WorldWideScience

Sample records for greater mechanical strength

  1. Preparation, mechanical strengths, and thermal

    Science.gov (United States)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-05-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni75Si8B17 and Ni78P12B10 alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin A12O3 film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (Ni0.75Si0.08B0.17 99Al1) wire and 2170 MPa and 2.4 pct for (Ni0.78P0.12B0.1)99Al1 wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a Ni-Si-B-Al wire, which is higher by 0.15 pct than that of a Fe75Si10B15 amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance.

  2. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    Science.gov (United States)

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque

  3. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  4. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  5. Influence of the mechanical properties of lime mortar on the strength of brick masonry

    OpenAIRE

    PAVIA, SARA

    2013-01-01

    PUBLISHED This paper aims at improving the quality of lime mortar masonry by understanding the mechanics of mortars and masonry and their interaction. It investigates how the mortar?s compressive and flexural strengths impact the compressive and bond strength of clay brick masonry bound with calcium lime (CL) and natural hydraulic lime (NHL) mortars. It concludes that the strength of the bond has a greater impact on the compressive strength of masonry than the mortar?s st...

  6. Pullout strength of cement-augmented and wide-suture transosseous fixation in the greater tuberosity.

    Science.gov (United States)

    Shi, Brendan Y; Diaz, Miguel; Belkoff, Stephen M; Srikumaran, Uma

    2017-12-01

    Obtaining strong fixation in low-density bone is increasingly critical in surgical repair of rotator cuff tears because of the aging population. To evaluate two new methods of improving pullout strength of transosseous rotator cuff repair in low-density bone, we analyzed the effects of 1) using 2-mm suture tape instead of no. 2 suture and 2) augmenting the lateral tunnel with cement. Eleven pairs of osteopenic or osteoporotic cadaveric humeri were identified by dual-energy x-ray absorptiometry. One bone tunnel and one suture were placed in the heads of 22 specimens. Five randomly selected pairs were repaired with no. 2 suture; the other six pairs were repaired with 2-mm suture tape. One side of each pair received lateral tunnel cement augmentation. Specimens were tested to suture pullout. Data were fitted to multivariate models that accounted for bone mineral density and other specimen characteristics. Two specimens were excluded because of knot-slipping during testing. Use of suture tape versus no. 2 suture conferred a 75-N increase (95% CI: 37, 113) in pullout strength (PCement augmentation conferred a 42-N improvement (95% CI: 10, 75; P=0.011). Other significant predictors of pullout strength were age, sex, and bone mineral density. We show two methods of improving the fixation strength of transosseous rotator cuff repairs in low-density bone: using 2-mm suture tape instead of no. 2 suture and augmenting the lateral tunnel with cement. These methods may improve the feasibility of transosseous repairs in an aging patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural and mechanical factors of construction strength and service life

    International Nuclear Information System (INIS)

    Makhutov, N.A.; Romanov, A.N.

    1977-01-01

    The methods are considered of solution of strength and long-term stability probems of fabricated structures on the basis of proper mechanical characteristics of materials determined by material composition and structure. The principle equations of structural mechanics, the theories of elasticity, plasticity, creep and strength are used in the analysis of structural strength. The initial parameters of these equations are geometric and service characteristics of structures and the properties of structural materials determined by laboratory specimen testing

  8. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  9. Effect of curing time on microstructure and mechanical strength ...

    Indian Academy of Sciences (India)

    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4–168 h) using 10 ...

  10. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players.

    Science.gov (United States)

    Rivière, Maxence; Louit, Loic; Strokosch, Alasdair; Seitz, Laurent B

    2017-04-01

    Rivière, M, Louit, L, Strokosch, A, and Seitz, LB. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4): 947-955, 2017-The purpose of this study was to examine the strength, velocity, and power adaptations in youth rugby league players in response to a variable resistance training (VRT) or traditional free-weight resistance training (TRAD) intervention. Sixteen elite youth players were assigned to a VRT or TRAD group and completed 2 weekly upper- and lower-body strength and power sessions for 6 weeks. Training programs were identical except that the VRT group trained the bench press exercise with 20% of the prescribed load coming from elastic bands. Bench press 1 repetition maximum (1RM) and bench press mean velocity and power at 35, 45, 65, 75, and 85% of 1RM were measured before and after the training intervention, and the magnitude of the changes was determined using effect sizes (ESs). The VRT group experienced larger increases in both absolute (ES = 0.46 vs. 0.20) and relative (ES = 0.41 vs. 0.19) bench press 1RM. Similar results were observed for mean velocity as well as both absolute and relative mean power at 35, 45, 65, 75, and 85% of 1RM. Furthermore, both groups experienced large gains in both velocity and power in the heavier loads but small improvements in the lighter loads. The improvements in both velocity and power against the heavier loads were larger for the VRT group, whereas smaller differences existed between the 2 groups in the lighter loads. Variable resistance training using elastic bands may offer a greater training stimulus than traditional free-weight resistance training to improve upper-body strength, velocity, and power in elite youth rugby league players.

  11. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material....

  12. The mechanism of strength and deformation in Gum Metal

    International Nuclear Information System (INIS)

    Furuta, T.; Kuramoto, S.; Morris, J.W.; Nagasako, N.; Withey, E.; Chrzan, D.C.

    2013-01-01

    “Gum Metal” refers to β-Ti alloys that achieve exceptional elastic elongation and, with a specific alloy composition, appear to deform via a dislocation-free mechanism involving elastic instability at the limit of strength. This paper describes the current status of research on its strength, deformation mechanism and the possible role of stress-induced martensite. The theoretical basis for deformation at ideal strength is presented. The relevant experimental data is then discussed, including ex situ nanoindentation behavior and in situ pillar compression observed by transmission electron microscopy

  13. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications

    Directory of Open Access Journals (Sweden)

    Stout DA

    2012-11-01

    Full Text Available David A Stout,1,2 Jennie Yoo,2 Adriana Noemi Santiago-Miranda,3 Thomas J Webster1,41School of Engineering, 2Division of Biology and Medicine, Brown University, Providence, RI, 3Department of Chemical Engineering, University of Puerto Rico, Mayagües, PR, 4Department of Orthopedics, Brown University, Providence, RI, USABackground: Recent advances in nanotechnology (materials with at least one dimension between 1 nm and 100 nm have led to the use of nanomaterials in numerous medical device applications. Recently, nanomaterials have been used to create innovative biomaterials for cardiovascular applications. Specifically, carbon nanofibers (CNF embedded in poly(lactic-co-glycolic-acid (PLGA have been shown to promote cardiomyocyte growth compared with conventional polymer substrates, but the mechanisms involved in such events remain unknown. The aim of this study was to determine the basic mechanism of cell growth on these novel nanocomposites.Methods: CNF were added to biodegradable PLGA (50:50 PGA:PLA weight ratio to increase the conductivity, mechanical and cytocompatibility properties of pure PLGA. For this reason, different PLGA to CNF ratios (100:0, 75:25, 50:50, 25:75, and 0:100 wt% with different PLGA densities (0.1, 0.05, 0.025, and 0.0125 g/mL were used, and their compatibility with cardiomyocytes was assessed.Results: Throughout all the cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers, including cardiac troponin T, connexin-43, and alpha-sarcomeric actin (α-SCA. Adhesion and proliferation experiments indicated that a PLGA density of 0.025 g/mL with a PLGA to CNF ratio of 75:25 and 50:50 (wt% promoted the best overall cell growth, ie, a 55% increase in cardiomyocyte density after 120 hours compared with pure PLGA and a 75% increase compared with the control at the same time point for 50:50 (wt%. The PLGA:CNF materials were conductive, and their conductivity increased as greater amounts of CNF

  14. Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength-trained men

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    Full Text Available The aim of this study was to determine the effect of anabolic androgenic steroids (AAS use on oxidative stress responses to a single session of resistance exercise in strength-trained men. Twenty-three strength trained men, with 11 self-reporting regular AAS use and 12 self-reporting never taking AAS (NAAS volunteered to participate in this study. Blood draws were obtained pre and post resistance exercise in order to evaluate changes in oxidative stress biomarkers levels (i.e., 8-hydroxy-2-deoxyguanosine [8-OHdG], malondialdehyde [MDA], and nitric oxide [NO], antioxidant defense systems (i.e., glutathione peroxidase [GPx] and catalase [CAT], and glucose (GLU levels. The AAS users had higher level of 8-OHdG (77.3 ± 17 vs. 57.7 ± 18.2 ng/mg, MDA (85.6 ± 17.8 vs. 52.3 ± 15.1 ng/mL, and GPx (9.1 ± 2.3 vs. 7.1 ± 1.3 mu/mL compared to NAAS at pre exercise (p < 0.05. Both the experimental groups showed increases in 8-OHdG (p = 0.001, MDA (p = 0.001, GPx (p = 0.001, NO (p = 0.04, CAT (p = 0.02 and GLU (p = 0.001 concentrations after resistance exercise, and the AAS group indicated significant differences in 8-OHdG (p = 0.02 and MDA (p = 0.05 concentrations compared with NAAS users at post exercise. In conclusion, use of AAS is associated with alterations in immune function resulting in oxidative stress, and cell damage; however, high-intensity resistance exercise could increase greater oxidative stress biomarkers in strength-trained men. Keywords: ROS, Strength exercise, Anabolic

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  16. Micromechanical modelling of mechanical behaviour and strength of wood

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Qing, Hai

    2008-01-01

    An overview of the micromechanical theoretical and numerical models of wood is presented. Different methods of analysis of the effects of wood microstructures at different scale levels on the mechanical behaviour, deformation and strength of wood are discussed and compared. Micromechanical models...

  17. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  18. Experimental setting for assessing mechanical strength of gas hydrate pellet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.J.; Choi, J.H.; Koh, B.H. [Dongguk Univ., Phil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    Due to the constant increase in global demand for clean energy, natural gas production from stranded medium and small size gas wells has drawn significant interest. Because the ocean transport of natural gas in the form of solid hydrate pellets (NGHP) has been estimated to be economically feasible, several efforts have been made to develop a total NGHP ocean transport chain. The investigation of mechanical strength of solid-form hydrate pellet has been an important task in fully exploiting the benefit of gas hydrate in the perspective of mass transportation and storage. This paper provided the results of a preliminary study regarding the assessment of mechanical properties of the gas hydrate pellet. The preliminary study suggested some of the key issues regarding formation and strength of gas hydrate pellets. Instead of utilizing the gas hydrate pellet, the study focused on a preliminary test setup for developing the ice pellet which was readily applied to the gas hydrate pellet in the future. The paper described the pelletization of ice powder as well as the experimental setup. Several photographs were illustrated, including samples of ice pellets; compression test for ice pellet using air press and load cell; and the initiation of crack in the cross section of an ice pellet. It was found that mechanical strength, especially, compression strength was not significantly affected by different level of press-forming force up to a certain level. 4 refs., 1 tab., 4 figs.

  19. Conciliating surface superhydrophobicities and mechanical strength of porous silicon films

    Science.gov (United States)

    Wang, Fuguo; Zhao, Kun; Cheng, Jinchun; Zhang, Junyan

    2011-01-01

    Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2‧) exhibited both good mechanical strength (Yong' modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.

  20. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  1. Collapse mechanisms and strength prediction of reinforced concrete pile caps

    DEFF Research Database (Denmark)

    Jensen, Uffe G.; Hoang, Linh Cao

    2012-01-01

    . Calculations have been compared with nearly 200 test results found in the literature. Satisfactory agreement has been found. The analyses are conducted on concentrically loaded caps supported by four piles. The paper briefly outlines how the approach may be extended to more complicated loadings and geometries......This paper describes an upper bound plasticity approach for strength prediction of reinforced concrete pile caps. A number of collapse mechanisms are identified and analysed. The procedure leads to an estimate of the load-carrying capacity and an identification of the critical collapse mechanism...

  2. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Directory of Open Access Journals (Sweden)

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  3. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  4. Strength and Mechanical Properties of High Strength Cement Mortar with Silica Fume

    OpenAIRE

    川上, 英男; 谷, 康博

    1993-01-01

    Two series of tests were carried out to clarify the effects of silica fume on the strength and mechanical properties of cement mortar. The test specimens of cement mortar were prepared within the flow values between 180 mm and 240 mm which qualifies better workability of the concrete. The fiow values were attained by using superplasticizer. The specimens were tested at the age of 4 weeks. Main results of the experiments are as follows. 1. At a given cement water ratio,the larger volume of sil...

  5. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  6. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  7. Statistical fracture mechanics approach to the strength of brittle rock

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1981-06-01

    Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models

  8. Effects of gripping volume in the mechanical strengths of orthodontic mini-implant

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Tseng

    2017-11-01

    Full Text Available The objective of study was to investigate the correlation between the mechanical strengths [insertion torque (IT; resonance frequency (RF; and horizontal pullout strength (HPS] and gripping volume (GV of mini-implants. Thirty mini-implants of three types (Type A: 2 mm × 10 mm, cylindrical, titanium alloy; Type B: 2 mm × 10 mm, tapered, stainless steel; and Type C: 2 mm × 11 mm, cylindrical, titanium alloy were inserted 7 mm into artificial bones. One-way analysis of variance and Spearman's test were applied to assess intergroup comparisons and intragroup correlations. The null hypothesis was that no statistically significant correlations exist between the GV and mechanical strengths (IT, RF, and HPS. In the IT test, Type C (14.2 Ncm had significantly (p=0.016 greater values than did Type A (12.4 Ncm. In the RF analysis, no significant difference was observed among the three types of mini-implants. In the HPS test, Type C (388.9 Ncm was significantly larger than both Type B (294.5 Ncm and Type A (286 Ncm. In the GV measurement, Type C (14.4 mm3 was significantly larger than Type B (11.4 mm3 and Type A (9.2 mm3. Type A and Type B exhibited no significant correlations among the tests. Therefore, the null hypothesis was accepted. Although no significant correlation was noted between the GV and mechanical strengths (IT, RF, and HPS, we observed a trend that the mechanical strengths (IT, RF, and HPS of the mini-implants corresponded to the order and values of GV (Type C > Type B > Type A.

  9. Mechanical design of mussel byssus: material yield enhances attachment strength

    Science.gov (United States)

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  10. Cervical-scapular muscles strength and severity of temporomandibular disorder in women with mechanical neck pain

    Directory of Open Access Journals (Sweden)

    Fernanda Pasinato

    Full Text Available Abstract Introduction: Changes in cervical muscle function have been observed in patients with neck pain (NP and TMD. However, the relationship between TMD severity and neck muscle strength in the presence/absence of NP is unknown. Objective: To determine the prevalence of TMD in women with and without mechanical NP and assess the cervical-scapular muscle strength and its association with TMD severity. Methods: Fifteen volunteers without neck pain (CG and 14 women with mechanical neck pain (NPG took part and were selected by the Neck Disability Index. The diagnosis and severity of TMD were determined by the Research Diagnostic Criteria for TMD and Temporomandibular Index (TI, respectively. The strength of the upper trapezius muscle, and cervical flexor and extensor muscles was measured by digital hand dynamometer. Results: 64.5% of women with NP and 33.3% without NP were diagnosed with TMD (p = 0.095. The NPG showed lower strength of the cervical flexor (p = 0.044 and extensor (p=0.006 muscles, and higher TI (p = 0.038 than in the CG. It was also verified moderate negative correlation between TI and the strength of dominant (p = 0.046, r = -0.547 and non-dominant (p = 0.007, r = -0.695 upper trapezius, and cervical flexors (p = 0.023, r = -0.606 in the NPG. Conclusion: There was no difference in the prevalence of TMD in women with and without NP. However, women with NP have lower cervical muscle strength - compared to those without NP - which was associated with greater severity of TMD. Thus, in women with NP associated with TMD, it is advisable to assess and address the severity of this dysfunction and identify the cervical-scapular muscles compromise.

  11. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  12. Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene

    International Nuclear Information System (INIS)

    Joseph Nathanael, A.; Mangalaraj, D.; Chi Chen, P.; Ponpandian, N.

    2011-01-01

    Hydroxyapatite (HAp) nanostructures may be an advanced candidate in biomedical applications for an apatite substitute of bone and teeth than other form of HAp. In contrast, well-defined size and shape control in synthesizing HAp nanostructures is always difficult. In this study, hydroxyapatite nanorods (HAp NRs) were prepared by simple hydrothermal method with controlling the reaction time without using any surfactant or templating agents. The nanostructure clearly depicts the growth stages of the HAp NRs by increasing the reaction time. The synthesized HAp has the rod like morphology with uniform size distribution with the aspect ratio of about 8–10. Transmission electron microscopic (TEM) and high resolution TEM (HRTEM) images show that the growth direction of the HAp is parallel to the (001) plane. The interplanar distances measured in segments (fringes) of the HRTEM micrograph were ∼0.35 nm, corresponding to the interplanar spacing of the (002) plane of the hexagonal HAp. X-ray diffraction (XRD) measurements indicate that the improved crystallinity of the HAp by increasing the reaction time. The mechanical studies reveal that the improved tensile strength and the abrasion resistance are observed for the HAp nanorods reinforcing with high molecular weight polyethylene (HMWPE).

  13. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    International Nuclear Information System (INIS)

    Botasini, Santiago; Méndez, Eduardo

    2013-01-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10–20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV–Vis–NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  14. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Botasini, Santiago; Mendez, Eduardo, E-mail: emendez@fcien.edu.uy [Instituto de Quimica Biologica, Universidad de la Republica, Laboratorio de Biomateriales (Uruguay)

    2013-04-15

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  15. Bone Mechanical Strength Estimation from Micro X-ray CT Image

    National Research Council Canada - National Science Library

    Matani, A

    2001-01-01

    ... (Bone Mineral Density), an index to evaluate the mechanical strength of the bone, does not always reflect the strength, On the other hand, micro X-ray CT has revealed the inner structure of bone, Under such circumstances...

  16. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  17. effect of reinforcements combination on the mechanical strength of ...

    African Journals Online (AJOL)

    Dr Obe

    strength when compared with other metals such as aluminum, copper ... achieved by hand rotation of the wheels as described above. By ratio ... point of the specimen which is recorded by the push-plotter silver liquid indicator. This is the ultimate strength. The Brinnel hardness, Hb is calculated using the Brinnel equation: √.

  18. Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering.

    Science.gov (United States)

    Tkachenko, Serhii; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastian; Dvořák, Karel; Celko, Ladislav; Kaiser, Jozef; Montufar, Edgar B

    2018-05-01

    The present work studies the microstructure and mechanical performance of tricalcium phosphate (TCP) based cermet toughened by iron particles. A novelty arises by the employment of spark plasma sintering for fabrication of the cermet. Results showed partial transformation of initial alpha TCP matrix to beta phase and the absence of oxidation of iron particles, as well as a lack of chemical reaction between TCP and iron components during sintering. The values of compressive and tensile strength of TCP/Fe cermet were 3.2 and 2.5 times, respectively, greater than those of monolithic TCP. Fracture analysis revealed the simultaneous action of crack-bridging and crack-deflection microstructural toughening mechanisms under compression. In contrast, under tension the reinforcing mechanism was only crack-bridging, being the reason for smaller increment of strength. Elastic properties of the cermet better matched values reported for human cortical bone. Thereby the new TCP/Fe cermet has potential for eventual use as a material for bone fractures fixation under load-bearing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Relating wood properties to handsheet porosity and mechanical strength

    CSIR Research Space (South Africa)

    Maharaj, S

    2006-11-01

    Full Text Available , 4041 3CSIR, Forestry and Forest Products Research Centre, P.O. Box 17001, Congella, 4013 WOOD HAND-SHEET (STRENGTH) PROCESSING Anatomy Chemistry Density Tear Tensile Burst Background Variation in pulp mills •Need to predict quality of end... important concepts… Some important concepts… • Collapsibility and inter-fibre bonding Light Microscopy SEM • Tear – Fibre level: pull-out vs. breaking/rupture Some important concepts… •Fibre breakage / rupture: less energy = lower tear strength...

  20. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    Directory of Open Access Journals (Sweden)

    Sebastian Heibel

    2018-05-01

    Full Text Available The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP and dual-phase (DP steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  1. Preservation of eccentric strength in older adults: Evidence, mechanisms and implications for training and rehabilitation.

    Science.gov (United States)

    Roig, Marc; Macintyre, Donna L; Eng, Janice J; Narici, Marco V; Maganaris, Constantinos N; Reid, W Darlene

    2010-06-01

    Overall reductions in muscle strength typically accompany the aging process. However, older adults show a relatively preserved capacity of producing eccentric strength. The preservation of eccentric strength in older adults is a well-established phenomenon, occurring indiscriminately across different muscle groups, independent of age-related architectural changes in muscle structure and velocity of movement. The mechanisms for the preservation of eccentric strength appear to be mechanical and cellular in origin and include both passive and active elements regulating muscle stiffness. The age-related accumulation of non-contractile material in the muscle-tendon unit increases passive stiffness, which might offer mechanical advantage during eccentric contractions. In addition, the preserved muscle tension and increased instantaneous stiffness of old muscle fibers during stretch increase active stiffness, which might enhance eccentric strength. The fact that the preservation of eccentric strength is present in people with chronic conditions when compared to age-matched healthy controls indicates that the aging process per se does not exclusively mediate the preservation of eccentric strength. Physical inactivity, which is common in elderly and people with chronic conditions, is a potential factor regulating the preservation of eccentric strength. When compared to concentric strength, the magnitude of preservation of eccentric strength in older adults ranges from 2% to 48% with a mean value of 21.6% from all studies. This functional reserve of eccentric strength might be clinically relevant, especially to initiate resistance training and rehabilitation programs in individuals with low levels of strength. 2010 Elsevier Inc. All rights reserved.

  2. Clean Development Mechanism and Least Developed Countries: Changing the Rules for Greater Participation

    DEFF Research Database (Denmark)

    De Lopez, Thanakvaro Thyl; Tin, Ponlok; Iyadomi, Keisuke

    2009-01-01

    The clean development mechanism (CDM) of the Kyoto Protocol is designed not only to mitigate greenhouse gas emissions (GHG) but also to contribute locally to sustainable development. As a market-based mechanism, CDM has the potential to channel private investments into development activities...... with economic, social, and environmental benefits. Unfortunately, investments have tended to flow where CDM activities provide higher returns with limited economic and political risks, that is, outside of least developed countries (LDCs). To date, only a handful of LDCs have been able to participate in the CDM...

  3. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  4. Immature psychological defense mechanisms are associated with greater personal importance of junk food, alcohol, and television.

    Science.gov (United States)

    Costa, Rui Miguel; Brody, Stuart

    2013-10-30

    Immature psychological defense mechanisms are psychological processes that play an important role in suppressing emotional awareness and contribute to psychopathology. In addition, unhealthy food, television viewing, and alcohol consumption can be among the means to escape self-awareness. In contrast, engaging in, and responding fully to specifically penile-vaginal intercourse (PVI) is associated with indices of better emotional regulation, including less use of immature defense mechanisms. There was a lack of research on the association of immature defense mechanisms with personal importance of junk food, alcohol, television, PVI, and noncoital sex. In an online survey, 334 primarily Scottish women completed the Defense Style Questionnaire (DSQ-40), and rated the personal importance of junk food, alcohol, television, PVI, and noncoital sex. Immature defense mechanisms correlated with importance of junk food, alcohol, and television. Importance of PVI correlated with mature defenses, and less use of some component immature defenses. Importance of alcohol correlated with importance of junk food, television, and noncoital sex. Importance of junk food was correlated with importance of television and noncoital sex. The findings are discussed in terms of persons with poorer self-regulatory abilities having more interest in junk food, television, and alcohol, and less interest in PVI. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture....... Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength...

  6. Mechanical strength and stiffness of biodegradable and titanium osteofixation systems

    NARCIS (Netherlands)

    Buijs, Gerrit J.; van der Houwen, Eduard B.; Bos, Rudulf R. M.; Verkerke, Gijsbertus J.

    Purpose: To present relevant mechanical data to simplify the selection of an osteofixation system for situations requiring immobilization in oral and maxillofacial surgery. Materials and Methods: Seven biodegradable and 2 titanium osteofixation systems were investigated. The plates and screws were

  7. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Science.gov (United States)

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  8. Environmental Effects on Tensile Strength and Other Mechanical ...

    African Journals Online (AJOL)

    The use of fiber reinforced composites as structural mechanical components is on the increase. Glass reinforced plastics (GRP) are the least-priced and most commonly used on account of their several advantages over the more expensive composites. Production related defects in these composites frequently promote ...

  9. The Welding Effect on Mechanical Strength of Low Level Radioactive Waste Drum Container

    International Nuclear Information System (INIS)

    Aisyah; Herlan Martono

    2007-01-01

    The treatment of compactable low level solid waste was started by compaction of 100 liter drum containing the waste using 600 kN hydraulic press in 200 liters drum. The 200 liter drum of waste container containing of compacted waste then immobilized with cement and stored in interm storage. The 200 liter drum of waste container made of carbon steel material to comply with a good mechanical strength request in order to be able to retain the waste content for long period. Welding is a one step in a waste drum container fabrication process that has an opportunity in decreasing these mechanical strength. The research is carried out by welding the waste drum container material sample by electric arc welding. Mechanical strength test carried out by measuring the tensile strength by using the tensile strength machine, hardness test by using Vickers hardness test and microstructure observation by using the optic microscope. The result shows that the welding cause the microstructure changes, its meaning of forming ferro oxide phase on welding area that leads to the brittle material, so that the mechanical strength has a decreasing slightly. Nevertheless the decreasing of mechanical strength is still in the range of safety limit. (author)

  10. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  11. Optimization Of Fluoride Glass Fiber Drawing With Respect To Mechanical Strength

    Science.gov (United States)

    Schneider, H. W.; Schoberth, A.; Staudt, A.; Gerndt, Ch.

    1987-08-01

    Heavy metal fluoride fibers have attracted considerable attention recently as lightguides for infrared optical devices. Besides the optical loss mechanical performance of the fiber is of major interest. At present fiber strength suffers from surface crystallization prior to or during fiber drawing. We developed an etching method for the preparation of preforms with clean surface. Drawing these preforms under optimized conditions in a dry atmosphere results in fibers with improved strength. So far, mean value of 400 N/mm2 tensile strength have been achieved. Maximum values of 800 N/mm2 measured on etched fibers indicate an even higher strength potential for the material itself.

  12. Greater tactile sensitivity and less use of immature psychological defense mechanisms predict women's penile-vaginal intercourse orgasm.

    Science.gov (United States)

    Brody, Stuart; Houde, Stephanie; Hess, Ursula

    2010-09-01

    Previous research has suggested that diminished tactile sensitivity might be associated with reduced sexual activity and function. Research has also demonstrated significant physiological and psychological differences between sexual behaviors, including immature psychological defense mechanisms (associated with various psychopathologies) impairing specifically women's orgasm from penile-vaginal intercourse (PVI). To examine the extent to which orgasm triggered by PVI (distinguished from other sexual activities) is associated with both greater tactile sensitivity and lesser use of immature psychological defenses. Seventy French-Canadian female university students (aged 18-30) had their finger sensitivity measured with von Frey type microfilaments, completed the Defense Style Questionnaire and a short form of the Marlowe-Crowne social desirability scale, and provided details of the 1 month (and ever) frequencies of engaging in, and having an orgasm from, PVI, masturbation, anal intercourse, partner masturbation, and cunnilingus. Logistic and linear regression prediction of orgasm triggered by PVI from tactile sensitivity, age, social desirability responding, and immature psychological defenses. Having a PVI orgasm in the past month was associated with greater tactile sensitivity (odds ratio=4.0 for each filament point) and less use of immature defense mechanisms (odds ratio=5.1 for each scale point). Lifetime PVI orgasm was associated only with less use of immature defense mechanisms (and lower social desirability responding score). Orgasms triggered by other activities were not associated with either tactile sensitivity or immature defense mechanisms. Tactile sensitivity was also associated with greater past month PVI frequency (inclusion of PVI frequency in a logistic regression model displaced tactile sensitivity), and lesser use of immature defenses was associated with greater past month PVI and PVI orgasm frequencies. Both diminished physical sensitivity and the

  13. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  14. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  15. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Yunus, A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    Silicon wafer thickness reduction without increasing the wafer strength leads to a high breakage rate during subsequent handling and processing steps. Cracking of solar cells has become one of the major sources of solar module failure and rejection. Hence, it is important to evaluate the mechanical strength of solar cells and influencing factors. The purpose of this work is to understand the fracture behavior of silicon solar cells and to provide information regarding the bending strength of the cells. Triple junctions, grain size and grain boundaries are considered to investigate the effect of crystallinity features on silicon wafer strength. Significant changes in fracture strength are found as a result of metallization morphology and crystallinity of silicon solar cells. It is observed that aluminum paste type influences the strength of the solar cells. (author)

  16. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  17. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  18. Effect of surface decarburization on the mechanical properties of high strength low alloy steel

    International Nuclear Information System (INIS)

    Saqib, S.

    1993-01-01

    An attempt has been made to study the relationship of mechanical properties with the microstructure of a high strength low alloy steel. A thorough investigation was conducted on the steel sheet and variation in mechanical properties was observed across its thickness with a change in the microstructure. Change in hardness and tensile strength at the surface compare to the core of the material is attributed to decarburization. The current research indicates that the correlation between hardness and tensile strength is not valid for steels if the hardness is determined on the surface only. Great care should be taken at the time of determination of tensile strength by using conversion charts/tables on the basis of hardness values obtained by practical means. (author)

  19. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  20. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    OpenAIRE

    Petronela Nechita; Elena Dobrin; Florin Ciolacu; Elena Bobu

    2010-01-01

    Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodeg...

  1. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  2. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  3. Effect of elevated temperature on the mechanical strength of HEPA filters

    International Nuclear Information System (INIS)

    Elfawal, M.M.; Eladham, K.A.; Hammed, F.H.; Abdrabbo, M.F.

    1993-01-01

    The effect of elevated temperature on the mechanical strength of HEPA filters was studied in order to evaluate and improve their performance under high temperature conditions. As part of this study the mechanical strength of HEPA filter medium which is the limiting factor in terms of the filter strength was experimentally studied at elevated temperature up to 400 degree C, and thermal exposure times ranged from 2 min to 4 h. The failure pressures of HEPA filter units after long exposure to 250 degree C were also investigated. The test results show that the medium strength decreases with increase in temperature challenge and thermal exposure time due to burnout of the organic binder used to improve the strength and flexibility of the medium. The test results also show that the tensile strength of the conventional filter medium drops to about 40 % of the value at room temperature after exposure to 250 degree C for 6 h; therefore, the continuous exposure of the conventional filter medium to this temperature is critical. The average failure differential pressures of all commercial tested filters were found to lie between 9 and 18 kPa at ambient temperature and between 6 and 11 kPa after thermal challenge at 250 degree C for 100 h. It was found that swelling and capture of the ends of individual pleats has led to filter failure.3 fig., 2 tab

  4. FTIR spectra and mechanical strength analysis of some selected rubber derivatives

    Science.gov (United States)

    Gunasekaran, S.; Natarajan, R. K.; Kala, A.

    2007-10-01

    Rubber materials have wide range of commercial applications such as, infant diapers, famine hygiene products, drug delivery devices and incontinency products such as rubber tubes, tyres, etc. In the present work, studies on mechanical properties of some selected rubber materials viz., natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) have been carried out in three states viz., raw, vulcanized and reinforced. To enhance the quality of rubber elastomers, an attempt is made to prepare new elastomers called polyblends. In the present study an attempt is made to blend NR with NBR and with EPDM. We here report, a novel approach for the evaluation of various physico-mechanical properties such as mechanical strength, tensile strength, elongation and hardness. The method is simple, direct and fast and involves infrared spectral measurements for the evaluation of these properties. With the applications of modern infrared spectroscopy, the mechanical strength of these rubber materials have been analyzed by calculating the internal standards among the methyl and methylene group vibrational frequencies obtained from FTIR spectroscopy. Also the tensile strength measurements carried out by universal testing machine. The results pertaining physico-mechanical properties of the rubber derivatives undertaken in the present study obtained by IR-based method are in good agreement with data resulted from the standard methods.

  5. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Meo, M.; Rossi, M.

    2007-01-01

    The aim of this work was to develop a finite element model based on molecular mechanics to predict the ultimate strength and strain of single wallet carbon nanotubes (SWCNT). The interactions between atoms was modelled by combining the use of non-linear elastic and torsional elastic spring. In particular, with this approach, it was tried to combine the molecular mechanics approach with finite element method without providing any not-physical data on the interactions between the carbon atoms, i.e. the CC-bond inertia moment or Young's modulus definition. Mechanical properties as Young's modulus, ultimate strength and strain for several CNTs were calculated. Further, a stress-strain curve for large deformation (up to 70%) is reported for a nanotube Zig-Zag (9,0). The results showed that good agreement with the experimental and numerical results of several authors was obtained. A comparison of the mechanical properties of nanotubes with same diameter and different chirality was carried out. Finally, the influence of the presence of defects on the strength and strain of a SWNT was also evaluated. In particular, the stress-strain curve a nanotube with one-vacancy defect was evaluated and compared with the curve of a pristine one, showing a reduction of the ultimate strength and strain for the defected nanotube. The FE model proposed demonstrate to be a reliable tool to simulate mechanical behaviour of carbon nanotubes both in the linear elastic field and the non-linear elastic field

  6. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  7. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  8. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    Science.gov (United States)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  9. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ohkubo, Monoru; Sasajima, Hiroshi

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 kG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. In section 1, specifications of the TF coils are given. In section 2, the ultrasonic inspection method and the detectability of this apparatus are described in detail, the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspectionresults. In section 3, mechanical strength of the brazed joints with initial defects is discussed on the basis of Fracture Mechanics theory and results of the fatigue crack growth test. The inspection criteria in accordance with the descriptions of section 2 and 3 are given in section 4. (author)

  10. The effect of the production method on the mechanical strength of an alumina porous hollow fiber

    NARCIS (Netherlands)

    de Wit, Patrick; van Daalen, Frederique S.; Benes, Nieck E.

    2017-01-01

    The mechanical strength of inorganic porous hollow fibers is an important property and is strongly affected by the production method. Three production methods for fibers are compared: non-solvent induced phase separation (NIPS), bio-ionic gelation with an internal multivalent ion source (BIG-I), and

  11. Effect of surface finishing and heat treatments on the mechanical strength of sintered alumina

    International Nuclear Information System (INIS)

    Lino, U.R.A.

    1982-04-01

    The effect of surface finishing on the mechanical strength of two pure aluminas, one of self-production and another a commercial one, is studied. Three types of finishings: as-sintered, as machined and as-machined with thermal treatment were studied. It was verified that the as-machined alumina is about 50 percent stronger than the as-sintered one, and that a thermal treatment increases even more the mechanical strength of the sintered alumina. The effect of the volume and pressing direction on mechanical strength was studied. The kinetics of crack healing was determined from a series of systematically selected thermal treatments with annealing temperatures between 1200 0 C and 1600 0 C. It was verified that a recently developed theoretical model for crack healing can describe the experimental results; using this model a value for the activation energy of the process of 715 kJ/mcl was obtained, which suggests that crack healing is promoted by volume diffusion. The material behavior under subcritical crack growth action was also studied, and a value of about 40 for the subcritical crack growth exponent N from dynamic loading tests in water was found. A fractographic study intended to localize and measure the flaws that originated the fracture of the tested specimens was performed; the measured flaw sizes were compared with the flaw size calculated from the values of the measured mechanical strength; in this comparison an excellent agreement was observed. (Author) [pt

  12. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne

  13. Ceramic inlays : effect of mechanical cycling and ceramic type on restoration-dentin bond strength

    NARCIS (Netherlands)

    Trindade, F.Z.; Kleverlaan, C.J.; da Silva, L.H.; Feilzer, A.J.; Cesar, P.F.; Bottino, M.A.; Valandro, L.F.

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max

  14. Pore direction in relation to anisotropy of mechanical strength in a cubic starch compact

    NARCIS (Netherlands)

    Wu, Yu San; van Vliet, Lucas J; Frijlink, Henderik W; Stokroos, Ietse; van der Voort Maarschalk, Kees

    The purpose of this research was to evaluate the relation between preferential direction of pores and mechanical strength of cubic starch compacts. The preferential pore direction was quantified in SEM images of cross sections of starch compacts using a previously described algorithm for

  15. Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector-electrode interfaces

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Cannio, M.; Hjelm, J.; Hendriksen, P. V.

    2016-01-01

    Roč. 162, č. 1 (2016), s. 250-253 ISSN 0167-577X Institutional support: RVO:68081723 Keywords : Metal-ceramic bond strength * Schwickerath crack-initiation test * SOC interfaces Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.572, year: 2016

  16. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  17. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  18. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  19. ANALYSIS OF THE MECHANICAL STRENGTH OF A DRIVING MECHANISM CALLED SHOCK

    Directory of Open Access Journals (Sweden)

    Dan ILINCIOIU

    2015-05-01

    Full Text Available It evaluates the maximum static and dynamic stresses produced in the elements of a quadrilateral mechanism transporting a vehicle in the storage in an urban park. Determine multiplier shock hazard if the mechanism freezes and increases mechanical stress.

  20. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    Science.gov (United States)

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  1. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  2. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  3. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    Science.gov (United States)

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC2 (P 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  4. Strength and Aerobic Exercises Improve Spatial Memory in Aging Rats Through Stimulating Distinct Neuroplasticity Mechanisms.

    Science.gov (United States)

    Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino

    2017-12-01

    Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75 NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.

  5. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  6. Evaluation of mechanical strengths of three types of mini-implants in artificial bones

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Tseng

    2017-02-01

    Full Text Available We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0×12 mm, Type B (stainless steel, 2.0×12 mm, and Type C (titanium alloy, 2.0×11 mm.The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT, resonance frequency (RF, and removal torque (RT] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively. In the 45° test, the RFs of Type C (9.2 kHz was significantly higher than those of Type A (7.0 kHz and Type B (6.7 kHz. The anchor area of the mini-implants was in the order of Type C (706 mm2>Type B (648 mm2>Type A (621 mm2. Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants.

  7. Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat

    Directory of Open Access Journals (Sweden)

    Lingan eKong

    2014-12-01

    Full Text Available It is well established that a high external NH4+ concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH4+ are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m-2 and high (30 g N m-2 supplies of NH4+ in the presence or absence of additional K+ (6 g K2O m-2 to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N remobilization and the grain-filling rate. The results indicated that an excessive supply of NH4+ significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE and the grain-filling rate compared with a moderate level of NH4+. The additional provision of K+ considerably alleviated these negative effects of high NH4+, resulting in a 19.41%-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH4+. This study indicates that the effects of high NH4+ on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat.

  8. Mechanical strength evaluation of the welded bellows for the ports of the JT-60 vacuum vessel

    International Nuclear Information System (INIS)

    Takatso, H.; Shimizu, M.; Yamamoto, M.

    1983-01-01

    Mechanical strength of the welded bellows for the ports of the JT-60 vacuum vessel was evaluated, laying the emphasis on the fatigue strength under the torsional electromagnetic force. The welded bellows were designed to be loaded with the forced deflection due to the relative displacement between the vacuum vessel and the external fixed point, the atmospheric pressure and the forced torsional angle due to the electromagnetic force. Stresses caused by the former two were estimated following the formulae proposed by the Kellogg Company. On the other hand, two formulae were established to estimate the stress caused by the last, after examining experimentally the behavior of the welded bellows under the torsional load; one is the shearing stress evaluation formula and the other is the axial bending stress evaluation formula. It was found that the welded bellows can easily buckle under the torsional load and the former formula corresponds to the case of non-buckling and the latter to the case of buckling. The present mechanical strength evaluation method was applied to the three kinds of the welded bellows to be used in the ports of the JT-60 vacuum vessel (neutral beam injection ports, vacuum pumping ports and the adjustable limiter ports) and it was confirmed that they have sufficient strength in the range of the design load conditions

  9. Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures

    International Nuclear Information System (INIS)

    Jin Sumin; Burek, Michael J.; Evans, Robert D.; Jahed, Zeinab; Leung, Michael C.; Evans, Neal D.; Tsui, Ting Y.

    2012-01-01

    The mechanical properties exhibited by sub-micron scale columnar structures of cobalt, fabricated by electron beam lithography and electroplating techniques, were investigated through uniaxial compression. Transmission electron microscopy analyses show these specimens possess a microstructure with sub-micron grains which are elongated and aligned near to the pillar loading axis. In addition, small nanocrystalline cobalt crystals are also present within the columnar structure. These specimens display exceptional mechanical strength comparable with both bulk polycrystalline and nanocrystalline cobalt deposited by electroplating. Size-dependent softening with shrinking sample dimensions is also observed in this work. Additionally, the strength of these sub-micron structures appears to be strain rate sensitive and comparable with bulk nanocrystalline cobalt specimens.

  10. Strength analysis and optimization of welding robot mechanism in emergency stop state

    OpenAIRE

    Zdeněk Poruba; Jiří Podešva; Ondřej František; Martin Fusek; Robert Brázda; Marek Sadílek

    2016-01-01

    The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and t...

  11. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  12. Evaluation of mechanical strength and hydrate products evolution of calcium aluminate cement, for endodontic applications

    International Nuclear Information System (INIS)

    Luz, A.P.; Borba, N.Z.; Pandolfelli, V.C.

    2011-01-01

    Mineral trioxide aggregate (MTA) is the most used retrograde filling cement in the endodontic area. Nevertheless, although its composition is similar to the conventional Portland cement, its high cost, long setting time and low mechanical strength have led to a continuous search for new alternative materials. Considering these aspects, the mechanical strength and crystalline phase evolution of a calcium aluminate cement (CAC), during its hydration process, have been evaluated in this work aiming to apply such material for endodontic treatments. Secar 71 cement samples were prepared and kept in contact with water or SBF (simulated body fluid) during 15 days at 37 deg C. Compressive strength, apparent porosity, X ray diffraction and thermogravimetric tests were carried out for the samples evaluation after 1, 3, 7 and 15 days. The main identified phases were CAH_1_0, C_2AH_8, C_3AH_6 and AH_3. Moreover, when in the presence of SBF, some changes in the amount of the hydrates in the CAC samples were observed, which affected the mechanical behavior of the cement. (author)

  13. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S.

    2013-01-01

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  14. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  15. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Song, M.; Sun, C.; Fan, Z.; Chen, Y.; Zhu, R.; Yu, K.Y.; Hartwig, K.T.; Wang, H.; Zhang, X.

    2016-01-01

    Ferritic/martensitic (F/M) steels with high strength and excellent ductility are important candidate materials for the life extension of the current nuclear reactors and the design of next generation nuclear reactors. Recent studies show that equal channel angular extrusion (ECAE) was able to improve mechanical strength of ferritic T91 steels moderately. Here, we examine several strategies to further enhance the mechanical strength of T91 while maintaining its ductility. Certain thermo-mechanical treatment (TMT) processes enabled by combinations of ECAE, water quench, and tempering may lead to “ductile martensite” with exceptionally high strength in T91 steel. The evolution of microstructures and mechanical properties of T91 steel were investigated in detail, and transition carbides were identified in water quenched T91 steel. This study provides guidelines for tailoring the microstructure and mechanical properties of T91 steel via ECAE enabled TMT for an improved combination of strength and ductility.

  16. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: J.Li5@lboro.ac.uk; Monaghan, T.; Masurtschak, S.; Bournias-Varotsis, A.; Friel, R.J.; Harris, R.A.

    2015-07-15

    Ultrasonic Additive Manufacturing (UAM) enables the integration of a wide variety of components into solid metal matrices due to the process induced high degree of metal matrix plastic flow at low bulk temperatures. Exploitation of this phenomenon allows the fabrication of previously unobtainable novel engineered metal matrix components. The feasibility of directly embedding electrical materials within UAM metal matrices was investigated in this work. Three different dielectric materials were embedded into UAM fabricated aluminium metal-matrices with, research derived, optimal processing parameters. The effect of the dielectric material hardness on the final metal matrix mechanical strength after UAM processing was investigated systematically via mechanical peel testing and microscopy. It was found that when the Knoop hardness of the dielectric film was increased from 12.1 HK/0.01 kg to 27.3 HK/0.01 kg, the mechanical peel testing and linear weld density of the bond interface were enhanced by 15% and 16%, respectively, at UAM parameters of 1600 N weld force, 25 µm sonotrode amplitude, and 20 mm/s welding speed. This work uniquely identified that the mechanical strength of dielectric containing UAM metal matrices improved with increasing dielectric material hardness. It was therefore concluded that any UAM metal matrix mechanical strength degradation due to dielectric embedding could be restricted by employing a dielectric material with a suitable hardness (larger than 20 HK/0.01 kg). This result is of great interest and a vital step for realising electronic containing multifunctional smart metal composites for future industrial applications.

  17. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  18. Effect of steel fibres on mechanical properties of high-strength concrete

    International Nuclear Information System (INIS)

    Holschemacher, K.; Mueller, T.; Ribakov, Y.

    2010-01-01

    Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks' development, delay in microcracks' propagation to macroscopic level and the improved ductility after microcracks' formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2o6 mm and 2o12 mm) and three types of fibres' configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.

  19. Mechanical strength of [HA/Bioplastic/Sericin] composite part printed by bioprinter

    Energy Technology Data Exchange (ETDEWEB)

    Tontowi, Alva Edy, E-mail: alvaedytontowi@ugm.ac.id; Setiawan, Agris [Department of Mechanical and Industrial Engineering Faculty of Engineering Universitas Gadjah Mada (Indonesia)

    2016-06-17

    The aim of this research was to determine the effect of hydroxyapatite (HA) content in printed biocomposite to its mechanical strength. The biocomposite paste was prepared by composing HA, bioplastic and sericin with various ratios of [HA/Bioplastic]: 40/60, 50/50, 60,40 and 70/30. Sericin of 0.3% weight was added to the biocomposite. Mechanical test was conducted to observe tensile (ASTM D 638 type 4) and flexural strength (ASTM D 790). Both type of specimens were fabricated using 3D Printer. Printing process parameter (infill speed, print speed and layer height) were set up as 60 mm/s, 10 mm/s, 0.35 mm, respectively. Results showed that biocomposite with [HA/Biplastic]. weight ratio of 60/40(w/w) has an optimum tensile (3.89 ± 1.26 MPa) and flexural strength (2.51 ± 0.45 MPa). Scanning electron microscope observation indicated that microstructure of specimen was influenced by the percentage of the hydroxyapatite. There was no agglomeration of HA particle within the composite.

  20. Mechanical strength of [HA/Bioplastic/Sericin] composite part printed by bioprinter

    International Nuclear Information System (INIS)

    Tontowi, Alva Edy; Setiawan, Agris

    2016-01-01

    The aim of this research was to determine the effect of hydroxyapatite (HA) content in printed biocomposite to its mechanical strength. The biocomposite paste was prepared by composing HA, bioplastic and sericin with various ratios of [HA/Bioplastic]: 40/60, 50/50, 60,40 and 70/30. Sericin of 0.3% weight was added to the biocomposite. Mechanical test was conducted to observe tensile (ASTM D 638 type 4) and flexural strength (ASTM D 790). Both type of specimens were fabricated using 3D Printer. Printing process parameter (infill speed, print speed and layer height) were set up as 60 mm/s, 10 mm/s, 0.35 mm, respectively. Results showed that biocomposite with [HA/Biplastic]. weight ratio of 60/40(w/w) has an optimum tensile (3.89 ± 1.26 MPa) and flexural strength (2.51 ± 0.45 MPa). Scanning electron microscope observation indicated that microstructure of specimen was influenced by the percentage of the hydroxyapatite. There was no agglomeration of HA particle within the composite.

  1. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  2. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  3. The kinetics and mechanism of bainite transformation in high strength steels

    International Nuclear Information System (INIS)

    Ali, A.; Bhadeshia, H.K.D.H.

    1993-01-01

    The kinetics and mechanism of bainite formation have been studied in high strength Fe-C-Si-Mn and Fe-C-Si-Ni steels using dilatometry, optical and transmission electron microscopy. In these silicon containing steels, carbide precipitation dies not accompany the growth of bainitic ferrite so that the mechanism of transformation can be readily interpreted. The work confirms that the volume fraction of bainite when the reaction stops, is far less that expected from equilibrium or para equilibrium considerations. In addition the bainite exhibits an invariant plane strain surface relief effect with a large shear component, and adopts a sheaf morphology. The results are demonstrated to be consistent with a displacive diffusion less transformation mechanism of bainite, in which the excess carbon is, subsequent to transformation, rejected into the residual austenite. (author)

  4. Electronic properties and mechanical strength of β-phosphorene nano-ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok, E-mail: ashok@cup.ac.in [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India-151001 (India)

    2016-05-06

    We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties of β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.

  5. Evaluation of mechanical strengths of three types of mini-implants in artificial bones.

    Science.gov (United States)

    Tseng, Yu-Chuan; Wu, Ju-Hui; Ting, Chun-Chan; Chen, Hong-Sen; Chen, Chun-Ming

    2017-02-01

    We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0×12 mm), Type B (stainless steel, 2.0×12 mm), and Type C (titanium alloy, 2.0×11 mm).The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT), resonance frequency (RF), and removal torque (RT)] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively) were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively). In the 45° test, the RFs of Type C (9.2 kHz) was significantly higher than those of Type A (7.0 kHz) and Type B (6.7 kHz). The anchor area of the mini-implants was in the order of Type C (706 mm 2 )>Type B (648 mm 2 )>Type A (621 mm 2 ). Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT) among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants. Copyright © 2016. Published by Elsevier Taiwan.

  6. Mechanical strength of various cyanate ester/epoxy insulation systems after reactor irradiation

    International Nuclear Information System (INIS)

    Prokopec, R.; Humer, K.; Maix, R.K.; Fillunger, H.; Weber, H.W.

    2006-01-01

    In order to ensure safety operation of the magnet coils, the insulation system must keep its mechanical strength over the whole magnet lifetime under the appropriate radiation environment. Recent results on cyanate ester/epoxy blends demonstrated their mechanical integrity after irradiation to the ITER design fluence level, i.e. 1 x 10 22 m -2 (E > 0.1 MeV). For economic reasons, the cyanate ester content in the blend should be kept as low as possible due to the higher price compared to traditional epoxy resins. Therefore, the optimal composition of cyanate ester and epoxy in the blend is of great importance. In this study R-glass fiber/ Kapton reinforced cyanate ester based blends using different epoxy resins and epoxy contents were investigated. Short-beam shear as well as static tensile tests were carried out at 77 K prior to and after irradiation to a fast neutron fluence of 1 and 2 x 10 22 m -2 (E > 0.1 MeV) in the TRIGA reactor (Vienna) at ambient temperature (340 K). In addition, tension-tension fatigue measurements were performed in the load and the strain controlled mode in order to simulate the pulsed operation conditions of the ITER magnets. Initial results show, that cyanate ester contents of both 40 % and 30 % lead only to a small reduction of the mechanical strength after irradiation to the ITER design fluence. (author)

  7. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes

    Science.gov (United States)

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman

    2016-01-01

    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354

  8. Enhancement of mechanical properties and failure mechanism of electron beam welded 300M ultrahigh strength steel joints

    International Nuclear Information System (INIS)

    Zhang, Guodong; Yang, Xinqi; He, Xinlong; Li, Jinwei; Hu, Haichao

    2013-01-01

    Highlights: ► Normalizing at 970 °C plus quenching and tempering cannot refine the columnar grains. ► Ductility and toughness of conventional quenched and tempered joint are very low. ► An optimum combination of strength and ductility was obtained for the welded joints. ► Intergranular cracked columnar dendritic grains were found on the fracture surface. -- Abstract: In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.

  9. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  10. Strength analysis and optimization of writing mechanism of steel billet marking machine

    Directory of Open Access Journals (Sweden)

    Fu Min

    2017-01-01

    Full Text Available According to steel billet marking theory of plasma arc nicking, the paper designs a dual laser ranging marking machine against online marking of special steel billet and realizes multi-character marking of the end face of hot steel billet. Writing mechanism bases on the rectangular coordinates marking form, Z axis adopts cantilever structure. It completes the overall marking task utilizing the synergy of KK module in X axis, Y axis and Z axis. It makes modal analysis on the writing mechanism model established by Pro/Enginner utilizing ANSYS Workbench at the position of X1Y1Z1, and obtains the first six order modal frequency and analyzes the vibration in the writing process. Moreover, the paper analyzes the static structure of the cantilever of writing mechanism, computes its maximum stress and total deformation. To make the writing mechanism reach the target of light weight, the paper optimizes Z-axis cantilever of writing mechanism. According to the analysis, it is known that the optimized Z-axis cantilever of the writing mechanism still meets the strength and rigidity requirement and total mass declines approximately 30%.

  11. A numerical study on the mechanical properties and the processing behaviour of composite high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Muenstermann, Sebastian [RWTH Aachen (Germany). Dept. of Ferrous Metallurgy; Vajragupta, Napat [RWTH Aachen (Germany). Materials Mechanics Group; Weisgerber, Bernadette [ThyssenKrupp Steel Europe AG (Germany). Patent Dept.; Kern, Andreas [ThyssenKrupp Steel Europe AG (Germany). Dept. of Quality Affairs

    2013-06-01

    The demand for lightweight construction in mechanical and civil engineering has strongly promoted the development of high strength steels with excellent damage tolerance. Nowadays, the requirements from mechanical and civil engineering are even more challenging, as gradients in mechanical properties are demanded increasingly often for components that are utilized close to the limit state of load bearing capacity. A metallurgical solution to this demand is given by composite rolling processes. In this process components with different chemical compositions were jointed, which develop after heat treatment special properties. These are actually evaluated in order to verify that structural steels with the desired gradients in mechanical properties can be processed. A numerical study was performed aiming to numerically predict strenght and toughness properties, as well as the procesing behaviour using Finite Element (FE) simulations with damage mechanics approaches. For determination of mechanical properties, simulations of tensile specimen, SENB sample, and a mobile crane have been carried out for different configurations of composite rolled materias out of high strebght structural steels. As a parameter study, both the geometrical and the metallurgical configurations of the composite rolled steels were modified. Thickness of each steel layer and materials configuration have been varied. Like this, a numerical procedure to define optimum tailored configurations of high strenght steels could be established.

  12. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  13. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    Science.gov (United States)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  14. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    Science.gov (United States)

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  15. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-05-27

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.

  16. Strength Training with Vascular Occlusion: A Review of Possible Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    De Castro Fábio Marzliak Pozzi

    2017-06-01

    Full Text Available Strength training with blood flow restriction, or KAATSU training, has been shown to be as effective as conventional strength training to promote muscular strength and hypertrophy. Several mechanisms have been suggested as hypotheses to explain the adaptations arising from this training method. Among these is metabolic stress, which exerts important physiological effects and may influence the training adaptations in question. In addition, hypoxia produced by the technique may change the neural recruitment pattern. Growth hormone (GH concentrations increase as a result of practicing this method, which can trigger an increase in plasmatic and, perhaps, muscular insulin-like growth factor-1 (IGF-1 concentrations. The increase in concentrations of these factors can play a leading role in responses to KAATSU training. Among the effects of the GH/IGF-1 axis in muscle cells is the increase in the signalling pathway activity of the mammalian target of rapamycin (mTOR, which has been associated with increased protein synthesis. On the other hand, the decrease in the activity of the myostatin pathway, which has an antagonistic effect to mTOR, has been demonstrated after training with occlusion. Other factors, such as increases in the expression of heat shock proteins, may play an important role in adaptations to exercise. Nitric oxide synthase could increase nitric oxide concentration, which in turn has an effect on satellite cells and blood flow. However, despite the results obtained, the transfer to other situations (e.g. speed sports is not yet clear.

  17. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    Science.gov (United States)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  18. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    Science.gov (United States)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  19. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Rene GARCIA-CONTRERAS

    2015-06-01

    Full Text Available The use of nanoparticles (NPs has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC compared to GIC supplemented with titanium dioxide (TiO2 nanopowder at 3% and 5% (w/w. Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc, Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05. In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05, flexural and compressive strength (p<0.05, and antibacterial activity (p<0.001, without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  20. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  1. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  2. Strength analysis and optimization of welding robot mechanism in emergency stop state

    Directory of Open Access Journals (Sweden)

    Zdeněk Poruba

    2016-03-01

    Full Text Available The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and thus higher excitation force is expected. The dynamical simulation performed describes the response of the robot mechanism in the form of stress course in time, quantifies the peak values of the stress caused by the dynamical component of loading and highlights the potential risks associated with this phenomenon.

  3. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys.

    Science.gov (United States)

    Liu, R; Zhang, Z J; Li, L L; An, X H; Zhang, Z F

    2015-04-01

    In this study, the concept of "twinning induced plasticity (TWIP) alloys" is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, "TWIP copper alloys" was proposed following the concept of "TWIP steels", as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. "dynamic development", "planarity", as well as "orientation selectivity" were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general "TWIP effect". Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general "TWIP effect", may provide useful strategies for designing high-performance engineering materials.

  4. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  5. Synthesis by irradiation and mechanism and structural characterization study of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, Ademar Benevolo

    2004-01-01

    Polypropylene molecular structure is made only by linear molecules interacting by weak forces. The resulting PP has very low melt strength (MS). MS is important to make feasible to process PP by all the transformation technologies based on the free expansion of the melt. The aim of this work was to develop a new process to synthesize PP with crosslinks and/or long chain branches, known as High Melt Strength Polypropylene (HMSPP) and to characterize its structure and synthesis mechanism. HMSPP was obtained by the irradiation of PP under a crosslinking (acetylene) atmosphere or inert or oxidative one, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals under reactive or inert atmosphere. The results from rheological characterization showed that the highest levels of MS were obtained by conducting irradiation and thermal treatments under crosslinking atmospheres. The results for the elucidation of reaction mechanism by electron spin resonance (ESR) showed that acetylene irradiation is effective in promoting the creation of double bonds, based on the formation of polyenil radicals. The results of structural unraveling showed that radiation promotes predominantly the degradation of atactic molecules or molecules with atactic defects. These results support the hypothesis of formation of branched PP molecules based on the reaction of those fragments with the double bonds created in the PP molecules. (author)

  6. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  7. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  8. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  9. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Petronela Nechita

    2010-04-01

    Full Text Available Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodegradability. It was found that the biodegradability of composite materials obtained from a mixture of secondary cellulosic fibers, peat, and additives, is strongly influenced by the presence or absence of the rhizosphere effect and the synergistic relations set in the culture substrate between the plant roots and microorganisms, which develop permanently the recycling and solubilization of mineral nutrients. The results showed that the presence in the substrate of some complex populations made by heterotrophic bacteria favors full degradation of the pulp and lignin contained in the substrate and pots composition. Therefore, unlike the reference sample (plant-free, cultivated versions exhibited an intense biodegradation on the account of rhizosphere effect.

  10. A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate.

    Science.gov (United States)

    Xu, Kun; Tan, Ying; Chen, Qiang; An, Huiyong; Li, Wenbo; Dong, Lisong; Wang, Pixin

    2010-05-15

    Series of hydrophilic core-shell microgels with cross-linked poly(N-isopropylacrylamide) (PNIPAAm) as core and poly(vinyl amine) (PVAm) as shell are synthesized via surfactant-free emulsion polymerization. Then, the microgels are treated with a small amount of potassium persulfate (KPS) to generate free radicals on the amine nitrogens of PVAm, which subsequently initiate the graft copolymerization of acrylic acid (AA), acryloyloxyethyl trimethyl ammonium chloride (DAC), and acrylamide (AAm) onto microgels to prepare multi-responsive composite hydrogels. The composite hydrogels consist of cross-linked ungrafted polyampholyte chains as the first network and microgels with grafted polyampholyte chains as graft point and second network and show surprising mechanical strength and rapid response rate. The investigation shows the compress strength of composite hydrogels is up to 17-30 MPa, which is 60-100 times higher than that of the hydrogel matrix. The composite hydrogel shows reversible switch of transmittance when traveling the lowest critical temperature (LCST) of microgels. When the composite hydrogel swollen in pH 2.86 solution at ambient condition is immersed into the pH 7.00 solution at 45 °C, a rapid dynamic shrinking can be observed. And the character time (τ) of shrinking dynamic of composite hydrogel is 251.9 min, which is less than that of hydrogel matrix (τ=2273.7 min). Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Effect of recycling protocol on mechanical strength of used mini-implants.

    Science.gov (United States)

    Estelita, Sérgio; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo Silveira

    2014-01-01

    Purpose. This study evaluated the influence of recycling process on the torsional strength of mini-implants. Materials and Methods. Two hundred mini-implants were divided into 4 groups with 50 screws equally distributed in five diameters (1.3 to 1.7 mm): control group (CG): unused mini-implants, G1: mini-implants inserted in pig iliac bone and removed, G2: same protocol of group 1 followed by sonication for cleaning and autoclave sterilization, and G3: same insertion protocol of group 1 followed by sonication for cleaning before and after sandblasting (Al2O3-90 µ) and autoclave sterilization. G2 and G3 mini-implants were weighed after recycling process to evaluate weight loss (W). All the screws were broken to determine the fracture torque (FT). The influence of recycling process on FT and W was evaluated by ANOVA, Mann-Whitney, and multiple linear regression analysis. Results. FT was not influenced by recycling protocols even when sandblasting was added. Sandblasting caused weight loss due to abrasive mechanical stripping of screw surface. Screw diameter was the only variable that affected FT. Conclusions. Torsional strengths of screws that underwent the recycling protocols were not changed. Thus, screw diameter choice can be a more critical step to avoid screw fracture than recycling decision.

  12. MECHANICAL STRENGTH ENHANCEMENT OF OPEN-CELL ALUMINA FOAMS USING OPTIMUM CONCENTRATION OF DEFLOCCULANT

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-06-01

    Full Text Available Open-cell alumina foams were prepared using the appropriate alumina slurry and polyurethane sponge with linear pore density of approximately 14 pores per inch (ppi as a template by the replica method. The rheological studies showed that the optimum solid content for the slurries without deflocculants was 60 wt. %. In order to increase the slurry solid content, Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt was used as dispersant. To determine the optimum concentration of dispersant, the viscosity curves of alumina slurries containing different values of Tiron from 0 to 1.2 wt. % (based on dry material weight were studied. The optimum concentration of Tiron obtained for lowest viscosity was 0.8 wt. %. Thus, the solid content in the slurry could be increased from 60 to 66 wt. %. The effect of increase in the slurry solid content and the way it affects the foam structure and the mechanical strength were investigated. Microstructural observations of the foams show a significant reduction in macroscopic and microscopic defects in the foam struts when the slurry solid content is increased. Total porosity of the produced alumina foams prepared using slurries containing 60 and 66 wt. % solid are 83.3 and 80.4 %, respectively, while the compressive strength of the foams has increased from 1.33 to 3.24 MPa.

  13. Influence of strength on magnitude and mechanisms of adaptation to power training.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of performance improvements and the mechanisms driving adaptation to ballistic power training differ between strong and weak individuals. Twenty-four men were divided into three groups on the basis of their strength level: stronger (n = 8, one-repetition maximum-to-body mass ratio (1RM/BM) = 1.97 +/- 0.08), weaker (n = 8, 1RM/BM = 1.32 +/- 0.14), or control (n = 8, 1RM/BM = 1.37 +/- 0.13). The stronger and weaker groups trained three times per week for 10 wk. During these sessions, subjects performed maximal-effort jump squats with 0%-30% 1RM. The impact of training on athletic performance was assessed using a 2-d testing battery that involved evaluation of jump and sprint performance as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P < or = 0.05) improvements in jump (stronger: peak power = 10.0 +/- 5.2 W.kg, jump height = 0.07 +/- 0.04 m; weaker: peak power = 9.1 +/- 2.3 W.kg, jump height = 0.06 +/- 0.04 m) and sprint performance after training (stronger: 40-m time = -2.2% +/- 2.0%; weaker: 40-m time = -3.6% +/- 2.3%). Effect size analyses revealed a tendency toward practically relevant differences existing between stronger and weaker individuals in the magnitude of improvements in jump performance (effect size: stronger: peak power = 1.55, jump height = 1.46; weaker: peak power = 1.03, jump height = 0.95) and especially after 5 wk of training (effect size: stronger: peak power = 1.60, jump height = 1.59; weaker: peak power = 0.95, jump height = 0.61). The mechanisms driving these improvements included significant (P < or = 0.05) changes in the force-velocity relationship, jump mechanics, and neural activation, with no changes to muscle architecture observed. The magnitude of improvements after ballistic power training was not significantly influenced by strength level. However, the training had a tendency toward

  14. Greater Role of Geostrophic Currents on Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Steele, M.; Zhong, W.; Zhang, J.; Zhao, J.

    2017-12-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and to cause an Ekman divergence that counteracts wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may plays a significant role in biological processes in these regions.

  15. Greater Role of Geostrophic Currents in Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Zhong, Wenli; Steele, Michael; Zhang, Jinlun; Zhao, Jinping

    2018-01-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and moderate the wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may play a significant role in physical and biological processes in these regions.

  16. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  17. The development of bioresorbable composite polymeric implants with high mechanical strength

    Science.gov (United States)

    Sharma, Upma; Concagh, Danny; Core, Lee; Kuang, Yina; You, Changcheng; Pham, Quynh; Zugates, Greg; Busold, Rany; Webber, Stephanie; Merlo, Jonathan; Langer, Robert; Whitesides, George M.; Palasis, Maria

    2018-01-01

    Implants for the treatment of tissue defects should mimic the mechanical properties of the native tissue of interest and should be resorbable as well as biocompatible. In this work, we developed a scaffold from variants of poly(glycolic) acid which were braided and coated with an elastomer of poly(glycolide-co-caprolactone) and crosslinked. The coating of the scaffold with the elastomer led to higher mechanical strength in terms of compression, expansion and elasticity compared to braids without the elastomer coating. These composite scaffolds were found to have expansion properties similar to metallic stents, utilizing materials which are typically much weaker than metal. We optimized the mechanical properties of the implant by tuning the elastomer branching structure, crosslink density, and molecular weight. The scaffolds were shown to be highly resorbable following implantation in a porcine femoral artery. Biocompatibility was studied in vivo in an ovine model by implanting the scaffolds into femoral arteries. The scaffolds were able to support an expanded open lumen over 12 months in vivo and also fully resorbed by 18 months in the ovine model.

  18. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    Science.gov (United States)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

  19. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E.; Moran, Jeffery H.; Radominska-Pandya, Anna; Prather, Paul L.

    2013-01-01

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. PMID:24084047

  20. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. © 2013.

  1. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity.

    Science.gov (United States)

    Ryan, Karen K; Woods, Stephen C; Seeley, Randy J

    2012-02-08

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone

    Science.gov (United States)

    Kätker, A. K.; Rempe, M.; Renner, J.

    2016-12-01

    The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural

  3. The associations between quadriceps muscle strength, power, and knee joint mechanics in knee osteoarthritis: A cross-sectional study.

    Science.gov (United States)

    Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A

    2015-12-01

    Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (Pknee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  5. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  6. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    International Nuclear Information System (INIS)

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-01-01

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  7. On the Strength of the Carbon Nanotube-Based Space Elevator Cable: From Nano- to Mega-Mechanics

    OpenAIRE

    Pugno, Nicola M.

    2006-01-01

    In this paper different deterministic and statistical models, based on new quantized theories proposed by the author, are presented to estimate the strength of a real, thus defective, space elevator cable. The cable, of ~100 megameters in length, is composed by carbon nanotubes, ~100 nanometers long: thus, its design involves from the nano- to the mega-mechanics. The predicted strengths are extensively compared with the experiments and the atomistic simulations on carbon nanotubes available i...

  8. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    Science.gov (United States)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  9. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  10. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  11. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    Directory of Open Access Journals (Sweden)

    Qingping Geng

    2012-04-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.

  12. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  13. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  14. The tensile strength of mechanical joint prototype of lontar fiber composite

    Science.gov (United States)

    Bale, Jefri; Adoe, Dominggus G. H.; Boimau, Kristomus; Sakera, Thomas

    2018-03-01

    In the present study, an experimental activity has been programmed to investigate the effect of joint prototype configuration on tensile strength of lontar (Borassus Flabellifer) fiber composite. To do so, a series of tests were conducted to establish the tensile strength of different joint prototype configuration specimen of lontar fiber composite. In addition, post observation of macroscope was used to map damage behavior. The analysis of lontar fiber composite is a challenge since the material has limited information than others natural fiber composites materials. The results shown that, under static tensile loading, the tensile strength of 13 MPa produced by single lap joint of lontar fiber composite is highest compare to 11 MPa of tensile strength generated by step lap joint and double lap joint where produced the lowest tensile strength of 6 MPa. It is concluded that the differences of tensile strength depend on the geometric dimensions of the cross-sectional area and stress distribution of each joint prototype configuration.

  15. Strength and Failure Mechanism of Composite-Steel Adhesive Bond Single Lap Joints

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2018-01-01

    Full Text Available Carbon fiber-reinforced plastics- (CFRP- steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.

  16. Influence of nanoporous structure on mechanical strength of aluminium and aluminium alloy adhesive structural joints

    International Nuclear Information System (INIS)

    Spadaro, C; Dispenza, C; Sunseri, C

    2006-01-01

    The influence of surface treatments on the mechanical strength of adhesive joints was investigated. The attention was focused on AA2024 alloy because it is extensively used in both the automotive and aerospace industries. Adhesive joints fabricated with pure aluminium were also investigated in order to evidence possible differences in the surface features after identical treatments. Before joining with a commercial epoxy adhesive, metal substrates were subjected to different kinds of treatment and the surfaces were characterized by SEM analysis. The formation of a microporous surface in the AA2024 alloy, upon etching and anodizing, is discussed on the basis of the role of the intermetallic particles and their electrochemical behaviour with respect to the aluminium matrix. Moreover, nanostructured porous oxide layers on both type of substrate were also formed, as a consequence of the anodizing process. Differences in their morphologies were revealed as a function of both the applied voltage and the presence of alloying elements. On this basis, an explanation of the different values of fracture energy measured by means of T-peel tests carried out on the corresponding joints was attempted

  17. COMPARISON OF THE TRADITIONAL STRENGTH OF MATERIALS APPROACH TO DESIGN WITH THE FRACTURE MECHANICS APPROACH

    International Nuclear Information System (INIS)

    Z. Ceylan

    2002-01-01

    The objective of this activity is to show that the use of the traditional strength of materials approach to the drip shield and the waste package (WP) designs is bounding and appropriate when compared to the fracture mechanics approach. The scope of this activity is limited to determining the failure assessment diagrams for the two materials at issue: Ti-7 and Alloy 22. This calculation is intended for use in support of the license application design of the drip shield and the WP. This activity is associated with the drip shield and the WP designs. The activity evaluation for work package number P32 12234F2, included in ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 1, p. A-6), has determined that the development of this document is subject to ''Quality Assurance Requirements and Description'' requirements. The control of the electronic management of data is accomplished in accordance with the methods specified in Reference 1, Section 10. AP-3.124, ''Design Calculations and Analysis'' (Ref. 2), is used to develop and document the calculation

  18. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    Science.gov (United States)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  19. Mechanical strength and hydrophobicity of cotton fabric after SF{sub 6} plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kamlangkla, K. [Nanoscience and Nanotechnology Program, Center of Innovative Nanotechnology, Chulalongkorn University, Bangkok 10330 (Thailand); Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand); Pavarajarn, V. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Hodak, Jose H. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Hodak, Satreerat K., E-mail: Satreerat.H@Chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand)

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF{sub 6} plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF{sub 6} pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF{sub 6} pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  20. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    International Nuclear Information System (INIS)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-01-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF 6 plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF 6 pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF 6 pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  1. The significance of strength of silicon carbide for the mechanical integrity of coated fuel particles for HTRs

    International Nuclear Information System (INIS)

    Bongartz, K.; Scheer, A.; Schuster, H.; Taeuber, K.

    1975-01-01

    Silicon carbide (SiC) and pyrocarbon are used as coating material for the HTR fuel particles. The PyC shell having a certain strength acts as a pressure vessel for the fission gases whereas the SiC shell has to retain the solid fission products in the fuel kernel. For measuring the strength of coating material the so-called Brittle Ring Test was developed. Strength and Young's modulus can be measured simultaneously with this method on SiC or PyC rings prepared out of the coating material of real fuel particles. The strength measured on the ring under a certain stress distribution which is characteristic for this method is transformed with the aid of the Weibull formalism for brittle fracture into the equivalent strength of the spherical coating shell on the fuel particle under uniform stress caused by the fission gas pressure. The values measured for the strength of the SiC were high (400-700MN/m 2 ), it could therefore be assumed that a SiC layer might contribute significantly also to the mechanical strength of the fuel coating. This assumption was confirmed by an irradiation test on coated particles with PyC-SiC-PyC coatings. There were several particles with all PyC layers broken during the irradiation, whereas the SiC layers remained intact having to withstand the fission gas pressure alone. This fact can only be explained assuming that the strength of the SiC is within the range of the values measured with the brittle ring test. The result indicates that, in optimising the coating of a fuel particle, the PyC layers of a multilayer coating should be considered alone as prospective layers for the SiC. The SiC shell, besides acting as a fission product barrier, is then also responsible for the mechanical integrity of the particle

  2. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty.

    Science.gov (United States)

    Ishikawa, K; Miyamoto, Y; Takechi, M; Ueyama, Y; Suzuki, K; Nagayama, M; Matsumura, T

    1999-03-05

    The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing. Copyright 1999 John Wiley & Sons, Inc.

  3. Strength Asymmetry and Landing Mechanics at Return to Sport after ACL Reconstruction

    Science.gov (United States)

    Schmitt, Laura C.; Paterno, Mark V.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Purpose Evidence-based quadriceps femoris muscle (QF) strength guidelines for return to sport following anterior cruciate ligament (ACL) reconstruction are lacking. This study investigated the impact of QF strength asymmetry on knee landing biomechanics at the time of return to sport following ACL reconstruction. Methods Seventy-seven individuals (17.4 years) at the time of return to sport following primary ACL reconstruction (ACLR group) and 47 uninjured control individuals (17.0 years) (CTRL group) participated. QF strength was assessed and Quadriceps Index calculated (QI = [involved strength/uninvolved strength]*100%). The ACLR group was sub-divided based on QI: High Quadriceps (HQ, QI≥90%) and Low-Quadriceps (LQ, QIkinetic variables were collected during a drop vertical jump maneuver. Limb symmetry during landing, and discrete variables were compared among the groups with multivariate analysis of variance and linear regression analyses. Results The LQ group demonstrated worse asymmetry in all kinetic and ground reaction force variables compared to the HQ and CTRL groups, including reduced involved limb peak knee external flexion moments (p.05). In the ACLR group, QF strength estimated limb symmetry during landing after controlling for graft type, meniscus injury, knee pain and symptoms. Conclusion At the time of return to sport, individuals post-ACL reconstruction with weaker QF demonstrate altered landing patterns. Conversely, those with nearly symmetrical QF strength demonstrate landing patterns similar to uninjured individuals. Consideration of an objective QF strength measure may aid clinical decision-making to optimize sports participation following ACL reconstruction. PMID:25373481

  4. Effect of technological parameters and microstructure on mechanical strength of UO2 fuel pellets

    International Nuclear Information System (INIS)

    Radford, K.

    1980-01-01

    The effect of various peculiarities of tablet microstructure namely, sammury porosity (tablet density), grain size and pore distribution over sizes on technological parameters, is studied. It is shown that density decrease leads to a fast reduction of UO 2 tablet strength. The maximum effect on strength is produced by pore distribution over sizes, characterized by a median size, and not by the grain size, though a combined effect of those two factors is also observed. The important role of the technology of tablet production manifests itself in the fact that all operations bringing about the increase of pore or grain sizes leads to a reduction of strength. Such factors as powder origin, granule sizes, U 3 O 8 content and the amount of additions do not cause any considerable changes in the strength of tablets. Bend tests under conditions of biaxial loading should be considered as an ideal method of determining fuel tablets strength [ru

  5. In vitro tendon tissue development from human fibroblasts demonstrates collagen fibril diameter growth associated with a rise in mechanical strength

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L; Svensson, René B

    2013-01-01

    Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human...

  6. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  7. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  8. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  9. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  10. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  11. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    Science.gov (United States)

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical

  12. Express Control of the Mechanical Properties of High-Strength and Hard-to-Machine Materials at All Stages of the Technological Cycle of Producing Mechanical Engineering Products

    Science.gov (United States)

    Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.

    2017-12-01

    It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.

  13. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  14. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  15. The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In this work, strength assessments and coefficient of water absorption of high performance self compacting concrete containing different amounts of ZrO2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding ZrO2 nanoparticles in the cement paste up to 4.0 wt. (%. ZrO2 nanoparticles, as a result of increased crystalline Ca(OH2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, ZrO2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that ZrO2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  16. Optimization of mechanical strength of titania fibers fabricated by direct drawing

    Science.gov (United States)

    Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis

    2013-11-01

    Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

  17. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Burke, C.

    1977-01-01

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  18. Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model

    Czech Academy of Sciences Publication Activity Database

    Königsberger, M.; Hlobil, Michal; Delsaute, B.; Staquet, S.; Hellmich, C.; Pichler, B.

    2018-01-01

    Roč. 103, č. 1 (2018), s. 77-94 ISSN 0008-8846 Institutional support: RVO:68378297 Keywords : compressive strength * micromechanics * cement paste * concrete * modeling Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 4.762, year: 2016 http://www.sciencedirect.com/science/article/pii/S0008884617302934?via%3Dihub

  19. Recovery in mechanical muscle strength following resurfacing vs standard total hip arthroplasty - a randomised clinical trial

    DEFF Research Database (Denmark)

    Jensen, Carsten; Aagaard, Per; Overgaard, S

    2011-01-01

    rather than implant design per se. Thus, the present data failed to support the hypothesis that R-THA would result in an enhanced strength rehabilitation compared to S-THA. Further, between-limb asymmetry remained present for hip flexors and adductors after 52 wks. Trial registration: NCT01229293....... randomised into (A) standard total hip arthroplasty (S-THA) and (B) resurfacing total hip arthroplasty (R-THA). Pre-surgery assessment and follow-up were conducted (8, 26 and 52 wks). Maximal isometric muscle strength (Nm) and between-limb asymmetry for the knee extensors/flexors, hip adductors....../abductors, hip extensors/flexors were analysed. RESULTS: Maximal knee extensor and hip abductor strength were higher in S-THA than R-THA at 52 wks post-surgery (P ≤ 0.05) and hip extensors tended to be higher in S-THA at 52 wks (P = 0.06). All muscle groups showed substantial between-limb strength asymmetry (7...

  20. Effect of roughness and material strength on the mechanical properties of fracture replicas

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.

    1995-08-01

    This report presents the results of 11 rotary shear tests conducted on replicas of three hollow cylinders of natural fractures with JRC values of 7.7, 9.4 and 12.0. The JRC values were determined from the results of laser profilometer measurements. The replicas were created from gypsum cement. By varying the water-to-gypsum cement ratio from 30 to 45%, fracture replicas with different values of compressive strength (JCS) were created. The rotary shear experiments were performed under constant normal (nominal) stresses ranging between 0.2 and 1.6 MPa. In this report, the shear test results are compared with predictions using Barton's empirical peak shear strength equation. observations during the experiments indicate that only certain parts of the fracture profiles influence fracture shear strength and dilatancy. Under relatively low applied normal stresses, the JCS does not seem to have a significant effect on shear behavior. As an alternative, a new procedure for predicting the shear behavior of fractures was developed. The approach is based on basic fracture properties such as fracture surface profile data and the compressive strength, modulus of elasticity, and Poisson's ratio of the fracture walls. Comparison between predictions and actual shear test results shows that the alternative procedure is a reliable method

  1. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  2. Study of new heat treatment parameters for increasing mechanical strength and stress corrosion cracking resistance of 7075 Aluminium alloy

    OpenAIRE

    Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.

    2013-01-01

    For many years 7075 Aluminum alloys have been widely used especially in those applications for which highmechanical performances are required. It is well known that the alloy in the T6 condition is characterized bythe highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC)resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced toproduce T7X conditions, which are characterized by lower mechanical strengt...

  3. Mechanical properties of a high-strength Al{sub 90}Mn{sub 8}Ce{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C.; Zhao, Z.K.; Jiang, Q. [Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)

    2003-03-01

    A lightweight alloy with excellent strength and wear resistance, Al{sub 90}Mn{sub 8}Ce{sub 2}, has been manufactured in bulk by powder metallurgy. The best colligative mechanical properties of the alloy made by this technique are achieved by pressing at 753 K, where the porosity reaches a minimum, and the plasticity a maximum. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Neutron irradiation effects on mechanical properties in SA508 Gr4N high strength low alloy steel

    International Nuclear Information System (INIS)

    Kim, Minchul; Lee, Kihyoung; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni Cr Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni Cr Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn Mo Ni low alloy steel were also evaluated

  5. Influence of austenization temperature on microstructure and mechanical properties of a new ultra-high strength low alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya-Ya; Xu, Chi; Su, Xiang; Sun, Yu-Lin; Pan, Xi; Cao, Yue-De; Chen, Guang [Nanjing Univ. of Science and Technology, Nanjing (China). Engineering Research Center of Materials Behavior and Design

    2017-07-01

    The effects of austenization temperature on the microstructures and mechanical properties of a newly designed ultra-high strength low alloy martensitic steel were systematically studied. The microstructures of the martensitic steels which were quenched from different temperatures between 860 and 980 C were investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) and discussed. The results showed that the martensite laths were found to coarsen slowly and the carbide precipitates dissolved gradually with increasing austenization temperature. As the austenization temperature increased from 860 to 980 C, the volume of retained austenite and the numerical ratio of high angle grain boundaries (HAGBs) were observed to increase while the numerical ratio of low angle grain boundaries (LAGBs) decreased. Rockwell C hardness (HRC), tensile strength and yield strength increased at first and then decreased, while impact toughness was greatly improved with increasing austenization temperature. The fracture mechanism was brittle fracture when austenitized at low temperatures, while it was ductile fracture when austenitized at high temperatures. The mechanical properties were significantly influenced by the formation of retained austenite, the dissolution of carbides, and the numerical ratio of HAGBs and LAGBs.

  6. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  7. Predicting Folding Sequences Based on the Maximum Rock Strength and Mechanical Equilibrium

    Science.gov (United States)

    Cubas, N.; Souloumiac, P.; Maillot, B.; Leroy, Y. M.

    2007-12-01

    The objective is to propose and validate simple procedures, compared to the finite-element method, to select and optimize the dominant mode of folding in fold-and-thrust belts and accretionary wedges, and to determine its stress distribution. Mechanical equilibrium as well as the constraints due to the limited rock strength of the bulk material and of major discontinuities, such as décollements, are accounted for. The first part of the proposed procedure, which is at the core of the external approach of classical limit analysis, consists in estimating the least upper bound on the tectonic force by minimisation of the internal dissipation and part of the external work. The new twist to the method is that the optimization is also done with respect to the geometry of the evolving fold. If several folding events are possible, the dominant mode is the one leading to the least upper bound. The second part of the procedure is based on the Equilibrium Element Method, which is an application of the internal approach of limit analysis. The optimum stress field, obtained by spatial discretisation of the fold, provides the best lower bound on the tectonic force. The difference between the two bounds defines an error estimate of the exact unknown tectonic force. To show the merits of the proposed procedure, its first part is applied to predict the life span of a thrust within an accretionary prism, from its onset, its development with a relief build up and its arrest because of the onset of a more favorable new thrust (Cubas et al., 2007). This life span is sensitive to the friction angles over the ramp and the décollement. It is shown how the normal sequence of thrusting in a supercritical wedge is ended with the first out-of sequence event. The second part of the procedure provides the stress state over each thrust showing that the active back thrust is a narrow fan which dip is sensitive to the friction angle over the ramp and the amount of relief build up (Souloumiac et

  8. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, R., E-mail: rameshsmit@gmail.com [Department of Mechanical Engineering, PSG College of Technology, Coimbatore 641004, Tamilnadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa); Kumar, Ravi, E-mail: nvrk@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa)

    2017-02-27

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  9. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    International Nuclear Information System (INIS)

    Ramesh, R.; Dinaharan, I.; Kumar, Ravi; Akinlabi, E.T.

    2017-01-01

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  10. Bond Strength Mechanism of Fly Ash Based Geopolymer Mortars: A Review

    Science.gov (United States)

    Zailani, W. W. A.; Abdullah, M. M. A. B.; Razak, R. A.; Zainol, M. R. R. M. A.; Tahir, M. F. M.

    2017-11-01

    Geopolymer possess many excellent properties such as high compressive and bond strength, long term durability, better acid resistance and also known as a “Sustainable Material” due to its low carbon emission and low energy consumption. Thus, it is a good opportunity to develop and explore not only for cement and concrete but also as geopolymeric repair materials. This reviews showed that good bonding properties between geopolymeric repair material and concrete substrate is important in order to acquire an enhanced resistance against penetration of harmful substances and avoiding respalling of the repair material by understanding the bonding behaviour. Bond strength depends to the properties of the repair materials itself and also the surface preparations of concrete substrate.

  11. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Longmei Wu

    2017-05-01

    Full Text Available Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant and W3668 (lodging-susceptible were grown under field conditions with normal light (Control and shading (the incident light was reduced by 60% with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of

  12. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    Science.gov (United States)

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and

  13. Optimising mechanical strength and bulk density of dry ceramic bodies through mixture design

    OpenAIRE

    Correia, S. L.; Hotza, D.; Segadães, A. M.

    2005-01-01

    In industrial practice, it is desirable to be able to predict, in an expeditious way, what the effects of a change in raw materials or the proportions thereof might be in the various processing steps towards the final product. When the property of interest is basically determined by the combination (or mixture) of raw materials, an optimisation methodology specific to the design of mixture experiments can be successfully used. In the present study, dry bending strength and bulk density were s...

  14. The strength study of the rotating device driver indexing spatial mechanism

    Science.gov (United States)

    Zakharenkov, N. V.; Kvasov, I. N.

    2018-04-01

    The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.

  15. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  16. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  17. Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (high melt strength polypropylene) with Brazilian bentonite

    International Nuclear Information System (INIS)

    Fermino, Danilo Marin

    2011-01-01

    This work concerns to the study of the mechanical, thermal and rheological behavior of the nano composite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba, known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, Cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGM). The rheological behavior was evaluated in rheometer. The morphology of the nanocomposites was studied by the technique of scanning electron microscopy (SEM). The organophilic bentonite and the nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  18. Compaction behaviour and mechanical strength of lactose-sodium starch glycolate and lactose-croscarmellose sodium binary tablets

    Science.gov (United States)

    Ashikin Yaakub, Nur; Shamsul Anuar, Mohd; Tahir, Suraya Mohd

    2018-04-01

    The focus of this study is to elucidate the effects of adding super disintegrants (SSG and Acdisol) to a filler (lactose) in terms of the compaction behaviour and mechanical strength of the formed binary tablets. The tablets were formed in a uniaxial die compaction process with compaction pressures ranging from 37.7MPa to 150.7 MPa. Consequently, the findings indicated that the increasing of the compaction pressure and the percentage mass composition of the super disintegrants would led to the increased in the strength of the tablets as well as their plastic energies, where this was more apparent for the case of the binary lactose/Acdisol tablets. In addition, as the compaction pressure increased, the maximum ejection pressure required to eject the tablet from the die cavity also increased. In contrast, a decreased in the maximum ejection pressure was observed as the composition of both super disintegrants increased in the lactose-super disintegrant binary tablets. In conclusion, the addition of super disintegrant; SSG with lactose and Acdisol with lactose; would enhanced the mechanical strength of lactose based tablets especially for the case of acdisol-lactose binary tablets in the experimental conditions adopted in this current work.

  19. Influence of Porous Spherical-Shaped Hydroxyapatite on Mechanical Strength and Bioactive Function of Conventional Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Szu-Yu Chiu

    2017-01-01

    Full Text Available Glass-ionomer-cement (GIC is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC. A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS, crystalline HAp (HAp200 or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS, fluoride release concentrations (fluoride electrode and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times and strontium ions (1.5 times compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC.

  20. Influence of Using Clinical Microscope as Auxiliary to Perform Mechanical Cleaning of Post Space: A Bond Strength Analysis.

    Science.gov (United States)

    Ferreira, Ricardo; Prado, Maíra; de Jesus Soares, Adriana; Zaia, Alexandre Augusto; de Souza-Filho, Francisco José

    2015-08-01

    The aim of the present study was to evaluate the influence of using a clinical microscope while performing mechanical cleaning of post space walls on the bond strength of a fiberglass post to dentin. Forty-five bovine roots were used. After preparation, roots were filled using gutta-percha and Pulp Canal Sealer (SybronEndo, Orange, CA). Subsequently, for post space preparation, the roots were divided into 3 groups: control (only heat condenser + specific bur of the post system); cleaning without a microscope, mechanical cleaning (after the procedure described in the control group, round burs were used to improve cleaning); and cleaning with a microscope, mechanical cleaning performed with round burs visualized under a clinical microscope. Then, fiberglass posts were cemented. The roots were prepared and evaluated by the push-out test. Data were analyzed using Kruskal-Wallis and Student-Newman-Keuls tests (P microscope (cervical 1.66 ± 2.3, middle 0.65 ± 1.1, apical 0.79 ± 1.2, and total1.04 ± 1.7), and cleaning with a microscope (cervical 3.26 ± 2.8, middle 1.97 ± 3.5, apical 1.85 ± 4.1, and total 2.37 ± 3.5). In the cleaning with a microscope group, the bond strength values were significantly higher than those in the other groups. In all groups, the main failure pattern was adhesive between cement and dentin. The use of a clinical microscope while performing mechanical cleaning during post space preparation improved the bond strength of a fiberglass post to dentin. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  2. Alloying element effect on the mechanical properties of high-strength stainless steels and welds

    International Nuclear Information System (INIS)

    Pustovit, A.I.; Yushchenko, K.A.; Fortunatova, N.N.

    1977-01-01

    Experimental steels containing 11-17% Cr, 3-13% Ni, 0-2% Mo, 0-1% Ti, 1-2% Cu, 0-4% Co, 0-1% He, < 0.03% C and their welded joints have been studied. The ''MRA-1'' program was used to obtain mathematical description (in the form of regression equations) of the effect of alloying elements on strength and plasticity of the steels and the welded joints at 20...-196 deg C. The dependences obtained make it possible to predict the properties of the steels and the joints in a satisfactory agreement with their actual behaviour at 20...-196 deg C

  3. Effect of Recycling Protocol on Mechanical Strength of Used Mini-Implants

    OpenAIRE

    Estelita, Sérgio; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo Silveira

    2014-01-01

    Purpose. This study evaluated the influence of recycling process on the torsional strength of mini-implants. Materials and Methods. Two hundred mini-implants were divided into 4 groups with 50 screws equally distributed in five diameters (1.3 to 1.7 mm): control group (CG): unused mini-implants, G1: mini-implants inserted in pig iliac bone and removed, G2: same protocol of group 1 followed by sonication for cleaning and autoclave sterilization, and G3: same insertion protocol of group 1 follo...

  4. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  5. Mechanical strength of 17,134 model proteins and cysteine slipknots.

    Directory of Open Access Journals (Sweden)

    Mateusz Sikora

    2009-10-01

    Full Text Available A new theoretical survey of proteins' resistance to constant speed stretching is performed for a set of 17,134 proteins as described by a structure-based model. The proteins selected have no gaps in their structure determination and consist of no more than 250 amino acids. Our previous studies have dealt with 7510 proteins of no more than 150 amino acids. The proteins are ranked according to the strength of the resistance. Most of the predicted top-strength proteins have not yet been studied experimentally. Architectures and folds which are likely to yield large forces are identified. New types of potent force clamps are discovered. They involve disulphide bridges and, in particular, cysteine slipknots. An effective energy parameter of the model is estimated by comparing the theoretical data on characteristic forces to the corresponding experimental values combined with an extrapolation of the theoretical data to the experimental pulling speeds. These studies provide guidance for future experiments on single molecule manipulation and should lead to selection of proteins for applications. A new class of proteins, involving cysteine slipknots, is identified as one that is expected to lead to the strongest force clamps known. This class is characterized through molecular dynamics simulations.

  6. Comparison of the mechanical strength properties of several high-chromium ferritic steels

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.; Booker, B.L.P.

    1981-01-01

    A modified 9 Cr-1 Mo ferritic steel has been selected as an alternative material for breeder reactors. Different 9 Cr-1 Mo steels are already being used commercially in UK and USA and a 9 Cr-2 Mo steel (EM12) is being used commercially in France. The 12% Cr steel alloy HT9 is also often recommended for high-temperature service. Creep-rupture data for all six seels were analyzed to yield rupture life as a function of stress, temperature, and lot-to-lot variations. Yield and tensile strength data for the three 9 Cr-1 Mo materials were also examined. All results were compared with Type 304 stainless steel, and the tensile and creep properties of the modified and British 9 Cr-1 Mo materials were used to calculate allowable stress values S 0 per Section VIII, Division 1 and S/sub m/ per code Case N-47 to section III of the ASME Boiler and Pressure Vessel Code. these values were compared with code listings for American commercial 9 Cr-1 Mo steel, 2 1/4 Cr-1 Mo steel, and Type 304 stainless steel. The conclusion is made that the modified 9 Cr-1 Mo steel displays tensile and creep strengths superior to those of the other ferritic materials examined and is at least comparable to Type 304 stainless steel from room temperature to about 625 0 C. 31 figures

  7. Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy

    International Nuclear Information System (INIS)

    Zuo Yubo; Cui Jianzhong; Dong Jie; Yu Fuxiao

    2005-01-01

    A new superhigh strength Al-Zn-Mg-Cu alloy was made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting, respectively. The effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties were investigated. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT), the microstructures of LFEC ingot from the border to the center on the cross section are all fine equiaxed or nearly equiaxed grains. The grains are much finer and more uniform than that of DC ingot. It was found that magnetic flux density plays an important role on the microstructure formation of LFEC ingots. With increasing the magnetic flux density, grains become finer and more uniform. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT. The mechanical tests show that for this new superhigh strength Al-Zn-Mg-Cu alloy, the as-cast mechanical properties of LFEC ingot are much higher than that of DC ingot

  8. Preparation and mechanical properties of ultra-high-strength nanocrystalline metals

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 15, č. 4 (2015), s. 596-600 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Mechanical properties * Nanocrystalline materials * Selective leaching * Silver * Spark plasma sintering Subject RIV: JG - Metallurgy

  9. Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibres

    Science.gov (United States)

    Asim, M.; Jawaid, M.; Abdan, K.; Nasir, M.

    2018-01-01

    Pineapple leaf fibre (PALF) is a waste material of pineapple plants. PALF is abundant in amount for industrial purpose, cheap, easily available, high specific strength and stiffness. PALF is contributing a sustainable development in bio-composites as reinforcement material. However, natural fibres are not fully compatible with matrix due to hydrophilic in nature. To enhance the compatibility with matrix, fibres are modified its surface to make good interfacial bonding with matrix. In this research, PALF is treated with 3% and 6% concentration of NaOH for 3h, 6h 9h, and 12h soaking time. Surface modification of fibres was investigated by using scanning electron microscopy. Single fibre test and diameter of PALF fibres were evaluated the effects of NaOH treatments.

  10. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  11. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  12. Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Shin, Sang Yong; Han, Seung Youb; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2009-01-01

    Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of steels were fabricated by controlling the amount of Cu and B addition, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of acicular ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their lower volume fraction of martensite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in effective grain size due to the presence of acicular ferrite having fine effective grain size.

  13. The influence of flame hardening process to aluminum 7075 series on the mechanical strength and micro structure

    Science.gov (United States)

    Koin, Sudibtia Titio; Triyono, Teguh; Surojo, Eko

    2018-02-01

    The 7075 series alloys are heat treatable wrought aluminum alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effect of flame hardening process to aluminum 7075 series on the increasing hardness, tensile strength, and evolution of microstructure. A test specimen had made by machining process and flame heating. Temperature of solution heat treatment is varied on 350 °C, 400 °C, 450 °C and 500 °C. After that process a test specimen would be quenched at nitrate-nitrite liquid during 45 minutes and artificial aging at 120°C until two days. The testing specimen consist of hardness and tensile strength according to ASTM. The result showed that specimen had precipitation on microstructure lead to an increase in aluminum properties. On the temperature 450°C solution heat treatment, the aluminum properties reached the highest value, namely, hardness of 129 HVN and tensile strength 570 MPa.

  14. Tradeoff between Stem Hydraulic Efficiency and Mechanical Strength Affects Leaf–Stem Allometry in 28 Ficus Tree Species

    Directory of Open Access Journals (Sweden)

    Ze-Xin Fan

    2017-09-01

    Full Text Available Leaf–stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf–stem allometry remain poorly understood. Leaf and stem architectures – including stem area/mass, petiole area/mass, lamina area/mass, leaf number, specific leaf area (LA, and mass-based leafing intensity (LI – were measured on the current-year branches for 28 Ficus species growing in a common garden in SW China. The leaf anatomical traits, stem wood density (WD, and stem anatomical and mechanical properties of these species were also measured. We analyzed leaf–stem allometric relationships and their associations with stem hydraulic ad mechanical properties using species-level data and phylogenetically independent contrasts. We found isometric relationship between leaf lamina area/mass and stem area/mass, suggesting that the biomass allocation to leaf was independent to stem size. However, allometric relationship between LA/mass and petiole mass was found, indicating large leaves invest a higher fractional of biomass in petiole than small ones. LI, i.e., leaf numbers per unit of stem mass, was negatively related with leaf and stem size. Species with larger terminal branches tend to have larger vessels and theoretical hydraulic conductivity, but lower WD and mechanical strength. The size of leaf lamina, petiole, and stem was correlated positively with stem theoretical hydraulic conductivity, but negatively with stem WD and mechanical strength. Our results suggest that leaf–stem allometry in Ficus species was shaped by the trade-off between stem hydraulic efficiency and mechanical stability, supporting a functional interpretation of the relationship between leaf and stem dimensions.

  15. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain

    Science.gov (United States)

    Bazett-Jones, David M.; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E.

    2017-01-01

    Context:  Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective:  To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design:  Crossover study. Setting:  University research laboratory. Patients or Other Participants:  Seventeen participants (10 men, 7 women) with PFP. Intervention(s):  Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s):  Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results:  Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip

  16. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-12-01

    It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged (T6 condition but the welds showed poor corrosion resistance. The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment. The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.

  17. Optimising mechanical strength and bulk density of dry ceramic bodies through mixture design

    Directory of Open Access Journals (Sweden)

    Correia, S. L.

    2005-02-01

    Full Text Available In industrial practice, it is desirable to be able to predict, in an expeditious way, what the effects of a change in raw materials or the proportions thereof might be in the various processing steps towards the final product. When the property of interest is basically determined by the combination (or mixture of raw materials, an optimisation methodology specific to the design of mixture experiments can be successfully used. In the present study, dry bending strength and bulk density were selected as the properties to model, given the simplicity of their experimental determination and because they are frequently used as quality control parameter in the development and manufacture stages of floor and wall ceramic tiles. Ten formulations of three raw materials (a clay mixture, potash feldspar and quartz sand were processed in the laboratory under fixed conditions, similar to those used in the ceramics industry, and characterised. The use of this methodology enabled the calculation of valid regression models (equations relating dry bending strength and bulk density with the contents, in the starting mixture, of the particular raw materials used.

    En el trabajo industrial es deseable poder predecir de manera efectiva, los efectos que los cambios en las materias primas o en sus proporciones pueden ejercer sobre las variables del proceso y como estos afectan al producto final. Cuando la propiedad de interés depende preferentemente de la mezcla de las materias primas, una metodología específica de optimización para el diseño de los experimentos de mezclas puede ser empleada con éxito. En este trabajo, la resistencia mecánica en seco y la densidad se emplearon como los parámetros de control en el desarrollo y producción de azulejos cerámicos para pavimento y revestimiento. Diez formulaciones a partir de tres materias primas ( una mezcla de arcilla, feldespato potásico y arena de cuarzo fueron procesadas en el laboratorio bajo

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  19. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  20. Effect of Calcium Sprays on Mechanical Strength and Cell Wall Fractions of Herbaceous Peony (Paeonia Lactiflora Pall. Inflorescence Stems

    Directory of Open Access Journals (Sweden)

    Jintao Ge

    2012-04-01

    Full Text Available Calcium is an essential element and imparts significant structural rigidity to the plant cell walls, which provide the main mechanical support to the entire plant. In order to increase the mechanical strength of the inflorescence stems of herbaceous peony, the stems are treated with calcium chloride. The results shows that preharvest sprays with 4% (w/v calcium chloride three times after bud emergence are the best at strengthening “Da Fugui” peonies’ stems. Calcium sprays increased the concentrations of endogenous calcium, total pectin content as well as cell wall fractions in herbaceous peonies stems, and significantly increased the contents of them in the top segment. Correlation analysis showed that the breaking force of the top segment of peonies’ stems was positively correlated with the ratio of water insoluble pectin to water soluble pectin (R = 0.673 as well as lignin contents (R = 0.926 after calcium applications.

  1. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  2. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Directory of Open Access Journals (Sweden)

    Maximilian eFuchs

    2015-10-01

    Full Text Available Bioactive glasses (BG are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid, ions were released fast (up to 90% within 15 minutes at pH 1, which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa, staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid, which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  3. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.

    Science.gov (United States)

    Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek

    2018-05-04

    Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of mechanical and thermal load cycling on micro tensile bond strength of clearfil SE bond to superficial dentin

    Directory of Open Access Journals (Sweden)

    Ali Reza Daneshkazemi

    2013-01-01

    Full Text Available Background: Certain studies have been conducted on the effects of mechanical and thermal load cycling on the microtensile bond strength (microTBS of composites to dentin, but the results were different. The authors therefore decided to evaluate these effects on the bonding of Clearfil SE bond to superficial dentin. Materials and Methods: Flat dentinal surface of 42 molar teeth were bonded to Filtek-Z250 resin composite by Clearfil SE bond. The teeth were randomly divided into 7 groups and exposed to different mechanical and thermal load cycling. Thermocycling was at 5-55°C and mechanical load cycling was created with a force of 125 N and 0.5 Hz. Then, the teeth were sectioned and shaped to hour glass form and subjected to microTBS testing at a speed of 0.5 mm/min. The results were statistically analyzed by computer with three-way analysis of variance and T-test at P < 0.05 significant. To evaluate the location and mode of failure, the specimens were observed under the stereomicroscope. Then, one of the specimens in each group was evaluated under Scanning Electron Microscopy (SEM for mode of failure. Results: All of the study groups had a significantly lower microTBS as compared to the control group ( P < 0.001. There was no statistically significant difference between mechanical cycling with 50K (kilo = 1000 cycles, and 50K mechanical cycles plus 1K thermal cycles. Most of the fractures in the control group were of adhesive type and this type of fracture increased after exposure to mechanical and thermal load cycling. Conclusion: Thermal and mechanical load cycling had significant negative effects on microTBS and the significant effects of mechanical load cycling started to be significant at 100K cycles.

  5. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    Science.gov (United States)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the edge dislocations can cut through the basal SFs although the interactions between the dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  6. The Prediction of the Mechanical Properties for Dual-Phase High Strength Steel Grades Based on Microstructure Characteristics

    Directory of Open Access Journals (Sweden)

    Emil Evin

    2018-04-01

    Full Text Available The decrease of emissions from vehicle operation is connected mainly to the reduction of the car’s body weight. The high strength and good formability of the dual phase steel grades predetermine these to be used in the structural parts of the car’s body safety zones. The plastic properties of dual phase steel grades are determined by the ferrite matrix while the strength properties are improved by the volume and distribution of martensite. The aim of this paper is to describe the relationship between the mechanical properties and the parameters of structure and substructure. The heat treatment of low carbon steel X60, low alloyed steel S460MC, and dual phase steel DP600 allowed for them to reach states with a wide range of volume fractions of secondary phases and grain size. The mechanical properties were identified by a tensile test, volume fraction of secondary phases, and grain size were measured by image analysis. It was found that by increasing the annealing temperature, the volume fraction of the secondary phase increased, and the ferrite grains were refined. Regression analysis was used to find out the equations for predicting mechanical properties based on the volume fraction of the secondary phase and grain size, following the annealing temperature. The hardening mechanism of the dual phase steel grades for the states they reached was described by the relationship between the strain-hardening exponent and the density of dislocations. This allows for the designing of dual phase steel grades that are “tailored” to the needs of the automotive industry customers.

  7. Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Blesa; J.L. Miranda; M.T. Izquierdo; R. Moliner; A. Arenillas; F. Rubiera [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2003-04-01

    The effect of curing temperature on smokeless fuel briquettes has been studied by Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS), and temperature programmed decomposition (TPD). These techniques help to predict the final properties of these briquettes which were prepared with a low-rank coal, sawdust, and olive stone as biomasses and humates as binder. The best mechanical properties are reached with both the mildest thermal curing at 95{sup o}C and the cocarbonized at 600{sup o}C of Maria coal (M2) and sawdust (S) due to the fibrous texture of sawdust. The temperature of curing causes the release of a certain amount of oxygenate structures and the decrease of the mechanical resistance. 15 refs., 7 figs., 3 tabs.

  8. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  9. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  10. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding

    Science.gov (United States)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.

    2017-09-01

    Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.

  11. Experimental analysis of mechanical joints strength by means of energy dissipation

    Science.gov (United States)

    Wolf, Alexander; Lafarge, Remi; Kühn, Tino; Brosius, Alexander

    2018-05-01

    Designing complex structures with the demand for weight reduction leads directly to a multi-material concept. This mixture has to be joined securely and welding, mechanical joining and the usage of adhesives are commonly used for that purpose. Sometimes also a mix of at least two materials is useful to combine the individual advantages. The challenge is the non-destructive testing of these connections because destructive testing requires a lot of preparation and expensive testing equipment. The authors show a testing method by measuring and analysing the energy dissipation in mechanical joints. Known methods are radiography, thermography and ultrasound testing. Unfortunately, the usage of these methods is difficult and often not usable in fibre-reinforced-plastics. The presented approach measures the propagation of the elastic strain wave through the joint. A defined impact strain is detected with by strain-gauges whereby the transmitter is located on one side of the joint and the receiver on the other, respectively. Because of different mechanisms, energy dissipates by passing the joint areas. Main reasons are damping caused by friction and material specific damping. Insufficient performed joints lead to an effect especially in the friction damping. By the measurement of the different strains and the resulting energy loss a statement to the connection quality is given. The possible defect during the execution of the joint can be identified by the energy loss and strain vs. time curve. After the description of the method, the authors present the results of energy dissipation measurements at a bolted assembly with different locking torques. By the adjustable tightening torques for the screw connections easily a variation of the contact pressure can be applied and analysed afterwards. The outlook will give a statement for the usability for other mechanical joints and fibre-reinforced-plastics.

  12. Strength and deformation mechanisms of rhyolitic glass at lower seismogenic zone conditions

    Science.gov (United States)

    Proctor, B.; Lockner, D. A.; Lowenstern, J. B.; Beeler, N. M.

    2017-12-01

    Although its relevance to coseismic earthquake source properties is still debated, frictional melting and the production of quenched glass called pseudotachylyte is a recurring process in some earthquake source regions. To investigate how glassy materials affect the post- and interseismic- strength and stability of faults, rhyolitic obsidian gouges were sheared under dry and wet conditions from 200 °C to 300 °C at effective normal stresses up to 200 MPa. Velocity-stepping and slide-hold slide tests were performed for up to three days. Dry glass gouges exhibited a brittle rheology at all conditions tested, exhibiting friction values and microstructures consistent with siliciclastic materials. Likewise, wet glass gouges at 200 °C exhibited a brittle rheology. In contrast, wet gouges at 300 °C transitioned from brittle sliding to linear-viscous (Newtonian) flow at strain rates < 3x10-4 s-1, indicating melt-like behavior well below the equilibrium melting temperature. The melt ranged from 2.1x1011 to 2.6x1012 Pa-s. The molten gouges transitioned back to glass when strain rates were increased, which, in some cases, promoted extreme strengthening. The molten gouges were fully welded with rod-shaped microlites rotated and boudinaged into the flow direction. There was very little evidence for nucleation of new phases within the glass or metasomatic alteration. Fourier transform infrared spectroscopy along with electron backscatter imaging demonstrate that hydration of the glass by diffusion of pore water was the dominant process reducing the viscosity and promoting melt flow. As much as 5 wt% water diffused into the nominally anhydrous glass. These results may provide insight into postseismic-slip behaviors and challenge some interpretations of fault kinematics which assume pseudotachylyte formation and flow is solely coseismic.

  13. Mechanical muscle function and lean body mass during supervised strength training and testosterone therapy in aging men with low-normal testosterone levels

    DEFF Research Database (Denmark)

    Kvorning, Thue; Christensen, Louise L; Madsen, Klavs

    2013-01-01

    To examine the effect of strength training and testosterone therapy on mechanical muscle function and lean body mass (LBM) in aging men with low-normal testosterone levels in a randomized, double-blind, placebo-controlled 24-week study.......To examine the effect of strength training and testosterone therapy on mechanical muscle function and lean body mass (LBM) in aging men with low-normal testosterone levels in a randomized, double-blind, placebo-controlled 24-week study....

  14. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    Science.gov (United States)

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p knee OA were linearly associated with greater frontal-plane varus motion excursions (p knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  15. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    microstructure exhibited a somewhat lower strength but much high general and local formabilities. In this thesis, both the physical and mechanical metallurgy of these steels and processes will be discussed. This research has shown that simple compositions and processes can result in DP steels with so-called Generation III properties.

  16. EVALUATION OF SHEAR STRENGTH FOR UPPER SLABS OF CAISSON FOUNDATION BASED ON LOAD CARRYING MECHANISM

    Science.gov (United States)

    Hattori, Hisamichi; Tadokoro, Toshiya; Tanimura, Yukihiro; Nishioka, Hidetoshi; Watanabe, Tadatomo; Maruyama, Osamu

    In upper slabs of caisson foundation, a seismic desi gn is difficult with an incr ease in earthquake load. So we carried out loading tests and FEM analysis for upper slabs of caisson foundation. As a result, we proposed a new design method which takes into co nsideration the effective width on the pull out side based on crack pattern of test specimens, which is not considered in the existing design method. Moreover, we proposed a rational design method based on load carrying mechanism for upper slabs of caisson foundation.

  17. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density....... Elongation showed a decrease with increase in charging current density for both the alloys. However, elongation occurring throughout the gauge length in uncharged specimens changed over to localized deformation, thus increasing the reduction in area in charged specimens. A transition in fracture mode from...

  18. Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges

    International Nuclear Information System (INIS)

    Lothongkam, Chaiyaporn

    2014-01-01

    A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength E b behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity E b value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by

  19. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  20. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Fire performance, mechanical strength and dimensional stability of wood flour–polyethylene composites under the influence of different fire retardants

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2017-05-01

    Full Text Available Flammability is one of the most important parameters that often limit the application range of wood plastic composites. Therefore, the improvements of retardancy performance of these products have a considerable impact. The aim of this work was to evaluate the influence of expandable graphite (EG and its combination with aluminum tirhydroxide (ATH, inorganic phosphate (IP and melamine borate (MB on the flammability of wood flour–polyethylene composites. Composites were prepared by the melt compounding method and cone calorimetry as well as limited oxygen index (LOI tests was employed to study their flammability properties. Also, the effect of different fire retardants on the mechanical strength and water uptake of samples were investigated. Cone calorimetry characterization indicated that with incorporation of fire retardans heat release rate and burning rate decrease and char residual as well as the time to ignition increase. These findings ascribed to formation of char layer by fire retardants. The combination of EG and other fire retardants yielded better improvements in flame retardancy in comparison to the sample that has just EG as flame retardant. The LOI test was used to determine the lowest concentration of oxygen at which a material will maintain combustion in a flowing mixture of oxygen and nitrogen. The results showed that inclusion of fire retardants improve the LOI of sample. Furthermore, the presence of fire retardants decreased the tensile and flexural resistance (strength and modules and impact strength of samples, and increased the water absorption as well as thickness swelling. Generally, among the different treatments examined, the EG–ATH retardancy system showed highest potential in flame retardancy of composites.

  2. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available In most species mitochondrial DNA (mtDNA is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of

  3. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    Science.gov (United States)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  4. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel

    International Nuclear Information System (INIS)

    Ran, Xianzhe; Liu, Dong; Li, An; Wang, Huaming; Tang, Haibo; Cheng, Xu

    2016-01-01

    Ultrahigh-strength AerMet100 steel thick plate was fabricated by laser additive manufacturing process. The as-deposited microstructures of the test steel were characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The mechanical properties were then examined using vickers-hardness test and tensile test. Results indicate that the as-deposited microstructures of the steel mainly consist of grain boundary allotriomorphic ferrite (GBA), grain interior irregular proeutectoid ferrite, plate-like upper bainite, needle-like lower bainite and retained austenite, which result in a good strength and some ductility anisotropy. The low deformation compatibility of specimen at the transverse direction (perpendicular to the deposition direction) mainly ascribes to the poor cracking resistance of the prior-austenite columnar grain boundary with coarse GBA phases. Compared to the almost intergranular cracking taken place in the transverse tensile specimen, the fracture mode of the longitudinal tensile specimen is a mixed mode of the predominant transgranular cracking and minor intergranular cracking.

  5. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Xianzhe [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Liu, Dong [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Li, An, E-mail: li_an@buaa.edu.cn [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Wang, Huaming; Tang, Haibo [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Cheng, Xu [School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China)

    2016-04-29

    Ultrahigh-strength AerMet100 steel thick plate was fabricated by laser additive manufacturing process. The as-deposited microstructures of the test steel were characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The mechanical properties were then examined using vickers-hardness test and tensile test. Results indicate that the as-deposited microstructures of the steel mainly consist of grain boundary allotriomorphic ferrite (GBA), grain interior irregular proeutectoid ferrite, plate-like upper bainite, needle-like lower bainite and retained austenite, which result in a good strength and some ductility anisotropy. The low deformation compatibility of specimen at the transverse direction (perpendicular to the deposition direction) mainly ascribes to the poor cracking resistance of the prior-austenite columnar grain boundary with coarse GBA phases. Compared to the almost intergranular cracking taken place in the transverse tensile specimen, the fracture mode of the longitudinal tensile specimen is a mixed mode of the predominant transgranular cracking and minor intergranular cracking.

  6. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    Science.gov (United States)

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  7. Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands

    Directory of Open Access Journals (Sweden)

    Ruoxi Yuan

    2016-11-01

    Full Text Available In adaptation to rising stimulant strength, innate monocytes can be dynamically programmed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programming may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS, the model stimulant of Toll-Like-Receptor 4 (TLR4, we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor IRF5 and reduced levels of transcriptional modulator BLIMP-1. Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  8. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    Science.gov (United States)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  9. Effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing: an in vitro study.

    Science.gov (United States)

    Sharan, Smitha; Kavitha, H R; Konde, Harish; Kalahasti, Deepthi

    2012-05-01

    To evaluate the effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing. A total of 256 rectangular specimens (65 * 10 * 3 mm) 128 per resin (Lucitone-199 and Acralyn-H) were fabricated. One side of each specimen was not polished and the other was either mechanically (n = 96) or chemically (n = 96) polished and immersed for 10, 30 and 60 minutes in 2% alkaline glutaraldehyde. Mechanically polished (n = 32) and chemically polished (n = 32) control specimens were immersed only in distilled water. The transverse strength (N/mm(2)) was tested for failure in a universal testing machine, at a crosshead speed of 5 mm/min. Data were statistically analyzed using 2-way ANOVA and Student t-test. chemical polishing resulted in significantly lower transverse strength values than mechanical polishing. Lucitone- 199 resin demonstrated the highest overall transverse strength for the materials tested. Heat-polymerized acrylic resins either mechanically or chemically polished, did not demonstrate significant changes in transverse strength during immersion in the disinfecting solution tested, regardless of time of immersion. Lucitone-199 resin demonstrated the highest overall transverse strength for the materials tested and significantly stronger than Acralyn-H with either type of polishing following immersion in 2% alkaline glutaraldehyde. There is a concern that immersion in chemical solutions often used for cleansing and disinfection of prostheses may undermine the strength and structure of denture base resins. In this study it was observed that, the transverse strength of samples of Lucitone-199 was higher than that of the samples of Acralyn-H. The chances of fracture of the denture made of Lucitone-199 are less than that of dentures made of Acralyn-H. The chemically polished dentures may be more prone to fracture than mechanically polished dentures.

  10. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  11. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications.

    Science.gov (United States)

    Sousa, Ana M M; Gonçalves, Maria P

    2015-11-05

    Agar films possess several properties adequate for food packaging applications. However, their high cost-production and quality variations caused by physiological and environmental factors affecting wild seaweeds make them less attractive for industries. In this work, native (NA) and alkali-modified (AA) agars obtained from sustainably grown seaweeds (integrated multi-trophic aquaculture) were mixed with locust bean gum (LBG) to make 'knife-coated' films with fixed final concentration (1 wt%) and variable agar/LBG ratios. Agar films were easier to process upon LBG addition (viscosity increase and gelling character decrease of the film-forming solutions observed by dynamic oscillatory and steady shear measurements). The mechanical properties and water resistance were optimal for films with 50 and/or 75% LBG contents and best in the case of NA (cheaper to extract). These findings can help reduce the cost-production of agar packaging films. Moreover, the controlled cultivation of seaweeds can provide continuous and reliable feedstock for transformation industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mechanism of improvement on strength and toughness of H13 die steel by nitrogen

    International Nuclear Information System (INIS)

    Li, Jing-Yuan; Chen, Yu-Lai; Huo, Jian-Hua

    2015-01-01

    The mechanism of nitrogen addition to AISI H13 die steel is proposed and supported using thermodynamic calculations in addition to observed changes in precipitate, microstructure, crystal structure, and macroproperties. The results indicate that the average impact toughness ak of the novel nitrogen H13 steel is maximally 17.6 J cm −2 and minimally 13.4 J cm −2 . These values result in die steel that reaches premium grade and approximate the superior grade as specified in NADCA#207-2003, additionally the hardness is improved 3–5HRC. Experimental findings indicate that the residual V(C,N) particles undissolved during nitrogen H13 steel austenitizing by quenching helps to suppress growth of original austenitic crystal grains, this in turn results in finer martensitic structures after quenching. In the subsequent tempering process all N atoms are dissolved in the solid state matrix a result of C atoms displacing N atoms in V(C,N). Solid dissolution of N atoms produces a distorted lattice of Fe matrix which results in an increase in the hardness of the steel. Additionally this displacement reaction is important for slow growth of secondary particles in nitrogen H13 steel during the tempering process which helps to increase impact toughness compared to its nitrogen-free counterpart given the same condition of heat-treatment

  13. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    Science.gov (United States)

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  14. Body Temperature Controlled Optical and Thermal Information Storage Light Scattering Display with Fluorescence Effect and High Mechanical Strength.

    Science.gov (United States)

    Chen, Si; Tong, Xiaoqian; He, Huiwen; Ma, Meng; Shi, Yanqin; Wang, Xu

    2017-04-05

    A kind of body temperature controlled optical and thermal information storage light scattering display based on super strong liquid crystalline physical gel with special "loofah-like gel network" was successfully prepared. Such liquid crystal (LC) gel was obtained by mixing a dendritic gelator (POSS-G1-BOC), an azobenzene compound (2Azo2), and a phosphor tethered liquid crystalline host (5CB), which could show its best contrast ratio at around human body temperature under UV light because of the phosphor's fluorescence effect. The gel also has quite strong mechanical strength, which could be used in wearable device field especially under sunlight, even under the forcing conditions as harsh as being centrifuged for 10 min at the speed of 2000 r/min. The whole production process of such a display is quite simple and could lead to displays at any size through noncontact writing. We believe it will have wide applications in the future.

  15. The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography

    Science.gov (United States)

    Spearing, S. Mark; Sinclair, Ian

    2016-07-01

    Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.

  16. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  17. The effect of CHA-doped Sr addition to the mechanical strength of metakaolin dental implant geopolymer composite

    Science.gov (United States)

    Sunendar, Bambang; Fathina, Afiya; Harmaji, Andrie; Mardhian, Deby Fajar; Asri, Lia; Widodo, Haris Budi

    2017-09-01

    The prospective material for implant plate required sufficient mechanical properties to maintain fracture fixation and resist physiological stress until bone healing process finished. Various problem implant plate based on metal and polymer materials when used as fixation for bone defect case induced developmental of bioceramic for implant plate materials. Materials that now has been attract a lot of attention is carbonate apatite and strontium as doping which known to have good biocompability along with biointegrity and mechanical charateristics. Other materials that have been known to have good mechanical properties are metakaolin and use of chitosan as coupling agent. Metakaolin and carbonate apatite can be produced by sol-gel methode which simpler, economical and energy-saving procedure furthermore use of chitosan which is widely found in the nature of Indonesia can be used to encourage the utilization of natural resources. The aim fo this paper is to investigated effect of CHA-doped Sr 5 (%) mol addition to the mechanical strength of metakaolin dental implant geoploymer composite. In this paper metakaolin is used as geopolymerization precursors. The test results have shown that addition of filler of apatite carbonate doped 5% mol strontium can be said to increase the value of mechnical properties but high concentration of calcium in the nanocomposite also can complicate the equilibrium of the geopolymerization process and induce alkali aggregate reactivity (AAR). The sample group of nanocomposite of metakaolin and carbonate apatite-doped 5% mol strontium (2: 1% wt) with 2% chitosan as a coupling agent based on geopolymerization for implant plate application has the best mechanical properties among all sample groups but does not qualify as an implant plate on cortical bone but can be used for the application of the implant plate on the trabecular bone specifically and potentially as a bone initiator.

  18. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena

  19. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R. [and others

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  20. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.

    Science.gov (United States)

    Sharmin, Nusrat; Hasan, Muhammad S; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2016-06-01

    In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites. Copyright © 2015

  1. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    Science.gov (United States)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  2. Constraints on fault and crustal strength of the Main Ethiopian Rift from formal inversion of earthquake focal mechanism data

    Science.gov (United States)

    Muluneh, Ameha A.; Kidane, Tesfaye; Corti, Giacomo; Keir, Derek

    2018-04-01

    We evaluate the frictional strength of seismogenic faults in the Main Ethiopian Rift (MER) by inverting the available, well-constrained earthquake focal mechanisms. The regional stress field is given by - 119.6°/77.2°, 6.2°/7.6°, and 97.5°/10.2° for trend/plunge of σ1, σ2 and σ3, respectively agrees well with previous fault kinematic and focal mechanism inversions. We determine the coefficient of friction, μ, for 44 seismogenic faults by assuming the pore pressure to be at hydrostatic conditions. Slip on 36 seismogenic faults occurs with μ ≥ 0.4. Slip on the remaining eight faults is possible with low μ. In general, the coefficient of friction in the MER is compatible with a value of μ of 0.59 ± 0.16 (2σ standard deviation). The shear stresses range from 16 to 129 MPa, is similar to crustal shear stress observed in extensional tectonic regimes and global compilations of shear stresses from major fault zones. The maximum shear stress is observed in the ductile crust, below the seismologically determined brittle-ductile transition (BDT) zone. Below the BDT, the crust is assumed to be weak due to thermal modification and/or high pore fluid pressure. Our results indicate linearly increasing μ and shear stress with depth. We argue that in the MER upper crust is strong and deforms according to Coulomb frictional-failure criterion.

  3. Fibromodulin reduces scar size and increases scar tensile strength in normal and excessive-mechanical-loading porcine cutaneous wounds.

    Science.gov (United States)

    Jiang, Wenlu; Ting, Kang; Lee, Soonchul; Zara, Janette N; Song, Richard; Li, Chenshuang; Chen, Eric; Zhang, Xinli; Zhao, Zhihe; Soo, Chia; Zheng, Zhong

    2018-04-01

    Hypertrophic scarring is a major postoperative complication which leads to severe disfigurement and dysfunction in patients and usually requires multiple surgical revisions due to its high recurrence rates. Excessive-mechanical-loading across wounds is an important initiator of hypertrophic scarring formation. In this study, we demonstrate that intradermal administration of a single extracellular matrix (ECM) molecule-fibromodulin (FMOD) protein-can significantly reduce scar size, increase tensile strength, and improve dermal collagen architecture organization in the normal and even excessive-mechanical-loading red Duroc pig wound models. Since pig skin is recognized by the Food and Drug Administration as the closest animal equivalent to human skin, and because red Duroc pigs show scarring that closely resembles human proliferative scarring and hypertrophic scarring, FMOD-based technologies hold high translational potential and applicability to human patients suffering from scarring-especially hypertrophic scarring. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites.

    Science.gov (United States)

    Kim, L U; Kim, J W; Kim, C K

    2006-09-01

    To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.

  5. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    Science.gov (United States)

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  7. The determining impact of coiling temperature on the microstructure and mechanical properties of a titanium-niobium ultrahigh strength microalloyed steel: Competing effects of precipitation and bainite

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V.V.; Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Sidorenko, D.M.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E. [ArcelorMittal Global R& D Center, 3001 East Columbus Drive, East Chicago, IN 46312 (United States)

    2016-05-17

    We elucidate here the influence of coiling temperature on the microstructure and mechanical properties, in an ultrahigh strength titanium-niobium microalloyed steel. The objective was to underscore the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocation structure) that significantly contributed to differences in the yield and tensile strength of these steels. Depending on the coiling temperature, the microstructure consisted of either a combination of fine lath-type bainite and polygonal ferrite or polygonal ferrite together with the precipitation of microalloyed carbides of size ~2–10 nm in the matrix and at dislocations. The microstructure of steel coiled at lower temperature predominantly consisted of bainitic ferrite with lower yield strength compared to the steel coiled at higher temperature, and the yield to tensile strength ratio was 0.76. The steel coiled at higher temperature consisted of polygonal ferrite and extensive precipitation of carbides and was characterized by higher yield strength and with yield strength/tensile strength ratio of 0.936. The difference in the tensile strength was insignificant for the two coiling temperatures. The observed microstructure was consistent with the continuous cooling transformation diagram.

  8. Localization of plastic yield and fracture mechanism in high-strength niobium alloy with ultra-fine particles of non-metallic phase

    International Nuclear Information System (INIS)

    Tyumentsev, A.N.; Gonchikov, V.Ch.; Korotaev, A.D.; Pinzhin, Yu.P.; Tyumentseva, S.F.

    1989-01-01

    The regularities of localization of plastic flow in high-strength dispersion-strengthened niobium alloy are studied. On the basis of investigations of the microstructure of strain localization zones the mechanism of stability losses of plastic flow including, the processes of diffusion of nonequilibrium vacancies in fields of nonuniform stresses, is proposed. The role of diffuse strain mechanisms during reorientation of the crystalline lattice is discussed. The regularities of fracture of high-strength alloy under conditions of rotational-shift instability of plastic flow are investigated

  9. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  10. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  11. New And Existing Bridge Constructions - Increase of Fatigue Strength of Welded Joints by High Frequency Mechanical Impact Treatment

    Directory of Open Access Journals (Sweden)

    Ummenhofer Thomas

    2013-07-01

    Full Text Available Numerous studies at KIT prove that high frequency mechanical impact (HFMI treatment is an efficient method for increasing the fatigue strength of welded steel structures. Within different research projects it was found that HFMI-methods can be used successfully for new and existing structures in order to extend the fatigue life. This paper gives an overview of the current status of existing steel bridges in Germany regarding aspects like bridge age distributions and traffic loads. Based on that overview welded joints susceptible to fatigue failure are identified. Using component-like small scale specimens, HFMI-methods were investigated within the objective of implementing an effective application for new and existing structures. Applying the fatigue test data observed, existing design proposals are evaluated and design recommendations for HFMI-treated joints are given. As a result of the research work, a transfer into practice has been realized and different applications are illustrated using the example of bridge constructions made of steel.

  12. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  13. Influence of Temperature on Mechanical Behavior During Static Restore Processes of Al-Zn-Mg-Cu High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Kun

    2017-06-01

    Full Text Available Flow stress behaviors of as-cast Al-Zn-Mg-Cu high strength aluminum alloy during static restore processes were investigated by: Isothermal double-pass compression tests at temperatures of 300-400℃, strain rates of 0.01-1 s-1, strains of 33% +20% with the holding times of 0~900 s after the first pass compression. The results indicate that the deformation temperature has a dramatical effect on mechanical behaviors during static restore processes of the alloy. (1 At 300 ℃ and 330 ℃ lower temperatures, the recovery during the deformation is slow, and deformation energy stored in matrix is higher, flow stresses at the second pass deformation decreased during the recovery and recrystallization, and the stress softening phenomena is observed. Stress softening is increased with the increasing holding time; Precipitation during the holding time inhibites the stress softening. (2 At 360 ℃ and 400 ℃ higher temperatures, the recovery during deformation is rapid, and deformation energy stored in matrix is lower. Solid solubility is higher after holding, so that flow stress at the second pass deformation is increased, stress hardening phenomena is observed. Stress hardening decreased with the increasing holding time duo to the recovery and recrystallization during holding period at 360 ℃; Precipitation during holding also inhibited the stress softening. However, Stress hardening remains constant with the increasing holding time duo to the reasanenal there are no recovery and recrystallization during holding period at 400 ℃.

  14. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  15. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  16. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  17. Dynamic Chaos, Conflicts in the Greater Middle East and Global Governance Mechanisms in the XXI Century (Proceedings of PFUR's Expert Seminars and Situational Analysis

    Directory of Open Access Journals (Sweden)

    Denis Andreevich Degterev

    2015-12-01

    Full Text Available The article summarizes the experience of methodological expert seminars and case studies of international conflict of the Department of Theory and History of International Relations of the Faculty of Humanities and Social Sciences at Peoples’ Friendship University of Russia. The background and the main stages of elaboration of PFUR’s integrated multidisciplinary methodology of situation analysis of international conflicts are described. The evolution of methodological approaches to conflict analysis used in the expert community, from classical methods, including the method of analytic hierarchy by T. Saati to the nonlinear dynamics of the processes of regional development and the perception of the international system as a non-equilibrium system are shown, as well as possibilities of use of approaches of the natural sciences (theory of complex systems in the modeling of international relations. Particular attention is paid to the results of PFUR's situational analysis 2015 “Greater Middle East: twenty years later (1994-2014”. The authors show us the methodology of situation analysis in details, including the matrix approach to the distribution of research topics and the method of ranking research tasks by difficulty level between different categories of participants (students, masters, postgraduate students, teachers. A special focus is made on proceedings of leading orientalists from Russia (Institute of Oriental Studies, Russian Academy of Science and foreign countries (Austria, UK. The directions of further improvement of PFUR's methods of situational analysis are provided.

  18. Determination of The Optimum Use of Cationic Starch on the Basis of the Mechanical Strengths of Mixed OCC and Virgin NSSC pulps

    Directory of Open Access Journals (Sweden)

    Mansour Ghaffari

    2012-01-01

    Full Text Available This study was carried out to optimize of cationic starch use for improvement of the mechanical properties of mixed OCC & NSSC pulps. NSSC pulps were mixed with the OCC pulps by following weight ratios: 80/20, 70/30 and 60/40, respectively. Cationic starch was used in different charges of 0.5, 1.25, 2 and 3 %. The produced paper strength properties were measured according to Tappi standard. The results obtained from normalized equation showed that treatment of C4 (60% NSSC+ 40% OCC using 3% Cationic starch is the best suitable samples. Also, by increasing the OCC proportion in mixed pulps, tensile, Tear, burst strengths increases, but Concora medium test (CMT and Ring crush test (RCT decreased. In general, by increasing of the cationic starch dosage, mechanical strengths has increased and its improved use had determined by 3% cationic starch.

  19. Analysis of longitudinal laboratory data in the presence of common selection mechanisms: a view toward greater emphasis on pre-marketing pharmaceutical safety.

    Science.gov (United States)

    Schildcrout, Jonathan S; Jenkins, Cathy A; Ostroff, Jack H; Gillen, Daniel L; Harrell, Frank E; Trost, Donald C

    2008-05-30

    Pharmaceutical safety has received substantial attention in the recent past; however, longitudinal clinical laboratory data routinely collected during clinical trials to derive safety profiles are often used ineffectively. For example, these data are frequently summarized by comparing proportions (between treatment arms) of participants who cross pre-specified threshold values at some time during follow-up. This research is intended, in part, to encourage more effective utilization of these data by avoiding unnecessary dichotomization of continuous data, acknowledging and making use of the longitudinal follow-up, and combining data from multiple clinical trials. However, appropriate analyses require careful consideration of a number of challenges (e.g. selection, comparability of study populations, etc.). We discuss estimation strategies based on estimating equations and maximum likelihood for analyses in the presence of three response history-dependent selection mechanisms: dropout, follow-up frequency, and treatment discontinuation. In addition, because clinical trials' participants usually represent non-random samples from target populations, we describe two sensitivity analysis approaches. All discussions are motivated by an analysis that aims to characterize the dynamic relationship between concentrations of a liver enzyme (alanine aminotransferase) and three distinct doses (no drug, low dose, and high dose) of an nk-1 antagonist across four Phase II clinical trials.

  20. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  1. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  2. The effect of TiO{sub 2} nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-12-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on self-compacting concrete. {yields} Strength assessments. {yields} Water permeability. {yields} Thermal properties. {yields} Pore structure. {yields} Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO{sub 2} nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO{sub 2} nanoparticles in the cement paste up to 4.0 wt%. TiO{sub 2} nanoparticles, as a result of increased crystalline Ca(OH){sub 2} amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO{sub 2} nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO{sub 2} nanoparticles could improve mechanical and physical properties of the concrete specimens.

  3. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on self-compacting concrete. → Strength assessments. → Water permeability. → Thermal properties. → Pore structure. → Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO 2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO 2 nanoparticles in the cement paste up to 4.0 wt%. TiO 2 nanoparticles, as a result of increased crystalline Ca(OH) 2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO 2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO 2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  4. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Pant, Hem Raj; Shrestha, Bishnu Kumar; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-09-09

    Post-electrospinning treatment is a facile process to improve the properties of electrospun nanofibers for various applications. This technique is commonly used when direct electrospinning is not a suitable option to fabricate a nonwoven membrane of the desired polymer in a preferred morphology. In this study, a representative natural-synthetic hybrid of cellulose acetate (CA) and polycaprolactone (PCL) in different ratios was fabricated using an electrospinning process, and CA in the hybrid fiber was transformed into cellulose (CL) by post-electrospinning treatment via alkaline saponification. Scanning electron microscopy was employed to study the effects of polymer composition and subsequent saponification on the morphology of the nanofibers. Increasing the PCL content in the PCL/CA blend solution caused a gradual decrease in viscosity, resulting in smoother and more uniform fibers. The saponification of fibers lead to pronounced changes in the physicochemical properties. The crystallinity of the PCL in the composite fiber was varied according to the composition of the component polymers. The water contact angle was considerably decreased (from 124° to less than 20°), and the mechanical properties were greatly enhanced (Young's Modulus was improved by ≈20-30 fold, tensile strength by 3-4 fold, and tensile stress by ≈2-4 fold) compared to those of PCL and PCL/CA membranes. Regeneration of cellulose chains in the nanofibers increased the number of hydroxyl groups, which increased the hydrogen bonding, thereby improving the mechanical properties and wettability of the composite nanofibers. The improved wettability and presence of surface functional groups enhanced the ability to nucleate bioactive calcium phosphate crystals throughout the matrix when exposed to a simulated body fluid solution. Experimental results of cell viability assay, confocal microscopy, and scanning electron microscopy imaging showed that the fabricated nanofibrous membranes have

  5. Positive effects of 1-year football and strength training on mechanical muscle function and functional capacity in elderly men

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars L.

    2016-01-01

    PURPOSE: A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations...... to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. METHODS: Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength...... training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force...

  6. The Effect of Mechanical Anisotropy and Heterogeneity of Shear Strength Parameters of Soils on Drained Bearing Capacity of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    R. Jamshidi Chenari

    2017-09-01

    Full Text Available Natural formation of soil deposits causes heterogeneity and anisotropy in their strength and stiffness properties. However, most soils in their natural states exhibit some anisotropy with respect to shear strength and heterogeneity with respect to the depth. In this paper, the standard Mohr- Coulomb constitutive law is generalized to anisotropic version in order to consider the effect of cohesion anisotropy of soil. Random field theory coupled with finite difference method was utilized in Monte Carlo simulations with considering the effect of auto-correlation and cross correlation between strength parameters of soil, in order to calculate the bearing capacity of shallow foundation in a strain controlled scheme. The results showed that the bearing capacity of shallow foundation decreases with increasing in variability of strength parameters and increases with increasing in anisotropy ratio.

  7. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  8. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  9. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  10. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  11. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  12. Comparative evaluation of different mechanical modifications of denture teeth on bond strength between high-impact acrylic resin and denture teeth: An in vitro study.

    Science.gov (United States)

    Phukela, Sumit Singh; Chintalapudi, Siddesh Kumar; Sachdeva, Harleen; Dhall, Rupinder Singh; Sharma, Neeraj; Prabhu, Allama

    2016-01-01

    Acrylic teeth separates from the denture base and remains a major worry in day-to-day routine dental procedure. The present study was conducted to comparatively evaluate different mechanical modifications of acrylic teeth on bond strength between Lucitone 199 heat cure resin and cross-linked teeth. The test specimens, central incisors (21) were demarcated into four groups. Group 1 was the control group, whereas Group 2, Group 3, and Group 4 were experimental groups modified with round groove, vertical groove, and T-shaped groove, respectively. The preparation of masterpiece was done by aligning the long axis of the central incisor teeth at 45° to the base of a wax block (8 mm × 10 mm × 30 mm), with ridge lap surface contacting the base. These test specimen (21) was prepared by Lucitone 199 heat cure resin. Evaluation of bond strength of all the specimens was done using universal tester (materials testing machine). Shapiro-Wilk Test, one-way analysis of variance (ANOVA), and Bonferroni test were done to do statistical investigation. Group 1 specimens prepared by Lucitone 199 heat cure resin showed the lowest bond strength and Group 4 specimens prepared with T-shaped groove packed with Lucitone 199 exhibited the highest bond strength. The bond strength between Lucitone 199 heat cure resin and cross-linked teeth was increased when mechanical modifications was done on denture teeth. The specimens prepared with T-shaped groove packed with Lucitone 199 heat cure resin showed the highest bond strength followed by Group 3, Group 2, and lastly Group 1 prepared by Lucitone 199 heat cure resin.

  13. Enhancement of mechanical strength in hot-pressed TiB2 composites by the addition of Fe and Ni

    International Nuclear Information System (INIS)

    Yen, C.F.; Yust, C.S.; Clark, G.W.

    1978-01-01

    Improvement in the fracture strength of TiB 2 composites through the addition of Fe and Ni is reported. Beam specimens containing up to 20 wt % of the metal component were fabricated by hot pressing above the eutectic temperature. Four point bending results indicated that the observed enhancement in strength was proportional to the vol % of the metal present. The results also revealed that TiB 2 --Ni composites have slightly better strength than TiB 2 --Fe samples at elevated temperatures, and that their strengths were consistently about twice that of pure TiB 2 . They also did not exhibit any serious degradation in strength up to 700 0 C. The fracture behavior was characterized using optical and scanning electron microscopy. The strengthening appears to be related to the presence of a metallic grain boundary phase between TiB 2 particles. The results further suggested that the formation of a special eutectic-like grain microstructure could render additional strengthening

  14. [Comparative study on the strength of different mechanisms of operation of multidirectionally angle-stable distal radius plates].

    Science.gov (United States)

    Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T

    2011-12-01

    Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The Effect of Various Types of Mechanical and Chemical Preconditioning on the Shear Bond Strength of Orthodontic Brackets on Zirconia Restorations

    Directory of Open Access Journals (Sweden)

    Jihun Kim

    2017-01-01

    Full Text Available The purpose of this study was to investigate the combined effect of mechanical and chemical treatments on the shear bond strength (SBS of metal orthodontic brackets on zirconia restoration. The zirconia specimens were randomly divided into 12 groups (n=10 according to three factors: AL (Al2O3 and CO (CoJet™ by sandblasting material; SIL (silane, ZPP (Zirconia Prime Plus, and SBU (Single Bond Universal by primer; and N (not thermocycled and T (thermocycled. The specimens were evaluated for shear bond strength, and the fractured surfaces were observed using a stereomicroscope. Scanning electron microscopy images were also obtained. CO-SBU combination had the highest bond strength after thermocycling (26.2 MPa. CO-SIL showed significantly higher SBS than AL-SIL (p0.05. Modified Adhesive Remnant Index (ARI scoring and SEM figures were consistent with the results of the surface treatments. In conclusion, CO-SBU, which combines the effect of increased surface area and chemical bonding with both 10-MDP and silane, showed the highest SBS. Sandblasting with either material improved the mechanical bonding by increasing the surface area, and all primers showed clinically acceptable increase of shear bond strength for orthodontic treatment.

  16. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.

    Science.gov (United States)

    Ran, Jiabing; Hu, Jingxiao; Sun, Guanglin; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua

    2016-12-01

    Currently, great efforts have been made to enhance the mechanical strength of bone tissue engineering (BTE) scaffolds, which are composed of biopolymeric matrices and inorganic nano-fillers. But the tunability of mechanical strength in a wide range for BTE scaffolds has seldom been investigated in spite of the great importance of this performance. In this work, a chitosan-tussah silk fibroin/hydroxyapatite (CS-TSF/HAp) hydrogel was synthesized by using a novel in situ precipitation method. Through in situ inducing the conformation transition of TSF in the CS-TSF/HAp hydrogel, which could be monitored by XRD, FT-IR, TGA, and DTA, the elastic modulus and fracture strength of the final CS-TSF/HAp composite could be tailored in a wide range without changing its composition, morphology, roughness, and crystal structures. The elastic modulus of the CS-TSF/HAp composite ranged from ∼250 to ∼400MPa while its fracture strength ranged from ∼45 to ∼100MPa. In order to clarify the rationale behind this process, a speculative explanation was provided. In vitro cell culture indicated that MC3T3-E1 cells cultured on the CS-TSF/HAp composite had positive adhesion, proliferation, and differentiation potential. We believed that the CS-TSF/HAp composite could be used as an ideal scaffold platform for cell culture and implantation of bone reconstruction. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Greater autonomy at work

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2004-01-01

    In the past 10 years, workers in the Netherlands increasingly report more decision-making power in their work. This is important for an economy in recession and where workers face greater work demands. It makes work more interesting, creates a healthier work environment, and provides opportunities

  18. Positive effects of 1-year football and strength training on mechanical muscle function and functional capacity in elderly men.

    Science.gov (United States)

    Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per

    2016-06-01

    A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P football training mainly resulted in enhanced hamstring strength (18 %, P football training mainly included enhanced strength and rapid force capacity of the hamstring muscles. Gains in functional ability were observed in response to both training regimens, evidenced by reduced stair-ascent time and increased chair-rising performance. Long-term football exercise and strength training both appear to be effective interventional strategies to improve factors of importance for ADL by counteracting the age-related decline in lower

  19. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  20. Lightweight Potential of Welded High-strength Steel Joints from S700 Under Constant and Variable Amplitude Loading by High-frequency Mechanical Impact (HFMI) Treatment

    OpenAIRE

    Yıldırım, Halid Can; Marquis, Gary; Sonsino, Cetin Morris

    2015-01-01

    Investigations with longitudinal stiffeners of the steel grade S700 under fully-reversed, constant amplitude loading and under variable amplitude loading with a straight-line spectrum show impressive fatigue strength improvement by high-frequency mechanical impact (HFMI) treatment. However, the degree of improvement was for variable amplitude loading lower when compared to constant amplitude loading due to local plasticity which occurs during larger load levels and consequently reduces the be...

  1. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Asakawa, Hitoshi; Fukuma, Takeshi

    2009-01-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  2. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Hitoshi; Fukuma, Takeshi [Frontier Science Organization, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa (Japan)], E-mail: hi_asa@staff.kanazawa-u.ac.jp, E-mail: fukuma@staff.kanazawa-u.ac.jp

    2009-07-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  3. Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza, E-mail: shahverdi@modares.ac.ir; Miresmaeili, Reza

    2016-06-21

    In the current work, three different solidification routes and a two-step heat treatment process were applied to a novel FeCrNiBSi alloy system to introduce a new candidate for advanced high-strength steels. The evolution of the microstructure after solidification, heat treatment, and tensile deformation was characterized using optical and electron microscopy techniques, as well as hardness and room temperature uniaxial tensile tests. The effects of the different solidification routes and heat treatment parameters on the deformation and fracture mechanisms of this steel are discussed. Grain refinement, precipitation hardening, and solid solution as a result of the fast casting cooling rate led to an increase in strength at improved ductility. This result can be explained partly by the less severe stress/strain partitioning at the matrix grain/M{sub 2}B interfaces and better interface cohesion. Moreover, the stress/strain partitioning characteristics between the matrix grains and M{sub 2}B led to a higher initial strain hardening rate. The fast casting cooling rate further promoted ductile fracture mechanisms, which is a result of increased cleavage fracture stress. The higher casting cooling rate and two-step heat treatment resulted in a strong increase in formability index, from 8 GPa% to 24 GPa%, at which the mechanical properties occupy the TRIP envelope. Heat treatment of the fast-cooling specimens led to a small reduction in yield and tensile strength and 22% total elongation percentage improvement (from 10% to 32%).

  4. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    Science.gov (United States)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on

  5. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  6. Mechanical, Hormonal and Psychological Effects of a Non-Failure Short-Term Strength Training Program in Young Tennis Players

    Directory of Open Access Journals (Sweden)

    Sarabia Jose Manuel

    2015-03-01

    Full Text Available This study examined the effects of a 6-week non-failure strength training program in youth tennis players. Twenty tennis players (age: 15.0 ± 1 years, body height: 170.9 ± 5.1 cm, body mass: 63.3 ± 9.1 kg were divided into experimental and control groups. Pre and post-tests included half squats, bench press, squat jumps, countermovementjumps and side-ball throws. Salivary cortisol samples were collected, and the Profile of Mood States questionnaire was used weekly during an anatomical adaptation period, a main training period and after a tapering week. The results showed that, after the main training period, the experimental group significantly improved (p<0.05 in mean and peak power output and in the total number of repetitions during the half-squat endurance test; mean force, power and velocity in the half-squat power output test; Profile of Mood States (in total mood disturbance between the last week of the mean training period and the tapering week; and in squat-jump and countermovement-jump height. Moreover, significant differences were found between the groups at the post-tests in the total number of repetitions, mean and peak power during the half-squat endurance test, mean velocity in the half-squat power output test, salivary cortisol concentration (baselines, first and third week of the mean training period and in the Profile of Mood States (in fatigue subscale: first and third week of the mean training period. In conclusion, a non-failure strength training protocol improved lower-limb performance levels and produced a moderate psychophysiological impact in youth elite tennis players, suggesting that it is a suitable program to improve strength. Such training protocols do not increase the total training load of tennis players and may be recommended to improve strength.

  7. Mechanical, Hormonal and Psychological Effects of a Non-Failure Short-Term Strength Training Program in Young Tennis Players

    Science.gov (United States)

    Sarabia, Jose Manuel; Fernandez-Fernandez, Jaime; Juan-Recio, Casto; Hernández-Davó, Hector; Urbán, Tomás; Moya, Manuel

    2015-01-01

    This study examined the effects of a 6-week non-failure strength training program in youth tennis players. Twenty tennis players (age: 15.0 ± 1 years, body height: 170.9 ± 5.1 cm, body mass: 63.3 ± 9.1 kg) were divided into experimental and control groups. Pre and post-tests included half squats, bench press, squat jumps, countermovement-jumps and side-ball throws. Salivary cortisol samples were collected, and the Profile of Mood States questionnaire was used weekly during an anatomical adaptation period, a main training period and after a tapering week. The results showed that, after the main training period, the experimental group significantly improved (pvelocity in the half-squat power output test; Profile of Mood States (in total mood disturbance between the last week of the mean training period and the tapering week); and in squat-jump and countermovement-jump height. Moreover, significant differences were found between the groups at the post-tests in the total number of repetitions, mean and peak power during the half-squat endurance test, mean velocity in the half-squat power output test, salivary cortisol concentration (baselines, first and third week of the mean training period) and in the Profile of Mood States (in fatigue subscale: first and third week of the mean training period). In conclusion, a non-failure strength training protocol improved lower-limb performance levels and produced a moderate psychophysiological impact in youth elite tennis players, suggesting that it is a suitable program to improve strength. Such training protocols do not increase the total training load of tennis players and may be recommended to improve strength. PMID:25964812

  8. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    Science.gov (United States)

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions

  9. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    Science.gov (United States)

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Development of glass-fiber high-efficiency particulate air filters of high structural strength on the basis of the establishment of failure mechanisms

    International Nuclear Information System (INIS)

    Ruedinger, V.; Ricketts, C.I.; Wilhelm, J.G.; Alken, W.

    1987-01-01

    Practical experience from routine operation in nuclear installations as well as extensive bench and laboratory testing proved the structural limits of HEPA filters to be very low thus demonstrating the need for improvement of their structural strength. Detailed analysis of the courses and modes of filter failure under the challenge of dry air at high velocities and ambient temperature, together with additional measurements, allowed the establishment of the dominating mechanisms of filter failure. Based on this information, the following three options for effective and economical improvements in filter structural limits exist: (1) an increase in the tensile strength of the filter medium; (2) an increase in the stability of the pack to prevent the swelling of individual pleats; and (3) an increase in the area moment of inertia of the separators and a decrease in the sharpness of their edges. By using a reinforced glass fiber filter medium, the structural strength of standard size HEPA filters was increased to 31 kPa with dry air and beyond 10 kPa with air at high humidity. Prototype filters built with standard glass-fiber media and separators with inclined corrugations exhibited failure pressures of approximately 50 kPa under high velocity airflows. The combination of both types of improvements, together with other measures, will soon lead to even higher HEPA-filter structural strength

  11. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    Science.gov (United States)

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  12. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering

    International Nuclear Information System (INIS)

    Wen, Haiming; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.

    2013-01-01

    A bulk nanostructured alloy with the nominal composition Cu–30Zn–0.8Al wt.% (commercial designation brass 260) was fabricated by cryomilling of brass powders and subsequent spark plasma sintering (SPS) of the cryomilled powders, yielding a compressive yield strength of 950 MPa, which is significantly higher than the yield strength of commercial brass 260 alloys (∼200–400 MPa). Transmission electron microscopy investigations revealed that cryomilling results in an average grain diameter of 26 nm and a high density of deformation twins. Nearly fully dense bulk samples were obtained after SPS of cryomilled powders, with average grain diameter 110 nm. After SPS, 10 vol.% of twins is retained with average twin thickness 30 nm. Three-dimensional atom-probe tomography studies demonstrate that the distribution of Al is highly inhomogeneous in the sintered bulk samples, and Al-containing precipitates including Al(Cu,Zn)–O–N, Al–O–N and Al–N are distributed in the matrix. The precipitates have an average diameter of 1.7 nm and a volume fraction of 0.39%. Quantitative calculations were performed for different strengthening contributions in the sintered bulk samples, including grain boundary, twin boundary, precipitate, dislocation and solid-solution strengthening. Results from the analyses demonstrate that precipitate and grain boundary strengthening are the dominant strengthening mechanisms, and the calculated overall yield strength is in reasonable agreement with the experimentally determined compressive yield strength

  13. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    Science.gov (United States)

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  14. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  15. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  16. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    Science.gov (United States)

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.

  17. More features, greater connectivity.

    Science.gov (United States)

    Hunt, Sarah

    2015-09-01

    Changes in our political infrastructure, the continuing frailties of our economy, and a stark growth in population, have greatly impacted upon the perceived stability of the NHS. Healthcare teams have had to adapt to these changes, and so too have the technologies upon which they rely to deliver first-class patient care. Here Sarah Hunt, marketing co-ordinator at Aid Call, assesses how the changing healthcare environment has affected one of its fundamental technologies - the nurse call system, argues the case for wireless such systems in terms of what the company claims is greater adaptability to changing needs, and considers the ever-wider range of features and functions available from today's nurse call equipment, particularly via connectivity with both mobile devices, and ancillaries ranging from enuresis sensors to staff attack alert 'badges'.

  18. Greater oil investment opportunities

    International Nuclear Information System (INIS)

    Arenas, Ismael Enrique

    1997-01-01

    Geologically speaking, Colombia is a very attractive country for the world oil community. According to this philosophy new and important steps are being taken to reinforce the oil sector: Expansion of the exploratory frontier by including a larger number of sedimentary areas, and the adoption of innovative contracting instruments. Colombia has to offer, Greater economic incentives for the exploration of new areas to expand the exploratory frontier, stimulation of exploration in areas with prospectivity for small fields. Companies may offer Ecopetrol a participation in production over and above royalties, without it's participating in the investments and costs of these fields, more favorable conditions for natural gas seeking projects, in comparison with those governing the terms for oil

  19. Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures

    Science.gov (United States)

    Arslan Hafeez, Muhammad; Farooq, Ameeq

    2018-01-01

    The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.

  20. A Study on the quantification of hydration and the strength development mechanism of cementitious materials including amorphous phases by using XRD/Rietveld method

    International Nuclear Information System (INIS)

    Yamada, Kazuo; Hoshino, Seiichi; Hirao, Hiroshi; Yamashita, Hiroki

    2008-01-01

    X-ray diffraction (XRD)/Rietveld method was applied to measure the phase composition of cement. The quantative analysis concerning the progress of hydration was accomplished in an error of about the maximum 2-3% in spite of including amorphous materials such as blast furnace slag, fly ash, silica fume and C-S-H. The influence of the compressive strength on the lime stone fine powder mixture material was studied from the hydration analysis by Rietveld method. The two stages were observed in the strength development mechanism of cement; the hydration promotion of C 3 S in the early stage and the filling of cavities by carbonate hydrate for the longer term. It is useful to use various mixture materials for the formation of the resource recycling society and the durability improvement of concrete. (author)

  1. Optimisation of thermo mechanical treatments using cryogenic rolling and aging of the high strength aluminium alloy AlZn5.5MgCu (AA7075)

    Energy Technology Data Exchange (ETDEWEB)

    Hunger, S.; Scholze, M.; Hockauf, M.; Wagner, M.F.X. [Chemnitz University of Technology, Institute of Materials Science and Engineering, Chemnitz (Germany); Fritsch, S.

    2011-07-15

    In this study, we consider the optimisation of mechanical properties and the microstructure of the high strength and difficult-to-work aluminium alloy AA7075 by cryogenic rolling. In order to reduce the grain size into the (ultra)fine-grained regime, cryogenic rolling is used to introduce different amount of plastic strain. We discuss how rolling at lower temperatures allows the introduction of higher strains on the one hand, and suppresses dynamic recovery and aging effectively on the other hand. Our results demonstrate that, in combination with an appropriate post-processing aging treatment, an outstanding combination of strength and ductility can be achieved. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  3. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  4. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    International Nuclear Information System (INIS)

    Deng, Ying; Peng, Bing; Xu, Guofu; Pan, Qinglin; Yin, Zhimin; Ye, Rui; Wang, Yingjun; Lu, Liying

    2015-01-01

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al 3 Sc x Zr 1−x particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al 3 Sc x Zr 1−x nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process

  5. Strength of materials and theory of elasticity in 19th century Italy a brief account of the history of mechanics of solids and structures

    CERN Document Server

    Capecchi, Danilo

    2015-01-01

    This book examines the theoretical foundations underpinning the field of strength of materials/theory of elasticity, beginning from the origins of the modern theory of elasticity. While the focus is on the advances made within Italy during the nineteenth century, these achievements are framed within the overall European context. The vital contributions of Italian mathematicians, mathematical physicists, and engineers in respect of the theory of elasticity, continuum mechanics, structural mechanics, the principle of least work, and graphical methods in engineering are carefully explained and discussed. The book represents a work of historical research that primarily comprises original contributions and summaries of work published in journals. It is directed at those graduates in engineering, but also in architecture, who wish to achieve a more global and critical view of the discipline and will also be invaluable for all scholars of the history of mechanics.

  6. Heat-treatment, microstructure and mechanical properties of experimental high strength Fe--4Cr--0.4C steels

    International Nuclear Information System (INIS)

    Narasimha Rao, B.V.; Miller, R.W.; Thomas, G.

    1975-12-01

    The treatments involve high temperature (1100 0 C) austenitizing during the first solution treatment followed by either interrupted quenching (Ms-Mf range) or isothermal transformation to produce lower bainite. Finally, the steels are given a 900 0 C grain refinement treatment. Lower bainite was obtained by isothermally transforming austenite just above the Ms temperature. Tempering after the martensitic and bainitic treatments was also done in an attempt to improve the toughness of the material. The strength and toughness properties of as-quenched martensitic structures are somewhat superior while these properties of lower bainitic structures are comparable to those of a plain 0.4C steel. The properties of the nearly 100 percent bainite structure were unaffected by the cooling rate from the transformation temperature. Elimination of intergranular cracking produced toughness properties in quenched and tempered martensites which are far superior to those of lower bainite at the same strength level. It has also been shown that the toughness properties of as-quenched double-treated steels are superior to single treated steels. The chromium appeared to have a strong influence on the nature and morphology of carbides, as the bainitic as well as the martensitic structures showed marked temper resistance in the tempering range 200 to 500 0 C

  7. Phase evolution and mechanical behavior of 0.36 wt% C high strength TRIP-assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swarup Kumar; Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2012-12-15

    Phase evolution in a 0.36 wt% C steel has been studied by thermodynamic calculation and dilatometric analysis with an aim to achieve high strength TRIP-assisted steel with bainitic microstructure. The equilibrium phase fraction calculated as the function of temperature indicated the formation of {delta}-ferrite ({approx}98%) at 1417 C. In contrast, similar calculation under para-equilibrium condition exhibited transformation of {delta}-ferrite to austenite at the temperature below 1300 C. During further cooling two-phase ({alpha}+{gamma}) microstructure has been found to be stable at the intercritical temperature range. The experimentally determined CCT diagram has revealed that adequate hardenability is achievable in the steel under continuous cooling condition at cooling rate >5 C s{sup -1}. In view of the aforesaid results, the steel has been hot rolled and subjected to different process schedule conducive to the evolution of bainitic microstructure. The hot rolled steel has exhibited reasonably good tensile properties. However, cold deformation of the hot rolled sample followed by intercritical annealing and subsequent isothermal bainitic transformation has resulted in high strength (>1000 MPa) with attractive elongation due to the favorable work hardening condition during plastic deformation offered by the multiphase microstructure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  9. An analysis of structure strength and ergonomic value of mechanical systems of integrated kidney and thyroid diagnosis device

    International Nuclear Information System (INIS)

    M-Awwaluddin Tri Hardjanto; Abdul Jalil

    2016-01-01

    The has been performed to ensure the security of the device, understand the patient's as well as operator problem and complaints, as part of the efforts to improve the performance of these devices. The analysis is done by calculating the strength of arm, the main frame chairs, and frame backrest patients, as well as analyzing the static anthropometry data for Indonesian man to determine the size of the dental chair and adjusting the size of the seat. We also use the dynamic anthropometry data for Indonesian man to determine the layout and range of movement of the operator while operating the integrated device The analysis showed that the structure is safe because the actual stress that occurs is still below the limit value of 248 MPa. The device also has good ergonomic value so that it can be bulk produced. (author)

  10. Effect of cervical vs. thoracic spinal manipulation on peripheral neural features and grip strength in subjects with chronic mechanical neck pain: a randomized controlled trial.

    Science.gov (United States)

    Bautista-Aguirre, Francisco; Oliva-Pascual-Vaca, Ángel; Heredia-Rizo, Alberto M; Boscá-Gandía, Juan J; Ricard, François; Rodriguez-Blanco, Cleofás

    2017-06-01

    Cervical and thoracic spinal manipulative therapy has shown positive impact for relief of pain and improve function in non-specific mechanical neck pain. Several attempts have been made to compare their effectiveness although previous studies lacked a control group, assessed acute neck pain or combined thrust and non-thrust techniques. To compare the immediate effects of cervical and thoracic spinal thrust manipulations on mechanosensitivity of upper limb nerve trunks and grip strength in patients with chronic non-specific mechanical neck pain. Randomized, single-blinded, controlled clinical trial. Private physiotherapy clinical consultancy. Eighty-eight subjects (32.09±6.05 years; 72.7% females) suffering neck pain (grades I or II) of at least 12 weeks of duration. Participants were distributed into three groups: 1) cervical group (N.=28); 2) thoracic group (N.=30); and 3) control group (N.=30). One treatment session consisting of applying a high-velocity low-amplitude spinal thrust technique over the lower cervical spine (C7) or the upper thoracic spine (T3) was performed, while the control group received a sham-manual contact. Measurements were taken at baseline and after intervention of the pressure pain threshold over the median, ulnar and radial nerves. Secondary measures included assessing free-pain grip strength with a hydraulic dynamometer. No statistically significant differences were observed when comparing between-groups in any of the outcome measures (P>0.05). Those who received thrust techniques, regardless of the manipulated area, reported an immediate increase in mechanosensitivity over the radial (both sides) and left ulnar nerve trunks (Ppain perception over the radial nerve also improved (P≤0.025). Low-cervical and upper-thoracic thrust manipulation is no more effective than placebo to induce immediate changes on mechanosensitivity of upper limb nerve trunks and grip strength in patients with chronic non-specific mechanical neck pain. A single

  11. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel

    International Nuclear Information System (INIS)

    Sadeghian, M.; Shamanian, M.; Shafyei, A.

    2014-01-01

    Highlights: • The microstructure of weld metal consists of austenite and ferrite. • The HAZ of the API X-65 shows different transformation. • Impact strength of sample with low heat input was lower than base metals. • The heat input at 0.506 kJ/mm is not the suitable for dissimilar joining between UNS S32750/API X-65. - Abstract: In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals

  12. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    Science.gov (United States)

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    Science.gov (United States)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that

  14. Preparation, mechanical strengths, and thermal stability of Ni-Si-B and Ni-P-B amorphous wires

    International Nuclear Information System (INIS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-01-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni/sub 75/Si/sub 8/B/sub 17/ and Ni/sub 78/P/sub 12/B/sub 10/ alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin Al/sub 2/O/sub 3/ film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (N/sub 0.75/Si/sub 0.08/B/sub 0.17/)/sub 99/Al/sub 1/ wire and 2170 MPa and 2.4 pct for (Ni/sub 0.78/P/sub 0.12/B/sub 0.1/)/sub 99/Al/sub 1/ wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a NiSi-B-Al wire, which is higher by 0.15 pct than that of a Fe/sub 75/Si/sub 10/B/sub 15/ amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance

  15. Microstructural and Mechanical Characterization of Electron Beam Welded Joints of High Strength S960QL and Weldox 1300 Steel Grades

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2017-06-01

    Full Text Available The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material.

  16. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Science.gov (United States)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  17. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lly.liangyun@gmail.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin; Zhao, Dewen; Gao, Xiuhua; Du, Linxiu [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2012-12-15

    Microstructural variation in high strength low carbon bainitic steel weldment was investigated in detail by means of optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the welded joint has various microstructures such as acicular ferrite, coarse granular ferrite and fine polygonal ferrite. The martensite-austenite (MA) constituent has a variable structure in each sub-zone, which includes fully martensite and fully retained austenite. Meanwhile, the fine grained heat affected zone has higher content of retained austenite than the welded metal (WM) and coarse grained heat affected zone (CGHAZ). The orientation relationship between retained austenite and product phases in the WM and CGHAZ is close to Kurdjumov-Sachs relationship. However, the polygonal ferrite in the fine grained HAZ has no specific orientation relationship with the neighboring retained austenite. The toughness of the coarse grained region is much lower than that of the WM because the coarse bainite contains many large MA constituents to assist the nucleation of microcracks and coarse cleavage facet lowers the ability to inhibit the crack propagation.

  18. Sorption of metal ions on clay minerals. 2: Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.L.; Charlet, L.; Manceau, A.

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 {micro}M, 0.3 M NaNO{sub 3}) and ionic strength (0.3 and 0.01 M NaNO{sub 3}, TotCo = 100 {micro}M) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. Spectral simulations revealed the occurrence of {approximately} 2 Mg and {approximately} 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites.

  19. Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls.

    Science.gov (United States)

    Ching, Ada; Dhugga, Kanwarpal S; Appenzeller, Laura; Meeley, Robert; Bourett, Timothy M; Howard, Richard J; Rafalski, Antoni

    2006-10-01

    A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.

  20. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  1. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  2. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  3. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  4. New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications

    Directory of Open Access Journals (Sweden)

    Abdollah Saboori

    2017-12-01

    Full Text Available In this research, copper nanocomposites reinforced by graphene nanoplatelets (GNPs were fabricated using a wet mixing method followed by a classical powder metallurgy route. In order to find the best dispersion technique, ball milling and wet mixing were chosen. Qualitative evaluation of the structure of the graphene after mixing indicated that the wet mixing is an appropriate technique to disperse the GNPs. Thereafter, the influence of graphene content on microstructure, density, hardness, elastic modulus, and thermal expansion coefficient of composites was investigated. It was shown that by increasing the graphene content the aggregation of graphene is more obvious and, thus, these agglomerates affect the final properties adversely. In comparison with the unreinforced Cu, Cu–GNP composites were lighter, and their hardness and Young’s modulus were higher as a consequence of graphene addition. According to the microstructural observation of pure copper and its composites after sintering, it was concluded that grain refinement is the main mechanism of strengthening in this research. Apart from the mechanical characteristics, the coefficient of thermal expansion of composites decreased remarkably and the combination of this feature with appropriate mechanical properties can make them a promising candidate for use in electronic packaging applications.

  5. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    Science.gov (United States)

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  6. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel

    Energy Technology Data Exchange (ETDEWEB)

    Hufenbach, J., E-mail: j.k.hufenbach@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Helth, A. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Lee, M.-H. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Wendrock, H.; Giebeler, L. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Choe, C.-Y.; Kim, K.-H. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Kühn, U. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Kim, T.-S. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Eckert, J. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); TU Dresden, Institute of Materials Science, D-01062 Dresden (Germany)

    2016-09-30

    This work presents an investigation on the influence of rare earth additions (Ce) on the microstructure and mechanical properties of a cast Fe85Cr4Mo8V2C1 (element contents in wt%) tool steel. The applied relatively high solidification rate during the casting process promotes the formation of non-equilibrium phases such as martensite, retained austenite as well as a fine network-like structure of complex carbides. This combination of phases and their morphology results in excellent mechanical properties already in the as-cast state. Cerium additions induce a change in phase formation and resulting mechanical properties. Besides morphological and quantitative changes of the main constituent phases, novel carbo-oxide and carbide phases are formed. To investigate this microstructural phenomenon, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDX) were applied. Altogether, the addition of small amounts of the rare earth element cerium together with a tailored casting process results in enhanced mechanical properties compared to the Fe85Cr4Mo8V2C1 alloy and offers new possibilities to obtain high-strength and simultaneously adequate ductile cast steels for advanced tool design.

  7. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Chowdhury, Shiplu Roy; Fauzi, M B

    2018-05-01

    The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  9. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes.

    Science.gov (United States)

    Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K

    2018-01-03

    A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.

  10. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  11. Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement

    International Nuclear Information System (INIS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Kano, Satoshi; Maruyama, Kouichi; Hasegawa, Yasushi; Igarashi, Masaaki

    2011-01-01

    Graphical abstract: Effect of static recovery on the acceleration of subgrain coarsening during creep plastic deformation. Display Omitted Highlights: → Short-term 'H' and long-term 'L' creep regions have different creep characteristics. → Strain-induced recovery of subgrains proceeds in the both creep regions 'H' and 'L'. → In region ''L', two additional degradation mechanisms accelerate creep failure. → Thermal coarsening of precipitates and subgrains appear during long-term creep ''L'. → In region 'L', strain-induced coarsening of precipitates accelerates creep failure. - Abstract: There are two creep regions with different creep characteristics: short-term creep region 'H', where precipitates and subgrains are thermally stable, and long-term creep region 'L', where thermal coarsening of precipitates and subgrains appear. In region 'H', the normalized subgrain size (λ-λ 0 )/(λ * -λ 0 ) has a linear relation with creep strain and its slope is 10ε -1 . But, region L is the time range in which the static recovery and the strain-induced recovery progress simultaneously. In this region, the static recovery accelerates the strain-induced recovery, and subgrain size is larger than that line which neglects the contribution of the static recovery. In region 'L', the Δλ/Δλ * -strain present a linear relation with a slope 35ε -1 . There is a linear relation between hardness and subgrain size. Hardness drop, H 0 - H, as a function of Larson-Miller parameter can be a good measure method for assessment of hardness drop and consequently degradation of microstructure. Hardness drop shows an identical slope in creep region 'H', whereas hardness drop due to thermal aging and creep in region 'L' show together a similar slope. In region 'H', degradation of microstructure is mainly due to recovery of subgrains controlled by creep plastic deformation, and precipitates do not have a major role. However, in creep region 'L', there are three degradation mechanisms

  12. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Xiaolu [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Gao, Guhui, E-mail: gaogh@bjtu.edu.cn [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Guo, Haoran; Zhao, Feifan; Tan, Zhunli [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Bai, Bingzhe [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Tsinghua University, Key Laboratory of Advanced Material, School of Material Science & Engineering, Beijing 100084, People’ Republic of China (China)

    2017-01-27

    A medium carbon Mn-Si-Cr alloyed steel was treated by a novel bainite-based quenching and partitioning (BQ&P) process: after full austenization, the steel was firstly austempered at 300 °C, 320 °C, 340 °C, 360 °C and 380 °C for 30 min, and then quenched to 120 °C, followed by partitioning at 360 °C for 45 min. The multiphase microstructures containing carbide-free bainite (CFB, bainitic ferrite lath plus filmy retained austenite), martensite and retained austenite were characterized by optical microscope, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and dilatometer analysis. An optimum combination of strength and ductility was achieved in the BQ&P steel when the bainitic austempering temperature is 360 °C (ultimate tensile strength: 1495 MPa; uniform elongation and total elongation: 26.2% and 31.8%; the reduction of area: 47.9%). Besides the transformation-induced plasticity effect of the retained austenite and the composite effect of the multiphase after BQ&P treatment, the formation of carbide free bainite also plays a significant role on the enhanced mechanical properties. The carbide-free bainite could improve the damage resistance of the multiphase due to the additional strain-hardening capacity within the local plasticity deformation zone near the tip of micro-cracks. In this case, the fraction and distribution of CFB should be controlled properly and the macrosegregation should be avoided.

  13. Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Wang, X.L. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Venkatsurya, P.K.C. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Guo, H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States)

    2014-06-01

    The influence of annealing and tempering temperature on the microstructure and mechanical properties was investigated in a low carbon alloy steel that was processed by a two-step intercritical annealing and intercritical tempering heat treatment. In general, the microstructure of the processed steel comprises intercritical lath-like ferrite, bainitic/martensitic lath and acicular-type retained austenite. The lower intercritical annealing temperature resulted in lower fraction of intercritical ferrite with finer grain size and consequently higher strength. On the other hand, the intercritical tempering temperature significantly influenced retained austenite content and precipitation. High fraction of retained austenite was obtained at a temperature slightly above Ac{sub 1} temperature and retained austenite content decreased with increase in tempering temperature. This behavior is attributed to the competition between the enrichment of Mn and Ni and the fraction of reversed austenite. Fine niobium carbide precipitates of size ∼2–6 nm and copper precipitates of size range ∼10–30 nm were obtained. The optimal intercritical annealing and tempering temperatures to obtain the product of tensile strength and elongation % of ∼30 GPa% were 780 °C and 660 °C, respectively and the volume fraction of retained austenite was ∼29%.

  14. Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering

    International Nuclear Information System (INIS)

    Zhou, W.H.; Wang, X.L.; Venkatsurya, P.K.C.; Guo, H.; Shang, C.J.; Misra, R.D.K.

    2014-01-01

    The influence of annealing and tempering temperature on the microstructure and mechanical properties was investigated in a low carbon alloy steel that was processed by a two-step intercritical annealing and intercritical tempering heat treatment. In general, the microstructure of the processed steel comprises intercritical lath-like ferrite, bainitic/martensitic lath and acicular-type retained austenite. The lower intercritical annealing temperature resulted in lower fraction of intercritical ferrite with finer grain size and consequently higher strength. On the other hand, the intercritical tempering temperature significantly influenced retained austenite content and precipitation. High fraction of retained austenite was obtained at a temperature slightly above Ac 1 temperature and retained austenite content decreased with increase in tempering temperature. This behavior is attributed to the competition between the enrichment of Mn and Ni and the fraction of reversed austenite. Fine niobium carbide precipitates of size ∼2–6 nm and copper precipitates of size range ∼10–30 nm were obtained. The optimal intercritical annealing and tempering temperatures to obtain the product of tensile strength and elongation % of ∼30 GPa% were 780 °C and 660 °C, respectively and the volume fraction of retained austenite was ∼29%

  15. Microstructural and Mechanical Properties of Welded High Strength Steel Plate Using SMAW and SAW Method for LPG Storage Tanks

    Science.gov (United States)

    Winarto, Winarto; Riastuti, Rini; Kumeidi, Nur

    2018-03-01

    Indonesian government policy to convert energy consumption for domestic household from kerosene to liquefied petroleum gas (LPG) may lead to the increasing demand for LPG storage tank. LPG storage tank with a large capacity generally used the HSLA steel material of ASTM A516 Grade 70 joined by SMAW or combination between SMAW and SAW method. The heat input can affect the microstructure and mechanical properties of the weld area. The input heat is proportional to the welding current and the arc voltage, but inversely proportional to its welding speed. The result shows that the combination of SMAW-SAW process yield the lower hardness in the HAZ and the fusion zone compared to the singe SMAW process. PWHT mainly applied to reduce residual stress of welded joint. The result shows that PWHT can reduce the hardness in the HAZ and the fusion zone in comparing with the singe SMAW process. The microstructure of weld joint shows a coarser structure in the combined welding process (SMAW-SAW) comparing with the single welding process (SMAW).

  16. Influence of cryogenic treatment on microstructure and mechanical properties of high strength AISI D2 tool steel =

    Science.gov (United States)

    Ghasemi Nanesa, Hadi

    Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.

  17. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  18. An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra; Tomar, Vikas, E-mail: tomar@purdue.edu

    2015-04-01

    This investigation reports a comparison of the exoskeleton mechanical strength of deep sea shrimp species Rimicaris exoculata and shallow water shrimp species Pandalus platyceros at temperatures ranging from 25 °C to 80 °C using nanoindentation experiments. Scanning Electron Microscopy (SEM) observations suggest that both shrimp exoskeletons have the Bouligand structure. Differences in the structural arrangement and chemical composition of both shrimps are highlighted by SEM and EDX (Energy Dispersive X-ray) analyses. The variation in the elastic moduli with temperature is found to be correlated with the measured compositional differences. The reduced modulus of R. exoculata is 8.26 ± 0.89 GPa at 25 °C that reduces to 7.61 ± 0.65 GPa at 80 °C. The corresponding decrease in the reduced modulus of P. platyceros is from 27.38 ± 2.3 GPa at 25 °C to 24.58 ± 1.71 GPa at 80 °C. The decrease in reduced moduli as a function of temperature is found to be dependent on the extent of calcium based minerals in exoskeleton of both types of shrimp exoskeletons. - Highlights: • Shrimp species Pandalus platyceros and Rimicaris exoculata exoskeletons are analyzed. • Temperature dependent properties of shrimp exoskeleton are compared. • Mechanical properties are correlated with structure and composition of exoskeleton. • Mechanical properties reduce with increase in temperature. • Presence of biominerals gives better thermal stability to structure.

  19. An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures

    International Nuclear Information System (INIS)

    Verma, Devendra; Tomar, Vikas

    2015-01-01

    This investigation reports a comparison of the exoskeleton mechanical strength of deep sea shrimp species Rimicaris exoculata and shallow water shrimp species Pandalus platyceros at temperatures ranging from 25 °C to 80 °C using nanoindentation experiments. Scanning Electron Microscopy (SEM) observations suggest that both shrimp exoskeletons have the Bouligand structure. Differences in the structural arrangement and chemical composition of both shrimps are highlighted by SEM and EDX (Energy Dispersive X-ray) analyses. The variation in the elastic moduli with temperature is found to be correlated with the measured compositional differences. The reduced modulus of R. exoculata is 8.26 ± 0.89 GPa at 25 °C that reduces to 7.61 ± 0.65 GPa at 80 °C. The corresponding decrease in the reduced modulus of P. platyceros is from 27.38 ± 2.3 GPa at 25 °C to 24.58 ± 1.71 GPa at 80 °C. The decrease in reduced moduli as a function of temperature is found to be dependent on the extent of calcium based minerals in exoskeleton of both types of shrimp exoskeletons. - Highlights: • Shrimp species Pandalus platyceros and Rimicaris exoculata exoskeletons are analyzed. • Temperature dependent properties of shrimp exoskeleton are compared. • Mechanical properties are correlated with structure and composition of exoskeleton. • Mechanical properties reduce with increase in temperature. • Presence of biominerals gives better thermal stability to structure

  20. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kaili; Chang Jiang; Shen Ruxiang, E-mail: jchang@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-12-15

    The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/Calcium silicate (beta-Ca{sub 3}(PO{sub 4}){sub 2}/CaSiO{sub 3}, beta-TCP/CS) composite bioceramics was investigated. beta-TCP/CS composite powders with a weight ratio of 50:50 were prepared by three different methods: mechanical milling method (TW-A), two-step chemical precipitation method (TW-B) and in situ chemical co-precipitation method (TW-C), and then the three composite powders were uniaxially compacted at 30 MPa, followed by cold isostatic pressing into rectangular-prism-shaped specimens under a pressure of 200 MPa for 15 min, and then sintered at 1150 deg. C for 5 h. The TW-B powders with less agglomerative morphologies and uniform nano-size particles attained 96.14% relative density (RD). A uniform microstructure with about 120 nm grains was observed. Whereas, the samples obtained from TW-A and TW-C powders only reached a RD of 63.08% and 78.86%, respectively. The bending strength of the samples fabricated from TW-B reached 125 MPa, which was more than 3.7 and 1.5 times higher as compared with that of samples obtained from TW-A and TW-C powders, respectively. Furthermore, the degradability of the samples fabricated from TW-B powders was obviously lower than that of the samples fabricated from TW-A and TW-C powders.

  1. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  2. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  4. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  5. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency.

    Science.gov (United States)

    Rivera, Gabriel; Stayton, C Tristan

    2011-10-01

    Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that "lotic" shell shapes are weaker than "lentic" shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. "Lotic" shell shapes produced significantly higher stresses than "lentic" shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in

  6. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  7. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  8. Influence of initial imperfections on ultimate strength of spherical shells

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2017-09-01

    Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

  9. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  10. Effect of the heating rate on residual thermo-hydro-mechanical properties of a high-strength concrete in the context of nuclear waste storage

    International Nuclear Information System (INIS)

    Galle, C.; Pin, M.; Ranc, G.; Rodrigues, S.

    2003-01-01

    Concrete is likely to be used in massive structures for nuclear waste long-term storage facilities in France. In the framework of vitrified waste and spent fuel management, these structures could be submitted to high temperatures. In standard conditions, ambient temperature should not exceed 60 degC but in case of failure of a cooling system, concretes could be temporarily exposed to temperatures up to 250 degC. Depending on the temperature rise kinetics, concretes could be damaged to a greater or lesser extent. In this context, an experimental study on the effect of heating rate on concrete thermo-hydro-mechanical properties exposed to high temperatures (110 - 250 degC) was carried out at the French Atomic Energy Commission (CEA). Data analysis and interpretation provided enough arguments to conclude that, at local scale, the impact of heating rate on residual properties was real though relatively limited. (author)

  11. Effect of zinc-containing β-tricalcium phosphate nano particles injection on jawbone mineral density and mechanical strength of osteoporosis model rats

    International Nuclear Information System (INIS)

    Tokudome, Yoshihiro; Otsuka, Makoto; Ito, Atsuo

    2011-01-01

    Zinc-containing β-tricalcium phosphate (ZnTCP) nano particles were injected into zinc-deficient rats to promote osteogenesis. Sprague-Dawley (SD) rats (4 weeks old, average weight of 70 g) were divided into four groups: Normal rats (not ovariectomized (OVX)), Control rats (OVX), and OVX rats injected with a suspension of ZnTCP nano particles or ZnSO 4 . The ZnTCP contained 6.17% zinc. The suspensions (0.6 mg as a zinc volume/0.2 ml) were injected around the jaw bone once a week for 12 weeks. Local effects on the bone mineral content (BMC) of jawbone, and systemic effects on body weight, the BMC of both femurs determined by X-ray computed tomography, and bone mechanical strength (BMS) measured by the three-point bending method, were examined. The BMC of jaw bone was significantly higher in the ZnTCP-treated group than un-treated or ZnSO 4 -treated group. Body weight, the BMC of femurs, and BMS were also significantly higher in the ZnTCP treated-group. The zinc-containing β-tricalcium phosphate nano particles were effective at preventing bone loss induced by ovariectomy in rats and have potential uses for treating periodontitis. (author)

  12. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    International Nuclear Information System (INIS)

    Bahrami, Mohsen; Helmi, Nader; Dehghani, Kamran; Givi, Mohammad Kazem Besharati

    2014-01-01

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results

  13. High alkaline tolerant electrolyte membrane with improved conductivity and mechanical strength via lithium chloride/dimethylacetamide dissolved microcrystalline cellulose for Zn-Air batteries

    International Nuclear Information System (INIS)

    Zhang, Yuansong; Li, Cong; Cai, Xiaoxia; Yao, Jinshui; Li, Mei; Zhang, Xian; Liu, Qinze

    2016-01-01

    LiCl/DMAc (dimethylacetamide) solution dissolved microcrystalline cellulose (LD-MCC) showed potential benefits to the alkaline solid polymer electrolyte (ASPE). High alkali tolerance (up to 70 wt% KOH loading), remarkable improvements in ionic conductivity (from 0.018 S cm −1 to 0.153 S cm −1 ) and mechanical properties (3-fold increase in tensile strength from 0.28 MPa to 0.76 MPa) were achieved just via an incorporation of 5 wt% of LD-MCC into the ASPE matrix. Wide-angle X-ray diffraction indicated that LD-MCC entrapped KOH and hindered its aggregation. X-ray Energy Dispersive Spectrometer revealed that K + was preferentially located on the LD-MCC surfaces rather than the polymeric matrix. Scanning Electron Microscopy of freeze-dry sample demonstrated a submicro-porous morphology with reduced average pore size (175 nm) after the incorporation of LD-MCC in ASPE matrix. The incorporated LD-MCC acted as KOH stabilizer, hydrophilicity agent and OH − transport media. Distinct micro-structures before and after the incorporation of LD-MCC were investigated to reveal the special role of LD-MCC in the performance improvement of ASPE membrane.

  14. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  15. A versatile characterization of poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide hydrogels for composition, mechanical strength, and rheology

    Directory of Open Access Journals (Sweden)

    J. Kovacs

    2013-01-01

    Full Text Available Poly(N-isopropylacrylamide-co-N,N'-methylene-bisacrylamide (P(NIPAAm-co-MBA hydrogels were prepared in water using redox initiator. The copolymer composition at high conversion (> 95% was determined indirectly by HPLC (high performance liquid chromatography analysis of the leaching water and directly by solid state 13C CP MAS NMR (cross polarization magic angle spinning nuclear magnetic resonance spectroscopy of the dried gels, and was found to be close to that of the feed. The effect of cross-linker (MBA content in the copolymer was investigated in the concentration range of 1.1–9.1 mol% (R:90–10; R = mol NIPAAm/mol MBA on the rheological behaviour and mechanical strength of the hydrogels. Both storage and loss modulus decreased with decreasing cross-linker content as revealed by dynamic rheometry. Gels R70 and R90 with very low cross-linker content (1.2–1.5 mol% MBA have a very loose network structure, which is significantly different from those with higher cross-linker content manifesting in higher difference in storage modulus. The temperature dependence of the damping factor served the most accurate determination of the volume phase transition temperature, which was not affected by the cross-link density in the investigated range of MBA concentration. Gel R10 with highest cross-linker content (9.1 mol% MBA behaves anomalously due to heterogeneity and the hindered conformation of the side chains of PNIPAAm.

  16. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Helmi, Nader [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Dehghani, Kamran [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Centre of Excellence in Smart Structures and Dynamical Systems (Iran, Islamic Republic of); Givi, Mohammad Kazem Besharati [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-02-10

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results.

  17. The Effect Of Water/powder Material Ratio And Fiber Strength On The Mechanical Properties Of Fiber Reinforced Self-compacting Concrete

    OpenAIRE

    Dinç, Alihan

    2007-01-01

    Apart from the normal concrete to fulfill the necessities, specially designed high performance concrete has started to find a place for use towards special application purposes. Performance does not only mean increase in strength rather it also encompasses the quality of preserving the strength and other functions under external effects during the service life of the structure. High performance concrete can be defined as a concrete with high workability, durability and strength along with pre...

  18. Towards unified characterization of cooperation mechanisms. Comment on "Universal scaling for the dilemma strength in evolutionary games" by Z. Wang et al.

    Science.gov (United States)

    Han, The Anh

    2015-09-01

    "I will jump into the river to save two brothers or eight cousins": This famous quote by J.B.S. Haldane accurately anticipates the conditions under which cooperation is the favorable choice in an interaction between genetic relatives. The general condition can later be formulated as a surprisingly simple mathematical expression, known as the Hamilton's rule, stating that natural selection favors cooperation if the genetic relatedness (r) between the donor and the recipient of a cooperative act is greater than its cost (c) to benefit (b) ratio [1]: r > c / b. Motivated by Hamilton's elegant early studies, researchers have attempted to find simple and concise rules that characterize the conditions for cooperation to be selected under various social viscosity [2,3]. For example, the seminal work by M. Nowak [3] in 2006 shows that similarly simple rules can be derived that govern each of the other four popular mechanisms of cooperation-direct reciprocity, indirect reciprocity, group selection and network reciprocity-, which can be expressed via the cost-to-benefit ratio being smaller than some critical value associated with the mechanism at work (as seen, for kin interactions, the critical value is relatedness). However, these rules are restricted to the donor and recipient (D&R) paradigm. The question is thus whether it is possible to obtain simple rules even for the general case? The answer is not trivial as a general two-player game is described by four independent parameters, not just two as in the D&R game.

  19. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  20. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  1. Study of the Impact of Heat Treatment Modes on Formation of Microstructure and a Given Set of Mechanical Properties of High-Strength Flat Products with Guaranteed Hardness (400 to 450 HB) from Low-Alloyed Steel

    Science.gov (United States)

    Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu

    2017-12-01

    The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.

  2. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  3. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  4. Simultaneous bilateral isolated greater trochanter fracture

    Directory of Open Access Journals (Sweden)

    Maruti Kambali

    2013-01-01

    Full Text Available A 48-year-old woman sustained simultaneous isolated bilateral greater trochanteric fracture, following a road traffic accident. The patient presented to us 1 month after the injury. She presented with complaints of pain in the left hip and inability to walk. Roentgenograms revealed displaced comminuted bilateral greater trochanter fractures. The fracture of the left greater trochanter was reduced and fixed internally using the tension band wiring technique. The greater trochanter fracture on the right side was asymptomatic and was managed conservatively. The patient regained full range of motion and use of her hips after a postoperative follow-up of 6 months. Isolated fractures of the greater trochanter are unusual injuries. Because of their relative rarity and the unsettled controversy regarding their etiology and pathogenesis, several methods of treatment have been advocated. Furthermore, the reports of this particular type of injury are not plentiful and the average textbook coverage afforded to this entity is limited. In our study we discuss the mechanism of injury and the various treatment options available.

  5. Does improvement in maternal attachment representations predict greater maternal sensitivity, child attachment security and lower rates of relapse to substance use? A second test of Mothering from the Inside Out treatment mechanisms.

    Science.gov (United States)

    Suchman, Nancy E; DeCoste, Cindy; Borelli, Jessica L; McMahon, Thomas J

    2018-02-01

    In this study, we replicated a rigorous test of the proposed mechanisms of change associated with Mothering from the Inside out (MIO), an evidence-based parenting therapy that aims to enhance maternal reflective functioning and mental representations of caregiving in mothers enrolled in addiction treatment and caring for young children. First, using data from 84 mothers who enrolled in our second randomized controlled trial, we examined whether therapist fidelity to core MIO treatment components predicted improvement in maternal reflective functioning and mental representations of caregiving, even after taking fidelity to non-MIO components into account. Next, we examined whether improvement in directly targeted outcomes (e.g., maternal mentalizing and mental representations of caregiving) led to improvements in the indirectly targeted outcome of maternal caregiving sensitivity, even after controlling for other plausible competing mechanisms (e.g., improvement in maternal psychiatric distress and substance use). Third, we examined whether improvement in targeted parenting outcomes (e.g., maternal mentalizing, mental representations of caregiving and caregiving sensitivity) was associated in improvement in child attachment status, even after controlling for competing mechanisms (e.g., improvement in maternal psychiatric distress and substance use). Finally, we examined whether improvement in maternal mentalizing and caregiving representations was associated with a reduction in relapse to substance use. Support was found for the first three tests of mechanisms but not the fourth. Implications for future research and intervention development are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  7. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  8. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Guo, W.; Poplawsky, J.D.; Liu, C.T.

    2016-01-01

    The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility with intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.

  9. Adaptations in athletic performance after ballistic power versus strength training.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength, makes strength training a more effective training modality for relatively weak individuals.

  10. Concurrent assessments of lower limb loading patterns, mechanical muscle strength and functional performance in ACL-patients - A cross-sectional study

    DEFF Research Database (Denmark)

    Holsgaard-Larsen, Anders; Jensen, C; Mortensen, N H M

    2014-01-01

    Full recovery in muscle strength and functional performance may not be achieved after ACL-injury. Aim: The aim of this study is to investigate loading patterns during jumping, muscle function and functional performance in ACL-reconstructed patients and to investigate the origin of between...

  11. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    OpenAIRE

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at ...

  12. Mechanical bending strength of (Bi0.5Na0.5 TiO3-based lead-Free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Hiroaki Takahashi

    2017-09-01

    Full Text Available (Bi0.5Na0.5TiO3 [BNT] is expected as one of candidate lead-free materials because these ceramics show relatively good high-power piezoelectric properties. In this study, we tried to understand the bending strength and fracture behavior of the BNT-based ceramics. To measure the bending strength, a three-point bending test on the basis of JIS was conducted using 12.0 × 4.0 × 1.0 mm3 specimens. An average bending strength, σA, of pure BNT ceramics sintered at 1100 °C for 2, 12 and 24 h were 217, 195 and 187 MPa, respectively. It is cleared that the σA increased with decreasing the sintering time, (grain size and pore size. We also investigated the bending strength of Nb2O5 doped BNT ceramics [BNT-Nb x, x = 0.05 ∼ 1.5 wt%] and MnCO3 doped BNT ceramics [BNT-Mn x, x = 0.5 and 1.0 wt%]. Values of the σA of BNT-Nb 0.5 and BNT-Mn 0.5 were 222, and 188 MPa, respectively. It is clarified that soft dopants (Nb can improve the bending strength of BNT-based ceramics. Additionally, hot-pressed BNT [HP-BNT] were sintered at 1050 °C for 5 h, and the σA of HP-BNT was 245 MPa.

  13. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  14. [Autoerotic fatalities in Greater Dusseldorf].

    Science.gov (United States)

    Hartung, Benno; Hellen, Florence; Borchard, Nora; Huckenbeck, Wolfgang

    2011-01-01

    Autoerotic fatalities in the Greater Dusseldorf area correspond to the relevant medicolegal literature. Our results included exclusively young to middle-aged, usually single men who were found dead in their city apartments. Clothing and devices used showed a great variety. Women's or fetish clothing and complex shackling or hanging devices were disproportionately frequent. In most cases, death occurred due to hanging or ligature strangulation. There was no increased incidence of underlying psychiatric disorders. In most of the deceased no or at least no remarkable alcohol intoxication was found. Occasionally, it may be difficult to reliably differentiate autoerotic accidents, accidents occurring in connection with practices of bondage & discipline, dominance & submission (BDSM) from natural death, suicide or homicide.

  15. Planning for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs

  16. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Hrivnák, J.

    2015-01-01

    Roč. 48, č. 10 (2015), s. 3217-3229 ISSN 1359-5997 R&D Projects: GA MK(CZ) DF11P01OVV001; GA MŠk(CZ) LO1219 Keywords : compressive strength * density * in situ testing * non-destructive testing (NDT) * small size loading jack * wood Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0392-6

  17. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  18. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Zareei

    2017-12-01

    Full Text Available The preliminary and inevitable interest in the use of partial replacements or by – products as complementary pozzolanic materials was mostly induced by enforcement of air pollution control resulted from cement production industry. Rise husk is by- product taken from rice mill process, with approximately the ratio of 200 kg per one ton of rice, even in high temperature it reduces to 40 kg. This paper presents benefits resulted from various ratios of rice husk ash(RHA on concrete indicators through 5 mixture plans with proportions of 5, 10, 15, 20 and 25% RHA by weight of cement in addition to 10% micro- silica (MS to be compared with a reference mixture with 100% Portland cement. Tests results indicated the positive relationship between 15% replacement of RHA with increase in compressive strengths by about 20%. The optimum level of strength and durability properties generally gain with addition up to 20%, beyond that is associated with slight decrease in strength parameters by about 4.5%. The same results obtained for water absorption ratios likely to be unfavourable. Chloride ions penetration increased with increase in cement replacement by about 25% relative to the initial values (about less than one fifth.

  19. Short Communications Strength Properties and Groups of Major ...

    African Journals Online (AJOL)

    Short Communications Strength Properties and Groups of Major Commercial Timbers Grown in Kenya. ... The strength groups developed revealed that most species in Kenya are suitable for heavy engineering works and building construction. ... strength properties, commercial timber, physical and mechanical properties

  20. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  1. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  2. Comparing strengths of beliefs explicitly

    NARCIS (Netherlands)

    Ghosh, S.; de Jongh, D.

    2013-01-01

    Inspired by a similar use in provability logic, formulas p > B q and p ≥ B q are introduced in the existing logical framework for discussing beliefs to express that the strength of belief in p is greater than (or equal to) that in q. Besides its usefulness in studying the properties of the concept

  3. Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (high melt strength polypropylene) with Brazilian bentonite; Estudo das propriedades mecanicas, reologicas e termicas de nanocomposito de HMSPP (polipropileno com alta resistencia do fundido) com uma bentonita brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Fermino, Danilo Marin

    2011-07-01

    This work concerns to the study of the mechanical, thermal and rheological behavior of the nano composite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba, known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, Cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGM). The rheological behavior was evaluated in rheometer. The morphology of the nanocomposites was studied by the technique of scanning electron microscopy (SEM). The organophilic bentonite and the nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  4. Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (high melt strength polypropylene) with Brazilian bentonite; Estudo das propriedades mecanicas, reologicas e termicas de nanocomposito de HMSPP (polipropileno com alta resistencia do fundido) com uma bentonita brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Fermino, Danilo Marin

    2011-07-01

    This work concerns to the study of the mechanical, thermal and rheological behavior of the nano composite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba, known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, Cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGM). The rheological behavior was evaluated in rheometer. The morphology of the nanocomposites was studied by the technique of scanning electron microscopy (SEM). The organophilic bentonite and the nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  5. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  6. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  7. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Mechanical strength properties of sodium exposed and Nickel diffused materials. Interim report

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2004-02-01

    An oxide dispersion strengthened (ODS) ferritic steel have excellent resistance to swelling and superior creep strength, they are expected to be used as a long-life cladding material in future advanced fast reactor. In this study, sodium environmental effects on the ODS steel developed by JNC were clarified through tensile test after sodium exposure for maximum 10,000hrs and creep-rupture test in sodium at elevated temperature. The exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperatures were 923 K and 973 K, the oxygen concentration in sodium was below 2ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/s. Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The results showed excellent sodium-resistance up to a high temperature of about 973 K in stagnant sodium conditions, and its considered that the effects of sodium environment of tensile properties were negligible. In case of stagnant sodium condition, creep-rupture strength in sodium was equal to the in argon gas, and no sodium environmental effect was observed. The same is true for the creep-rupture ductility. (2) The tensile properties of nickel diffused test specimens at high temperatures simulating microstructure change were equal to that of the thermal aging process specimens. These tensile tests suggest that sodium environmental effects can be ignored. However, the effect of nickel diffusion on creep strength are not clear at present and experimental investigation are being conducted. (3) The coefficient of nickel diffusion in the ODS steel can be estimated based on the results of nickel concentration measurement. This value is larger than that of the diffusion coefficient for typical α-Fe steel at temperature below 973 K

  8. Possible stimuli for strength and power adaptation : acute metabolic responses.

    Science.gov (United States)

    Crewther, Blair; Cronin, John; Keogh, Justin

    2006-01-01

    The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.

  9. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study.

    Science.gov (United States)

    Čapek, Jaroslav; Msallamová, Šárka; Jablonská, Eva; Lipov, Jan; Vojtěch, Dalibor

    2017-10-01

    Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  11. Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Power

    Full Text Available Despite an age-related loss of voluntary isometric and concentric strength, muscle strength is well maintained during lengthening muscle actions (i.e., eccentric strength in old age. Additionally, in younger adults during lengthening of an activated skeletal muscle, the force level observed following the stretch is greater than the isometric force at the same muscle length. This feature is termed residual force enhancement (RFE and is believed to be a combination of active and passive components of the contractile apparatus. The purpose of this study was to provide an initial assessment of RFE in older adults and utilize aging as a muscle model to explore RFE in a system in which isometric force production is compromised, but structural mechanisms of eccentric strength are well-maintained. Therefore, we hypothesised that older adults will experience greater RFE compared with young adults. Following a reference maximal voluntary isometric contraction (MVC of the dorsiflexors in 10 young (26.1 ± 2.7 y and 10 old (76.0 ± 6.5 y men, an active stretch was performed at 15°/s over a 30° ankle joint excursion ending at the same muscle length as the reference MVCs (40° of plantar flexion. Any additional torque compared with the reference MVC therefore represented RFE. In older men RFE was ~2.5 times greater compared to young. The passive component of force enhancement contributed ~37% and ~20% to total force enhancement, in old and young respectively. The positive association (R(2 = 0.57 between maintained eccentric strength in old age and RFE indicates age-related mechanisms responsible for the maintenance of eccentric strength likely contributed to the observed elevated RFE. Additionally, as indicated by the greater passive force enhancement, these mechanisms may be related to increased muscle series elastic stiffness in old age.

  12. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  13. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  14. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2016-01-01

    Roč. 9, č. 5 (2016), č. článku 391. ISSN 1996-1944 Institutional support: RVO:61389021 Keywords : ultrafine-grained material * cobalt * ball milling * spark plasma sintering * mechanical properties Subject RIV: JG - Metallurgy Impact factor: 2.654, year: 2016 www.mdpi.com/1996-1944/9/5/391/pdf

  15. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    Science.gov (United States)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0} and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  16. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests.

    Science.gov (United States)

    Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn

    2014-09-01

    Pedicle screws are used for treating several types of spinal injuries. Although several commercial versions are presently available, they are mostly either fully cylindrical or fully conical. In this study, the bending strengths of seven types of commercial pedicle screws and a newly designed double dual core screw were evaluated by finite element analyses and biomechanical tests. All the screws had an outer diameter of 7 mm, and the biomechanical test consisted of a cantilever bending test in which a vertical point load was applied using a level arm of 45 mm. The boundary and loading conditions of the biomechanical tests were applied to the model used for the finite element analyses. The results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50-500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws. The finite element analysis further revealed that the point of maximum tensile stress in the screw model was comparable to the point at which fracture occurred during the fatigue test. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  18. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  19. Development of advanced high strength tantalum base alloys. Phase 3: Influence of metallurgical condition on the mechanical properties of ASTAR-811C sheet

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.; Harrod, D. L.

    1972-01-01

    Metallurgical condition was shown to have a significant effect on the creep properties of ASTAR-811C (Ta-8W-1Re-0.7Hf-0.025C) sheet. Cold worked material exhibited creep rates 30 times higher than solution annealed material and 10 times greater than for recrystallized material. Both grain size and the carbide morphology changes as the final annealing temperature was raised from 3000 F to 3600 F. However, the lowest creep rates were achieved for material which retained the high temperature form of the Ta2C precipitate. Samples with GTA weldments had essentially identical properties as recrystallized base metal. Cooling rates from 3600 F of 5, 50, and 800 F deg/min. had little effect on the 2000 and 2400 F creep behavior of ASTAR-811C.

  20. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Neutron source strength associated with FTR fuel

    International Nuclear Information System (INIS)

    Boroughs, G.L.; Bunch, W.L.; Johnson, D.L.

    1975-01-01

    The study presented shows the important effect of shelf life on the neutron source strength anticipated from fuel irradiated in the FTR. The neutron source strength will be enhanced appreciably by extended shelf lives. High neutron source strengths will also be associated with reprocessed LWR plutonium, which is expected to contain a greater abundance of the higher isotopes. The branching ratio and cross section of 241 Am is an important parameter that needs to be defined more precisely to establish calculated values with greater precision

  2. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating Mmicroscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.

  3. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  4. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  5. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  6. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  7. Chemical composition and strength of dolomite geopolymer composites

    Science.gov (United States)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  8. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  9. Characterization of fracture and deformation mechanism in a high strength beta titanium alloy Ti-10-2-3 using EBSD technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jalaj, E-mail: jalaj@dmrl.drdo.in; Singh, Vajinder; Ghosal, Partha; Kumar, Vikas

    2015-01-19

    In the present study, fracture toughness tested specimens in longitudinal (LT) and transverse loading (TL) directions of beta titanium alloy have been investigated using Electron Back Scattered Diffraction (EBSD) technique. The orientation images captured at three different locations i.e. machine notch, fatigue pre-crack and final fracture have been compared. The LT sample exhibits with more facets than TL sample. The faceted aspect of the crack is generally associated with quasi-cleavage mechanism. The EBSD analysis clearly points out that in the LT specimen, the hexagonal orientation has moved towards near basal during the test. This may be the reason for the observance of facets in the LT specimen. The cracking in TL specimen might have been taken over by the bcc phase as it is oriented with harder planes of cubic {001} planes. Further, the Schmid factor has also been computed based on the defined loading conditions. Significant variation has been observed in the slip plane orientations and distributions at these three locations. The Schmid analysis has highlighted the significant contribution of different slip systems towards deformation and cracking in LT and TL specimens.

  10. The Effect of Tempering on Strength Properties and Seed Coat ...

    African Journals Online (AJOL)

    The effect of tempering on seed coat adhesion strength and mechanical strength of sorghum and millet grain kernels was investigated at different tempering durations. Tempering reduced the kernel breaking strength and had significant effect on seed coat adhesion strength. Tempering the grain for 60 minutes at ambient ...

  11. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  12. A finite element study on the effects of toughness and permanent out-of-plane deformation on post-impact compressive strength

    OpenAIRE

    Bull, Daniel; Spearing, Simon; Sinclair, Ian

    2015-01-01

    This study applies mechanisms observed from previous work (the undamaged cone, toughness and extent of permanent out-of-plane deformation) to parametrically study their effects on residual compression after impact (CAI) strength using finite element models. Based on previous experimental work, tougher material systems exhibited up to 30% greater CAI strength for a given damage area. Based on this, it is necessary to understand what other parameters, beyond damage area, contribute to a loss in...

  13. Strength and energetics of elite rugby union players | Lombard ...

    African Journals Online (AJOL)

    The greater absolute strength spectrum (p < 0.05) measured on an isokinetic dynamometer for quadriceps and hamstring muscles of elite backs and forwards, confirmed the acquisition of strength for elite performance. The elite backs and forwards did not possess greater quadriceps and hamstring endurance (p < 0.05) than ...

  14. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  15. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    Science.gov (United States)

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P values than the Baseline hydraulic dynamometer (P values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used, assessment posture, and elbow position. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  16. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of

  17. Greater trochanteric pain syndrome diagnosis and treatment.

    Science.gov (United States)

    Mallow, Michael; Nazarian, Levon N

    2014-05-01

    Lateral hip pain, or greater trochanteric pain syndrome, is a commonly seen condition; in this article, the relevant anatomy, epidemiology, and evaluation strategies of greater trochanteric pain syndrome are reviewed. Specific attention is focused on imaging of this syndrome and treatment techniques, including ultrasound-guided interventions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Strength training for the warfighter.

    Science.gov (United States)

    Kraemer, William J; Szivak, Tunde K

    2012-07-01

    Optimizing strength training for the warfighter is challenged by past training philosophies that no longer serve the modern warfighter facing the "anaerobic battlefield." Training approaches for integration of strength with other needed physical capabilities have been shown to require a periodization model that has the flexibility for changes and is able to adapt to ever-changing circumstances affecting the quality of workouts. Additionally, sequencing of workouts to limit over-reaching and development of overtraining syndromes that end in loss of duty time and injury are paramount to long-term success. Allowing adequate time for rest and recovery and recognizing the negative influences of extreme exercise programs and excessive endurance training will be vital in moving physical training programs into a more modern perspective as used by elite strength-power anaerobic athletes in sports today. Because the warfighter is an elite athlete, it is time that training approaches that are scientifically based are updated within the military to match the functional demands of modern warfare and are given greater credence and value at the command levels. A needs analysis, development of periodized training modules, and individualization of programs are needed to optimize the strength of the modern warfighter. We now have the knowledge, professional coaches and nonprofit organization certifications with continuing education units, and modern training technology to allow this to happen. Ultimately, it only takes command decisions and implementation to make this possible.

  19. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  20. Mechanism-Based Modeling of Hydrogen Environment Assisted Cracking (HEAC) in High Strength Alloys for Marine Applications: Prediction of Monel K-500 HEAC for Select Environmental and Mechanical Conditions

    Science.gov (United States)

    2012-10-15

    0.45 .015 .0005 Si = 0.08, Cr = 0.04, Zr = 0.03, Nb , Ta, W, V < 0.01, Bi, Pb, Ag, Sn< 0.0005 wt pet Page | 7 Table 2. Mechanical Properties...analysis and contribute to dcPD increase due to plasticity-based resistivity increase. Additionally, crack surface electrical contact which changes during...STTR-II sponsored). Task 2-3 Produce laboratory measurements of HEAC resistance (KIH, da/dtn, and da/dt vs. stress intensity factor) for a single

  1. Mechanical strength integrity for crowbarred power supplies

    International Nuclear Information System (INIS)

    Broverman, A.Y.; Hill, R.E.

    1979-01-01

    Crowbarring the output of a power supply serves to electrically protect the power supply's load. At the same time, however, the supply's windings are subjected to the electromagnetic forces of a partial short circuit. Because pulsed power supplies are frequently crowbarred as a normal part of the duty cycle, it is essential that their transformer windings be designed to repetitively withstand short circuit forces. If not provided for, crowbar or short circuit forces can irreparably damage the transformer's coils. These power supplies are intended for fusion applications. 2 refs

  2. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  3. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  4. Insulin resistance and bone strength: findings from the study of midlife in the United States.

    Science.gov (United States)

    Srikanthan, Preethi; Crandall, Carolyn J; Miller-Martinez, Dana; Seeman, Teresa E; Greendale, Gail A; Binkley, Neil; Karlamangla, Arun S

    2014-04-01

    Although several studies have noted increased fracture risk in individuals with type 2 diabetes mellitus (T2DM), the pathophysiologic mechanisms underlying this association are not known. We hypothesize that insulin resistance (the key pathology in T2DM) negatively influences bone remodeling and leads to reduced bone strength. Data for this study came from 717 participants in the Biomarker Project of the Midlife in the United States Study (MIDUS II). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting morning blood glucose and insulin levels. Projected 2D (areal) bone mineral density (BMD) was measured in the lumbar spine and left hip using dual-energy X-ray absorptiometry (DXA). Femoral neck axis length and width were measured from the hip DXA scans, and combined with BMD and body weight and height to create composite indices of femoral neck strength relative to load in three different failure modes: compression, bending, and impact. We used multiple linear regressions to examine the relationship between HOMA-IR and bone strength, adjusted for age, gender, race/ethnicity, menopausal transition stage (in women), and study site. Greater HOMA-IR was associated with lower values of all three composite indices of femoral neck strength relative to load, but was not associated with BMD in the femoral neck. Every doubling of HOMA-IR was associated with a 0.34 to 0.40 SD decrement in the strength indices (p<0.001). On their own, higher levels of fasting insulin (but not of glucose) were independently associated with lower bone strength. Our study confirms that greater insulin resistance is related to lower femoral neck strength relative to load. Further, we note that hyperinsulinemia, rather than hyperglycemia, underlies this relationship. Although cross-sectional associations do not prove causality, our findings do suggest that insulin resistance and in particular, hyperinsulinemia, may negatively affect bone strength relative to

  5. Elastic stability and the limit of strength

    International Nuclear Information System (INIS)

    Morris Jr., J.W.; Krenn, C.R.; Roundy, D.; Cohen, Marvin L.

    2002-01-01

    The upper limit of strength (the ''theoretical strength'') has been an active subject of research and speculation for the better part of a century. The subject has recently become important, for two reasons. First, given recent advances in ab initio techniques and computing machines, the limits of strength can be calculated with considerable accuracy, making this one of the very few problems in mechanical behavior that can actually be solved. Second, given recent advances in materials engineering, the limits of strength are being approached in some systems, such as hardened or defect-free films, and their relevance is becoming recognized in others. The present paper discusses some interesting results from recent research on the limits of strength, with an intermixture of speculations based on those results. Topics include the inherent nature of {100} cleavage and ''pencil slip'' in bcc metals, the inherent ductility of fcc metals, the anomalous properties of Al, and the possibility of measuring ideal strength with nanoindentation

  6. Give Me Strength.

    Institute of Scientific and Technical Information of China (English)

    维拉

    1996-01-01

    Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to

  7. Aplicações de misturas solo-"grits" em estradas florestais: resistência mecânica via CBR Application of soil-grits mixtures in forest roads: mechanical strength via CBR test

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2006-08-01

    Full Text Available Analisaram-se as potencialidades de emprego do resíduo sólido industrial "grits", oriundo da indústria de celulose, como agente estabilizante de dois solos da Zona da Mata Norte de Minas Gerais, Brasil, para fins de emprego em estradas florestais. Os solos estudados englobaram um residual maduro, de textura argilo-areno-siltosa, e um residual jovem, de textura areno-silto-argilosa. Para tanto, prepararam-se misturas envolvendo solos e o resíduo nos quantitativos de 4, 8, 12, 16, 20, 24 e 28% em relação às massas de solo seco. Fez-se uso do ensaio CBR para avaliar as características de resistência e expansão das misturas. A avaliação dos resultados do estudo permite concluir que o resíduo "grits" apresentou potencial significativo como estabilizante dos solos, observando-se que: (i a adição de "grits" aos solos foi responsável por ganhos nas suas resistências mecânicas, obtendo-se melhores resultados com o solo de textura areno-silto-argilosa; (ii com relação à expansão medida no ensaio CBR, observaram-se pequenos acréscimos para o solo de textura argilo-areno-siltosa e decréscimos para o solo de textura areno-silto-argilosa, com aumentos no teor de "grits"; e (iii as misturas solo-"grits" não responderam bem ao aumento da energia de compactação, quanto aos parâmetros CBR e expansãoCBR.This paper is directed to forest road engineering applications, and address the potentialities of using an industrial solid waste from the cellulose industry, named grits, in the stabilization process of two soils from Zona da Mata Norte of Minas Gerais States, Brazil. Soil types tested comprised a mature residual silty-sandy-clay and a young residual clayey-silty-sand. Soil-grits mixtures were prepared at 4, 8, 12, 16, 20, 24 and 28 % stabilizer contents referred to soil dry masses. Mechanical strength and swelling parameters were determined by CBR (California Bearing Ratio tests. The laboratory testing program data supported that

  8. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    Science.gov (United States)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  9. Greater trochanteric fracture with occult intertrochanteric extension.

    Science.gov (United States)

    Reiter, Michael; O'Brien, Seth D; Bui-Mansfield, Liem T; Alderete, Joseph

    2013-10-01

    Proximal femoral fractures are frequently encountered in the emergency department (ED). Prompt diagnosis is paramount as delay will exacerbate the already poor outcomes associated with these injuries. In cases where radiography is negative but clinical suspicion remains high, magnetic resonance imaging (MRI) is the study of choice as it has the capability to depict fractures which are occult on other imaging modalities. Awareness of a particular subset of proximal femoral fractures, namely greater trochanteric fractures, is vital for both radiologists and clinicians since it has been well documented that they invariably have an intertrochanteric component which may require surgical management. The detection of intertrochanteric or cervical extension of greater trochanteric fractures has been described utilizing MRI but is underestimated with both computed tomography (CT) and bone scan. Therefore, if MRI is unavailable or contraindicated, the diagnosis of an isolated greater trochanteric fracture should be met with caution. The importance of avoiding this potential pitfall is demonstrated in the following case of an elderly woman with hip pain and CT demonstrating an isolated greater trochanteric fracture who subsequently returned to the ED with a displaced intertrochanteric fracture.

  10. Butterfly valves: greater use in power plants

    International Nuclear Information System (INIS)

    McCoy, M.

    1975-01-01

    Improvements in butterfly valves, particularly in the areas of automatic control and leak tightness are described. The use of butterfly valves in nuclear power plants is discussed. These uses include service in component cooling, containment cooling, and containment isolation. The outlook for further improvements and greater uses is examined. (U.S.)

  11. Greater Somalia, the never-ending dream?

    DEFF Research Database (Denmark)

    Zoppi, Marco

    2015-01-01

    This paper provides an historical analysis of the concept of Greater Somalia, the nationalist project that advocates the political union of all Somali-speaking people, including those inhabiting areas in current Djibouti, Ethiopia and Kenya. The Somali territorial unification project of “lost...

  12. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  13. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  14. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  15. Interviewing to Understand Strengths

    Science.gov (United States)

    Hass, Michael R.

    2018-01-01

    Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…

  16. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  17. Effect of Water on Coal Strength | Singh | Momona Ethiopian Journal ...

    African Journals Online (AJOL)

    Water content is one of the most important factors influencing the rock strength. The present study has been conducted to see how coal strength changes under dry and water saturated conditions. The study reveals that the strength of coal decreases with increasing moisture. For rock mechanics and rock engineering ...

  18. Nuclear threshold effects and neutron strength function

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia

    2003-01-01

    One proves that a Nuclear Threshold Effect is dependent, via Neutron Strength Function, on Spectroscopy of Ancestral Neutron Threshold State. The magnitude of the Nuclear Threshold Effect is proportional to the Neutron Strength Function. Evidence for relation of Nuclear Threshold Effects to Neutron Strength Functions is obtained from Isotopic Threshold Effect and Deuteron Stripping Threshold Anomaly. The empirical and computational analysis of the Isotopic Threshold Effect and of the Deuteron Stripping Threshold Anomaly demonstrate their close relationship to Neutron Strength Functions. It was established that the Nuclear Threshold Effects depend, in addition to genuine Nuclear Reaction Mechanisms, on Spectroscopy of (Ancestral) Neutron Threshold State. The magnitude of the effect is proportional to the Neutron Strength Function, in their dependence on mass number. This result constitutes also a proof that the origins of these threshold effects are Neutron Single Particle States at zero energy. (author)

  19. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    Science.gov (United States)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  20. Utilization of wind energy in greater Hanover

    International Nuclear Information System (INIS)

    Sahling, U.

    1993-01-01

    Since the beginning of the Eighties, the association of communities of Greater Hanover has dealt intensively with energy and ecopolitical questions in the scope of regional planning. Renewable energy sources play a dominant role in this context. This brochure is the third contribution to the subject ''Energy policy and environmental protection''. Experts as well as possibly interested parties are addressed especially. For all 8 contributions contained, separate entries have been recorded in this database. (BWI) [de

  1. Small cities face greater impact from automation

    OpenAIRE

    Frank, Morgan R.; Sun, Lijun; Cebrian, Manuel; Youn, Hyejin; Rahwan, Iyad

    2017-01-01

    The city has proven to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: How will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across U.S. urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content su...

  2. The Greater Sekhukhune-CAPABILITY outreach project.

    Science.gov (United States)

    Gregersen, Nerine; Lampret, Julie; Lane, Tony; Christianson, Arnold

    2013-07-01

    The Greater Sekhukhune-CAPABILITY Outreach Project was undertaken in a rural district in Limpopo, South Africa, as part of the European Union-funded CAPABILITY programme to investigate approaches for capacity building for the translation of genetic knowledge into care and prevention of congenital disorders. Based on previous experience of a clinical genetic outreach programme in Limpopo, it aimed to initiate a district clinical genetic service in Greater Sekhukhune to gain knowledge and experience to assist in the implementation and development of medical genetic services in South Africa. Implementing the service in Greater Sekhukhune was impeded by a developing staff shortage in the province and pressure on the health service from the existing HIV/AIDS and TB epidemics. This situation underscores the need for health needs assessment for developing services for the care and prevention of congenital disorders in middle- and low-income countries. However, these impediments stimulated the pioneering of innovate ways to offer medical genetic services in these circumstances, including tele-teaching of nurses and doctors, using cellular phones to enhance clinical care and adapting and assessing the clinical utility of a laboratory test, QF-PCR, for use in the local circumstances.

  3. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  4. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength

    Directory of Open Access Journals (Sweden)

    Saadia eBihmidine

    2013-06-01

    Full Text Available Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INV, not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell-cycle and cell-division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive feast genes, they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength

  5. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  6. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training.

    Science.gov (United States)

    González-Badillo, Juan José; Rodríguez-Rosell, David; Sánchez-Medina, Luis; Gorostiaga, Esteban M; Pareja-Blanco, Fernando

    2014-01-01

    The purpose of this study was to compare the effect on strength gains of two isoinertial resistance training (RT) programmes that only differed in actual concentric velocity: maximal (MaxV) vs. half-maximal (HalfV) velocity. Twenty participants were assigned to a MaxV (n = 9) or HalfV (n = 11) group and trained 3 times per week during 6 weeks using the bench press (BP). Repetition velocity was controlled using a linear velocity transducer. A complementary study (n = 10) aimed to analyse whether the acute metabolic (blood lactate and ammonia) and mechanical response (velocity loss) was different between the MaxV and HalfV protocols used. Both groups improved strength performance from pre- to post-training, but MaxV resulted in significantly greater gains than HalfV in all variables analysed: one-repetition maximum (1RM) strength (18.2 vs. 9.7%), velocity developed against all (20.8 vs. 10.0%), light (11.5 vs. 4.5%) and heavy (36.2 vs. 17.3%) loads common to pre- and post-tests. Light and heavy loads were identified with those moved faster or slower than 0.80 m · s(-1) (∼ 60% 1RM in BP). Lactate tended to be significantly higher for MaxV vs. HalfV, with no differences observed for ammonia which was within resting values. Both groups obtained the greatest improvements at the training velocities (≤ 0.80 m · s(-1)). Movement velocity can be considered a fundamental component of RT intensity, since, for a given %1RM, the velocity at which loads are lifted largely determines the resulting training effect. BP strength gains can be maximised when repetitions are performed at maximal intended velocity.

  7. Greater happiness for a greater number: Is that possible in Austria?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2011-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the happiness of the great number could not be measured

  8. Greater happiness for a greater number: Is that possible? If so how? (Arabic)

    NARCIS (Netherlands)

    R. Veenhoven (Ruut); E. Samuel (Emad)

    2012-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time, the happiness of the great number could not be

  9. Greater happiness for a greater number: Is that possible in Germany?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2009-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the Happiness of the great number could not be measured

  10. Search for greater stability in nuclear regulation

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1985-01-01

    The need for greater stability in nuclear regulation is discussed. Two possible approaches for dealing with the problems of new and rapidly changing regulatory requirements are discussed. The first approach relies on the more traditional licensing reform initiatives that have been considered off and on for the past decade. The second approach considers a new regulator philosophy aimed at the root causes of the proliferation of new safety requirements that have been imposed in recent years. For the past few years, the concepts of deregulation and regulatory reform have been in fashion in Washington, and the commercial nuclear power program has not remained unaffected. Many look to these concepts to provide greater stability in the regulatory program. The NRC, the nuclear industry and the administration have all been avidly pursuing regulatory reform initiatives, which take the form of both legislative and administrative proposals. Many of these proposals look to the future, and, if adopted, would have little impact on currently operating nuclear power plants or plants now under construction

  11. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  12. Women at greater risk of HIV infection.

    Science.gov (United States)

    Mahathir, M

    1997-04-01

    Although many people believe that mainly men get infected with HIV/AIDS, women are actually getting infected at a faster rate than men, especially in developing countries, and suffer more from the adverse impact of AIDS. As of mid-1996, the Joint UN Program on AIDS estimated that more than 10 million of the 25 million adults infected with HIV since the beginning of the epidemic are women. The proportion of HIV-positive women is growing, with almost half of the 7500 new infections daily occurring among women. 90% of HIV-positive women live in a developing country. In Asia-Pacific, 1.4 million women have been infected with HIV out of an estimated total 3.08 million adults from the late 1970s until late 1994. Biologically, women are more vulnerable than men to infection because of the greater mucus area exposed to HIV during penile penetration. Women under age 17 years are at even greater risk because they have an underdeveloped cervix and low vaginal mucus production. Concurrent sexually transmitted diseases increase the risk of HIV transmission. Women's risk is also related to their exposure to gender inequalities in society. The social and economic pressures of poverty exacerbate women's risk. Prevention programs are discussed.

  13. Small cities face greater impact from automation.

    Science.gov (United States)

    Frank, Morgan R; Sun, Lijun; Cebrian, Manuel; Youn, Hyejin; Rahwan, Iyad

    2018-02-01

    The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions. We demonstrate that large cities exhibit increased occupational and skill specialization due to increased abundance of managerial and technical professions. These occupations are not easily automatable, and, thus, reduce the potential impact of automation in large cities. Our results pass several robustness checks including potential errors in the estimation of occupational automation and subsampling of occupations. Our study provides the first empirical law connecting two societal forces: urban agglomeration and automation's impact on employment. © 2018 The Authors.

  14. Small cities face greater impact from automation

    Science.gov (United States)

    Sun, Lijun; Cebrian, Manuel; Rahwan, Iyad

    2018-01-01

    The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions. We demonstrate that large cities exhibit increased occupational and skill specialization due to increased abundance of managerial and technical professions. These occupations are not easily automatable, and, thus, reduce the potential impact of automation in large cities. Our results pass several robustness checks including potential errors in the estimation of occupational automation and subsampling of occupations. Our study provides the first empirical law connecting two societal forces: urban agglomeration and automation's impact on employment. PMID:29436514

  15. Planning for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1984-01-01

    This contribution is a progress report for preparation of a document that will summarize procedures and technical information needed to plan for and implement greater-confinement disposal (GCD) of low-level radioactive waste. Selection of a site and a facility design (Phase I), and construction, operation, and extended care (Phase II) will be covered in the document. This progress report is limited to Phase I. Phase I includes determination of the need for GCD, design alternatives, and selection of a site and facility design. Alternative designs considered are augered shafts, deep trenches, engineered structures, high-integrity containers, hydrofracture, and improved waste form. Design considerations and specifications, performance elements, cost elements, and comparative advantages and disadvantages of the different designs are covered. Procedures are discussed for establishing overall performance objectives and waste-acceptance criteria, and for comparative assessment of the performance and cost of the different alternatives. 16 references

  16. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  17. Planning for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1984-01-01

    This contribution is a progress report for preparation of a document that will summarize procedures and technical information needed to plan for and implement greater-confinement disposal (GCD) of low-level radioactive waste. Selection of a site and a facility design (Phase I), and construction, operation, and extended care (Phase II) will be covered in the document. This progress report is limited to Phase I. Phase I includes determination of the need for GCD, design alternatives, and selection of a site and facility design. Alternative designs considered are augered shafts, deep trenches, engineered structures, high-integrity containers, hydrofracture, and improved waste form. Design considerations and specifications, performance elements, cost elements, and comparative advantages and disadvantages of the different designs are covered. Procedures are discussed for establishing overall performance objecties and waste-acceptance criteria, and for comparative assessment of the performance and cost of the different alternatives. 16 refs

  18. Upper extremity injuries associated with strength training.

    Science.gov (United States)

    Haupt, H A

    2001-07-01

    Most injuries sustained during strength training are mild strains that resolve with appropriate rest. More severe injuries include traumatic shoulder dislocations, tendon ruptures of the pectoralis major, biceps, and triceps; stress fractures of the distal clavicle, humerus, radius, and ulna; traumatic fractures of the distal radius and ulna in adolescent weightlifters; and compressive and stretch neuropathies. These more severe injuries are usually the result of improperly performing a strength training exercise. Educating athletes regarding proper strength-training techniques serves to reverse established injury patterns and to prevent these injuries in the first place. Recognizing the association of anabolic steroid use to several of the injury patterns further reinforces the need for medical specialists to counsel athletes against their use. With the increasing use of supplements such as creatine, the incidence and nature of strength-training injuries may change further. Greater emphasis on the competitive performance of younger athletes undoubtedly will generate enthusiasm for strength training at earlier ages in both sexes. The importance of proper supervision of these young athletes by knowledgeable persons will increase. As the popularity of strength training grows, there will be ample opportunity to continue to catalog the injury patterns associated with this activity.

  19. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  20. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  1. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  2. Mechanical properties of glasses impacted by debris or micrometeorites

    Science.gov (United States)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Mechanical strength measurements on five glasses and one glass ceramic exposed on the Long Duration Exposure Facility (LDEF) have revealed no damage exceeding experimental limits of error after exposure. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. In consequence of this, the impact events on the sample were not detected in mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength influence. The size of the impact site insofar as it determines flaw size for fracture purposes was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the impact fused zone cannot be included in fracture mechanics analyses based on simple flaw size analyses. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  3. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  4. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  5. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stit