1) predominantly occurred in patients with more heterogeneous inter-site textures. Quantitative metrics non-invasively capturing spatial inter-site heterogeneity may predict outcomes in patients with HGSOC. (orig.)

  12. Quantification of within-sample genetic heterogeneity from SNP-array data

    DEFF Research Database (Denmark)

    Martinez, Pierre; Kimberley, Christopher; Birkbak, Nicolai Juul

    2017-01-01

    Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to implement. There is therefore a need for tools to estimate ITH in individual samples, using...... standard genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel scores S and R, respectively based on the Shannon diversity index and Ripley's L statistic of spatial homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures...... sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered accurate quantification. The prognostic potential of both scores was moderate but significantly predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual SNP...

  13. Spatialization of the impacts of the economic regulation of the greenhouse in the agricultural sector; Spatialisation des impacts de la regulation economique de l'effet de serre d'origine agricole

    Energy Technology Data Exchange (ETDEWEB)

    Jayet, P.A

    2004-02-15

    This report addresses the issue of the spatialization of the impacts of greenhouse gas mitigation policies in the agricultural sector. Generally speaking, the objective is to reach a compromise between large-scale macro-economic modelling approaches - which often overlook the spatial variability of emissions and abatement costs - and field-scale biophysical modelling approaches. The studies carried out in the course of this project rely for the most part on a supply-side oriented economic model of the EU agriculture based on micro-economic concepts, mathematical programming and optimization. The analysis of spatial implications of GHG mitigation polices relies on the use of Geographic Information Systems (GIS), which allows for spatial integration of the results provided by the economic model. We first carry out a comprehensive assessment of the emission sources of methane and nitrous oxide for the EU agriculture at a regional scale (FADN regions, scale at which data that feed the economic model are available). The abatement supply from the agricultural sector is derived from this assessment by simulating the impact of a first-best instrument (namely an emission tax). We therefore estimate the marginal abatement cost curves for all sources and at the farm-type level. The heterogeneity of abatement costs is discussed both at the regional scale (spatially defined) and at the farm-type level (non spatially-defined). Our results show that the spatial heterogeneity of abatement costs is of crucial importance in the design of GHG mitigation policies. The greater is the heterogeneity of abatement costs, the larger is the efficiency loss associated with non incentive-based instruments. We estimate this efficiency loss in the case of uniform quotas. Down-scaling the economic and environmental results from the FADN-region scale to a finer scale requires the linking of the simulation results with geo-referenced databases and GIS tools. This has been carried out for a test

  14. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  15. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  16. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    El Sebai, T. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Lagacherie, B. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Soulas, G. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Martin-Laurent, F. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France)]. E-mail: fmartin@dijon.inra.fr

    2007-02-15

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass.

  17. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    International Nuclear Information System (INIS)

    El Sebai, T.; Lagacherie, B.; Soulas, G.; Martin-Laurent, F.

    2007-01-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass

  18. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  19. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Constellium Technology Center, CS 10027, 38341 Voreppe Cedex (France); Deschamps, Alexis; De Geuser, Frédéric [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Robaut, Florence [Consortium des Moyens Technologiques Communs, Grenoble-INP, F-38502 St. Martin d’Hères (France)

    2015-03-11

    The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al–Cu–Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T{sub 1} precipitates.

  20. DEVELOPMENT OF A HETEROGENIC DISTRIBUTED ENVIRONMENT FOR SPATIAL DATA PROCESSING USING CLOUD TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. S. Garov

    2016-06-01

    Full Text Available We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.