WorldWideScience

Sample records for greater heating rates

  1. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  2. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  3. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  4. Action Program for Implementing Heat Savings in Greater Copenhagen

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen; Karlsson, Kenneth; Engell, Thomas

    1998-01-01

    This main report summarized the content of the three sub-report of the project, including the background for the project, the potentails for saving heat and the barriers for implementing these savings. Afterwards the report define the geographical area considered, as well as the present situation...

  5. Labeling and Rating Systems: Greater Access or Censorship?

    Science.gov (United States)

    Martin, Ann M.

    2015-01-01

    This article asks the question: How well versed are school librarians on issues related to labeling and rating systems? As school librarians continue to design and implement resource location schemes to assist patrons, they must recognize the difference between using labels to create interest in books or implementing labeling and rating systems…

  6. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  7. Social vulnerability to heat in Greater Atlanta, USA: spatial pattern of heat, NDVI, socioeconomics and household composition

    Science.gov (United States)

    Sim, Sunhui

    2017-10-01

    The purpose of the article is evaluating spatial patterns of social vulnerability to heat in Greater Atlanta in 2015. The social vulnerability to heat is an index of socioeconomic status, household composition, land surface temperature and normalized differential vegetation index (NDVI). Land surface temperature and NDVI were derived from the red, NIR and thermal infrared (TIR) of a Landsat OLI/TIRS images collected on September 14, 2015. The research focus is on the variation of heat vulnerability in Greater Atlanta. The study found that heat vulnerability is highly clustered spatially, resulting in "hot spots" and "cool spots". The results show significant health disparities. The hotspots of social vulnerability to heat occurred in neighborhoods with lower socioeconomic status as measured by low education, low income and more poverty, greater proportion of elderly people and young children. The findings of this study are important for identifying clusters of heat vulnerability and the relationships with social factors. These significant results provide a basis for heat intervention services.

  8. Hypertension is associated with greater heat exchange during exercise recovery in a hot environment.

    Science.gov (United States)

    Fonseca, S F; Teles, M C; Ribeiro, V G C; Magalhães, F C; Mendonça, V A; Peixoto, M F D; Leite, L H R; Coimbra, C C; Lacerda, A C R

    2015-12-01

    Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (Phypertensive subjects stored less heat (H=-24.23±3.99 W·m-2vs N=-13.63±2.24 W·m-2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m-2vs N=-91.15±3.24 W·m-2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.

  9. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  10. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  11. Work Rate during Self-paced Exercise is not Mediated by the Rate of Heat Storage.

    Science.gov (United States)

    Friesen, Brian J; Périard, Julien D; Poirier, Martin P; Lauzon, Martin; Blondin, Denis P; Haman, Francois; Kenny, Glen P

    2018-01-01

    To date, there have been mixed findings on whether greater anticipatory reductions in self-paced exercise intensity in the heat are mediated by early differences in rate of body heat storage. The disparity may be due to an inability to accurately measure minute-to-minute changes in whole-body heat loss. Thus, we evaluated whether early differences in rate of heat storage can mediate exercise intensity during self-paced cycling at a fixed rate of perceived exertion (RPE of 16; hard-to-very-hard work effort) in COOL (15°C), NORMAL (25°C), and HOT (35°C) ambient conditions. On separate days, nine endurance-trained cyclists exercised in COOL, NORMAL, and HOT conditions at a fixed RPE until work rate (measured after first 5 min of exercise) decreased to 70% of starting values. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Total exercise time was shorter in HOT (57 ± 20 min) relative to both NORMAL (72 ± 23 min, P = 0.004) and COOL (70 ± 26 min, P = 0.045). Starting work rate was lower in HOT (153 ± 31 W) compared with NORMAL (166 ± 27 W, P = 0.024) and COOL (170 ± 33 W, P = 0.037). Rate of heat storage was similar between conditions during the first 4 min of exercise (all P > 0.05). Thereafter, rate of heat storage was lower in HOT relative to NORMAL and COOL until 30 min of exercise (last common time-point between conditions; all P exercise. No differences were measured at end exercise. We show that rate of heat storage does not mediate exercise intensity during self-paced exercise at a fixed RPE in cool to hot ambient conditions.

  12. Does enhanced heat resistance of irradiated insects represent greater ability to adapt

    International Nuclear Information System (INIS)

    Ducoff, H.S.; MacDuff, R.A.

    1985-01-01

    Previous work from this lab demonstrated that irradiated flour beetles (Tribolium) develop resistance to oxygen with similar kinetics: greater sensitivity for about 1 week, increasing resistance over the next week, and resistance persisting for 3-6 months. This is in contrast to the rapid development of heat resistance in yeast exposed to UV or ionizing radiation and to rapid induction of heat-stress proteins in E. coli exposed to UV or nalidixic acid. The authors' early work did not distinguish between intrinsic heat resistance and enhanced ability to adapt. They tried to resolve this problem by comparing response of irradiated and of control beetles to challenge at 45 0 C with or without brief exposure to 41 0 C just prior to challenge. Mean lethal exposure time at 45 0 C was increased to about the same extent in both populations after 15 min at 41 0 C, suggesting that irradiation increases insectors' intrinsic resistance to stress rather than their ability to adapt

  13. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  14. Behavioral correlates of heart rates of free-living Greater White-fronted Geese

    Science.gov (United States)

    Ely, Craig R.; Ward, D.H.; Bollinger, K.S.

    1999-01-01

    We simultaneously monitored the heart rate and behavior of nine free-living Greater White-fronted Geese (Anser albifrons) on their wintering grounds in northern California. Heart rates of wild geese were monitored via abdominally-implanted radio transmitters with electrodes that received electrical impulses of the heart and emitted a radio signal with each ventricular contraction. Post-operative birds appeared to behave normally, readily rejoining flocks and flying up to 15 km daily from night-time roost sites to feed in surrounding agricultural fields. Heart rates varied significantly among individuals and among behaviors, and ranged from less than 100 beats per minute (BPM) during resting, to over 400 BPM during flight. Heart rates varied from 80 to 140 BPM during non-strenuous activities such as walking, feeding, and maintenance activities, to about 180 BPM when birds became alert, and over 400 BPM when birds were startled, even if they did not take flight. Postflight heart rate recovery time averaged postures, as heart rates were context-dependent, and were highest in initial encounters among individuals. Instantaneous measures of physiological parameters, such as heart rate, are often better indicators of the degree of response to external stimuli than visual observations and can be used to improve estimates of energy expenditure based solely on activity data.

  15. Views of professional nurses regarding low tuberculosis cure rate in Greater Giyani Municipality, Limpopo Province

    Directory of Open Access Journals (Sweden)

    Nandzumuni V. Maswanganyi

    2014-11-01

    Full Text Available Background: Management of patients suffering from tuberculosis (TB after discharge from hospital plays a critical role in the cure rate of TB. Despite interventions developed by the World Health Organization (WHO to improve the cure rate, TB remains a worldwide health problem. Objective: The purpose of the study was to explore and describe the views of professional nurses regarding the low TB cure rate in primary healthcare facilities of Greater Giyani Municipality in Limpopo Province, South Africa, with the aim of determining strategies that can be used to improve this low rate. Method: This study was qualitative, exploratory, descriptive and contextual in nature. The population consisted of professional nurses working in primary healthcare facilities within Greater Giyani Municipality, which has a TB cure rate below the national target of 85 %. Data gathering was through individual face-to-face interviews using an interview guide. Open-coding was used to analyse the data in this study. Results: The theme that emerged from data was ‘factors contributing to low TB cure rate’. This theme was supported by the following sub-themes: poor referral system, lack of knowledge about TB and its treatment, stigma attached to TB, and cultural and religious beliefs. The professional nurses suggested counselling of TB patients upon diagnosis, advice about patients’ responsibilities and the involvement of family members. Conclusion: The involvement of community stakeholders in TB prevention, health promotion and education activities devoted to disease spread and cure is vital so that the stigma attached to TB can be eliminated. TB education and awareness programmes should be included in the curriculum of primary schools.

  16. Energy impacts of heat island reduction strategies in the Greater Toronto Area, Canada; FINAL

    International Nuclear Information System (INIS)

    Konopacki, Steven; Akbari, Hashem

    2001-01-01

    In 2000, the Toronto Atmospheric Fund (TAF) embarked on an initiative to quantify the potential benefits of Heat Island Reduction (HIR) strategies (shade trees, reflective roofs and pavements) in reducing cooling energy use in buildings, lowering the ambient air temperature and improve air quality. This report summarizes the efforts of Lawrence Berkeley National Laboratory (LBNL) to assess the impacts of HIR measures on building cooling- and heating-energy use. We discuss our efforts to calculate annual energy savings and peak-power avoidance of HIR strategies in the building sector of the Greater Toronto Area. The analysis is focused on three major building types that offer most saving potentials: residence, office and retail store. Using an hourly building energy simulation model, we quantify the energy saving potentials of (1) using cool roofs on individual buildings[direct effect], (2) planting deciduous shade trees near south and west walls of building[direct effect], (3) planting coniferous wind-shielding vegetation near building[direct effect], (4) ambient cooling by a large-scale program of urban reforestation with reflective building roofs and pavements[indirect effect], (5) and the combined direct and indirect effects. Results show potential annual energy savings of over$11M (with uniform residential and commercial electricity and gas prices of$0.084/kWh and$5.54/GJ) could be realized by ratepayers from the combined direct and indirect effects of HIR strategies. Of that total, about 88 percent was from the direct impact roughly divided equally among reflective roofs, shade trees and wind-shielding, and the remainder (12 percent) from the indirect impact of the cooler ambient air temperature. The residential sector accounts for over half (59 percent) of the total, offices 13 percent and retail stores 28 percent. Savings from cool roofs were about 20 percent, shade trees 30 percent, wind shielding of tree 37 percent, and indirect effect 12 percent. These

  17. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis

    OpenAIRE

    Wilson, Leigh Ann; Gerard Morgan, Geoffrey; Hanigan, Ivan Charles; Johnston, Fay H; Abu-Rayya, Hisham; Broome, Richard; Gaskin, Clive; Jalaludin, Bin

    2013-01-01

    Background This study examined the association between unusually high temperature and daily mortality (1997?2007) and hospital admissions (1997?2010) in the Sydney Greater Metropolitan Region (GMR) to assist in the development of targeted health programs designed to minimise the public health impact of extreme heat. Methods Sydney GMR was categorized into five climate zones. Heat-events were defined as severe or extreme. Using a time-stratified case-crossover design with a conditional logisti...

  18. Annual survival rate estimate of satellite transmitter–marked eastern population greater sandhill cranes

    Science.gov (United States)

    Fronczak, David L.; Andersen, David E.; Hanna, Everett E.; Cooper, Thomas R.

    2015-01-01

    Several surveys have documented the increasing population size and geographic distribution of Eastern Population greater sandhill cranes Grus canadensis tabida since the 1960s. Sport hunting of this population of sandhill cranes started in 2012 following the provisions of the Eastern Population Sandhill Crane Management Plan. However, there are currently no published estimates of Eastern Population sandhill crane survival rate that can be used to inform harvest management. As part of two studies of Eastern Population sandhill crane migration, we deployed solar-powered global positioning system platform transmitting terminals on Eastern Population sandhill cranes (n  =  42) at key concentration areas from 2009 to 2012. We estimated an annual survival rate for Eastern Population sandhill cranes from data resulting from monitoring these cranes by using the known-fates model in the MARK program. Estimated annual survival rate for adult Eastern Population sandhill cranes was 0.950 (95% confidence interval  =  0.885–0.979) during December 2009–August 2014. All fatalities (n  =  5) occurred after spring migration in late spring and early summer. We were unable to determine cause of death for crane fatalities in our study. Our survival rate estimate will be useful when combined with other population parameters such as the population index derived from the U.S. Fish and Wildlife Service fall survey, harvest, and recruitment rates to assess the effects of harvest on population size and trend and evaluate the effectiveness of management strategies.

  19. Heat release rate of wood-plastic composites

    Science.gov (United States)

    N. M. Stark; R. H. White; C. M. Clemons

    1997-01-01

    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  20. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  1. Factors influencing the adolescent pregnancy rate in the Greater Giyani Municipality, Limpopo Province – South Africa

    Directory of Open Access Journals (Sweden)

    Lenny Mushwana

    2015-01-01

    Full Text Available A quantitative, descriptive and explorative survey was conducted to determine factors that influence adolescent pregnancy rate among teenage girls (n = 147 attending four high schools in the Greater Giyani Municipality in South Africa. Data was collected using a validated questionnaire which had a reliability of 0.65. Response frequency distributions, two-way frequency tables, Chi-square tests and Cochran–Armitage Trend Tests were used to determine the effect with the demographic characteristics of participants. Participants reported that health services were not conveniently available for them. Their relationship with nurses was poor (p < 0.05 as reported by 73% of participants with regard to maintenance of confidentiality. Participants reported key psychosocial variables such as inadequate sexual knowledge (61%, changing attitudes towards sex (58.9% and peer pressure (56.3% as contributory to high pregnancy rate. Recommendations were made to improve school health services, reproductive education in school curricula focussing on reproductive health, sexuality and guidance for future research.

  2. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  3. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    Science.gov (United States)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  4. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  5. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  6. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  7. Differences in the heat stress associated with white sportswear and being semi-nude in exercising humans under conditions of radiant heat and wind at a wet bulb globe temperature of greater than 28 °C.

    Science.gov (United States)

    Tsuji, Michio; Kume, Masashi; Tuneoka, Hideyuki; Yoshida, Tetsuya

    2014-08-01

    This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7 ± 0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature (Tsk) was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher (Pheat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 Tsk), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that of being semi-nude during light exercise, but was greater during moderate exercise, and the storage of body heat can be reduced by wearing WS during rest periods.

  8. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Grain yield under post anthesis high temperature stress is largely influenced by grain filling rate (GFR). To investigate molecular basis of this trait, a set of 111 recombinant inbred lines (RILs) derived from Raj 4014, a heat sensitive genotype and WH 730, heat tolerant cultivar was phenotyped during 2009-2010 and ...

  9. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis.

    Science.gov (United States)

    Wilson, Leigh Ann; Morgan, Geoffrey Gerard; Hanigan, Ivan Charles; Johnston, Fay H; Abu-Rayya, Hisham; Broome, Richard; Gaskin, Clive; Jalaludin, Bin

    2013-11-15

    This study examined the association between unusually high temperature and daily mortality (1997-2007) and hospital admissions (1997-2010) in the Sydney Greater Metropolitan Region (GMR) to assist in the development of targeted health programs designed to minimise the public health impact of extreme heat. Sydney GMR was categorized into five climate zones. Heat-events were defined as severe or extreme. Using a time-stratified case-crossover design with a conditional logistic regression model we adjusted for influenza epidemics, public holidays, and climate zone. Odds ratios (OR) and 95% confidence intervals were estimated for associations between daily mortality and hospital admissions with heat-event days compared to non-heat event days for single and three day heat-events. All-cause mortality overall had similar magnitude associations with single day and three day extreme and severe events as did all cardiovascular mortality. Respiratory mortality was associated with single day and three day severe events (95th percentile, lag0: OR = 1.14; 95%CI: 1.04 to 1.24). Diabetes mortality had similar magnitude associations with single day and three day severe events (95th percentile, lag0: OR = 1.22; 95%CI: 1.03 to 1.46) but was not associated with extreme events. Hospital admissions for heat related injuries, dehydration, and other fluid disorders were associated with single day and three day extreme and severe events. Contrary to our findings for mortality, we found inconsistent and sometimes inverse associations for extreme and severe events with cardiovascular disease and respiratory disease hospital admissions. Controlling for air pollutants did not influence the mortality associations but reduced the magnitude of the associations with hospital admissions particularly for ozone and respiratory disease. Single and three day events of unusually high temperatures in Sydney are associated with similar magnitude increases in mortality and hospital admissions. The trend

  10. Studies on Microwave Heated Drying-rate Equations of Foods

    OpenAIRE

    呂, 聯通; 久保田, 清; 鈴木, 寛一; 岡崎, 尚; 山下, 洋右

    1990-01-01

    In order to design various microwave heated drying apparatuses, we must take drying-rate equations which are based on simple drying-rate models. In a previous paper (KUBOTA, et al., 1990), we have studied a convenient microwave heated drying instrument, and studied the simple drying-rate equations of potato and so on by using the simple empirical rate equations that have been reported in previous papers (KUBOTA, 1979-1, 1979-2). In this paper, we studied the microwave drying rate of the const...

  11. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  12. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  13. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  14. Controlling Object Heat Release Rate using Geometrical Features

    OpenAIRE

    Kraft, Stefan Marc

    2017-01-01

    An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...

  15. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  16. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    International Nuclear Information System (INIS)

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  17. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  18. Respiratory rate greater than 50 per minute as a clinical indicator of pneumonia in Filipino children with cough.

    Science.gov (United States)

    Lucero, M G; Tupasi, T E; Gomez, M L; Beltran, G L; Crisostomo, A U; Romano, V V; Rivera, L M

    1990-01-01

    The diagnosis and epidemiology of acute respiratory tract infection (ARI) in 199 children less than 5 years old were investigated in Manila. As part of this study, children who were treated at one of two outpatient clinics for cough of less than 3 weeks' duration were studied to test the validity of the use of a respiratory rate (RR) of greater than 50/minute for identifying ARI of a severity necessitating treatment with antibiotics. In the first population, in which 69% of the children had radiologically confirmed pneumonia, the sensitivity of a RR of greater than 50/minute was 54%, the specificity was 84%, the false-positive rate was 16%, and the false-negative rate was 46%. In the second population, in which 29% of the children had pneumonia, the sensitivity and positive predictive values were low. The validity of a RR of greater than 50/minute may vary in populations with different prevalences of ARI.

  19. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  20. Heat transfer in a counterflow heat exchanger at low flow rates

    International Nuclear Information System (INIS)

    Hashimoto, A.; Hattori, N.; Naruke, K.

    1995-01-01

    A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)

  1. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  2. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  3. Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate

    Science.gov (United States)

    Katunin, A.

    2018-03-01

    The critical self-heating temperature at which the structural degradation of polymer composites under cyclic loading begins is evaluated by analyzing the heat dissipation rate. The method proposed is an effective tool for evaluating the degradation degree of such structures.

  4. Differences in the heat stress associated with white sportswear and being semi-nude in exercising humans under conditions of radiant heat and wind at a wet bulb globe temperature of greater than 28 °C

    Science.gov (United States)

    Tsuji, Michio; Kume, Masashi; Tuneoka, Hideyuki; Yoshida, Tetsuya

    2014-08-01

    This study investigated whether wearing common white sportswear can reduce heat stress more than being semi-nude during exercise of different intensities performed under radiant heat and wind conditions, such as a hot summer day. After a 20-min rest period, eight male subjects performed three 20 min sessions of cycling exercise at a load intensity of 20 % or 50 % of their peak oxygen uptake (VO2peak) in a room maintained at a wet bulb globe temperature (WBGT) of 28.7 ± 0.1 °C using two spot lights and a fan (0.8 m/s airflow). Subjects wore common white sportswear (WS) consisting of a long-sleeved shirt (45 % cotton and 55 % polyester) and short pants (100 % polyester), or only swimming pants (SP) under the semi-nude condition. The mean skin temperature was greater when subjects wore SP than WS under both the 20 % and 50 % exercise conditions. During the 50 % exercise, the rating of perceived exertion (RPE) and thermal sensation (TS), and the increases in esophageal temperature (ΔTes) and heart rate were significantly higher ( P < 0.001-0.05), or tended to be higher ( P < 0.07), in the WS than SP trials at the end of the third 20-min exercise session. The total sweat loss ( m sw,tot) was also significantly higher in the WS than in the SP trials ( P < 0.05). However, during the 20 % exercise, the m sw,tot during exercise, and the ΔTes, RPE and TS at the end of the second and third sessions of exercise did not differ significant between conditions. The heat storage (S), calculated from the changes in the mean body temperature (0.9Tes + 0.1 ), was significantly lower in the WS trials than in the SP trials during the 20 min resting period before exercise session. However, S was similar between conditions during the 20 % exercise, but was greater in the WS than in the SP trials during 50 % exercise. These results suggest that, under conditions of radiant heat and wind at a WBGT greater than 28 °C, the heat stress associated with wearing common WS is similar to that

  5. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  6. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  7. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  8. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  9. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    Science.gov (United States)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  10. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Science.gov (United States)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  11. Heat release rate from the combustion of uranium

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1995-01-01

    Fuel treatment is planned at the Argonne National Laboratory on EBR-II spent fuel. The electrochemical treatment process is carried out in a cell with an argon atmosphere to prevent any reaction. The amount of fuel processed at any time is limited by the amount of energy which could be released by metal combustion if air is inadvertently allowed into the cell since the heat release would increase the cell pressure. The cell pressure is required to be below atmospheric even if combustion occurs to ensure no cell gas/aerosol is released to the environment. Metal fires can release large amounts of heat. In certain configurations such as fine particulate, metal can be pyrophoric at room temperature. When the metal is a nuclear fuel, it is important to be able to predict the reaction/heat release rate if the metal is inadvertently exposed to air. A realistic combustion model is needed to predict heat release rates for the many different flow and transport configurations which exist in the various fuel processing steps. A model for the combustion of uranium is developed here which compares satisfactorily to experimental data

  12. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  13. Heat-induced electron emission in paraelectric phase of triglycine sulfate heated with great rate

    CERN Document Server

    Sidorkin, A A; Rogazinskaya, O V; Milovidova, S D

    2002-01-01

    One recorded experimentally heat-induced electron emission in ferroelectric triglycine sulfate (TGS) crystal within temperature range exceeding the Curie point by 10-15 K. One studied cases of q = dT/dt various rates of linear heating of specimens of TGS nominally pure crystal and TGS crystal with chromium impurity. Increase of heating rate is shown to result in increase of emission current density within the whole investigated range of temperatures. Temperature of emission occurrence depends on q rate negligibly. At the same time, temperature of emission disappearance monotonically increases with q growth. At q below 1 K/min it is localized below the Curie point. At q = 4-5 K/min the mentioned temperature reaches 60-65 deg C. In TGS crystal with chromium impurity the temperature of emission occurrence is close to the case of pure TGS. In this case, the range of emission drawing in paraphase here is by about 2 times narrower in contrast to the case of pure TGS heated with the same rate

  14. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  15. Heat transfer rate within non-spherical thick grains

    Directory of Open Access Journals (Sweden)

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  16. Heat transfer rate within non-spherical thick grains

    Science.gov (United States)

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  17. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  18. Commercial Integrated Heat Pump with Thermal Storage --Demonstrate Greater than 50% Average Annual Energy Savings, Compared with Baseline Heat Pump and Water Heater (Go/No-Go) FY16 4th Quarter Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  19. Devolatilization characteristics of biomass at flash heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Shuangning; Li Zhihe; Li Baoming; Yi Weiming; Bai Xueyuan [China Agricultural University, Beijing (China). College of Water Conservancy and Civil Engineering

    2006-03-15

    The devolatilization characteristics of biomass (wheat straw, coconut shell, rice husk and cotton stalk) during flash pyrolysis has been investigated on a plasma heated laminar entrained flow reactor (PHLEFR) with average heating rates of 10{sup 4} K/s. These experiments were conducted with steady temperatures between 750 and 900 K, and the particle residence time varied from about 0.115 to 0.240 s. The ash tracer method was introduced to calculate the yield of volatile products at a set temperature and the residence time. This experimental study showed that the yield of volatile products depends both on the final pyrolysis temperature and the residence time. From the results, a comparative analysis was done for the biomasses, and a one-step global model was used to simulate the flash pyrolytic process and predict the yield of volatile products during pyrolysis. The corresponding kinetic parameters of the biomasses were also analyzed and determined. These results were essential for designing a suitable pyrolysis reactor. 24 refs., 5 figs., 5 tabs.

  20. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  1. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  2. Memory behaviors of entropy production rates in heat conduction

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  3. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  4. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav

    2015-01-01

    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  5. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  6. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Science.gov (United States)

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  7. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  8. Forsmark - System 522. Recursive linear regression for the determination of heating rate

    International Nuclear Information System (INIS)

    Carlsson, B.

    1980-01-01

    The heating rate for reactor tank and steam tubes is limited. The algorithm of the heating rate has been implemented on the computer and compared with real data from Forsmark-2. The evaluation of data shows a considerable improvement of the determination of derivata which contributes to information during heating events. (G.B.)

  9. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity.

    Science.gov (United States)

    Loggia, Marco L; Juneau, Mylène; Bushnell, M Catherine

    2011-03-01

    In human pain experiments, as well as in clinical settings, subjects are often asked to assess pain using scales (eg, numeric rating scales). Although most subjects have little difficulty in using these tools, some lack the necessary basic cognitive or motor skills (eg, paralyzed patients). Thus, the identification of appropriate nonverbal measures of pain has significant clinical relevance. In this study, we assessed heart rate (HR), skin conductance (SC), and verbal ratings in 39 healthy male subjects during the application of twelve 6-s heat stimuli of different intensities on the subjects' left forearm. Both HR and SC increased with more intense painful stimulation. However, HR but not SC, significantly correlated with pain ratings at the group level, suggesting that HR may be a better predictor of between-subject differences in pain than is SC. Conversely, changes in SC better predicted variations in ratings within a given individual, suggesting that it is more sensitive to relative changes in perception. The differences in findings derived from between- and within-subject analyses may result from greater within-subject variability in HR. We conclude that at least for male subjects, HR provides a better predictor of pain perception than SC, but that data should be averaged over several stimulus presentations to achieve consistent results. Nevertheless, variability among studies, and the indication that gender of both the subject and experimenter could influence autonomic results, lead us to advise caution in using autonomic or any other surrogate measures to infer pain in individuals who cannot adequately report their perception. Skin conductance is more sensitive to detect within-subject perceptual changes, but heart rate appears to better predict pain ratings at the group level. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. A Study of the Mechanical Behavior of OFHC Copper in Tension at Various Strain Rates and Heating Rates Using the Two-Dimensional Integrated Speckle Measuring System

    National Research Council Canada - National Science Library

    Durant, Brian

    2000-01-01

    .... A modified dog bone specimen was heated using resistive heating techniques. The effects of high temperature, medium strain rates, and high heating rates on the stress-strain results were observed...

  11. The rate of plasma heating by harmonic ion cyclotron waves in tokamaks

    International Nuclear Information System (INIS)

    Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.

    2002-01-01

    In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)

  12. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  13. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  14. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    International Nuclear Information System (INIS)

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  15. Gravity influence on heat transfer rate in flow boiling

    NARCIS (Netherlands)

    Baltis, C.H.M.; Celata, G.P.; Cumo, M.; Saraceno, L.; Zummo, G.

    2012-01-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the

  16. Heat generation rates in lithium thionyl chloride cells

    Science.gov (United States)

    Frank, H.

    1982-03-01

    An empirical equation that is useful for good first approximation in thermal modeling is presented. Indications and measurements of electrochemical heat effects were investigated. The particular cells of interest are of the D size, with spiral wound configuration and were instrumented with a thermocouple. It is found that cathode limited cells can explode on reversal at moderate temperatures.

  17. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-07-10

    Jul 10, 2013 ... under terminal heat stress in bread wheat. (Triticum aestivum L.) Girish Chandra Pandey1, Jagadish ... ficantly in all the bread and durum wheat genotypes, because of significant interaction of each ..... wheat varieties and registered genetic stocks (Triticum L.). Technical. Bulletin No.13, Directorate of Wheat ...

  18. Heat transfer in composite materials disintegrating under high-rate one-sided heating

    Science.gov (United States)

    Isaev, K. B.

    1993-12-01

    A mathematical model of heat transfer in heat-protective materials is suggested with the proviso of a squarelaw temperature depence of the material density in the zone of thermal destruction of its binder. The influence of certain factors on the experimental temperature field and thermal conductivity of a glass-reinforced epoxy plastic material is shown.

  19. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  20. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  1. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  2. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    Science.gov (United States)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  3. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  4. Greater dietary acculturation (dietary change) is associated with poorer current self-rated health among African immigrant adults.

    Science.gov (United States)

    Okafor, Maria-Theresa C; Carter-Pokras, Olivia D; Zhan, Min

    2014-01-01

    Investigate the relationship between dietary acculturation and current self-rated health (SRH) among African immigrants, by country or region of origin. Cross-sectional, mixed-methods design using baseline data from longitudinal study of immigrants granted legal permanent residence May to November, 2003, and interviewed June, 2003 to June, 2004. 2003 New Immigrant Survey. African immigrants from a nationally representative sample (n = 763) averaged 34.7 years of age and 5.5 years' US residency; 56.6% were male, 54.1% were married, 26.1% were Ethiopian, and 22.5% were Nigerian. Current SRH (dependent variable) was measured using 5-point Likert scale questions; dietary acculturation (independent variable) was assessed using a quantitative dietary change scale. Multivariate logistic regression tested the relationship of dietary acculturation with current SRH (α = .05; P food/beverages consumed pre-/post-migration. African immigrants reporting moderate dietary change since arrival in the US had higher odds of poorer SRH status than immigrants reporting low dietary change (odds ratio, 1.903; 95% confidence interval, 1.143-3.170; P = .01). Among most dietary change groups, there was an increase in fast food consumption and decrease in fruit and vegetable consumption. Nutrition educators and public health practitioners should develop targeted nutrition education for African immigrants who are older, less educated, and at increased health risk. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  5. Estimate of the global-scale joule heating rates in the thermosphere due to time mean currents

    International Nuclear Information System (INIS)

    Roble, R.G.; Matsushita, S.

    1975-01-01

    An estimate of the global-scale joule heating rates in the thermosphere is made based on derived global equivalent overhead electric current systems in the dynamo region during geomagnetically quiet and disturbed periods. The equivalent total electric field distribution is calculated from Ohm's law. The global-scale joule heating rates are calculated for various monthly average periods in 1965. The calculated joule heating rates maximize at high latitudes in the early evening and postmidnight sectors. During geomagnetically quiet times the daytime joule heating rates are considerably lower than heating by solar EUV radiation. However, during geomagnetically disturbed periods the estimated joule heating rates increase by an order of magnitude and can locally exceed the solar EUV heating rates. The results show that joule heating is an important and at times the dominant energy source at high latitudes. However, the global mean joule heating rates calculated near solar minimum are generally small compared to the global mean solar EUV heating rates. (auth)

  6. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  7. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  8. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Science.gov (United States)

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  9. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  11. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    OpenAIRE

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing...

  12. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  13. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  14. Can reptile embryos influence their own rates of heating and cooling?

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

  15. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany

    International Nuclear Information System (INIS)

    Gabriel, Katharina M.A.; Endlicher, Wilfried R.

    2011-01-01

    In large cities such as Berlin, human mortality rates increase during intense heat waves. Analysis of relevant data from north-eastern Germany revealed that, during the heat waves that occurred between 1990 and 2006, health risks were higher for older people in both rural and urban areas, but that, during the two main heat waves within that 17-year period of time, the highest mortality rates were from the city of Berlin, and in particular from its most densely built-up districts. Adaptation measures will need to be developed, particularly within urban areas, in order to cope with the expected future intensification of heat waves due to global climate change. - Highlights: → Periods of heat stress enhance mortality rates in Berlin and Brandenburg. → Heat-related mortality is an urban as well as a rural problem. → During extreme events highest mortality rates can be found in the city centre. → Mortality rates correlate well with the distribution of sealed surfaces. → Health risks are higher for older than for younger people. - During periods of severe heat stress the pattern of mortality rates in Berlin and Brandenburg was found to correlate well with the distribution of sealed surfaces.

  16. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  17. Greater Baltimore Open Air: an Internet of Things (IoT) approach to citizen science and community-driven climate, air quality, and urban heat island monitoring

    Science.gov (United States)

    Scott, A.; Kelley, C.; Azdoud, Y.; Ambikapathi, R.; Hobson, M.; Lehman, A.; Ghugare, P.; He, C.; Zaitchik, B. F.; Waugh, D.; McCormack, M.; Baja, K.

    2017-12-01

    Anthropogenic activities alter the urban surface and surface atmosphere, generating heat and pollutants that have known detrimental impacts on health. Monitoring these environmental variables in urban environments is made difficult by the spatial heterogeneity of urban environments, meaning that two nearby locations may have significantly different temperatures, humidities, or gas concentrations. Thus, urban monitoring often requires more densely placed monitors than current standards or budgets allow. Recent advances in low-cost sensors and Internet of Things (IoT) enabled hardware offer possible solutions. We present an autonomous wireless, open-source, IoT-enabled environmental monitor called a WeatherCube, developed for the Greater Baltimore Open Air project, funded in part by the EPA SmartCity Challenge. The WeatherCube is suitable for urban monitoring and capable of measuring meteorological variables (temperature and humidity) as well as air quality (ozone, nitrogen dioxide, and sulfur dioxide). The WeatherCube devices were built in collaboration with Johns Hopkins University, local government, and community members, including through an innovative job training program. Monitors are hosted by community partners and libraries throughout Baltimore city and surrounding communities. We present the first wave of data collected by the Greater Baltimore Open Air project and compare it to data collected by the Maryland Department of the Environment (MDE). Additionally, we will provide an overview of our experience engaging with the local makers, citizen scientists, and environmental groups to improve their urban environmental monitoring. By developing low-cost devices tailored for urban environmental monitoring, we present an innovative model for both conducting research and community outreach.

  18. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  19. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  20. Average Rate of Heat-Related Hospitalizations in 23 States, 2001-2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the 2001–2010 average rate of hospitalizations classified as “heat-related” by medical professionals in 23 states that participate in CDC’s...

  1. Greater Melbourne.

    Science.gov (United States)

    Wulff, M; Burke, T; Newton, P

    1986-03-01

    With more than a quarter of its population born overseas, Melbourne, Australia, is rapidly changing from an all-white British outpost to a multicultural, multilingual community. Since the "white" Australian policy was abandoned after World War II, 3 million immigrants from 100 different countries have moved to Australia. Most of the immigrants come from New Zealand, Rhodesia, South Africa, Britain, Ireland, Greece, Turkey, Yugoslavia, Poland, and Indochina. Melbourne is Australia's 2nd largest city and houses 1 out of 5 Australians. Its 1984 population was 2,888,400. Melbourne's housing pattern consists of subdivisions; 75% of the population live in detached houses. Between 1954 and 1961 Melbourne grew at an annual rate of 3.5%; its growth rate between 1961 and 1971 still averaged 2.5%. In the 1970s the growth rate slowed to 1.4%. Metropolitan Melbourne has no central government but is divided into 56 councils and 8 regions. Both Australia's and Melbourne's fertility rates are high compared to the rest of the developed world, partly because of their younger age structure. 41% of Melbourne's population was under age 24 in 1981. Single-person households are growing faster than any other type. 71% of the housing is owner-occupied; in 1981 the median sized dwelling had 5.2 rooms. Public housing only accounts for 2.6% of all dwellings. Fewer students graduate from high school in Australia than in other developed countries, and fewer graduates pursue higher education. Melbourne's suburban sprawl promotes private car travel. In 1980 Melbourne contained more than 28,000 retail establishments and 4200 restaurants and hotels. Industry accounts for 30% of employment, and services account for another 30%. Its largest industries are motor vehicles, clothing, and footware. Although unemployment reached 10% after the 1973 energy crisis, by 1985 it was down to 6%.

  2. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  3. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    OpenAIRE

    Miguel Mellado; Laura Maricela Lara; Francisco Gerardo Veliz; María Ángeles de Santiago; Leonel Avendaño-Reyes; Cesar Meza-Herrera; José Eduardo Garcia

    2015-01-01

    The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services), raised under intense heat (mea...

  4. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    International Nuclear Information System (INIS)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R

    2007-01-01

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials

  5. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2017-03-01

    Full Text Available Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction(EBSD and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction(RD and normal direction(ND are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.

  6. Thermal Death Kinetics of Conogethes Punctiferalis (Lepidoptera: Pyralidae) as Influenced by Heating Rate and Life Stage.

    Science.gov (United States)

    Hou, Lixia; Du, Yanli; Johnson, Judy A; Wang, Shaojin

    2015-10-01

    Thermal death kinetics of Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae) at different life stages, heating rate, and temperature is essential for developing postharvest treatments to control pests in chestnuts. Using a heating block system (HBS), the most heat-tolerant life stage of C. punctiferalis and the effects of heating rate (0.1, 0.5, 1, 5, and 10°C/min) on insect mortality were determined. The thermal death kinetic data of fifth-instar C. punctiferalis were obtained at temperatures between 44 and 50°C at a heating rate of 5°C/min. The results showed that the relative heat tolerance of C. punctiferalis was found to be fifth instars>pupae> third instars> eggs. To avoid the enhanced thermal tolerance of C. punctiferalis at low heating rates (0.1 or 0.5°C/min), a high heating rate of 5°C/min was selected to simulate the fast radio frequency heating in chestnuts and further determine the thermal death kinetic data. Thermal death curves of C. punctiferalis followed a 0th-order kinetic reaction model. The minimum exposure time to achieve 100% mortality was 55, 12, 6, and 3 min at 44, 46, 48, and 50°C, respectively. The activation energy for controlling C. punctiferalis was 482.15 kJ/mol with the z value of 4.09°C obtained from the thermal death-time curve. The information provided by thermal death kinetics for C. punctiferalis is useful in developing effective postharvest thermal treatment protocols for disinfesting chestnuts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich

    2010-07-01

    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  8. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  9. Effect of Heating Rate on Pyrolysis Behavior and Kinetic Characteristics of Siderite

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2017-11-01

    Full Text Available The pyrolysis characteristics of siderite at different heating rates under the neutral atmosphere were investigated using various tools, including comprehensive thermal analyzer, tube furnace, X-ray diffraction (XRD, scanning electron microscope (SEM, energy-dispersive spectrometry (EDS and vibrating specimen magnetometer (VSM measurements. The reaction of siderite pyrolysis followed the one-step reaction under the neutral atmosphere: FeCO3 → Fe3O4 + CO2 + CO. As the increasing of heating rate, the start and end pyrolysis temperatures and temperate where maximum weight loss rate occurred increased, while the total mass loss were essentially the same. Increasing heating rate within a certain range was in favor of shortening the time of each reaction stage, and the maximum conversion rate could be reached with a short time. The most probable mechanism function for non-isothermal pyrolysis of siderite at different heating rates was A1/2 reaction model (nucleation and growth reaction. With increasing heating rate, the corresponding activation energies and the pre-exponential factors increased, from 446.13 to 505.19 kJ∙mol−1, and from 6.67 × 10−18 to 2.40 × 10−21, respectively. All siderite was transformed into magnetite with a porous structure after pyrolysis, and some micro-cracks were formed into the particles. The magnetization intensity and specific susceptibility increased significantly, which created favorable conditions for the further effective concentration of iron ore.

  10. Thermoluminescence study of X-ray irradiated muscovite mineral under various heating rate

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    The thermoluminescence (TL) glow curves of X-ray irradiated micro-grain natural muscovite were recorded within 298–520 K at various linear heating rates (2 K/s, 4 K/s, 6 K/s, 8 K/s and 10 K/s). Natural TL of muscovite was checked, but no significant TL was observed within 298–520 K in any heating rate. Within the heating rate 2–10 K/s only a low temperature distinct peak was observed in the temperature range 348–357 K. The TL parameters such as activation energy, order of kinetic, geometrical symmetry factor and pre-exponential frequency factor were investigated from the glow peak by Peak Shape (PS) method and Computerized Glow Curve Deconvolution (CGCD) technique. At lowest heating rate the glow peak obeys non-first order kinetic and at the highest heating rate it follows the second order kinetic. The variation of peak integrals, peak maximum temperatures, FWHM and activation energy with heating rates were investigated, and the glow curves at higher rates were found to be influenced by the presence of the thermal quenching. The thermal quenching activation energy and pre-exponential factor were calculated and found to be 2.31±0.02 eV and 3.46×10 14 s −1 , respectively. -- Highlights: • Muscovite is a silicate mineral with chemical formula KAl 2 (Si 3 Al)O 10 (OH,F) 2 . • TL of natural and X-ray induced muscovite was studied under various heating rates. • TL parameters were evaluated by Peak Shape and CGCD method. • Thermal quenching parameters (W and C) of muscovite were evaluated

  11. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  12. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  13. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  14. Changes of biomechanical properties of the shoulder bone of white rate on the background of the deffects of the greater bone and the possibility of their pharmacological correction

    OpenAIRE

    Lukyantseva, Galina

    2017-01-01

    Lukyantseva Galina. Changes of biomechanical properties of the shoulder bone of white rate on the background of the deffects of the greater bone and the possibility of their pharmacological correction. Journal of Education, Health and Sport. 2017;7(6):767-777. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.1000949 http://ojs.ukw.edu.pl/index.php/johs/article/view/4946 The journal has had 7 points in Ministry of Science and Higher Education parametric eva...

  15. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing...

  16. Influence of heating rate and temperature firing on the properties of bodies of red ceramic

    International Nuclear Information System (INIS)

    Silva, B.J. da; Goncalves, W.P.; Cartaxo, J.M.; Macedo, R.S.; Neves, G.A.; Santana, L.N.L.; Menezes, R.R.

    2011-01-01

    In the red ceramic industry, the firing is one of the main stages of the production process. There are two heating rates prevailing at this stage: the slow (traditional ceramics) and fast. The slow rate more used in Brazil, is considered delayed. This study aims to evaluate the influence of particle size and chemical composition of three mixture of clay, used in the manufacture of red ceramic products and to study the influence of the firing temperature on their technological properties. When subjected to heating rates slow and fast. Initially, the mixtures were characterized subsequently were extruded, dried and subjected to firing at temperatures of 900 and 1000 ° C with heating rates of 5, 20 and 30 °C/min. The results indicated that the chemical composition and particle size influenced significantly the technological properties and that the bodies obtained with the paste that had lower levels of flux showed better stability. (author)

  17. Heat production and storage are positively correlated with measures of body size/composition and heart rate drift during vigorous running.

    Science.gov (United States)

    Buresh, Robert; Berg, Kris; Noble, John

    2005-09-01

    The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95% of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently, changes in skin and tympanic temperatures associated with a vigorous 20-min run, HR, and VO2 data were recorded. It was found that heat production was significantly correlated with body mass (r = .687), lean mass (r = .749), and body surface area (BSA, r = .699). Heat storage was significantly correlated with body mass (r = .519), fat mass (r = .464), and BSA (r = .498). The percentage of produced heat stored was significantly correlated with body mass (r = .427), fat mass (r = .455), and BSA (r = .414). Regression analysis showed that the sum of body mass, percentage of body fat, BSA, lean mass, and fat mass accounted for 30% of the variability in heat storage. It was also found that HR drift was significantly correlated with heat storage (r = .383), percentage of produced heat stored (r = .433), and core temperature change (r = .450). It was concluded that heavier runners experienced greater heat production, heat storage, and core temperature increases than lighter runners during vigorous running.

  18. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    Science.gov (United States)

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  19. On-line tritium production and heat deposition rate measurements at the Lotus facility

    International Nuclear Information System (INIS)

    Joneja, O.P.; Scherrer, P.; Anand, R.P.

    1994-01-01

    Integral tritium production and heat deposition measurement in a prototype fusion blanket would enable verification of the computational codes and the data based employed for the calculations. A large number of tritium production rate measurements have been reported for different type of blankets, whereas the direct heat deposition due to the mixed radiation field in the fusion environment, is still in its infancy. In order to ascertain the kerma factors and the photon production libraries, suitable techniques must be developed to directly measure the nuclear heat deposition rates in the materials required for the fusion systems. In this context, at the Lotus facility, we have developed an extremely efficient double ionizing chamber, for the on-line tritium production measurements and employed a pure graphite calorimeter to measure the nuclear heat deposition due to the mixed radiation field of the 14 MeV, Haefely neutron generator. This paper presents both systems and some of the recent measurements. (authors). 8 refs., 13 figs

  20. Elevated resting heart rate is associated with greater risk of cardiovascular and all-cause mortality in current and former smokers

    DEFF Research Database (Denmark)

    Jensen, Magnus T; Marott, Jacob L; Jensen, Gorm B

    2010-01-01

    . Current and former smokers had, irrespective of tobacco consumption, greater relative risk of elevated RHR compared to never smokers. The relative risk of all-cause mortality per 10bpm increase in RHR was (95% CI): 1.06 (1.01-1.10) in never smokers, 1.11 (1.07-1.15) in former smokers, 1.13 (1......BACKGROUND: Elevated resting heart rate is associated with mortality in general populations. Smokers may be at particular risk. The association between resting heart rate (RHR), smoking status and cardiovascular and total mortality was investigated in a general population. METHODS: Prospective.......09-1.16) in moderate smokers, and 1.13 (1.10-1.16) in heavy smokers. There was no gender difference. The risk estimates for cardiovascular and all-cause mortality were essentially similar. In univariate analyses, the difference in survival between a RHR in the highest (>80bpm) vs lowest quartile (...

  1. Elevated resting heart rate is associated with greater risk of cardiovascular and all-cause mortality in current and former smokers

    DEFF Research Database (Denmark)

    Jensen, Magnus T; Marott, Jacob L; Jensen, Gorm B

    2010-01-01

    BACKGROUND: Elevated resting heart rate is associated with mortality in general populations. Smokers may be at particular risk. The association between resting heart rate (RHR), smoking status and cardiovascular and total mortality was investigated in a general population. METHODS: Prospective....... Current and former smokers had, irrespective of tobacco consumption, greater relative risk of elevated RHR compared to never smokers. The relative risk of all-cause mortality per 10bpm increase in RHR was (95% CI): 1.06 (1.01-1.10) in never smokers, 1.11 (1.07-1.15) in former smokers, 1.13 (1.......09-1.16) in moderate smokers, and 1.13 (1.10-1.16) in heavy smokers. There was no gender difference. The risk estimates for cardiovascular and all-cause mortality were essentially similar. In univariate analyses, the difference in survival between a RHR in the highest (>80bpm) vs lowest quartile (...

  2. Heat generation and cooling of SSC magnets at high ramp rates

    International Nuclear Information System (INIS)

    Snitchler, G.; Capone, D.; Kovachev, V.; Schermer, R.

    1992-01-01

    This presentation will address a summary of AC loss calculations (SSCL), experimental results on cable samples (Westinghouse STC), short model magnets test results (FNAL, KEK-Japan), and recent full length magnets test data on AC losses and quench current ramp rate sensitivity (FNAL, BNL). Possible sources of the observed enhanced heat generation and quench sensitivity for some magnets will be discussed. A model for cooling conditions of magnet coils considering heat generation distribution and specific anisotropy of the heat transfer will be presented. The crossover contact resistance in cables and curing procedure influence on resistivity, currently under study, will be briefly discussed. (author)

  3. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  4. Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate

    International Nuclear Information System (INIS)

    Fan, Chuan Gang; Li, Ying Zhen; Ingason, Haukur; Lönnermark, Anders

    2016-01-01

    Highlights: • The effect of tunnel cross section together with ventilation velocity was studied. • Ceiling temperature varies clearly with tunnel height, but little with tunnel width. • Downstream temperature decreases with increasing tunnel dimensions. • HRR is an important factor that influences decay rate of excess gas temperature. • An equation considering both tunnel dimensions and HRR was developed. - Abstract: Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10 m long with varying width (0.3 m, 0.45 m and 0.6 m) and height (0.25 m and 0.4 m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100 MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.

  5. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    International Nuclear Information System (INIS)

    Hsi, C.-L.; Kuo, J.-T.

    2008-01-01

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  6. Heat rate curve approximation for power plants without data measuring devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (CY

    2012-07-01

    In this work, a numerical method, based on the one-dimensional finite difference technique, is proposed for the approximation of the heat rate curve, which can be applied for power plants in which no data acquisition is available. Unlike other methods in which three or more data points are required for the approximation of the heat rate curve, the proposed method can be applied when the heat rate curve data is available only at the maximum and minimum operating capacities of the power plant. The method is applied on a given power system, in which we calculate the electricity cost using the CAPSE (computer aided power economics) algorithm. Comparisons are made when the least squares method is used. The results indicate that the proposed method give accurate results.

  7. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates

    Science.gov (United States)

    Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng

    2017-06-01

    Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.

  8. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  9. South Asian women with polycystic ovary syndrome exhibit greater sensitivity to gonadotropin stimulation with reduced fertilization and ongoing pregnancy rates than their Caucasian counterparts.

    Science.gov (United States)

    Palep-Singh, M; Picton, H M; Vrotsou, K; Maruthini, D; Balen, A H

    2007-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome. In vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is required for PCOS cases that are refractory to standard ovulation induction or have co-existing infertility factors in women with PCOS and Tubal factor subfertility. Assess ethnic variations in response to IVF/ICSI treatment. Observational Comparative study in a University hospital fertility clinic in women with PCOS and Tubal factor subfertility. Women with PCOS (Asians: AP=104; Caucasians: CP=220) and those with tubal factor infertility seeking fertility treatment were assessed (Asians: AC=84; Caucasians: CC=200). Six hundred and eight fresh IVF or ICSI cycles using long protocol of GnRHa suppression and resulting in a fresh embryo transfer were compared. The primary endpoint was to assess the dose of gonadotropins used in the cycles. The secondary outcomes were: total number of oocytes retrieved, fertilization and ongoing clinical pregnancy rates. We found that the South Asian women presented at a younger age for the management of sub-fertility. An extended stimulation phase and Caucasian ethnicity showed an inverse correlation with the number of oocytes retrieved in the PCOS subgroup. Caucasian ethnicity was associated with a higher fertilization rate however increase in body mass index (BMI) and the laboratory technique of IVF appeared to have a negative impact on fertilization rates in the PCOS subgroup. Commencing down regulation on day 1 of the cycles was negatively associated with fertilization rates in the tubal group. In terms of clinical pregnancy rates, the Caucasian PCOS had a 2.5 times (95% CI: 1.25-5) higher chance of an ongoing clinical pregnancy as compared with their Asian counterpart. Also, a unit increase in the basal FSH concentration reduced the odds of pregnancy by 18.6% (95% CI: 1.8-32.6%) in the PCOS group. The Asian PCOS have a greater sensitivity to gonadotropin stimulation with lower fertilization and

  10. Effects of Heating Rate on the Dynamic Tensile Mechanical Properties of Coal Sandstone during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available The effects of coal layered combustion and the heat injection rate on adjacent rock were examined in the process of underground coal gasification and coal-bed methane mining. Dynamic Brazilian disk tests were conducted on coal sandstone at 800°C and slow cooling from different heating rates by means of a Split Hopkinson Pressure Bar (SHPB test system. It was discovered that thermal conditions had significant effects on the physical and mechanical properties of the sandstone including longitudinal wave velocity, density, and dynamic linear tensile strength; as the heating rates increased, the thermal expansion of the sandstone was enhanced and the damage degree increased. Compared with sandstone at ambient temperature, the fracture process of heat-treated sandstone was more complicated. After thermal treatment, the specimen had a large crack in the center and cracks on both sides caused by loading; the original cracks grew and mineral particle cracks, internal pore geometry, and other defects gradually appeared. With increasing heating rates, the microscopic fracture mode transformed from ductile fracture to subbrittle fracture. It was concluded that changes in the macroscopic mechanical properties of the sandstone were result from changes in the composition and microstructure.

  11. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A real-time heat strain risk classifier using heart rate and skin temperature

    International Nuclear Information System (INIS)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-01-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI ≥ 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system. (note)

  13. Relationship between ash content and R{sub 70} self-heating rate of Callide Coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Blazak, Darren G. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Borecore samples from the Trap Gully pit at Callide have been assessed using the R{sub 70} self-heating test. The highest R{sub 70} self-heating rate value was 16.22 {sup o}C/h, which is consistent with the subbituminous rank of the coal. R{sub 70} decreases significantly with increasing mineral matter content, as defined by the ash content of the coal. This effect is due to the mineral matter in the coal acting as a heat sink. A trendline equation has been fitted to the borecore data from the Trap Gully pit: R{sub 70}=0.0029xash{sup 2}-0.4889xash+20.644, where all parameters are on a dry-basis. This relationship can be used to model the self-heating hazard of the pit, both vertically and laterally. (author)

  14. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  15. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Tianyou; Jia, Yao; Wang, Hong; Su, Chun-Yi

    2017-07-09

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperature are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.

  16. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  17. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  18. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  19. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions...

  20. Thermoluminescent response of LiF before variation of the heating rate

    International Nuclear Information System (INIS)

    Barrios, R.; Avila, O.

    2003-01-01

    Comparisons of glow curves of lithium fluoride dosemeters TLD-100 measured to two heating rates with the purpose of quantifying the change in the temperature of the peaks 5 and 7 for the thermoluminescent reader equipment Harshaw 4000 of the thermoluminescence laboratory of the ININ were carried out. (Author)

  1. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; R. Gupta; B. Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2005-07-01

    The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000{degree}C, and heating rates between 20 and 500{degree}C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. 22 refs., 8 figs., 2 tabs.

  2. Greater rate of cephalic screw mobilisation following proximal femoral nailing in hip fractures with a tip-apex distance (TAD) and a calcar referenced TAD greater than 25 mm.

    Science.gov (United States)

    Aicale, Rocco; Maffulli, Nicola

    2018-05-02

    To ascertain whether the tip-apex distance (TAD), calcar referenced TAD (CalTAD), and the sum of both (TADcalTAD) are predictive measurements of mobilisation of the cephalic screw in patients with trochanteric hip fractures. Between 2014 and 2015, 68 patients (mean age 86 years, 45 females, 23 males) with a trochanteric hip fracture underwent intramedullary nailing. The TAD and CalTAD were measured, and for each parameter, we calculated sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). There is evidence of a statistically significant association between a TAD and CalTAD greater than 25 mm and a TADcalTAD greater than 50 mm and mobilisation of the cephalic screw. All measurements have similar sensitivity, but the TAD presents the highest specificity (p TAD and CalTAD less than 25 mm and a TADcalTAD less than 50 mm when using intramedullary fixation.

  3. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  4. Smoke Movement in an Atrium with a Fire with Low Rate of Heat Release

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Brohus, Henrik; Petersen, A. J.

    2008-01-01

    Results from small-scale experiments on smoke movement in an atrium are given, both with and without a vertical temperature gradient, and expressions for the smoke movement are developed on the basis of these experiments. Comparisons with a general analytical expression used for calculating...... the height to the location of the smoke layer are given. Furthermore, the paper discusses the air movement in a typical atrium exposed to different internal and external heat loads to elaborate on the use of the "flow element" expressions developed for smoke movement from a fire with a low rate of heat...

  5. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China.

    Science.gov (United States)

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-12-10

    Background : Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods : We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results : The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions : In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient

  6. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-12-01

    Full Text Available Background: Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China; Methods: We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an “optimum temperature” that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results: The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%–13.65%. Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%, while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%–2.35%. The attributable risk (AR of respiratory diseases was higher (19.69%, 95%CI: 14.45%–24.24% than that of cardiovascular diseases (11.40%, 95%CI: 6.29%–16.01%; Conclusions: In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the

  7. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  8. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  9. Effect of cooling rates on the weld heat affected zone coarse grain microstructure

    Directory of Open Access Journals (Sweden)

    Roman Celin

    2018-04-01

    Full Text Available The effect of a cooling rate on the S690Q quenched and tempered steel welded joint coarse grain heat affected zone microstructure was investigated using a dilatometer with controlled heating and cooling fixture. Steel samples were heated to a peak temperature of 1350 °C and cooled at the different cooling time Dt8/5. A dilatometric analysis and hardness measurements of the simulated thermal cycle coarse grain samples were done. Transformation start and finish temperature were determined using dilatation vs. temperature data analysis. The microstructure of the sample with a cooling time 5 s consists of martensite, whereas at cooling time 80 s a bainitic microstructure was observed. The investigated steel cooling cycle using simulation approach makes possible to determine the range of an optimum CG HAZ cooling time for the welding.

  10. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Science.gov (United States)

    Heenan, Caragh B; Seymour, Roger S

    2012-01-01

    Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  11. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Directory of Open Access Journals (Sweden)

    Caragh B Heenan

    Full Text Available Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis and yellow-throated miner (Manorina flavigula, were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  12. Decay heat rates calculated using ORIGEN-S and CINDER10 with common data libraries

    International Nuclear Information System (INIS)

    Brady, M.C.; Hermann, O.W.; Beard, C.A.; Bohnhoff, W.J.; England, T.R.

    1991-01-01

    A set of two benchmark problems were proposed as part of an international comparison of decay heat codes. Problem specifications included explicit fission-yield, decay and capture data libraries to be used in the calculations. This paper describes the results obtained using these common data to perform the benchmark calculations with two popular depletion codes, ORIGEN-S and CINDER10. Short descriptions of the methods used by each of these codes are also presented. Results from other contributors to the international comparison are discussed briefly. This comparison of decay heat codes using common data libraries demonstrates that discrepant results in calculated decay heat rates are the result of differences in the nuclear data input to the codes and not the method of solution. 15 refs., 2 figs., 8 tabs

  13. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  14. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  15. Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL

    International Nuclear Information System (INIS)

    Ahn, B.; Akasofu, S.; Kamide, Y.

    1983-01-01

    As a part of the joint efforts of operating six meridian chains of magnetometers during the IMS, magnetic records from 71 stations are used to deduce the distribution of electric fields and currents in the polar ionosphere for March 17, 18, and 19, 1978. As a continuation of this project, we have constructed hourly distribution maps of the Joule heat production rate and their sum over the entire polar region on the three days. For this purpose the conductivity distribution is inferred at each instant partially on the basis of an empirical method devised by Ahn et al. (1982). The particle energy injection rate is estimated similarly by using an empirical method. The data set thus obtained allows us to estimate also the global Joule heat production rate U/sub J/, the global particle energy injection rate U/sub A/ and the sum U/sub Gamma/ of the two quantities. It is found that three global quantities (watt) are related almost linearly to the AE(nT) and AL(nT) indices. Our present estimates give the following relationships: U/sub J/ = 2.3 times 10 8 x AE 8 U/sub A/ = 0.6 times 10 8 x AE 8 and U/sub I/ = 2.9 times 10 8 x AE: U/sub J/ = 3.0 times 10 8 x AL 8 U/sub A/ = 0.8 times 10 8 x AL, and U/sub I/ = 3.8 times 10 8 x AL

  16. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assessment

    International Nuclear Information System (INIS)

    Feder, Russell E.; Youssef, Mahmoud Z.

    2009-01-01

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA(reg s ign) and SEVERIAN(reg s ign) (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER 'Brand Model' MCNP benchmark model. A biased quadrature set equivalent to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 (micro)Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 (micro)Sv/hr but fell below the limit to 90 (micro)Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1

  17. Local linear heat rate ramps in the WWER-440 transient regimes

    International Nuclear Information System (INIS)

    Brik, A.N.; Bibilashvili, Ju.L.; Bogatyr, S.M.; Medvedev, A.V.

    1998-01-01

    The operation of the WWER-440 reactors must be accomplished in such a way that the fuel rods durability would be high enough during the whole operation period. The important factors determining the absence of fuel rod failures are the criteria limiting the core characteristics (fuel rod and fuel assembly power, local linear heat rate, etc.). For the transient and load follow conditions the limitations on the permissible local linear rate ramp are also introduced. This limitation is the result of design limit of stress corrosion cracking of the fuel cladding and depends on the local fuel burn-up. The control rod motion is accompanied by power redistribution, which, in principle, can result in violating the design and operation limitations. Consequently, this motion have to be such as the core parameters, including the local ramps of the linear heat generation rates would not exceed the permissible ones.The paper considers the problem of WWER-440 reactor control under transient and load follow conditions and the associated optimisation of local linear heat generation rate ramps. The main factors affecting the solution of the problem under consideration are discussed. Some recommendations for a more optimal reactor operation are given.(Author)

  18. Additive effects of heating and exercise on baroreflex control of heart rate in healthy males.

    Science.gov (United States)

    Peçanha, Tiago; Forjaz, Cláudia L M; Low, David A

    2017-12-01

    This study assessed the additive effects of passive heating and exercise on cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV). Twelve healthy young men (25 ± 1 yr, 23.8 ± 0.5 kg/m 2 ) randomly underwent two experimental sessions: heat stress (HS; whole body heat stress using a tube-lined suit to increase core temperature by ~1°C) and normothermia (NT). Each session was composed of a preintervention rest (REST1); HS or NT interventions; postintervention rest (REST2); and 14 min of cycling exercise [7 min at 40%HR reserve (EX1) and 7 min at 60%HR reserve (EX2)]. Heart rate and finger blood pressure were continuously recorded. cBRS was assessed using the sequence (cBRS SEQ ) and transfer function (cBRS TF ) methods. HRV was assessed using the indexes standard deviation of RR intervals (SDNN) and root mean square of successive RR intervals (RMSSD). cBRS and HRV were not different between sessions during EX1 and EX2 (i.e., matched heart rate conditions: EX1 = 116 ± 3 vs. 114 ± 3 and EX2 = 143 ± 4 vs. 142 ± 3 beats/min but different workloads: EX1 = 50 ± 9 vs. 114 ± 8 and EX2 = 106 ± 10 vs. 165 ± 8 W; for HS and NT, respectively; P heat stress to exercise does not affect cBRS and HRV. Alternatively, in workload-matched conditions, the addition of heat to exercise results in reduced cBRS and HRV compared with exercise in normothermia. NEW & NOTEWORTHY The present study assessed cardiac baroreflex sensitivity during the combination of heat and exercise stresses. This is the first study to show that prior whole body passive heating reduces cardiac baroreflex sensitivity and autonomic modulation of heart rate during exercise. These findings contribute to the better understanding of the role of thermoregulation on cardiovascular regulation during exercise.

  19. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  1. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  2. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  3. Reducing uranium and thorium level in Zircon: effect of heat treatment on rate of leaching

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2002-01-01

    Considerable amount of uranium and thorium are found in Malaysian zircon and the level is much higher than the minimum value adopted by many importing countries. Selective leaching had been applied as an important technique to reduce these elements. An initial study was carried out using hydrochloric acid leaching system but the result was not favourable. The rate of uranium and thorium leached can be further improved by introducing a heat pretreatment process prior to leaching (Author)

  4. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  5. Effect of heating rate and grain size on the melting behavior of the alloy Nb-47 mass % Ti in pulse-heating experiments

    International Nuclear Information System (INIS)

    Basak, D.; Boettinger, W.J.; Josell, D.; Coriell, S.R.; McClure, J.L.; Cezairliyan, A.

    1999-01-01

    The effect of heating rate and grain size on the melting behavior of Nb-47 mass% Ti is measured and modeled. The experimental method uses rapid resistive self-heating of wire specimens at rates between ∼10 2 and ∼10 4 K/s and simultaneous measurement of radiance temperature and normal spectral emissivity as functions of time until specimen collapse, typically between 0.4 and 0.9 fraction melted. During heating, a sharp drop in emissivity is observed at a temperature that is independent of heating rate and grain size. This drop is due to surface and grain boundary melting at the alloy solidus temperature even though there is very little deflection (limited melting) of the temperature-time curve from the imposed heating rate. Above the solidus temperature, the emissivity remains nearly constant with increasing temperature and the temperature vs time curve gradually reaches a sloped plateau over which the major fraction of the specimen melts. As the heating rate and/or grain size is increased, the onset temperature of the sloped plateau approaches the alloy liquidus temperature and the slope of the plateau approaches zero. This interpretation of the shapes of the temperature-time-curves is supported by a model that includes diffusion in the solid coupled with a heat balance during the melting process. There is no evidence of loss of local equilibrium at the melt front during melting in these experiments

  6. Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study

    International Nuclear Information System (INIS)

    Rai, Arun Kumar; Raju, S.; Jeyaganesh, B.; Mohandas, E.; Sudha, R.; Ganesan, V.

    2009-01-01

    The kinetic aspects of allotropic phase changes in uranium are studied as a function of heating/cooling rate in the range 10 0 -10 2 K min -1 by isochronal differential scanning calorimetry. The transformation arrest temperatures revealed a remarkable degree of sensitivity to variations of heating and cooling rate, and this is especially more so for the transformation finish (T f ) temperatures. The results obtained for the α → β and β → γ transformations during heating confirm to the standard Kolmogorov-Johnson-Mehl-Avrami (KJMA) model for a nucleation and growth mediated process. The apparent activation energy Q eff for the overall transformation showed a mild increase with increasing heating rate. In fact, the heating rate normalised Arrhenius rate constant, k/β reveals a smooth power law decay with increasing heating rate (β). For the α → β phase change, the observed DSC peak profile for slower heating rates contained a distinct shoulder like feature, which however is absent in the corresponding profiles found for higher heating rates. The kinetics of γ → β phase change on the other hand, is best described by the two-parameter Koistinen-Marburger empirical relation for the martensitic transformation

  7. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mellado

    2015-06-01

    Full Text Available The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services, raised under intense heat (mean annual temperature of 22°C, at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses. The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%. The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%. Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.

  8. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  9. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  10. Transformation of deformation martensite into austenite in stainless steels at various heating rates

    International Nuclear Information System (INIS)

    Gojkhenberg, Yu.N.; Shtejnberg, M.M.

    1978-01-01

    Under isothermal conditions and with continuous preheating at defferent rates, the inverse transformation of deformation martensite that is obtained through reductions to small, medium and great degrees, has been studied. It has been established that depending on the preheat rate, the temperature of the end α → ν of rebuilding varies according to a curve having a maximum. The ascending branch of that curve is connected with the diffusion-controlled shear transformation, whereas the descending branch with the transition to the martensite reaction of austenite formation. As the deformation degree increases, the temperature of the end of the inverse transformation decreases. As a result, recrystallization of austenite proceeds only after completing α → ν transition, when heating the steels deformed to the medium degree at rates of at least 25 deg/sec and after high reductions at rates of at least 0.8 deg/sec

  11. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    Science.gov (United States)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  12. Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...

  13. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  14. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  15. High temperature, high heating rate carbonisation - a route to new forms of carbon

    International Nuclear Information System (INIS)

    Wilson, M. A.

    1998-01-01

    Carbonisation (more properly called pyrolysis) of coal has long been an important process for the good of mankind. It is relevant to coke making, the production of briquettes, the formation of specialist carbons such as anodes and other more exotic carbon forms. During heating, volatiles are produced and compounds containing carbon, hydrogen and oxygen are lost. The yield of volatiles and residues (inappropriately called char) depends on the rank of the coal used, the temperature of pyrolysis, and the heating rate. Mathematical models have been devised to account for loss of weight at constant heating rate, gas evolution, plasticity, swelling and changes in density, and other physical properties. Moreover chemical models of pyrolysis have also been devised. When carbon radicals are formed they may polymerize to form, if the correct number of hexagons or pentagons are present, a closed structure, such as the soccerball molecules. An account is given on the work carried out in Australia, at the University of Technology where the scientists were successful in identifying and then preparing buckyballs from coal rather than expensive graphite, first by laser pyrolysis and then by plasma arcing

  16. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  17. Latest Rate, Extent, and Temporal Evolution of Growth Faulting over Greater Houston Region Revealed by Multi- Band InSAR Time-Series Analysis

    Science.gov (United States)

    Qu, F.; Lu, Z.; Kim, J. W.

    2017-12-01

    Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The

  18. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  19. Gaussian model for emission rate measurement of heated plumes using hyperspectral data

    Science.gov (United States)

    Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.

    2018-02-01

    This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.

  20. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  1. Theoretical studies of rate chemistry in radiative heating of aerobraking spacecraft

    International Nuclear Information System (INIS)

    Lengsfield, B.H. III.

    1993-04-01

    A multi-reference CI gradient algorithm has been implemented in which the computation of orbital derivatives is efficiently undertaken in the atomic orbital basis. This development circumvents the need to store large numbers of derivatives integrals on disk when one uses multi-reference CI derivative techniques to characterize ground and excited states of polyatomic molecules. With this type of algorithm accurate heats of formation and reactions rate can be ascertained for a much broader range molecular systems. The limitations of these types of studies thus reverts to the feasibility of performing the underlying CI calculation and not the computation of the derivatives of the CI energy. This technique can also be efficiently utilized in the computation of nonadiabatic coupling matrix elements. Finally, the β (B 2 Π - X 2 Π transition) system in NO was investigated. Interest in the B 2 Π state of NO stems from the important role it plays in air after-glow and shock heated air

  2. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, Adel G.E.; El-Arabi, A.M.; Abbady, A.

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 μW m -3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 μW m -3 (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites

  3. Heat production rate from radioactive elements in igneous and metamorphic rocks in eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, A G.E.; Arabi, A.M.; Abbay, A.

    2005-01-01

    Radioactive heat - production data of igneous and metamorphic rocks cropping out from the eastern desert are presented. Samples were analysed using low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 Μ Wm-3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite) to 0.91 (metagabroo) Μ W.m-3. The contribution due to U is about (51%), whereas that of Th (31%) and (18%) by K. The corresponding values in igneous rocks are 76%: 19%: 5%, respectively. The calculated values showed good agreement with global values expect in some areas contained granite rocks

  4. Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the measurement of heat transfer rate using a thermal capacitance-type calorimeter which assumes one-dimensional heat conduction into a cylindrical piece of material (slug) with known physical properties. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 1—For information see Test Methods E 285, E 422, E 458, E 459, and E 511.

  5. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  6. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  7. The effect of texture, heat treatment and elongation rate on stress corrosion cracking in irradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.; Stany, W.; Hellstrand, E.

    1979-03-01

    Irradiated zircaloy samples with different textures and heat treatments have been tested concerning stress corrosion. Irradiated samples of Zr-1Nb, pure Zr and beta quenched zircaloy have also been investigated. Stress-relieve annealled zircaloy is even after irradiation more sensitive to stress corrosion than recrystallized zircaloy. Zr-1Nb and beta quenched zircaloy are much more sinsitive to stress corrosion than the samples with different textures. As a rule irradiated zircaloy is sensitive to stress corrosion at stresses far below the yield point. The breaking stress decreases with the elongation rate. The extension of cracks is much faster in irradiated zircaloy than in unirradiated zircaloy. There is no simple failure criterium for irradiated zircaloy. However for a certain stress and a certain elongation rate the probability for a failure before this stress is reached with a constant elongation rate can be given. (E.R.)

  8. Current status of and problems in ice heat storage systems contributing to improving load rate. Air conditioning system utilizing ice heat storage and building frame storage (Takenaka Corporation); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsu to kutai chikunetsu wo riyoshita kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Yoshitake, Y. [Takenaka Corp., Osaka (Japan)

    1998-02-01

    Development was made on a new air conditioning system, `building frame heat storage air conditioning system`, which combines an ice heat storage system with a building frame heat storage. With the building frame heat storage system, a damper is installed on an indoor device to blow cold air from the air conditioner onto slabs on the upper floor during nighttime power generating period. Heat is stored in beams, pillars and walls, and the shell absorbs and dissipates heat during daytime. Since general office buildings consume primary energy at 22.8% for heat source and 26.9% for transportation, which is greater, a natural coolant circulation type air conditioning system was developed as an air conditioning system for the secondary side. This made the building frame heat regeneration possible for the first time. With regard to heat storage quantity and heat dissipation quantity, the quantity of heat which can be stored during nighttime (10 hours) and dissipated during air conditioning using period in daytime (10 hours) is 80% of the stored heat quantity. This system was installed in a building in Kobe City. As a result of the measurement, it was found that indoor heat load reduction rate as a result of using the building frame heat storage was 24% or more in summer and 80% or more in winter. 7 figs., 2 tabs.

  9. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  10. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  11. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  12. Effect of heating rate on thermal cracking characteristics and kinetics of Xinjiang oil sand bitumen by TG-FTIR

    Science.gov (United States)

    Hao, Junhui; Zhang, Jinhong; Qiao, Yingyun; Tian, Yuanyu

    2017-08-01

    This work was aimed to investigate effects of heating rate on thermal cracking behaviors, distribution of gaseous products and activation energy of the thermal cracking process of Xinjiang oil sand bitumen (OSB). The thermal cracking experiments of Xinjiang OSB were performed by using thermogravimetric analyzer (TGA) at various heating rates of 10, 20, 50, 80 and 120 K/min. The evolving characteristic of gaseous products produced from the thermal cracking process was evaluated by the Fourier transform infrared spectrometry (FTIR) connected with TG. The kinetic parameters of the thermal cracking process of Xinjiang OSB at each of heating rate were determined by the Coats-Redfern model. The result show that the temperature intervals of DE volatilization stage and main reaction stage, the ((dw/dt) max and Tmax in thermal cracking process of Xinjiang OSB all increased with the increasing heating rate. While the heating rate has not obvious effect on the coke yield of Xinjiang OSB. Furthermore, the maximum absorbance of gaseous products and corresponding temperature became larger as the heating rate increases. The activation energy of this two stage both presented increasing trend with the rising heating rate, while the increasing content of that of DE volatilization stage was weaker compared to that of main reaction stage.

  13. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  14. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  15. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  16. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  17. Rates of chemical reaction and atmospheric heating during core debris expulsion from a pressurized vessel

    International Nuclear Information System (INIS)

    Powers, D.A.; Tarbell, W.W.; Brockman, J.E.; Pilch, M.

    1986-01-01

    Core debris may be expelled from a pressurized reactor vessel during a severe nuclear reactor accident. Experimental studies of core debris expulsion from pressurized vessels have established that the expelled material can be lofted into the atmosphere of the reactor containment as particulate 0.4 to 2 mm in diameter. These particles will vigorously react with steam and oxygen in the containment atmosphere. Data on such reactions during tests with 80 kg of expelled melt will be reported. A model of the reaction rates based on gas phase mass transport will be described and shown to account for atmospheric heating and aerosol generation observed in the tests

  18. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper

    2016-01-01

    This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...

  19. Global distribution of moisture, evaporation-precipitation, and diabatic heating rates

    Science.gov (United States)

    Christy, John R.

    1989-01-01

    Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.

  20. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  1. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  2. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    Science.gov (United States)

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  3. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    Science.gov (United States)

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  4. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows.

    Science.gov (United States)

    Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A

    2016-07-01

    The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effect of the heating rate on residual thermo-hydro-mechanical properties of a high-strength concrete in the context of nuclear waste storage

    International Nuclear Information System (INIS)

    Galle, C.; Pin, M.; Ranc, G.; Rodrigues, S.

    2003-01-01

    Concrete is likely to be used in massive structures for nuclear waste long-term storage facilities in France. In the framework of vitrified waste and spent fuel management, these structures could be submitted to high temperatures. In standard conditions, ambient temperature should not exceed 60 degC but in case of failure of a cooling system, concretes could be temporarily exposed to temperatures up to 250 degC. Depending on the temperature rise kinetics, concretes could be damaged to a greater or lesser extent. In this context, an experimental study on the effect of heating rate on concrete thermo-hydro-mechanical properties exposed to high temperatures (110 - 250 degC) was carried out at the French Atomic Energy Commission (CEA). Data analysis and interpretation provided enough arguments to conclude that, at local scale, the impact of heating rate on residual properties was real though relatively limited. (author)

  6. Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion.

    Science.gov (United States)

    Flood, T R; Waldron, M; Jeffries, O

    2017-07-01

    The study investigated the effect of a non-thermal cooling agent, L-menthol, on exercise at a fixed subjective rating of perceived exertion (RPE) in a hot environment. Eight male participants completed two trials at an exercise intensity between 'hard' and 'very hard', equating to 16 on the RPE scale at ~35 °C. Participants were instructed to continually adjust their power output to maintain an RPE of 16 throughout the exercise trial, stopping once power output had fallen by 30%. In a randomized crossover design, either L-menthol or placebo mouthwash was administered prior to exercise and at 10 min intervals. Power output, [Formula: see text]O 2 , heart rate, core and skin temperature was monitored, alongside thermal sensation and thermal comfort. Isokinetic peak power sprints were conducted prior to and immediately after the fixed RPE trial. Exercise time was greater (23:23 ± 3:36 vs. 21:44 ± 2:32 min; P = 0.049) and average power output increased (173 ± 24 vs. 167 ± 24 W; P = 0.044) in the L-menthol condition. Peak isokinetic sprint power declined from pre-post trial in the L-menthol l (9.0%; P = 0.015) but not in the placebo condition (3.4%; P = 0.275). Thermal sensation was lower in the L-menthol condition (P = 0.036), despite no changes in skin or core temperature (P > 0.05). These results indicate that a non-thermal cooling mouth rinse lowered thermal sensation, resulting in an elevated work rate, which extended exercise time in the heat at a fixed RPE.

  7. Effect of moisture content on the R{sub 70} self-heating rate of Callide coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Hamilton, Garth R. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Strip samples from the Boundary Hill pit at Callide have been tested in an adiabatic oven to assess the effect of moisture on the R{sub 70} self-heating rate of coal. The two strip samples tested had R{sub 70} self-heating rate values of 10.23 and 8.61 {sup o}C/h. As the moisture content of the coal was progressively increased, from the dry state of the test, the R{sub 70} value decreased dramatically. At approximately 40-50% of the moisture holding capacity of the coal, the self-heating rate becomes measurable. Above this critical level of moisture content, the heat produced by oxidation is dissipated by moisture evaporation and coal self-heating is significantly delayed. (author)

  8. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  9. Experimental constraints on heating and cooling rates of refractory inclusions in the early solar system

    International Nuclear Information System (INIS)

    Boynton, W.V.

    1987-01-01

    The refractory inclusions in carbonaceous chondrites were the subject of considerable interest since their discovery. These inclusions contain minerals that are predicted to be some of the earliest condensates from the solar nebula, and contain a plethora of isotopic anomalies of unknown origin. Of particular interest are those coarse-grained inclusions that contain refractory metal particles (Fe, Ni, Pt, Ru, Os Ir). Experimental studies of these inclusions in terrestrial laboratories are, however, complicated because the dense particles tend to settle out of a molten or partially molten silicate material. Heating experiments in the Space Station technology and microgravity in order to observe the effects of metal nuggets (which may act as heterogeneous nucleation sites) on nucleation rates in silicate systems and to measure simultaneously the relative volatilization rate of siderophile and lithophile species. Neither experiment is possible in the terrestrial environment

  10. Assessment of potential Rio Grande do Norte, Brazil, clays when subjected to high rates of heating

    International Nuclear Information System (INIS)

    Filgueira, R.L.; Pereira, L.M.; Dutra, R.P.S.; Nascimento, R.M.

    2009-01-01

    In this work we study three clays of the state of Rio Grande do Norte, Brazil, to evaluate the potential them when subjected to high rates of heating. The samples were formed by pressing and subject to rates of 5 deg C / min, 10 deg C / min and 15 deg C / min, with temperature of 950 deg C. This study determined the technological properties of the samples. The mineralogical composition was identified by X-ray diffraction. The chemical composition was determined by Xray fluorescence. The Atterberg limits, were used to classify the samples on the plasticity. Were also performed: dilatometry, size analysis and scanning electron microscopy. The examination of the processing variables and the intrinsic characteristics of each material indicates that the RX clay showed the best results for the manufacture of blocks and tiles. The techniques used in this study were efficient and the initial objectives were achieved. (author)

  11. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  12. The influence of heating rate on reheat-cracking in a commercial 2 1/4Cr1Mo steel

    International Nuclear Information System (INIS)

    Hippsley, C.A.

    1983-03-01

    The effects of elevated heating rate on stress-relief cracking in a commercial 2 1/4 Cr1Mo steel have been investigated. A SEN bend-specimen stress-relaxation test was used to assess reheat cracking susceptibility and fracture mechanisms for an initial post-weld heating rate of 1000 Kh - 1 . Two factors controlling the influence of heating rate on the final severity of cracking were identified, i.e. the rate of stress-relaxation with respect to temperature, and the time available for crack-growth. The factors were found to counteract each other, but in the case of commercial 2 1/4 Cr1Mo steel, the crack-growth factor outweighed the relaxation factor, resulting in a reduction in the propensity to stress-relief cracking at the elevated heating rate. However, by reference to the results of a separate investigation concerning A508/2 MnMoNiCr steel it was demonstrated that the balance between these two factors may be reversed in other alloy systems, with the consequence that reheat cracking is exacerbated by increasing the initial heating rate. A computer model was addressed to the stress-relaxation test conditions using data from the commercial 2 1/4 Cr1Mo steel. The model predictions exhibited reasonable agreement with experimental test results for both 100 Kh - 1 and 1000 Kh - 1 heating rates. (author)

  13. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    Science.gov (United States)

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  14. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    Science.gov (United States)

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  15. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  16. Sintering of porous silver compacts at controlled heating rates in oxygen or argon

    International Nuclear Information System (INIS)

    Oliber, E.A; Cugno, C; Moreno, M; Esquivel, M; Haberkon, N; Fiscina, J.E; Gonzalez Oliver, C.J.R

    2002-01-01

    A submicronic (- 0.4μm grain size) spherical silver powder was mixed with 2wt% PVB and pressed into pellets (body A) of relative density (ρr) close to 0.54. The pellets were given a heat treatment at 235 o C for 4 hours (body B) in static air, after which the ρr values were increased by ∼2%. The preheated pellets (B) were densified in a vertical differential dilatometer, fitted with a silica head, at heating rates (hr) of 2, 4 and 10 o C min -1 under Ar or O 2 pure atmospheres. The total lineal densification [Δl(T)/lo, ΔI=Io-1(T) instantaneous thickness and lo: the initial thickness of the pellet] of the Ag-skeletons (B, of similar starting porosity) varied significantly upon changing either the (hr) or the atmosphere. It ranged from 8 to 12% giving still porous bodies of ρr∼0.80. After a small densification (stage (i)) each curve showed a clear Ti ( o C ) at which the densification (AD(T) exhibited a rapid increase (jump; stage (ii), and had a characteristic peak in densification rate (DR(T)). Then the AD continued by another mechanism (stage (iii)), related to grain growth, till the densification rate started to decrease probably due to densification (stage (iv)) of closed pores located at 4-grain corners. For every atmosphere the Ti increased with heating rate, and the Ti values for O 2 were 79- 105 o C lower than those for Ar. From DR kinetics analysis it is concluded that under O 2 stage (ii) is due to grain boundary diffusivity (gb) whereas for stage (iii) the volume (vol) diffusion is the main process. From detail densification fits it is shown for stage (iii) there is an initial contribution to densification coming up from an initial stage controlled by (gb) diffusion, and that the main process is still the intermediate stage with simultaneous grain growth controlled by volume self-diffusivity. For the Ar case the whole densification range appears to be controlled by (gb) diffusivity. Some impurity contamination of the Ag could produce a (gb

  17. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy's spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report

  18. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.

    Science.gov (United States)

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles

    2015-04-01

    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  20. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  1. Determination by a CFD code of the heat release rate in a confined and mechanically-ventilated compartment fire

    International Nuclear Information System (INIS)

    Nasr, Ayoub

    2011-01-01

    For several years, many experimental/numerical research programs have been carried out at IRSN in order to provide sufficient data on the burning process and understand the behavior of a pool fire in a confined and mechanically ventilated compartment. Several experimental tests have shown that in some cases, the oxygen concentration in the local decreases then stabilizes until fire extinction. The fuel mass loss rate is instantaneously adjusted according to the ventilation in the local, which may leads to a lower fuel consumption rate as compared to that in free atmosphere. The fire duration is then 2 to 3 times greater than that obtained in free atmosphere, which may damages some specific safety equipment used to reduce the spread of fire between compartments such as fire doors. The objective of this work is to propose a theoretical approach that allows the determination of the burning rate of fuels for pool fires in a closed compartment. Fuel response to vitiated air as well as burning enhancement due to hot gases and confinement should be taken into account. Thus, a theoretical formulation, based on an energy balance equation at the pool fire surface, was developed and compared with the empirical correlation of Peatross and Beyler before being implemented in a CFD code 'ISIS', developed at IRSN and validated against PRISME fire test results. The main advantage of this global approach is that no assumptions were made on the relative importance of each mode of heat transfer from the flame. In fact, the convective and the radiant components of the heat flux from the flame to the fuel surface were determined taking into account the air vitiation effect. In addition to this theoretical approach, an experimental work was conducted at the Institut PPRIME to study heptane pool fires in a reduced-scale fire compartment, in the aim to investigate the effects of vitiated air on fire parameters. These results were used to validate the theoretical formulation developed

  2. The potential influence of multiple scattering on longwave flux and heating rate simulations with clouds

    Science.gov (United States)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.; Kuo, C.; Mlawer, E. J.

    2017-12-01

    Clouds, which cover approximately 67% of the globe, serve as one of the major modulators in adjusting radiative energy on the Earth. Since rigorous radiative transfer computations including multiple scattering are costly, only absorption is considered in the longwave spectral bands in the radiation sub-models of the general circulation models (GCMs). Quantification of the effect of ignoring longwave scattering for flux and heating rate simulations is performed by using the GCM version of the Longwave Rapid Radiative Transfer Model (RRTMG_LW) with an implementation with the 16-stream Discrete Ordinates Radiative Transfer (DISORT) Program for a Multi-Layered Plane-Parallel Medium in conjunction with the 2010 CCCM products that merge satellite observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the CloudSat, the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectrometer (MODIS). One-year global simulations show that neglecting longwave scattering overestimates upward flux at the top of the atmosphere (TOA) and underestimates downward flux at the surface by approximately 2.63 and 1.15 W/m2, respectively. Furthermore, when longwave scattering is included in the simulations, the tropopause is cooled by approximately 0.018 K/day and the surface is heated by approximately 0.028 K/day. As a result, the radiative effects of ignoring longwave scattering and doubling CO2 are comparable in magnitude.

  3. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Proper management of heat input in weld- ing is important .... total nugget area, heat transfer boundary length, and nugget parameter. 3. ... Predominant parameters that had greater influence on welding quality were identified as wire feed rate ...

  4. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  5. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic

    International Nuclear Information System (INIS)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D.

    2011-01-01

    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  6. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  7. Effects of heat stress on production, somatic cell score and conception rate in Holsteins.

    Science.gov (United States)

    Hagiya, Koichi; Hayasaka, Kiyoshi; Yamazaki, Takeshi; Shirai, Tatsuo; Osawa, Takefumi; Terawaki, Yoshinori; Nagamine, Yoshitaka; Masuda, Yutaka; Suzuki, Mitsuyoshi

    2017-01-01

    We examined the effects of heat stress (HS) on production traits, somatic cell score (SCS) and conception rate at first insemination (CR) in Holsteins in Japan. We used a total of 228 242 records of milk, fat and protein yields, and SCS for the first three lactations, as well as of CR in heifers and in first- and second-lactation cows that had calved for the first time between 2000 and 2012. Records from 47 prefectural weather stations throughout Japan were used to calculate the temperature-humidity index (THI); areas were categorized into three regional groups: no HS (THI cows, CR was affected by the interaction between HS group and insemination month: with summer and early autumn insemination, there was a reduction in CR, and it was much larger in the mild- and moderate-HS groups than in the no-HS group. © 2016 Japanese Society of Animal Science.

  8. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females.

    Science.gov (United States)

    Racil, G; Coquart, J B; Elmontassar, W; Haddad, M; Goebel, R; Chaouachi, A; Amri, M; Chamari, K

    2016-06-01

    This study examined the effects of high- vs. moderate-intensity interval training on cardiovascular fitness, leptin levels and ratings of perceived exertion (RPE) in obese female adolescents. Forty-seven participants were randomly assigned to one of three groups receiving either a 1:1 ratio of 15 s of effort comprising moderate-intensity interval training (MIIT at 80% maximal aerobic speed: MAS) or high-intensity interval training (HIIT at 100% MAS), with matched 15 s recovery at 50% MAS, thrice weekly, or a no-training control group. The HIIT and MIIT groups showed improved (p HIIT group showed decreased waist circumference (WC) (p = 0.017). The effect of exercise on maximal oxygen uptake (VO2max) was significant (p = 0.019, ES = 0.48 and p = 0.010, ES = 0.57, HIIT and MIIT, respectively). The decrease of rate-pressure product (RPP) (p HIIT and MIIT, respectively) followed the positive changes in resting heart rate and blood pressures. Blood glucose, insulin level and the homeostasis model assessment index for insulin decreased (p HIIT and MIIT, respectively. In the post-intervention period, blood leptin was strongly associated with %BF (p HIIT and MIIT groups, respectively, while RPE was strongly associated with BM (p HIIT group. The results suggest that high-intensity interval training may produce more positive effects on health determinants in comparison with the same training mode at a moderate intensity.

  9. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    Science.gov (United States)

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedheatedheated. The cytotoxicity evaluation revealed that none of the alkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  10. Tick resistance and heat tolerance characteristics in cattle. III. Sweating rate

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2012-12-01

    Full Text Available Cattle in a sustainable tropical livestock should be heat tolerant and resistant to ticks. The relationship between Rhipicephalus (Boophilus microplus infestation and sweating rate, an important heat tolerance characteristic, was studied in six Nellore and four Holstein steers of seven-month-old. They were artificial infested (a.i. with 10,000 (Holstein and 20,000 (Nellore larvae in 16/Apr/2011. In days 20, 23 and 24 after the infestation, the 10 bigger females ticks found in whole animal were weighed and put in a chamber (27 oC and 80% RH, weighing the egg mass of each female tick fourteen days after. The sweating rate (SRskin, measured by Scheleger and Turner, 1963, method, in a shaved area of shoulder skin was evaluated in 14/Apr (2 days before the a.i. and in 05/May (19 days after a.i.. In 14/Apr the Scheleger and Turner, 1963, method was done on the coat not shaved (SRcoat. The sweating rate was measured in the afternoon (from 2 P.M., after 30 minutes of direct sunlight, on April. On May, the animals remained 60 minutes in direct sunlight because this day was colder. The experimental design was a non-probability sample restricted to the 10 available animals. Data from the steers’ sweating rate were analyzed using the General linear models of the SPSS® statistical package (version 12.0 using SRskin as dependent variable and breed and sampling date as independent variables. For SRcoat breed was the independent variable. Nellore, a tropical cattle breed, had higher SRskin (1,000.82 ± 64.59 g m-2 h-1, P< 0.001 than Holstein (620.45 ± 79.10 g m-2 h-1. SRskin was higher on May (1,187.33 ± 71.49 g m-2 h-1, P< 0.001 than on April (433.93 ± 71.49 g m-2 h-1. The correlation between the two different measurements of SR was positive and significant (r= 0,545, P<0,01, Pearson correlation. But in SRcoat the breed effect disappeared because the Holstein SRcoat increased (Holstein: 884.95 ± 472.12 g m-2 h-1 and Nellore: 1,060.72 ± 318.21 g m-2 h-1

  11. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females

    OpenAIRE

    Racil, G; Coquart, JB; Elmontassar, W; Haddad, M; Goebel, R; Chaouachi, A; Amri, M; Chamari, K

    2016-01-01

    This study examined the effects of high- vs. moderate-intensity interval training on cardiovascular fitness, leptin levels and ratings of perceived exertion (RPE) in obese female adolescents. Forty-seven participants were randomly assigned to one of three groups receiving either a 1:1 ratio of 15 s of effort comprising moderate-intensity interval training (MIIT at 80% maximal aerobic speed: MAS) or high-intensity interval training (HIIT at 100% MAS), with matched 15 s recovery at 50% MAS, thr...

  12. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    OpenAIRE

    Thomas L. Stöggl; Glenn Björklund; Glenn Björklund

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes.Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high ...

  13. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Greater sparing of stromal progenitor cells than of haemopoietic stem cells in γ-irradiated mouse marrow using low dose-rates

    International Nuclear Information System (INIS)

    Hendry, J.H.; Wang, S.B.; Testa, N.G.

    1984-01-01

    The Do value fibroblastoid colony-forming units in mouse bone-marrow increased from 1.7 Gy using γ-rays at 4.2 Gy/minute, to 2.6 Gy at 4.5 cGy/minute. In contrast, the sensitivity of bone-marrow stem cells was very little changed (Do approximately 0.9 Gy). At 7.5 Gy acute single dose, the dose sparing achieved for CFU-F using 4.5 cGy/minute was a factor of 1.4, inbetween the values reported for lung of 1.8 and for haemopoiesis of 1.2. Although the role of CFU-F in the haemopoietic environment has not been established, the content of CFU-F can predict the ability of irradiated marrow to sustain haemopoiesis in the long term. Hence the data imply that the haemopoiesis environment, as well as the dose-limiting lung, benefits from the use of low dose-rates for haemopoietic ablations in the treatment of leukaemia. No significant further sparing of CFU-F was achieved using a lower dose-rate of 1.4 cGy per minute

  15. The relationship between impaired driving crashes and beliefs about impaired driving: do residents in high crash rate counties have greater concerns about impaired driving?

    Science.gov (United States)

    Beck, Kenneth H; Yan, Alice F; Wang, Min Qi; Kerns, Timothy J; Burch, Cynthia A

    2009-04-01

    The purpose of this investigation was to examine the relationship between impaired driving crashes and public beliefs and concerns about impaired driving across each of Maryland's twenty-four counties (including Baltimore City). It was hypothesized that residents of counties that experience higher impaired driving crashes would express more concerns about impaired driving and perceive more risks about driving impaired than residents of counties that have lower rates of impaired driving. Data for alcohol impaired driving crashes were obtained for the years 2004-2006. These data were compared to public opinion data that was obtained annually by random-digit-dial telephone surveys from 2004 to 2007. Concerns about drunk driving as well as perceptions of the likelihood of being stopped by the police if one were to drive after having too much to drink were related to counties with higher serious impaired driving crash rates, as were perceptions that the police and the legal system were too lenient. Perceptions about the likelihood of being stopped by the police were higher in those counties with more impaired driving enforcement activity. Perceptions of concern appear to be shaped more by crash exposure than enforcement activity. Campaigns that address impaired driving prevention should substantially increase enforcement, strengthen the adjudication process of impaired drivers, and emphasize the potential seriousness of drinking-driving crashes in their promotional activities.

  16. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form

    International Nuclear Information System (INIS)

    Hashemian, Mehran; Jafarmadar, Samad; Nasiri, Javid; Sadighi Dizaji, Hamed

    2017-01-01

    Highlights: • An improved geometry is presented by changing tubes form into conical. • Enhancement of heat transfer rate is investigated. • Frictional characteristics for novel geometry are studied. • For a proper understanding of the subject, the exact physical interpretation is added. • The effect of flow, geometry and thermodynamic parameters is considered. - Abstract: In this paper, cylindrical tubes of a double pipe heat exchanger were changed into the conical tubes as an innovative design which causes improvement of thermal performance of heat exchanger without increment of its weight. Utilization of conical tube instead of cylindrical tube can impress both thermal and frictional characteristics of heat exchanger. Hence, the effect of conical tubes on Nusselt number, friction factor and thermal performance factor are evaluated in present research which was not covered already. Moreover, the effects of hydrodynamic, thermodynamic and geometrical characteristics are analyzed. All said parameters are numerically investigated for nine different combinations of flow direction and conical tubes geometry. The results of simulations of the said configurations are presented to compare the cases from different points of view and determine the most thermally efficient case. The results reveal modified geometry makes 63% increment in Nu number and 54% increment in heat transfer rate at optimum condition.

  17. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females

    Directory of Open Access Journals (Sweden)

    G Racil

    2016-04-01

    Full Text Available This study examined the effects of high- vs. moderate-intensity interval training on cardiovascular fitness, leptin levels and ratings of perceived exertion (RPE in obese female adolescents. Forty-seven participants were randomly assigned to one of three groups receiving either a 1:1 ratio of 15 s of effort comprising moderate-intensity interval training (MIIT at 80% maximal aerobic speed: MAS or high-intensity interval training (HIIT at 100% MAS, with matched 15 s recovery at 50% MAS, thrice weekly, or a no-training control group. The HIIT and MIIT groups showed improved (p˂0.05 body mass (BM, BMI Z-score, and percentage of body fat (%BF. Only the HIIT group showed decreased waist circumference (WC (p=0.017. The effect of exercise on maximal oxygen uptake (VO2max was significant (p=0.019, ES=0.48 and p=0.010, ES=0.57, HIIT and MIIT, respectively. The decrease of rate-pressure product (RPP (p<0.05, ES=0.53 and ES=0.46, HIIT and MIIT, respectively followed the positive changes in resting heart rate and blood pressures. Blood glucose, insulin level and the homeostasis model assessment index for insulin decreased (p<0.05 in both training groups. Significant decreases occurred in blood leptin (p=0.021, ES=0.67 and p=0.011, ES=0.73 and in RPE (p=0.001, ES=0.76 and p=0.017, ES=0.57 in HIIT and MIIT, respectively. In the post-intervention period, blood leptin was strongly associated with %BF (p<0.001 and VO2max (p<0.01 in the HIIT and MIIT groups, respectively, while RPE was strongly associated with BM (p<0.01 in the HIIT group. The results suggest that high-intensity interval training may produce more positive effects on health determinants in comparison with the same training mode at a moderate intensity.

  18. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    International Nuclear Information System (INIS)

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups

  19. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  20. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Zhang, Hongshan; Qin, Wenzhen; Gong, Feng

    2015-03-25

    An appropriate heating rate in the sintering process is crucial to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were sintered to investigate the influence of heating rate on the mechanical properties and microstructure of the cermet materials. The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}) were tested. The microstructure, indention crack, fracture morphology and phase composition of the cermets were also studied by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results reveal that the heating rate has a great influence on the mechanical properties and microstructure of Ti(C,N)-based cermets. The cermets sintered at the heating rate of 3 °C/min between 1300 °C and 1430 °C have the optimum comprehensive mechanical properties with a transverse rupture strength of 1605±107 MPa, a hardness of 12.02±0.25 GPa and a fracture toughness of 10.73±0.40 MPa m{sup 1/2}. The heating rate can affect the reaction among the constituents of Ti(C,N)-based cermets and then influence the elements distribution in the core–rim microstructures and the lattice parameter of Ti(C,N) phase. When the heating rate is between 2 °C/min and 5 °C/min, the lower the heating rate is, the coarser the Ti(C,N) grains become. A higher heating rate is detrimental to the formation of core–rim microstructures, and a lower heating rate can result in grain coarsening and inhomogeneous microstructure. The observation of indention cracks and fracture surfaces show that the intergranular cracks and intergranular fractures mainly occur in the cermets with larger binder mean free path and medium grains. While the cleavage fractures appear more in the cermets with grain coarsening, and the transgranular fractures exist more in the cermets with non-fully developed fine grains.

  1. Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform, downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule)

    International Nuclear Information System (INIS)

    Koizumi, H.

    2004-01-01

    The aim of this study is to reveal the temporal and spatial heat transfer performance of an isothermally heated sphere placed in a uniform, downwardly directed flow using a micro-foil heat flow sensor (HFS). A HFS, whose response time is about 0.02 s, was pasted on the surface of a heated copper sphere. Experiments were carried out using air with a Grashof number of 3.3 x 10 5 and with several Reynolds numbers (Re) up to 1800. Three flow patterns appeared: a chaotic flow at Re<240; a two-dimensional steady separated flow at 240 ≤ Re<500, and a three-dimensional unsteady separated flow at Re ≥ 500. In addition, the instantaneous and time-averaged heat transfer performance around the sphere in each of the three regions was clarified. Next, enhancement of the latent heat storage rate of a solid phase change material (PCM) in a spherical capsule was performed. The flow around the spherical capsule, in which the solid PCM was filled and placed in a heated, upwardly directed flow, is the approximate adverse flow phenomenon around the heated sphere which was placed in a downwardly directed flow. In other words, the buoyant flow and the forced flow are in the opposite directions in these two cases. Tests of latent heat storage were run for two Reynolds numbers which represented different flow characteristics in the heat transfer experiments, Re=150 and 1800. Furthermore, copper plates were inserted into the solid PCM, of which thermal conductivity was considerably low, to enhance the latent heat storage rate for the two Reynolds number flows

  2. An artificial intelligence heat rate/NOx optimization system for Ontario Hydro`s Lambton Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Bachalo, K.; Henrikson, J. [Ontario Hydro, Toronto, ON (Canada); Roland, W.; Booth, R.C.; Parikh, N.; Radl, B. [Pegasus Technologies Ltd., Painesville, OH (United States)

    1998-12-01

    The utilization of artificial Intelligence (AI)-based software programs to optimize power plant operations by simultaneously improving heat rate performance and reducing NOx emissions was discussed. While many AI programs were initially used for demonstration purposes, they are now available for commercial use due to their promising results. In 1996, the Fossil Business Unit of Ontario Hydro initiated a study to evaluate AI technology as a tool for optimizing heat rate and NOx reduction in coal fired stations. Tests were conducted at Units 3 and 4 of the Lambton Generation Station, located just south of Sarnia, Ontario. The tests were conducted to examine three desirable options: (1) achieve at least 0.5 per cent improvement in heat rate concurrently with a NOx reduction of at least 5 per cent, (2) optimize on `heat rate` only with minimum improvement of 2 per cent, and optimize `minimal NOx` only with reduction target of 20 per cent or more, and (3) reach a collaborative agreement with a supplier to further explore and develop AI optimization applications for other advanced and more complex plant processes. Results indicated that NOx reduction and heat rate improvement are not contradictory goals. 15 refs., 1 fig.

  3. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Science.gov (United States)

    Stöggl, Thomas L.; Björklund, Glenn

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes. PMID:28824457

  4. Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion

    Science.gov (United States)

    Ben-Basat (Sisi), Shani; Gany, Alon

    2016-03-01

    This research presents a physical-mathematical model for the combustion of liquefying fuels in hybrid combustors, accounting for blowing effect on the heat transfer. A particular attention is given to a paraffin/nitrous oxide hybrid system. The use of a paraffin fuel in hybrid propulsion has been considered because of its much higher regression rate enabling significantly higher thrust compared to that of common polymeric fuels. The model predicts the overall regression rate (melting rate) of the fuel and the different mechanisms involved, including evaporation, entrainment of droplets of molten material, and mass loss due to melt flow on the condensed fuel surface. Prediction of the thickness and velocity of the liquid (melt) layer formed at the surface during combustion was done as well. Applying the model for an oxidizer mass flux of 45 kg/(s m2) as an example representing experimental range, it was found that 21% of the molten liquid undergoes evaporation, 30% enters the gas flow by the entrainment mechanism, and 49% reaches the end of the combustion chamber as a flowing liquid layer. When increasing the oxidizer mass flux in the port, the effect of entrainment increases while that of the flowing liquid layer along the surface shows a relatively lower contribution. Yet, the latter is predicted to have a significant contribution to the overall mass loss. In practical applications it may cause reduced combustion efficiency and should be taken into account in the motor design, e.g., by reinforcing the paraffin fuel with different additives. The model predictions have been compared to experimental results revealing good agreement.

  5. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  6. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    International Nuclear Information System (INIS)

    Lahiri, B B; Ranoo, Surojit; Philip, John

    2017-01-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and

  7. Computation of single- and two-phase heat transfer rates suitable for water-cooled tubes and subchannels

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Cheng, S.C.; Nguyen, C.

    1989-01-01

    A computational method for predicting heat transfer, valid for a wide range of flow conditions (from pool boiling and laminar flow conditions to highly turbulent flow), has been developed. It correctly identifies the heat transfer modes and predicts the heat transfer rates as well as transition points (such as the critical heat flux point) on the boiling curve. The computational heat transfer method consists of a combination of carefully chosen heat transfer equations for each heat transfer mode. Each of these equations has been selected because of their accuracy, wide range of application, and correct asymptotic trends. Using a mechanistically-based heat transfer logic, these equations have been combined in a convenient software package suitable for PC or mainframe application. The computational method has been thoroughly tested against many sets of experimental data. The parametric and asymptotic trends of the prediction method have been examined in detail. Correction factors are proposed for extending the use of individual predictive techniques to various geometric configurations and upstream conditions. (orig.)

  8. Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus.

    Science.gov (United States)

    Eisenach, James C; Curry, Regina; Aschenbrenner, Carol A; Coghill, Robert C; Houle, Timothy T

    2017-03-01

    The locus coeruleus (LC) signals salience to sensory stimuli and these responses can modulate the experience of pain stimuli. The pupil dilation response (PDR) to noxious stimuli is thought to be a surrogate for LC responses, but PDR response to Peltier-controlled noxious heat stimuli, the most commonly used method in experimental pain research, has not been described. Healthy volunteers were presented with randomly presented heat stimuli of 5 sec duration and provided pain intensity ratings to each stimulus. Pupillometry was performed and a method developed to quantify the PDR relevant to these stimuli. The stimulus response, reliability, and effect of commonly used manipulations on pain experience were explored. A method of artifact removal and adjusting for lag from stimulus initiation to PDR response was developed, resulting in a close correlation between pain intensity rating and PDR across a large range of heat stimuli. A reliable assessment of PDR within an individual was achieved with fewer presentations as heat stimulus intensity increased. The correlation between pain rating and PDR was disrupted when cognitive load is increased by manipulating expectations or presenting a second pain stimulus. The PDR began later after skin heating than electrical stimuli and this is the first examination of the PDR using standard nociceptive testing and manipulations of expectations and competing noxious stimulation. A method is described applying PDR to standard heat nociceptive testing, demonstrating stimulus response, reliability, and disruption by cognitive manipulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    Science.gov (United States)

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  10. Growth of sand whiff Citharichthys arenaceus and bay whiff Citharichthys spilopterus (pleuronectiformes: bothidae) in Puerto Rico (greater antilles) and North Carolina (USA), with comments on growth rate comparisons

    Science.gov (United States)

    Joyeux, Jean-Christophe; Miller, John M.; Aliaume, Catherine; Zerbi, Alfonso

    Sagittal otoliths from two bothid flatfish species ( Citharichthys arenaceus and C. spilopterus) collected in Puerto Rico were microstructurally examined and periodic increments counted. C. arenaceus length-at-age (33 to 246 days) data were best fitted by a Gompertz growth model whose parameters were estimated to be SL ∞ = 170 mm and K = 0.0166. Adult size is reached in less than one year. The peak period of hatching occurred in late spring, and settlement took place 39 days later. Due to a smaller age range (71 to 150 days), growth of C. spilopterus was described by a linear relationship with slope = 0.693 and intercept = -15.1 days. Hatching occurred in winter and spring. These two species showed no significant difference in age at settlement. After settlement, growth of C. spilopterus (0.69 mm·d -1 at 71 to 113 days old) was significantly slower than that of C. arenaceus (1.00 mm·d -1 at 71 to 113 days) possibly due to poorer environmental (abiotic or food-related) conditions during the dry, cool season (December-April). C. spilopterus from North Carolina, hatched in the same period, settled about two weeks older than in Puerto Rico. Growth after settlement was significantly slower in North Carolina (0.44 mm·d -1 at 71 to 113 days) than in Puerto Rico. Environmental conditions (including temperature), distance between spawning areas and settlement grounds, and/or food availability, might explain the dissimilarity in growth observed between the two geographic areas. We recommend absolute field growth to be compared by using growth rates obtained by deriving the growth curve formula.

  11. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Directory of Open Access Journals (Sweden)

    Thomas L. Stöggl

    2017-08-01

    Full Text Available The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR in well-trained endurance athletes.Methods: Thirty-six male (n = 33 and female (n = 3 runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak: 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT. A maximal anaerobic running/cycling test (MART/MACT was performed prior to and following a 9-week training period.Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001 and peak lactate (P = 0.001 during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L−1 was changed (P > 0.05. Acute HRR was improved in HIIT (11.2%, P = 0.002 and POL (7.9%, P = 0.023 with no change in the HVLIT oriented control group.Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT had no effect on any performance or HRR outcomes.

  12. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    Science.gov (United States)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  13. Some problems in steady-state thermal conductivity with variable heat transfer rate

    International Nuclear Information System (INIS)

    Malov, Yu.I.; Martinson, L.K.; Pavlov, K.B.

    1975-01-01

    Some boundary-value problems of steady heat conductivity with an alternating heat exchange coefficient have been solved for a cylindrical region. The solutions have been performed as expansion in series with respect to eigenfunctions with the coefficients consistent with infinite systems of linear algebraic equations. A reduction method has been substantiated for those systems. The paper presents results of calculation of the temperature distribution inside the infinite cylinder with concrete tasks of heat exchange coefficient variations on the cylinder surface

  14. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  15. Shut-down dose rate analyses for the ITER electron cyclotron-heating upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian; Serikov, Arkady; Fischer, Ulrich; Lu, Lei [Institute for Neutron Physics and Reactor Technology INR (Germany); Karlsruhe Institute of Technology KIT (Germany); Spaeh, Peter; Strauss, Dirk [Institute for Applied Materials IAM (Germany); Karlsruhe Institute of Technology KIT (Germany)

    2014-10-15

    The electron cyclotron resonance heating upper launcher (ECHUL) is going to be installed in the upper port of the ITER tokamak thermonuclear fusion reactor for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). The paper reports the latest neutronic modeling and analyses which have been performed for the ITER reference front steering launcher design. It focuses on the port accessibility after reactor shut-down for which dose rate (SDDR) distributions on a fine regular mesh grid were calculated. The results are compared to those obtained for the ITER Dummy Upper Port. The calculations showed that the heterogeneous ECHUL design gives rise to enhanced radiation streaming as compared to the homogenous dummy upper port. Therefore the used launcher geometry was upgraded to a more recent development stage. The inter-comparison shows a significant improvement of the launchers shielding properties but also the necessity to further upgrade the shielding performance. Furthermore, the analysis for the homogenous dummy upper port, which represents optimal shielding inside the launcher, demonstrates that the shielding upgrade also needs to include the launcher's environment.

  16. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  17. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    Science.gov (United States)

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  18. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  19. The impact of heat waves and cold spells on mortality rates in the Dutch population

    NARCIS (Netherlands)

    Huynen, M. M.; Martens, P.; Schram, D.; Weijenberg, M. P.; Kunst, A. E.

    2001-01-01

    We conducted the study described in this paper to investigate the impact of ambient temperature on mortality in the Netherlands during 1979-1997, the impact of heat waves and cold spells on mortality in particular, and the possibility of any heat wave- or cold spell-induced forward displacement of

  20. Influence of heating rates on in situ resistance measurements of a bronze route Nb-Sn-Cu-Ta multifilamentary conductor

    International Nuclear Information System (INIS)

    Tan, K.S.; Hopkins, S.C.; Glowacki, B.A.

    2004-01-01

    The superconducting properties of a bronze process multifilamentary conductor are controlled by the structure, dimensions and composition of the intermetallic layers, which are strongly influenced by the details of the heat treatments applied to the conductor. It has previously been reported that the electrical resistivity of a Vacuumschmelze bronze process conductor varies during heat treatment, and that analysis of the conductor as a set of parallel resistors allows the features of the resistivity variation to be assigned to the progress of Nb 3 Sn intermetallic phase formation. The behaviour of NSP2 Nb-Sn-Cu-Ta bronze process multifilamentary conductors (Imperial Metal Industries) is now reported as a function of the heating rate, in preparation for more complex non-isothermal heat treatment procedures. It is shown that the resistance of the wire measured in situ by an alternating current (AC) technique can be used to observe the progress of the formation of Nb 3 Sn, and that the comparison of resistometric measurements at different heating rates can give an indication of other processes (such as recovery and recrystallisation) occurring at lower temperatures during the heating up process prior to isothermal annealing. In addition, this wire containing only about 1% of copper was carefully chosen because of the broken tantalum barriers around individual copper filaments. Therefore, the resistometric measurements were used to attempt to detect the diffusion of tin from the bronze matrix into the copper filaments at lower temperatures without noticeable influence on Nb 3 Sn phase formation. Treating the NSP2 wire as a set of parallel resistors also permits estimates to be made of the intermetallic layer thicknesses from resistometric measurements, and these are shown to be in good agreement with estimates from scanning electron microscopy. The difference in critical temperature, T c , between wires heated at different rates, with the presence of the bronze matrix

  1. Effect of heating rates of crystallization behaviour of amorphous Fe/sub 83/01/B/sub 17/ alloy

    International Nuclear Information System (INIS)

    Ashfaq, A.; Shamim, A.

    1993-01-01

    The electric resistivity of amorphous Fe/sub 83/01/B/sub 17/ alloy has been measured to study its crystallization behaviour from room temperature to about 900 K at the constant heating rates of 40, 60 and 80 K/hr. The crystallization temperature was observed to increase with the increase of heating g rate. However amorphous to crystalline path of RT-curve between the maximum and the minimum decreases with heating rate. The Resistivity Temperature (RT) curves exhibit different steps which are shown to correspond to the phase change stages of the alloy. The slope of the rt-curve after the previous step increases with the rise in heating rate and finally passes through a board peak and then rises again. From the peak shift dta of first crystallization stage activation energy was calculated by applying various peak shift equations. The values so obtained were in good agreement with those obtained with DSC measurement for (FeM)/sub 83/01/B/sub 17/ amorphous alloys where M=Mo, Ni, Cr, and V. (author)

  2. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  3. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  4. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  5. Economic analysis of solar industrial process heat systems: A methodology to determine annual required revenue and internal rate of return

    Science.gov (United States)

    Dickinson, W. C.; Brown, K. C.

    1981-08-01

    An economic evaluation of solar industrial process heat systems, is developed to determine the annual required revenue and the internal rate of return. First, a format is provided to estimate the solar system's installed cost, annual operating and maintenance expenses, and net annual solar energy delivered to the industrial process. The annual required revenue and the price of solar is calculated. The economic attractiveness of the potential solar investment can be determined by comparing the price of solar energy with the price of fossilfuel, both expressed in levelized terms. This requires calcuation of the internal rate of return on the solar investment or, in certain cases, the growth rate of return.

  6. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  7. Study of optimal operation management by a monitoring system for corrosion and heat-transfer rate of condensate pipe

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Katsmi; Kominami, Hirohiko; Atsumi, Tetsuro; Nagata, Koji (Kansai Electric Power Co., Inc., Osaka (Japan); Sumitomo Light Metal Industries Ltd., Tokyo (Japan))

    1988-09-26

    In order to optimize the anticorrosion and antifouling management of aluminum brass condensate pipes, the monitoring system was developed, which could control a corrosion resistance and heat transfer rate during operation. Since a polarization resistance could be used as an index for anticorrosion control, while a heat transmission coefficient or cleanliness factor for heat transfer control, a polarization resistance meter and fouling meter were made as prototype detectors. Fundamental test of a model condenser (simulated by-pass pipe) was performed using a processing system combined with the meters, and monitored data and analytical data of the test were arranged. System performance was ascertained to be preferable by the verification test on a real condenser, however, more compact system was required for practical use because of restriction in by-pass pipe installation. In addition to the monitoring function, a control function for sponge ball cleaning and iron ion injection was also added to keep the specified index value. 13 figs,. 1 tab.

  8. Application of multivariate adaptive regression spine-assisted objective function on optimization of heat transfer rate around a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)

    2016-12-15

    The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

  9. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  10. The effect of nitrogen gas flow rate on heat treatment of AISI SS-430: Study of microstructure and hardness

    Science.gov (United States)

    Sebayang, Perdamean; Darmawan, Bobby Aditya; Simbolon, Silviana; Alfirano, Sudiro, Toto; Aryanto, Didik

    2018-05-01

    The aim of this research was to obtain the austenite phase from ferritic stainless steel through sample heat treatment. The AISI 430 ferritic steel with the thickness of about 0.4 mm was used. The heat treatment was conducted in a tube furnace at elevated temperature of 1150, 1200, 1250 °C and nitrogen gas flow rate of 0.57 and 0.73 l/s. The samples were then rapidly quenched in water bath. An optical microscope, XRD, SEM-EDS and micro vickers hardness tester were used to characterize the sample before and after het treatment. The presence of anneal twins indicated the formation of austenite phase in the sample. Its fraction was varied from 10.89 wt% to 35.10 wt%. In addition, the heat treatment temperature strongly affected the sample hardness. The optimum hardness obtained was about 542.69 HV. According to the results, this material can be considered for biomedical applications.

  11. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  12. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability

    DEFF Research Database (Denmark)

    Buchheit, M; Voss, S C; Nybo, Lars

    2011-01-01

    The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well-trained but ......The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well......-trained but non-heat-acclimatized male adult players performed a training week in Qatar (34.6¿±¿1.9°C wet bulb globe temperature). HRex, HRR, HRV (i.e. the standard deviation of instantaneous beat-to-beat R-R interval variability measured from Poincaré plots SD1, a vagal-related index), creatine kinase (CK...... at the beginning and at the end of the training week. Throughout the intervention, HRex and HRV showed decreasing (P¿...

  13. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  14. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  15. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  16. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  17. Subjective ratings and performance in the heat and after sleep deprivation

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ling, S. van; Tan, T.K.

    2013-01-01

    Background: It has been shown that endurance performance after one night of sleep deprivation is not compromised despite the feeling of fatigue and that, in contrast, performance in the heat deteriorates even though people may feel good. However, it is essentially unknown how the estimation of

  18. Coolant material effect on the heat transfer rates of the molten metal pool with solidification

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1998-01-01

    Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed. The simulant molten pool material is tin (Sn) with the melting temperature of 232 degree C. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results for the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measured from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of the heat loss to the environment on the natural convection heat transfer in the molten pool

  19. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  20. Hydration rate and strength development of low-heat type portland cement mortar mixed with pozzolanic materials

    International Nuclear Information System (INIS)

    Matsui, Jun

    1998-01-01

    Recently, low-heat type Portland cement was specified in Japan Industrial Standards (JIS). Its hydration proceeds slowly. The results of the research so far obtained indicate that slow hydration of cement and mixing of pozzolanic materials with cement make micro-structure of harded cement paste dense and durable. In this study, a blended cement using low-heat type Portland cement and some of pozzolanic materials has been newly developed and its strength property and hydration ratio were checked. The followings are conclusion. (1) Hydration rate of cement paste varies with the replacement ratio of pozzolanic materials. (2) A good liner relationship between strength and total hydration rate of cement paste was observed. (3) A proper replacement ratio of both base-cement and pozzolanic material for manufacturing a blended cement is 50%. (author)

  1. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  2. Determination of mass flow rate and quality distributions between the subchannels of a heated bundle. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bayoumi, M.; Charlot, R.; Ricque, R.

    1976-05-01

    For analyzing, correlating and extrapolating experimental burn-out results obtained with LWR rod bundles, it is necessary to know the distributions of mass flow rate and quality between the subchannels. A description is presented of an experimental study in progress at the CEN-Grenoble for determining and adjusting the laws of mixing in the FLICA Code which is used to predict these distributions. The experiments are performed on the FRENESIE loop with Freon 12. The test section, in vertical position, consists of a four rod bundle in a channel with square section. The heat flux is axially uniform. The flow of each subchannel can be sampled in ''isokinetic conditions,'' at the end of the heating length. Thermodynamic quality and mass flow rate of the samplings are measured in steady state conditions by using respectively a calorimeter and a turbine flow meter. The test facility is described and experimental data are presented and discussed.

  3. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  4. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  5. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  6. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  7. Effect of longwall face advance rate on spontaneous heating process in the gob area - CFD modelling

    Czech Academy of Sciences Publication Activity Database

    Taraba, B.; Michalec, Zdeněk

    2011-01-01

    Roč. 90, č. 8 (2011), s. 2790-2797 ISSN 0016-2361 R&D Projects: GA ČR GA105/06/0630 Grant - others:GA ČR(CZ) GA105/08/1414 Institutional research plan: CEZ:AV0Z30860518 Keywords : coal oxidation * spontaneous heating * CFD modelling * Fluent Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 3.248, year: 2011 http://www.sciencedirect.com/science/article/pii/S0016236111001724

  8. Final results of the 'Benchmark on computer simulation of radioactive nuclides production rate and heat generation rate in a spallation target'

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Maiorino, R.J.; David, J.C.; Velarde, F.A.

    2011-01-01

    A benchmark has been organized to assess the computer simulation of nuclide production and heat generation in a spallation lead target. The physical models applied for the calculation of thick lead target activation do not produce satisfactory results for the majority of analysed nuclides, however one can observe better or worse quantitative compliance with the experimental results. Analysis of the quality of calculated results show the best performance for heavy nuclides (A: 170 - 190). For intermediate nuclides (A: 60 - 130) almost all are underestimated while for A: 130 - 170 mainly overestimated. The shape of the activity distribution in the target is well reproduced in calculations by all models but the numerical comparison shows similar performance as for the whole target. The Isabel model yields best results. As for the whole target heating rate, the results from all participants are consistent. Only small differences are observed between results from physical models. As for the heating distribution in the target it looks not quite similar. The quantitative comparison of the distributions yielded by different spallation reaction models shows for the major part of the target no serious differences - generally below 10%. However, in the most outside parts of the target front layers and the part of the target at its end behind the primary protons range, a spread higher than 40 % is obtained

  9. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    Science.gov (United States)

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    Science.gov (United States)

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  11. Greater autonomy at work

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2004-01-01

    In the past 10 years, workers in the Netherlands increasingly report more decision-making power in their work. This is important for an economy in recession and where workers face greater work demands. It makes work more interesting, creates a healthier work environment, and provides opportunities

  12. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  13. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    Science.gov (United States)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  14. Investigation of inhomogeneous deformation in band amorphous alloys at constant heating rate

    Science.gov (United States)

    Fedorov, Victor; Berezner, Arseniy; Pluzhnikova, Tatiana; Beskrovnyi, Anatolyi

    2017-11-01

    The present paper contains investigations of the creep process in the cobalt-based amorphous metallic alloy within the temperature range from 300 up to 1023 K. In all the curves of deformation there were observed jumps and dying oscillations. It is noted that the creep of the sample ribbons is unstable and results in the thinning of ribbons with tightening and crimping. There is suggested the mechanism of inhomogeneous deformation, which takes place in course of the process of creep under intermittent heating. For the evaluation of amorphism in the treated samples there have been carried out neutron-graphical and X-ray diffraction investigations, as well as thermal analysis.

  15. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  16. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  17. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  18. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J

    2015-01-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  19. Mechanical heating of the interstellar medium. I. The source and rate

    International Nuclear Information System (INIS)

    Cox, D.P.

    1979-01-01

    A simple model is presented for the evolution of a supernova disturbance in the very low density, high temperature, interstellar matrix in order to explore consequences of such disturbances on the interstellar clouds. It is assumed that higher density material is sufficiently common to impede the velocity field. It is further assumed that thermal conduction is magnetically quenched between the matrix and H I regions. The individual disturbances evolve very rapidly (tauapprox.3 x 10 5 years) to very large sizes (Rapprox.140 pc) without appreciable radiative cooling before the interior pressure becomes comparable to the ambient pressure. The net effect of the overlapping of ancient disturbances is then shown to be capable of determining this ambient presure.The work done by such blast waves in compressing interstellar clouds is estimated. An individual disturbance is found to lose at least a modest fraction of its energy in this way. The calculated power input to individual clouds is very large, resulting in large-amplitude vibrations similar to what is observed. The heating is partly impulsive (most clouds should contain at least one shock of modest strength at any time) and partly quasi-steady due to vibrational dissipation. Within large uncertainties and variations, the material temperatures are expected to be less than 100 K for n> or approx. =6 cm -3 and approach 10 4 K for n -3 . Between these densities, the temperature depends sensitively on density, elemental depletions, and fractional ionization. Thus the power input is of the magnitude required to provide a cloud, intercloud segregation of material. Unlike earlier models, however, the heating is not intrinsically accompanied by ionization. Finally, the net acceleration of clouds by these blast waves is found to be small unless the clouds initially have n -3

  20. Greater Transparency Needed

    OpenAIRE

    Angelo Melino; Michael Parkin

    2010-01-01

    Financial market participants would benefit from a better understanding of how the Bank of Canada sets the overnight interest rate in response to economic developments. More accurate forecasts of the Bank’s future policy choices would lead to better financial decisions and better price and wage-setting decisions, making it easier for the Bank to hit its 2 percent inflation target. Currently, the Bank’s internal model predicts a path for the overnight rate that is inconsistent with the expecta...

  1. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  2. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  3. The role of plasma induced substrate heating during high rate deposition of microcrystalline solar cells

    NARCIS (Netherlands)

    van den Donker, M.N.; Schmitz, R.; Appenzeller, W.; Rech, B.; Kessels, W.M.M.; Sanden, van de M.C.M.

    2006-01-01

    A 13.56 MHz parallel plate hydrogen-dild. silane plasma, operated at high pressure and high power, was used to deposit microcryst. silicon solar cells with efficiencies of 6-9% at high deposition rates of 0.4-1.2 nm/s. In this regime new challenges arise regarding temp. control, since the high

  4. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    Science.gov (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  5. Structural, morphological, and thermal characterization of kraft lignin and its charcoals obtained at different heating rates

    Science.gov (United States)

    Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel

    2018-04-01

    Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.

  6. More features, greater connectivity.

    Science.gov (United States)

    Hunt, Sarah

    2015-09-01

    Changes in our political infrastructure, the continuing frailties of our economy, and a stark growth in population, have greatly impacted upon the perceived stability of the NHS. Healthcare teams have had to adapt to these changes, and so too have the technologies upon which they rely to deliver first-class patient care. Here Sarah Hunt, marketing co-ordinator at Aid Call, assesses how the changing healthcare environment has affected one of its fundamental technologies - the nurse call system, argues the case for wireless such systems in terms of what the company claims is greater adaptability to changing needs, and considers the ever-wider range of features and functions available from today's nurse call equipment, particularly via connectivity with both mobile devices, and ancillaries ranging from enuresis sensors to staff attack alert 'badges'.

  7. Greater oil investment opportunities

    International Nuclear Information System (INIS)

    Arenas, Ismael Enrique

    1997-01-01

    Geologically speaking, Colombia is a very attractive country for the world oil community. According to this philosophy new and important steps are being taken to reinforce the oil sector: Expansion of the exploratory frontier by including a larger number of sedimentary areas, and the adoption of innovative contracting instruments. Colombia has to offer, Greater economic incentives for the exploration of new areas to expand the exploratory frontier, stimulation of exploration in areas with prospectivity for small fields. Companies may offer Ecopetrol a participation in production over and above royalties, without it's participating in the investments and costs of these fields, more favorable conditions for natural gas seeking projects, in comparison with those governing the terms for oil

  8. Enhanced specific absorption rate of bi-magnetic nanoparticles for heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Mohaned; Hempelmann, Rolf, E-mail: r.hempelmann@mx.uni-saarland.de

    2017-02-15

    Truncated octahedron bi-magnetic core/shell nanoparticles of Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} with different size distributions have been synthesized, and their structural and magnetic properties have been studied. The structure and morphology of the core/shell nanostructures were established by using X-ray diffraction, and transmission electron microscopy. Dark field-TEM and X-ray photoelectron spectroscopy results confirmed the formation of bi-magnetic core/shell nanoparticles. The synthesized nanoparticles are superparamagnetic at room temperature. The Curie temperature increases with the increase of particle size from 360 K to 394 K. The experimental results showed that core/shell nanoparticles have a higher specific absorption rate compared to the core ones. These nanoparticles are interfacial exchange coupled between hard and soft magnetic phases. We demonstrated that the specific absorption rate could be tuned by the concentration of precursor and the synthesis time. - Highlights: • Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} nanoparticles were synthesized by seed-mediated growth method. • Exchange-coupling between magnetic hard and soft phase of the magnetic nanoparticles affects the specific absorption rate. • The specific absorption rate could be tuned by the concentration of precursor and the synthesis time. • An increase of the core/shell magnetic nanoparticles size resulted in the increase of Curie temperature.

  9. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  10. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  11. Analytical Expressions for the Mixed-Order Kinetics Parameters of TL Glow Peaks Based on the two Heating Rates Method.

    Science.gov (United States)

    Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad

    2018-03-24

    The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.

  12. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions

    Directory of Open Access Journals (Sweden)

    Hamidreza Heidari

    2018-01-01

    Full Text Available Background: Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. Objective: To investigate the consistency between 2 heat stress and strain indices, ie, sweat rate and wet bulb globe temperature (WBGT, for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. Methods: During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. Results: The level of agreement between sweat rate and WBGT was poor (κ<0.2. Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. Conclusion: It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

  13. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans

    OpenAIRE

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.

    2010-01-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...

  15. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  16. Resetting of Quartz OSL (optically stimulated luminescence) Signals by Frictional Heating in Experimentally Sheared Gouges at Seismic Slip Rates.

    Science.gov (United States)

    Kim, J. H.; Choi, J. H.; Chauhan, N.; Lee, S.; Hirose, T.; Ree, J. H.

    2014-12-01

    Recent studies on natural and experimental seismic faults have revealed that frictional heating plays an important role in earthquake dynamics as well as in producing mineralogical and microstructural signatures of seismic faulting. Here, we report changes in OSL signals in quartz by frictional heating in experimental fault gouges. The gouges (80% of quartz and 20% of bentonite by weight) with a thickness of 1 mm were sheared between sandstone cylinders (diameter: 25 mm) at a normal stress of 1 MPa and slip rate of 1.31 m/s. The quartz grains from a sand dune on the western coast of South Korea were sieved to select size fractions between 90 and 250 μm. The equivalent dose (De) of the undeformed quartz grains was 8.0 ± 0.3 Gy. Upon displacement, the friction abruptly increases to the 1st peak (with friction coefficient μ ≈ 0.75) followed by slip weakening. Then the fault zones show two more peak frictions (μ ≈ 0.53~0.75) and finally reach a steady-state friction (μ ≈ 0.2~0.35). The fault can be divided into three zones based grain size (thus slip rate); slip localization (SLZ), intermediate slip-rate (ISZ) and low slip-rate (LSZ) zones. SLZ develops adjacent to the moving side of the sandstone cylinder with P-foliation and shear band. The size of quartz (Dq) in ISZ and LSZ is 5-30 μm and 50-250 μm, respectively. SEM and TEM analyses indicate that the fault gouge of SLZ consists of subangular quartz clasts (Dq ≈ 3 μm) and matrix of nano-scale quartz, unidentified silicate minerals and amorphous material. The fault zones were sectioned into six layers (~160 µm thick for each layer) parallel to the fault zone boundary for OSL analyses. Quartz grains from all the layers except the one immediately adjacent to the stationary side of the sandstone cylinder show De of 'effectively' 0 Gy indicating a full resetting of OSL signals. The partial resetting of OSL signal in the layer adjacent to the stationary side of the cylinder indicates the temperature (T

  17. Rate of mass deposition of scaling compounds from seawater on the outer surface of heat exchangers in MED evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Omar, W. [Department of Natural Resources and Chemical Engineering, Tafila Technical University, Tafila (Jordan); Ulrich, J. [FB Ingenieurwissenschaften, Institut fuer Verfahrenstechnik/TVT, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

    2006-08-15

    The scaling problem in Multi Effect Distillation (MED) evaporators is investigated by the experimental measurement of the deposition rate under different operating conditions. The measurements are conducted in a batch vessel containing artificial seawater, which is allowed to contact the outer surface of a hot pipe under controlled temperature, salinity and pH. The rate of mass deposition is higher at elevated temperature. The salinity of the seawater also influences the scaling process - an increase in salinity from 47-59 g/L leads to an increase of 75.6 % in the deposition rate. Decreasing the pH value of seawater to 2.01 results in a complete inhibition of scaling, whereas the severity of the scaling increases in neutral and basic mediums. Polyacrylic acid is tested as an antifoulant and it was found that its presence in seawater reduces the scaling process. The nature of the heat transfer surface material also plays an important role in the scaling process. It is found experimentally that the rate of scaling is higher in the case of a Cu-Ni alloy as the surface material of the tube rather than stainless steel. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Guo, Mingxing, E-mail: mingxingguo@skl.ustb.edu.cn; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-05

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube{sub ND} orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper.

  19. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Guo, Mingxing; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-01

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube ND orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper

  20. Malian children with moderate acute malnutrition who are treated with lipid-based dietary supplements have greater weight gains and recovery rates than those treated with locally produced cereal-legume products: a community-based, cluster-randomized trial.

    Science.gov (United States)

    Ackatia-Armah, Robert S; McDonald, Christine M; Doumbia, Seydou; Erhardt, Juergen G; Hamer, Davidson H; Brown, Kenneth H

    2015-03-01

    Moderate acute malnutrition (MAM), defined as weight-for-length z score between -3 and -2 or midupper arm circumference between 11.5 and 12.5 cm, affects ∼33 million children aged health centers in rural Mali were randomly assigned to provide to 1264 MAM children aged 6-35 mo one of 4 dietary supplements containing ∼500 kcal/d for 12 wk: 1) ready-to-use, lipid-based supplementary food (RUSF); 2) special corn-soy blend (CSB++); 3) locally processed, fortified flour (Misola); or 4) locally milled flours plus oil, sugar, and micronutrient powder (LMF). In total, 1178 children (93.2%) completed the study. The adjusted mean (95% CI) change in weight (kg) from baseline was greater with RUSF than with the locally processed blends and was intermediate with CSB++ [1.16 (1.08, 1.24) for RUSF, 1.04 (0.96, 1.13) for CSB++, 0.91 (0.82, 0.99) for Misola, and 0.83 (0.74, 0.92) for LMF; P < 0.001]. For length change, RUSF and CSB++ differed significantly from LMF. Sustained recovery rates were higher with RUSF (73%) than with Misola (61%) and LMF (58%), P < 0.0001; CSB++ recovery rates (68%) did not differ from any of the other groups. RUSF was more effective, but more costly, than other dietary supplements for the treatment of MAM; CSB++ yielded intermediate results. The benefits of treatment should be considered in relation to product costs and availability. © 2015 American Society for Nutrition.

  1. Evaluation of linear heat rates for the power-to-melt tests on 'JOYO' using the Monte-Carlo code 'MVP'

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Ishikawa, Makoto

    2000-04-01

    The linear heat rates of the power-to-melt (PTM) tests, performed with B5D-1 and B5D-2 subassemblies on the Experimental Fast Reactor 'JOYO', are evaluated with the continuous energy Monte-Carlo code, MVP. We can apply a whole core model to MVP, but it takes very long time for the calculation. Therefore, judging from the structure of B5D subassembly, we used the MVP code to calculate the radial distribution of linear heat rate and used the deterministic method to calculate the axial distribution. We also derived the formulas for this method. Furthermore, we evaluated the error of the linear heat rate, by evaluating the experimental error of the reactor power, the statistical error of Monte-Carlo method, the calculational model error of the deterministic method and so on. On the other hand, we also evaluated the burnup rate of the B5D assembly and compared with the measured value in the post-irradiation test. The main results are following: B5D-1 (B5101, F613632, core center). Linear heat rate: 600 W/cm±2.2%. Burnup rate: 0.977. B5D-2 (B5214, G80124, core center). Linear heat rate: 641 W/cm±2.2%. Burnup rate: 0.886. (author)

  2. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  3. Winter reduction in body mass in a very small, nonhibernating mammal: consequences for heat loss and metabolic rates.

    Science.gov (United States)

    Taylor, Jan R E; Rychlik, Leszek; Churchfield, Sara

    2013-01-01

    Low temperatures in northern winters are energetically challenging for mammals, and a special energetic burden is expected for diminutive species like shrews, which are among the smallest of mammals. Surprisingly, shrews shrink their body size in winter and reduce body and brain mass, an effect known as Dehnel's phenomenon, which is suggested to lower absolute energy intake requirements and thereby enhance survival when food availability is low. Yet reduced body size coupled with higher body-surface-to-mass ratio in these tiny mammals may result in thermoregulatory heat production at a given temperature constituting a larger proportion of the total energy expenditure. To evaluate energetic consequences of reduced body size in winter, we investigated common shrews Sorex araneus in northeastern Poland. Average body mass decreased by 19.0% from summer to winter, and mean skull depth decreased by 13.1%. There was no difference in Dehnel's phenomenon between years despite different weather conditions. The whole-animal thermal conductance (proportional to absolute heat loss) in shrews was 19% lower in winter than in summer; the difference between the two seasons remained significant after correcting for body mass and was caused by improved fur insulation in winter. Thermogenic capacity of shrews, although much enhanced in winter, did not reach its full potential of increase, and this corresponded with relatively mild subnivean temperatures. These findings indicate that, despite their small body size, shrews effectively decrease their costs of thermoregulation. The recorded decrease in body mass from summer to winter resulted in a reduction of overall resting metabolic rate (in thermoneutrality) by 18%. This, combined with the reduced heat loss, should translate to food requirements that are substantially lower than would be the case if shrews did not undergo seasonal decrease in body mass.

  4. HEAT TRANSFER METHOD

    Science.gov (United States)

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  5. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  6. Research of Heat Rates Effect on the Process Of Fuel-Bed Gasification Of “Balakhtinskoe”, “Osinnikovskoe”, “Krasnogorskoe” and “Borodinskoe” Coal Deposits

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2016-01-01

    Full Text Available Experimental research of fuel-bed gasification at different heating rates was conducted. Release of four gases (CO, NO, H2O, CO2 was determined. Optimal heating rate mode for this method of gasification was established.

  7. Tritiated-water heat-tolerance index to predict the growth rate in calves in hot deserts

    International Nuclear Information System (INIS)

    Kamal, T.H.

    1982-01-01

    It was the intention of this study to develop a heat-tolerance index that predicts at an early age the growth rate of calves in a hot desert area (Inshas). Twelve female Friesian calves aged 13-15 months were maintained in climatic chambers for 2 weeks at a mild climate (control), followed by 2 weeks at a hot climate (experimental). Determinations of body water content, body solids, body weight and final rectal temperature were undertaken during the second week of the control and experimental periods. Afterwards the animals were transferred to the farm and maintained outdoors; they were weighed at the end of the 4 summer months. Body water content and rectal temperature were 9.47 and 2.42%, respectively, higher in the hot climate than in the control at P 1 ) or body solids content (X 2 ) that had occurred previously during the 2-weeks heat stress in the climatic chamber by using the equation Y = 39.44 - 1.65X 1 or Y = 45.02 - 1.27X 2 . The standard errors of the regression coefficients for the two equations were 0.094 and 0.132, respectively. The standard errors of the predicted Y for the two equations were 0.207 and 0.218, respectively

  8. An iterative regularization method in estimating the transient heat-transfer rate on the surface of the insulation layer of a double circular pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.

    2009-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space- and time-dependent heat-transfer rate on the surface of the insulation layer of a double circular pipe heat exchanger using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat-transfer rate; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on the space- and time-dependent heat-transfer rate can be obtained for the test case considered in this study.

  9. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads

    Science.gov (United States)

    Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.

    2011-12-01

    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  10. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads

    International Nuclear Information System (INIS)

    Pestchanyi, S; Landman, I; Garkusha, I; Makhlaj, V

    2011-01-01

    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m - 2 causing surface melting and of 0.45 MJ m - 2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of N W ∼5×10 18 W per medium size ELM of 0.75 MJ m - 2 and 0.25 ms time duration has been estimated. The radiation cooling power of P rad =150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  11. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90120 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    Biohydrogen production from Thermoanaerobacterium thermosaccharolyticum strain PSU-2 was examined in upflow anaerobic sludge blanket (UASB) reactor and carrier-free upflow anaerobic reactor (UA), both fed with sucrose and operating at 60 C. Heat-pretreated methanogenic granules were used as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24 h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l{sup -1} h{sup -1}. In comparison with hydrogen production rate of 12.1 mmol H{sub 2} l{sup -1} h{sup -1} obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H{sub 2} l{sup -1} h{sup -1} was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (author)

  12. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  13. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Science.gov (United States)

    Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo

    2017-09-01

    Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  14. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Directory of Open Access Journals (Sweden)

    O. Passalacqua

    2017-09-01

    Full Text Available Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF, which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  15. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.

    Science.gov (United States)

    Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo

    2013-05-01

    In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  18. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  19. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Directory of Open Access Journals (Sweden)

    C. Lema^itre

    2010-09-01

    Full Text Available The radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP. We focus on two days (13 and 14 June 2006 of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1 was also observed locally in some limited part of the dust plumes. The uncertainty on the

  20. Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter.

    Science.gov (United States)

    Welles, Alexander P; Xu, Xiaojiang; Santee, William R; Looney, David P; Buller, Mark J; Potter, Adam W; Hoyt, Reed W

    2018-05-18

    Core body temperature (T C ) is a key physiological metric of thermal heat-strain yet it remains difficult to measure non-invasively in the field. This work used combinations of observations of skin temperature (T S ), heat flux (HF), and heart rate (HR) to accurately estimate T C using a Kalman Filter (KF). Data were collected from eight volunteers (age 22 ± 4 yr, height 1.75 ± 0.10 m, body mass 76.4 ± 10.7 kg, and body fat 23.4 ± 5.8%, mean ± standard deviation) while walking at two different metabolic rates (∼350 and ∼550 W) under three conditions (warm: 25 °C, 50% relative humidity (RH); hot-humid: 35 °C, 70% RH; and hot-dry: 40 °C, 20% RH). Skin temperature and HF data were collected from six locations: pectoralis, inner thigh, scapula, sternum, rib cage, and forehead. Kalman filter variables were learned via linear regression and covariance calculations between T C and T S , HF, and HR. Root mean square error (RMSE) and bias were calculated to identify the best performing models. The pectoralis (RMSE 0.18 ± 0.04 °C; bias -0.01 ± 0.09 °C), rib (RMSE 0.18 ± 0.09 °C; bias -0.03 ± 0.09 °C), and sternum (RMSE 0.20 ± 0.10 °C; bias -0.04 ± 0.13 °C) were found to have the lowest error values when using T S , HF, and HR but, using only two of these measures provided similar accuracy. Copyright © 2018. Published by Elsevier Ltd.

  1. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  2. Effect of the rate of heating on the quality of the primary tar in low-temperature coal-carbonization process

    Energy Technology Data Exchange (ETDEWEB)

    Turskii, Y I

    1956-01-01

    Two stages are observed. The first stage yields products of the primary and partial decomposition of coal, mainly water, CO/sub 2/, and CO as decomposition products of functional groups (-COOH, > CO, - OH, and so forth). No tar is formed in this stage. The structural decomposition and tar formation occur in the second stage. The rate of heating is important for the quality of the tar obtained. The slow rate of heating with both stages following each other yields a good-quality tar, richer in C and H, with lower O content. In case of high rate of heating both stages overlap. The tar is of poorer quality with higher specific gravity, and contains more O and asphaltenes. The complete experimental data are given in detail.

  3. Reply to Comments on 'Effect of heating rate on kinetic parameters of β-irradiated Li2B4O7:Cu,Ag,P in TSL measurements'

    International Nuclear Information System (INIS)

    Ege, A; Tekin, E; Karali, T; Can, N; Prokić, M

    2009-01-01

    We appreciate the opportunity to respond to comments regarding the paper published by Ege et al (2007 Effect of heating rate on kinetic parameters of β-irradiated Li 2 B 4 O 7 :Cu,Ag,P in TSL measurements Meas. Sci. Technol. 18 889). We would like to thank the authors for taking the time to tell us about their opinion, but unfortunately we do not agree with them completely. In the article presented by Kumar and Chourasiya some comment is advanced to the analysis of the glow curves measured with different heating rates, presented in our recent study. According to our study, the area under the glow curve decreases with increasing heating rate in TL–temperature plots due to the quenching effects. Contrary to this, Kumar and Chourasiya suggest that this decrease is due to the normalization process. Here we hope to clarify any confusion regarding our published study. (reply)

  4. Reply to comments on-The effect of the heating rate on the characteristics of some experimental thermoluminescence glow curves by Rasheedy et al

    International Nuclear Information System (INIS)

    Rasheedy, M S; Zahran, E M

    2006-01-01

    In the paper by Kumar et al, some criticism is advanced to the analysis of the glow curves measured under different heating rates in the laboratory, which appeared in our recent paper [M.S. Rasheedy and E.M. Zahran, 2006 Phys. Scr., 73 98-102]. According to this analysis the area under the glow curve is conserved in both TL-time plots and TL-temperature plots. On the contrary, Kumar et al supposed increase of the area under the glow curve with increasing the heating rate in the case of TL-temperature plots. Since this criticism discredits a physical reason for conservation of the area under the glow curves due to conservation of the imparted dose at different heating rates, a reply appears to be timely

  5. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  6. Acute cell death rate of vascular smooth muscle cells during or after short heating up to 20s ranging 50 to 60°C as a basic study of thermal angioplasty

    Science.gov (United States)

    Shinozuka, Machiko; Shimazaki, Natsumi; Ogawa, Emiyu; Machida, Naoki; Arai, Tsunenori

    2014-02-01

    We studied the relations between the time history of smooth muscle cells (SMCs) death rate and heating condition in vitro to clarify cell death mechanism in heating angioplasty, in particular under the condition in which intimal hyperplasia growth had been prevented in vivo swine experiment. A flow heating system on the microscope stage was used for the SMCs death rate measurement during or after the heating. The cells were loaded step-heating by heated flow using a heater equipped in a Photo-thermo dynamic balloon. The heating temperature was set to 37, 50-60°C. The SMCs death rate was calculated by a division of PI stained cell number by Hoechst33342 stained cell number. The SMCs death rate increased 5-10% linearly during 20 s with the heating. The SMCs death rate increased with duration up to 15 min after 5 s heating. Because fragmented nuclei were observed from approximately 5 min after the heating, we defined that acute necrosis and late necrosis were corresponded to within 5 min after the heating and over 5 min after the heating, respectively. This late necrosis is probably corresponding to apoptosis. The ratio of necrotic interaction divided the acute necrosis rate by the late necrosis was calculated based on this consideration as 1.3 under the particular condition in which intimal hyperplasia growth was prevented in vivo previous porcine experiment. We think that necrotic interaction rate is larger than expected rate to obtain intimal hyperplasia suppression.

  7. Improving chemical solution deposited YBa 2Cu 3O 7- δ film properties via high heating rates

    Science.gov (United States)

    Siegal, M. P.; Dawley, J. T.; Clem, P. G.; Overmyer, D. L.

    2003-12-01

    The superconducting and structural properties of YBa 2Cu 3O 7- δ (YBCO) films grown from chemical solution deposited (CSD) metallofluoride-based precursors improve by using high heating rates to the desired growth temperature. This is due to avoiding the nucleation of undesirable a-axis grains at lower temperatures, from 650 to 800 °C in p(O 2)=0.1%. Minimizing time spent in this range during the temperature ramp of the ex situ growth process depresses a-axis grain growth in favor of the desired c-axis orientation. Using optimized conditions, this results in high-quality YBCO films on LaAlO 3(1 0 0) with Jc(77 K) ∼ 3 MA/cm 2 for films thicknesses ranging from 60 to 140 nm. In particular, there is a dramatic decrease in a-axis grains in coated-conductors grown on CSD Nb-doped SrTiO 3(1 0 0) buffered Ni(1 0 0) tapes.

  8. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress[OA

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M.; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W.; Zhu, Genhai

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions. PMID:17933901

  9. A short-term rating method for heat pump heating systems; phase 5: test of the fault diagnosis systems; Kurztestmethode fuer Waermepumpenanlagen; Phase 5: Test der Fehlerdiagnosesysteme

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, D.; Esfandiar, S.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the testing phase of a project that developed systems for the operational monitoring and optimisation of heat pump installations along with a diagnosis system for faults. The heat pump is considered as a sub-system. The report describes two monitoring systems and a simulation model that are used to monitor the state of the heat pump both during commissioning as well as during operation. The aim is also to detect faults as early as possible during the whole of the operational life of the installation. A state-orientated approach is propagated as being cheaper than fixed service intervals or repairing after breakdown and standstill. The development of the two monitoring systems called 'HeatWatch' and 'FuzzyWatch' is described. The effort needed for the parametrisation and training of these systems is discussed. The testing of the systems on two test beds using real-life measured values for a single-family home and further simulation data is described and the results listed. The authors state that the monitoring systems can also be used for refrigeration and air-conditioning systems.

  10. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  11. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  12. NLP modeling for the optimization of LiBr-H_2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    International Nuclear Information System (INIS)

    Mussati, Sergio F.; Gernaey, Krist V.; Morosuk, Tatiana; Mussati, Miguel C.

    2016-01-01

    Highlights: • A NLP model is used for simultaneous optimization of sizes and operating conditions. • Total exergy loss rate and transfer area are optimized as single objective functions. • Theoretical and practical bounds for cost optimization problems are computed. • A systematic solution strategy is proposed for total annual cost optimization. • Relevance of components is ranked by heat transfer area, exergy loss rate, and cost. - Abstract: Based on a nonlinear mathematical programming model, the sizes and operating conditions of the process units of single-effect absorption refrigeration systems operating with a LiBr–H_2O solution are optimized for a specified cooling capacity by minimizing three single objective functions: the total exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively and quantitatively with increasing available total heat transfer area. These optimization results allowed to find a “practical” value of the total heat transfer area, i.e. no benefits can be obtained by increasing the available total heat transfer area above this value since the minimal total exergy loss value cannot

  13. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  14. Modification of the Ti40Cu36Zr10Pd14 BMG Crystallization Mechanism with Heating Rates 10-140 K/min

    Science.gov (United States)

    Czeppe, T.; Sypien, A.; Wierzbicka-Miernik, A.

    2016-12-01

    The article presents investigations of Ti40Cu36Zr10Pd14 bulk metallic glass crystallization process heated with the rates of 10, 60, 100 and 140 K/min. High heating rates experiments were performed in a new type of differential scanning calorimeter equipped with a fast responding thermal sensor. Phase composition and microstructure were studied with x-ray diffraction and transmission electron microscopy. The observed crystallization proceeded in two separate steps. Applied high rates of heating/cooling resulted in the crystallization of only one CuTi phase, replacing typical multi-phase crystallization. The microstructure after crystallization was polycrystalline with some amount of amorphous phase retained. Kinetic parameters were determined with the use of the Kissinger and Friedman iso-conversional analysis and Matusita-Sakka iso-kinetic model. The kinetic analysis supplies results concerning autocatalytically activated mechanism of primary crystallization with decreasing activation energy and small density of quenched-in nuclei, in good agreement with previous structural investigations. The mechanism of secondary crystallization required dense nuclei site, increasing activation energy and large nucleation frequency. The amorphous phase of Ti40Cu36Zr10Pd14 BMG revealed high thermal stability against crystallization. Application of high heating rates in DSC experiments might be useful for the determination of mechanism and kinetic parameters in investigations of metallic glasses crystallization, giving reasonable results.

  15. Thermoluminescent response of LiF before variation of the heating rate; Respuesta termoluminiscente de LiF ante variacion de la tasa de calentamiento

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, R. [Facultad de Quimica, UAEM, 50000 Toluca, Estado de Mexico (Mexico); Avila, O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Comparisons of glow curves of lithium fluoride dosemeters TLD-100 measured to two heating rates with the purpose of quantifying the change in the temperature of the peaks 5 and 7 for the thermoluminescent reader equipment Harshaw 4000 of the thermoluminescence laboratory of the ININ were carried out. (Author)

  16. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  17. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  18. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes

    Directory of Open Access Journals (Sweden)

    T. G. Shepherd

    2009-11-01

    Full Text Available An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008 who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998, is used in several other models we provide some description of the problem and how it was fixed.

  19. Changes in the timing, length and heating degree days of the heating season in central heating zone of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui

    2016-01-01

    Climate change affects the demand for energy consumption, especially for heating and cooling buildings. Using daily mean temperature (Tmean) data, this study analyzed the spatiotemporal changes of the starting date for heating (HS), ending date for heating (HE), length (HL) and heating degree day (HDD) of the heating season in central heating zone of China. Over China’s central heating zone, regional average HS has become later by 0.97 day per decade and HE has become earlier by 1.49 days per decade during 1960–2011, resulting in a decline of HL (−2.47 days/decade). Regional averaged HDD decreased significantly by 63.22 °C/decade, which implies a decreasing energy demand for heating over the central heating zone of China. Spatially, there are generally larger energy-saving rate in the south, due to low average HDD during the heating season. Over China’s central heating zone, Tmean had a greater effect on HL in warm localities and a greater effect on HDD in cold localities. We project that the sensitivity of HL (HDD) to temperature change will increase (decrease) in a warmer climate. These opposite sensitivities should be considered when we want to predict the effects of climate change on heating energy consumption in China in the future. PMID:27651063

  20. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  1. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  2. Faster eating rates are associated with higher energy intakes during an ad libitum meal, higher BMI and greater adiposity among 4·5-year-old children: results from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort.

    Science.gov (United States)

    Fogel, Anna; Goh, Ai Ting; Fries, Lisa R; Sadananthan, Suresh A; Velan, S Sendhil; Michael, Navin; Tint, Mya-Thway; Fortier, Marielle V; Chan, Mei Jun; Toh, Jia Ying; Chong, Yap-Seng; Tan, Kok Hian; Yap, Fabian; Shek, Lynette P; Meaney, Michael J; Broekman, Birit F P; Lee, Yung Seng; Godfrey, Keith M; Chong, Mary F F; Forde, Ciarán G

    2017-04-01

    Faster eating rates are associated with increased energy intake, but little is known about the relationship between children's eating rate, food intake and adiposity. We examined whether children who eat faster consume more energy and whether this is associated with higher weight status and adiposity. We hypothesised that eating rate mediates the relationship between child weight and ad libitum energy intake. Children (n 386) from the Growing Up in Singapore Towards Healthy Outcomes cohort participated in a video-recorded ad libitum lunch at 4·5 years to measure acute energy intake. Videos were coded for three eating-behaviours (bites, chews and swallows) to derive a measure of eating rate (g/min). BMI and anthropometric indices of adiposity were measured. A subset of children underwent MRI scanning (n 153) to measure abdominal subcutaneous and visceral adiposity. Children above/below the median eating rate were categorised as slower and faster eaters, and compared across body composition measures. There was a strong positive relationship between eating rate and energy intake (r 0·61, P<0·001) and a positive linear relationship between eating rate and children's BMI status. Faster eaters consumed 75 % more energy content than slower eating children (Δ548 kJ (Δ131 kcal); 95 % CI 107·6, 154·4, P<0·001), and had higher whole-body (P<0·05) and subcutaneous abdominal adiposity (Δ118·3 cc; 95 % CI 24·0, 212·7, P=0·014). Mediation analysis showed that eating rate mediates the link between child weight and energy intake during a meal (b 13·59; 95 % CI 7·48, 21·83). Children who ate faster had higher energy intake, and this was associated with increased BMI z-score and adiposity.

  3. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  4. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  5. Effect of free swirl flow on the rate of mass and heat transfer at the bottom of a vertical cylindrical container and possible applications

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Abdel-Aziz, M.H.; Abdo, M.S.E.; Hassan, M.S.; Sedahmed, G.H.

    2017-01-01

    Highlights: • Mass transfer at the bottom of a cylindrical container was studied under decaying swirl flow. • Parameters studied are swirl flow velocity, diameter of the inlet nozzle and solution properties. • A dimensionless equation was obtained using the significant parameters. • The present results were compared with the results obtained using perpendicular inlet nozzle. • Relevance of study to the design of membrane processes was highlighted. - Abstract: Rates of mass transfer at the base of a vertical cylindrical container were determined under decaying swirl flow by the electrochemical technique. Variables studied were swirl flow solution velocity, diameter of the tangential inlet nozzle and physical properties of the solution. The data were correlated by a dimensionless mass transfer equation. The equation can be used to predict the rate of heat loss from the bottom of swirl flow equipment as well as the rate of diffusion controlled corrosion of the bottom. The importance of the derived equation in the design and scale up of a cylindrical batch recirculating catalytic or electrochemical reactor with a catalyst layer or electrode at the bottom and a cooling jacket around the vertical wall suitable for conducting exothermic liquid – solid diffusion controlled reactions which need rapid temperature control to avoid the loss of heat sensitive catalysts or heat sensitive products was pointed out. Comparison of the present results with the results obtained using perpendicular inlet nozzle which generates parallel flow at the bottom and axial flow along the cylindrical container revealed the fact that although swirl flow produces higher rates of heat and mass transfer at the cylindrical wall than axial flow and the reverse is true at the container base. Relevance of the present study to the design and operation of membrane processes and heat recovery from hot pools of liquid metals and low melting alloys in the production stage was highlighted.

  6. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)

    2017-08-20

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.

  7. Heat-induced mineral imbalance in ruminants as diagnosed by radioisotopes turnover rate. Part of a coordinated programme on the use of isotope techniques to diagnose moderate mineral imbalances in farm animals

    International Nuclear Information System (INIS)

    Kamal, T.H.

    1980-12-01

    The mineral balance was determined in 14 Holstein heifers maintained in metabolic cages in a climatic chamber under temperate (19 0 C for 33 days) and tropical (40 0 C five hours daily and 19 0 C the remainder of the day for 11 days) conditions. Mineral balances were determined during the last 9 days of each trial. The data revealed that Ca, P and Mg balances decreased under conditions of thermal stress and that this decrease became more severe with increasing time under conditions of thermal stress. The results were attributed to destruction of tissue under heat stress with concommitant washing out of minerals due to increased water turnover. On the other hand, Na and K balances were not adversely affected by heat stress. Studies of the turnover rate of 131 I in rats under temperate (28 0 C) and tropical (35 0 C) conditions for 8 days revealed that the removal rate constant was larger and the half-life shorter under temperate conditions. These results suggest that iodine requirements for animals may be greater under mild as compared to tropical environmental conditions

  8. The Variations of Thermal Contact Resistance and Heat Transfer Rate of the AlN Film Compositing with PCM

    Directory of Open Access Journals (Sweden)

    Huann-Ming Chou

    2015-01-01

    Full Text Available The electrical industries have been fast developing over the past decades. Moreover, the trend of microelements and packed division multiplex is obviously for the electrical industry. Hence, the high heat dissipative and the electrical insulating device have been popular and necessary. The thermal conduct coefficient of aluminum nitride (i.e., AlN is many times larger than the other materials. Moreover, the green technology of composite with phase change materials (i.e., PCMs is worked as a constant temperature cooler. Therefore, PCMs have been used frequently for saving energy and the green environment. Based on the above statements, it does show great potential in heat dissipative for the AlN film compositing with PCM. Therefore, this paper is focused on the research of thermal contact resistance and heat transfer between the AlN/PCM pairs. According to the experimental results, the heat transfer decreases and the thermal contact resistance increases under the melting process of PCM. However, the suitable parameters such as contact pressures can be used to improve the above defects.

  9. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    Science.gov (United States)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  10. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood...... because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103-104 K s-1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated...

  11. Scan-rate and vacuum pressure dependence of the nucleation and growth dynamics in a spin-crossover single crystal: the role of latent heat.

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2018-04-04

    Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.

  12. A high rate of non-compliance confounds the study of whole grains and weight maintenance in a randomised intervention trial - the case for greater use of dietary biomarkers in nutrition intervention studies

    DEFF Research Database (Denmark)

    Kristensen, Mette Bredal; Pelletier, Xavier; Ross, Alastair B.

    2017-01-01

    than expected in both intervention groups, further supporting a lack of compliance to the post-weight-loss diet. The rate of compliance was too low to conclude any effect of whole grain on weight maintenance, and reinforces the need to use objective measures of compliance in nutrition intervention......-week dietary intervention phase, there were no group differences in changes in body weight and total fat mass %, whereas abdominal fat mass tended to increase more during the dietary intervention phase in the WG compared to the RG group (0.7 (SD 3.6) vs. -0.3 (SD 3.8) %; p = 0.052). Plasma...... alkylresorcinol concentrations, biomarkers of wholegrain wheat and rye intake, indicated poor compliance, particularly in the WG group, where >60% of participants had alkylresorcinol concentrations below 70 nmol/L, a concentration indicating low or no intake of whole-grain wheat. Further, weight regain was lower...

  13. Analysis of the behavior of an experimental absorption heat transformer for water purification for different mass flux rates in the generator

    International Nuclear Information System (INIS)

    Huicochea, Armando; Rivera, Wilfrido; Martínez, Hiram; Siqueiros, Javier; Cadenas, Erasmo

    2013-01-01

    In the present study, first and second laws of thermodynamics have been used to analyse the performance of an experimental absorption heat transformer for water purification. Irreversibilities, coefficients of performance (COP) and exergy coefficients of performance (ECOP) were determined as function of the mass flow of hot water supplied to the generator and as function of the overall thermal specific energy consumption (OSTEC) parameter defined in this paper. The results showed that the system irreversibilities increase meanwhile the coefficients of performance and the exergy coefficient of performance decrease with an increment of the mass flow of hot water supplied to the generator. Also it was shown that the system performance is better when the production of purified water increases due to the increment of the heat recycled to the generator and evaporator. -- Highlights: ► Exergetic performance of an absorption heat transformer for purifying water to different mass flux rates in the generator. ► The irreversibilities are increasing when the mass flow rate in the generator is major. ► The mass flow rates in the generator plays a decisive role in the whole system efficiency

  14. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates.

    Science.gov (United States)

    Lemaire, R; Menanteau, S

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10(5) K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  15. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S. [Mines Douai, EI, F-59508 Douai (France)

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  16. The Neighboring Column Approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    International Nuclear Information System (INIS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to −150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only −100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5–2 higher compared to a 1D

  17. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    Directory of Open Access Journals (Sweden)

    Hidouri Khaoula

    2017-07-01

    Full Text Available In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD and a Simple Solar Distiller Hybrid with a Heat Pump (SSDHP stills. Experimental results and those calculated by Lewis number correlation show good agreements. Results obtained by Dunkle, Kumar and Tiwari correlations are not satisfactory with the experimental ones. Theoretical results, as well as statistical analysis, are presented. The model with heat pump ( for two configurations (111 and (001 give more output compared with the model without heat pump ((000 and (110. This results where agree for the use of the statistic results, the error it less with Lewis number as compared with the different correlation.

  18. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  19. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation of the ice heat storage type air conditioning system and roles of the Heat Pump and Heat Storage Center; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsushiki kucho system no fukyu to heat pump chikunetsu center no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T.

    1998-02-01

    This paper introduces the roles played by the `Heat Pump and Heat Storage Center`. This foundation had been performing research and development and international information exchange in devices and equipment as the `Heat Pump Technology Development Center`. Development of heat storage type air conditioning systems as a measure for load leveling, and efforts of their proliferation and enlightenment were added to the business activities. As a result, the foundation`s name was changed to the present name. Its activities being planned and performed include: interest supplementing operation for installation of an air conditioning system of the heat pump system using storage of latent heat such as ice heat storage, holding seminars for promoting proliferation of the ice heat storage type air conditioning system, opening the home page, participation in exhibitions of various types, and preparation of different publicity tools. More specifically, carrying series advertisements in newspapers and magazines, holding nation-wide symposiums tying up with Japan Economic Press, publishing an organ newspaper targeted at both of experts and general people, and preparation of general pamphlets to introduce comprehensively the information about heat storage. 3 figs., 1 tab.

  20. Basal metabolic rate of endotherms can be modeled using heat-transfer principles and physiological concepts: reply to "can the basal metabolic rate of endotherms be explained by biophysical modeling?".

    Science.gov (United States)

    Roberts, Michael F; Lightfoot, Edwin N; Porter, Warren P

    2011-01-01

    Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.

  1. Simulation of the dynamics of sausage development in a z pinch with a high rate of thermonuclear heat production

    International Nuclear Information System (INIS)

    Vikhrev, V.V.; Rozanova, G.A.

    1993-01-01

    The development of the sausage instability in a z pinch is accompanied by the formulation of a high-temperature plasma. This high-temperature region initiates a wave of thermonuclear burning propagating along the pinch. A numerical solution of the MHD equations has been carried out, taking into account plasma energy losses through radiation and thermonuclear heating. Results of calculations on the growth of the sausage instability are presented for ρr = 0.23 g/cm 2 . It is accompanied by the development of a stable wave of thermonuclear burning. 12 refs., 4 figs

  2. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation.

    Science.gov (United States)

    Kawase, Tomoyuki; Kamiya, Mana; Kobayashi, Mito; Tanaka, Takaaki; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2015-05-01

    Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment. © 2014 Wiley Periodicals, Inc.

  3. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  4. Combustion Heat Release Rate Comparison of Algae Hydroprocessed Renewable Diesel to F-76 in a Two-Stroke Diesel Engine

    Science.gov (United States)

    2013-06-01

    was recorded. Figure 14 shows the gauge on the rocker arm during calibration . Figure 14. Mechanical Injector Rocker Arm Strain Gauge. D. DATA...RELEASE RATE COMPARISON OF ALGAE HYDROPROCESSED RENEWABLE DIESEL TO F-76 IN A TWO-STROKE DIESEL ENGINE by John H. Petersen June 2013 Thesis...RELEASE RATE COMPARISON OF ALGAE HYDROPROCESSED RENEWABLE DIESEL TO F-76 IN A TWO-STROKE DIESEL ENGINE 5. FUNDING NUMBERS 6. AUTHOR(S) John H

  5. Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: A [11C]DASB PET study

    DEFF Research Database (Denmark)

    Kupers, Ron; Frokjaer, Vibe G.; Erritzoe, David

    2010-01-01

    There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [11C]DASB to study the relationship between SERT binding in the brain and....... The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.......) tonic noxious heat stimulus. PET data were analyzed using both volume-of-interest (VOI) and voxel-based approaches. VOI analysis revealed a significant negative correlation between tonic pain ratings and SERT binding in the hypothalamus (r = −0.59; p = 0.008), a finding confirmed by the parametric...... analysis. The parametric analysis also revealed a negative correlation between tonic pain ratings and SERT binding in the right anterior insula. Measures of regional SERT binding did not correlate with pain threshold or with responses to short phasic suprathreshold phasic heat stimuli. Finally, the VOI...

  6. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  7. High Efficiency SiC/SiC Composite Heat Exchanger Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet propulsion systems for future hypersonic aerospace vehicles will be subjected to heating rates far greater than current materials can manage. In order to...

  8. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    International Nuclear Information System (INIS)

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments

  9. Application of information statistical theory to the description of the effect of heat conduction on the chemical reaction rate in gases

    International Nuclear Information System (INIS)

    Fort, J.; Cukrowski, A.S.

    1998-01-01

    The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions. (author)

  10. Benzene Evolution Rates from Saltstone Prepared with 2X ITP Flowsheet Concentrations of Phenylborates and Heated to 85 Degrees C

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The Saltstone Facility provides the final treatment and disposal of low level liquid wastes streams. At the Saltstone Facility, the waste is mixed with cement, flyash, and slag to form a grout, which is pumped into large concrete vaults where it cures. The facility started radioactive operations in June 1990. High Level Waste Engineering requested Savannah River Technology Center to determine the effect of TPB and its decomposition products (i.e., 3PB, 2PB, and 1PB) on the saltstone process. Previous testing performed by SRTC determined saltstone benzene evolution rates a function of ITP filtrate composition. Testing by the Thermal Fluids Laboratory has shown at design operation, the temperature in the Z-area vaults could reach 85 degrees Celsius. Saltstone asked SRTC to perform additional testing to determine whether curing at 85 degrees Celsius could change saltstone benzene evolution rates. This document describes the test performed to determine the effect of curing temperature on the benzene evolution rates

  11. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov

    2008-01-01

    as carrier to immobilize T. thermosaccharolyticum strain PSU-2 in UASB reactor operated at a hydraulic retention time (HRT) ranging from 0.75 to 24h and corresponding sucrose loading rate from 58.5 to 2.4 mmol sucrose l(-1)h(-1). In comparison with hydrogen production rate of 12.1 mmol H(2)l(-1)h(-1......) obtained by carrier-free reactor upflow anaerobic (UA) system, a greatly improved hydrogen production rate up to 152 mmol H(2)l(-1)h(-1) was demonstrated by the granular cells in UASB system. The biofilm of T. thermosaccharolyticum strain PSU-2 developed on treated methanogenic granules in UASB reactor...... substantially enhanced biomass retention (3 times), and production of hydrogen (12 times) compared to carrier-free reactor. It appears to be the most preferred process for highly efficient dark fermentative hydrogen production from sugar containing wastewater under thermophilic conditions. (C) 2008...

  12. An expert system for corrosion rate monitoring and diagnosis in the heating circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Balducelli, C.; Conte, E.; Federico, A.G.; Tripi, A.; Ronchetti, C.

    1988-01-01

    The radiation field of out of core components of a water reactor primary plant depends on corrosion product equilibria. The computer programs that try to simulate the behaviour of the corrosion products and the radiation build up didn't provide good results, especially in describing several different plants with the same program. In order to obtain better results the authors decided to use a different approach, building an expert system, which performs on-line corrosion rate monitoring by means of a number of probes connected to an automatic corrosimeter, evaluates expected corrosion rate values and behaviours, and, if there are discrepancies, performs a diagnosis, providing suggestions to overcome the difficulty. (author)

  13. Evaluation of growth and gas exchange rates of two local saudi wheat cultivars grown under heat stress conditions

    International Nuclear Information System (INIS)

    Boutraa, T.; Akhkha, A.; Shoaibi, A.K.

    2015-01-01

    The present study investigated the effects of three temperature regimes, low (20 degree C), moderate (25 degree C) and high (30 degree C), on growth and physiological parameters of two local Saudi wheat (Triticum durum) cultivars, Hab-Ahmar and Algaimi. Plants were grown under controlled environment in growth chambers. After four weeks plants were harvested and the following growth parameters were measured; plant height, number of tillers, leaf area, root length, fresh and dry weight. Physiological traits include chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and chlorophyll fluorescence parameters; Fo, Fm and Fv/Fm. In cultivar Hab-Ahmar, moderate and high temperatures caused significant decrease in most growth and physiological parameters such as plant height, number of tillers, leaf area, fresh and dry weight, chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and the maximum quantum yield of photosystem II (Fv/Fm). In contrast, cv. Algaimi was shown to be more thermotolerant to moderate and high temperatures, with the exception of some growth parameters that were decreased. Unlike cultivar Hab-Ahmar, cultivar Algaimi had an increased rate of dark respiration when temperature was high (30 degree C). Stomatal behavior is shown to be positively correlated with the rates of photosynthesis in both cultivars; however, in cultivar Hab-Ahmar such correlation decreased as temperature increased. (author)

  14. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  15. Regional Disparities in Apprentice Attrition Rates: Heat and Quarter Four's Significance in Northern Australia

    Science.gov (United States)

    Zoellner, Don; Brearley, Matt; Oppermann, Elspeth

    2017-01-01

    Apprenticeship completion rates have remained persistently low for decades in spite of broad agreement over the causes of non-completions. A possible factor missing from these explanations is climate, particularly in northern Australia where traditional trade apprentices are exposed to extreme conditions and exert themselves. We hypothesize that:…

  16. [Autoerotic fatalities in Greater Dusseldorf].

    Science.gov (United States)

    Hartung, Benno; Hellen, Florence; Borchard, Nora; Huckenbeck, Wolfgang

    2011-01-01

    Autoerotic fatalities in the Greater Dusseldorf area correspond to the relevant medicolegal literature. Our results included exclusively young to middle-aged, usually single men who were found dead in their city apartments. Clothing and devices used showed a great variety. Women's or fetish clothing and complex shackling or hanging devices were disproportionately frequent. In most cases, death occurred due to hanging or ligature strangulation. There was no increased incidence of underlying psychiatric disorders. In most of the deceased no or at least no remarkable alcohol intoxication was found. Occasionally, it may be difficult to reliably differentiate autoerotic accidents, accidents occurring in connection with practices of bondage & discipline, dominance & submission (BDSM) from natural death, suicide or homicide.

  17. Planning for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs

  18. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  19. COMBUSTION HEAT RELEASE RATE ANALYSIS OF C.I. ENGINE WITH SECONDARY CO-INJECTION OF DEE-H2O SOLUTION - A VIBRATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANA MURTHY

    2015-08-01

    Full Text Available This paper discusses the combustion propensity of single cylinder direct injection engine fueled with palm kernel methyl ester (PKME, which is non- edible oil and a secondary co-injection of saturated Diethyl ether (DEE with water. DEE along with water is fumigated through a high pressure nozzle fitted to the inlet manifold of the engine and the flow rate of the secondary injection was electronically controlled. DEE is known to improve the cold starting problem in engines when used in straight diesel fuel. However, its application in emulsion form is little known. Experimental results show that for 5% DEE- H2O solution injection, occurrence of maximum net heat release rate is delayed due to controlled premixed combustion, which normally helped in better torque conversion when the piston is in accelerated mode. Vibration measurements in the frequency range of 900Hz to 1300Hz revealed that a new mode of combustion has taken place with different excitation frequencies.

  20. The mineralogical phase transformation of invisible gold-concentrate by microwave heating, and enhancement of their gold leaching rate

    Science.gov (United States)

    Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung

    2015-04-01

    In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.

  1. The development of NRTM-turbine flow meter and measurement of the coolant flow rate in-core of 5 MW heating reactor

    International Nuclear Information System (INIS)

    Zha Meisheng; Wang Xiuqin; Ni Mengchen

    1995-01-01

    In order to measure the coolant flow rate in-core of 5 MW Heating Reactor the special turbine flowmeter of the type of NRTM has been developed. It consists of a body, a turbine with long screw blade and six pieces of Alnico magnets, and a coil mounted on the body. The advantage of this turbine flowmeter is of low resistance and long working-life. Another advantage is that when the turbine is working or not working its factor of resistance is about the same. It is very important for a natural circulation heating reactor. Because the cable, which is welded to the coil assembly, is long enough to extend out of the reactor vessel to the control room, the signal of flow rate is easy to be disturbed by noise in the case. The traditional method of counting the frequency of the A-C voltage which is induced in the coil has a poor ability for resisting noise. The method of the frequency-spectrum analysis of the frequency of the A-C voltage is used to make sure the accuracy of the measurement of the turbine flow meter. Compared with the method of the count it has a good ability for resisting noise. After three years operation a lot of valuable data were obtained

  2. Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures

    International Nuclear Information System (INIS)

    Feng, Yong-Qiang; Hung, Tzu-Chen; Wu, Shang-Lun; Lin, Chih-Hung; Li, Bing-Xi; Huang, Kuo-Chen; Qin, Jiang

    2017-01-01

    Highlights: • The operation characteristic of an Organic Rankine Cycle using R123 and a scroll expander have been investigated. • The behaviors and detailed discussion for those four major components are examined. • The expander isentropic efficiency presents a slight decrease first and then a sharp increase with mass flow rate. • The maximum electrical power and system generation efficiency are 2.01 kW and 3.25%, respectively. - Abstract: The test and operation characteristic of an organic Rankine cycle using R123 and a scroll expander have been investigated. The steady-state operation characteristic is addressed with the varying working fluid mass flow rates ranging of 0.124–0.222 kg/s and heat source temperatures ranging of 383.15–413.15 K. The behaviors and detailed discussion for those four major components (pump, evaporator, expander and condenser) are examined. The experimental results show that the environmental temperature presents a higher influence on the pump behaviors. The range of pump power consumption, isentropic efficiency and back work ratio are 0.21–0.32 kW, 26.76–53.96%, and 14–32%, respectively. The expander isentropic efficiency presents a slight decrease first and then a sharp increase with mass flow rate, while a degree of superheating more than 3 K is necessary to avoid expander cavitation. The expander isentropic and generator efficiencies are in range of 69.10–85.17% and 60–73%, respectively, while the respective heat transfer coefficients for evaporator and condenser are ranging of 200–400 and 450–2000 W/m"2 K. The maximum expander shaft power and electrical power are 2.78 kW and 2.01 kW, respectively, while the maximum system generating efficiency is 3.25%. Moreover, the tested thermal efficiency presents a slight decrease trend with mass flow rate.

  3. Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying

    Science.gov (United States)

    Gardiner, G. E.; O'Sullivan, E.; Kelly, J.; Auty, M. A. E.; Fitzgerald, G. F.; Collins, J. K.; Ross, R. P.; Stanton, C.

    2000-01-01

    Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59°C. An air outlet temperature of 80 to 85°C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 × 109 CFU/g for NFBC 338 and 5.2 × 107 CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at ∼1 × 109 CFU/g during 2 months of powder storage at 4°C, while a decline in the level of survival of approximately 1 log (from 7.2 × 107 to 9.5 × 106 CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures. PMID:10831444

  4. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  5. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil

    Science.gov (United States)

    da Costa, Antônio Nélson Lima; Feitosa, José Valmir; Montezuma, Péricles Afonso; de Souza, Priscila Teixeira; de Araújo, Airton Alencar

    2015-11-01

    This study compared the two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of the percentages (stressed or non-stressed cows) of rectal temperature (RT), respiratory rate (RR) and pregnancy rate (PR), and means of production and reproduction parameters to determine the group best suited to rearing in semiarid tropical climate. The experiment was conducted at the farm, in the municipality of Umirim, State of Ceará, Brazil. Two hundred and forty cows were used in a 2 × 2 factorial study; 120 of each group were kept under an intensive system during wet and dry seasons. The environmental parameters obtained were relative humidity (RH), air temperature (AT), and the temperature and humidity index (THI). Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5 % probability using the GLM procedure of SAS. Chi-square test at 5 % probability was applied to data of RT, RR, pregnancy rate (PR), and the number of AIs to obtain pregnancy. The majority of ½ Holstein cows showed mean values of RT and RR within the normal range in both periods and shifts. Most animals of the ¾ Holstein group exhibited the RR means above normal during the afternoon in the rainy and dry periods and RT means above normal during the afternoon in the dry period. After analyses, ½ Holstein crossbred cows are more capable of thermoregulating than ¾ Holstein cows under conditions of thermal stress, and the dry period was more impacting for bovine physiology with significant changes in physiological parameters, even for the first breed group. Knowledge of breed groups adapted to climatic conditions of northeastern Brazil can directly assist cattle farmers in selecting animals best adapted for forming herds.

  6. Verification of a mechanistic model for the strain rate of zircaloy-4 fuel sheaths during transient heating

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-10-01

    A mechanistic strain rate model for Zircaloy-4, named NIRVANA, was tested against experiments where pressurized fuel sheaths were strained during complex temperature-stress-time histories. The same histories were then examined to determine the spread in calculated strain which may be expected because of variations in dimensions, chemical content and mechanical properties which are allowed in the fuel sheath specifications. It was found that the variations allowed by the specifications could result in a probable spread in the predicted strain of plus or minus a factor of two from the mean value. The experimental results were well within this range. (auth)

  7. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  8. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  9. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    Science.gov (United States)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  10. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Science.gov (United States)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  11. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  12. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.

    2013-01-01

    Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane

  13. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma.

    Science.gov (United States)

    Udaka, Hiroko; Ueda, Chiaki; Goto, Shin G

    2010-12-01

    In this study, we investigated the physiological mechanisms underlying temperature tolerance using Drosophila melanogaster lines with rapid, intermediate, or slow recovery from heat or chill coma that were established by artificial selection or by free recombination without selection. Specifically, we focused on the relationships among their recovery from heat or chill coma, survival after severe heat or cold, and survival enhanced by rapid cold hardening (RCH) or heat hardening. The recovery time from heat coma was not related to the survival rate after severe heat. The line with rapid recovery from chill coma showed a higher survival rate after severe cold exposure, and therefore the same mechanisms are likely to underlie these phenotypes. The recovery time from chill coma and survival rate after severe cold were unrelated to RCH-enhanced survival. We also examined the expression of two genes, Heat-shock protein 70 (Hsp70) and Frost, in these lines to understand the contribution of these stress-inducible genes to intraspecific variation in recovery from temperature coma. The line showing rapid recovery from heat coma did not exhibit higher expression of Hsp70 and Frost. In addition, Hsp70 and Frost transcription levels were not correlated with the recovery time from chill coma. Thus, Hsp70 and Frost transcriptional regulation was not involved in the intraspecific variation in recovery from temperature coma. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  15. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez

    2013-08-01

    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  16. Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2014-10-01

    Full Text Available The present paper reports the synthesis and characterization of Ti doped ZrO2 nanophosphors. The effects of variable concentration of titanium on thermoluminescence (TL behaviour are studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for nano phosphors. The starting material used for sample preparation are Zr(NO33 and Ti(NO33 and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ti (0.05–0.5 mol% there is no any phase change found with increase the concentration of Ti. Sample shows cubic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique for optimized concentration of dopant. The good connectivity with grains and the semi-sphere like structure was found by FEGSEM. The functional group analysis was determined by Fourier transform infrared (FTIR spectroscopic techniques. The prepared phosphor examined by thermoluminescence technique. For recording TL glow curve every time 2 mg phosphor was irradiated by UV 254 nm source and fixed the heating rate at 5 °C s−1. Sample shows well resolved peak at 167 °C with a shoulder peak at 376 °C. The higher temperature peak shows the well stability and less fading in prepared phosphor. Also the effect of Ti concentration at fixed UV exposure time was studied. The effect of UV exposure time and dose versus intensity plot was studied. Sample shows linear response with dose and broaden peak with high temperature shows the more stability and less fading in TL glow curve. The linear dose response, high stability and less fading phenomenon shows the sample may be useful for thermoluminescence dosimetry application. Trapping parameters are calculated for every recorded glow curve. The

  17. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Science.gov (United States)

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  18. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  19. Effect of the heating rate on the microstructure of in situ Al2O3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system

    International Nuclear Information System (INIS)

    Zhao, Ge; Shi, Zhiming; Ta, Na; Ji, Guojun; Zhang, Ruiying

    2015-01-01

    Highlights: • The heating rate has a significant effect on the microstructures of composites. • The microstructure is determined by the diffusion rate of O and Cu in the heating stage. • The diffusion of Cu and O atoms is influenced by the heating rate. • With increasing heating rate, the Al 2 O 3 particle distribution becomes more uniformly. • With increasing heating rate, the form of Al 2 Cu changes from network to block-like. - Abstract: In this study, an in situ Al 2 O 3 particle-reinforced Al(Cu) matrix composite was successfully synthesized using a displacement reaction between Al and CuO powders. The powders were mixed at a weight ratio of 4:1 Al to CuO, cold-pressed and holding time at 900 °C for 1 h using varying heating rates. The effects of the heating rate on the microstructures of the composites were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical microscopy (MO), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results indicate that all of the composites contain Al, Al 2 O 3 particles and Al 2 Cu phases. Although the heating rate does not significantly affect the phase compositions of the composites, it has a significant effect on their microstructures, most likely because it strongly influences the diffusion rates of the Cu and O atoms. As the heating rate is increased, the Al 2 O 3 particles become more dispersed, and they have a more uniform particle size distribution. Meanwhile, the Al 2 Cu structure transforms from the network (Al + Al 2 Cu) eutectic to the block-like Al 2 Cu phase. The ∼2 μm Al 2 O 3 particles and the block-like Al 2 Cu phase are distributed uniformly in the Al matrix when the sample is placed directly into a 900 °C furnace. This sample has a relative higher Rockwell hardness B (HRB) value of 87

  20. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  1. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  2. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  3. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  4. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  5. Women at greater risk of HIV infection.

    Science.gov (United States)

    Mahathir, M

    1997-04-01

    Although many people believe that mainly men get infected with HIV/AIDS, women are actually getting infected at a faster rate than men, especially in developing countries, and suffer more from the adverse impact of AIDS. As of mid-1996, the Joint UN Program on AIDS estimated that more than 10 million of the 25 million adults infected with HIV since the beginning of the epidemic are women. The proportion of HIV-positive women is growing, with almost half of the 7500 new infections daily occurring among women. 90% of HIV-positive women live in a developing country. In Asia-Pacific, 1.4 million women have been infected with HIV out of an estimated total 3.08 million adults from the late 1970s until late 1994. Biologically, women are more vulnerable than men to infection because of the greater mucus area exposed to HIV during penile penetration. Women under age 17 years are at even greater risk because they have an underdeveloped cervix and low vaginal mucus production. Concurrent sexually transmitted diseases increase the risk of HIV transmission. Women's risk is also related to their exposure to gender inequalities in society. The social and economic pressures of poverty exacerbate women's risk. Prevention programs are discussed.

  6. Differences in the ovine HSP90AA1 gene expression rates caused by two linked polymorphisms at its promoter affect rams sperm DNA fragmentation under environmental heat stress conditions.

    Science.gov (United States)

    Salces-Ortiz, Judit; Ramón, Manuel; González, Carmen; Pérez-Guzmán, M Dolores; Garde, J Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H; Serrano, M Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram's fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  7. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    Directory of Open Access Journals (Sweden)

    Yoshinori Kadoma

    2012-05-01

    Full Text Available The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs between the base-catalyzed hydrolysis rate constants (k1 or the rate constant with glutathione (GSH (log kGSH for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ or heat of formation (Hf calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93, but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89. By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99, but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity.

  8. The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate

    Science.gov (United States)

    Noda, S.; Ishiwatari, M.; Nakajima, K.; Takahashi, Y. O.; Takehiro, S.; Onishi, M.; Hashimoto, G. L.; Kuramoto, K.; Hayashi, Y.-Y.

    2017-01-01

    In order to investigate a possible variety of atmospheric states realized on a synchronously rotating aquaplanet, an experiment studying the impact of planetary rotation rate is performed using an atmospheric general circulation model (GCM) with simplified hydrological and radiative processes. The entire planetary surface is covered with a swamp ocean. The value of planetary rotation rate is varied from zero to the Earth's, while other parameters such as planetary radius, mean molecular weight and total mass of atmospheric dry components, and solar constant are set to the present Earth's values. The integration results show that the atmosphere reaches statistically equilibrium states for all runs; none of the calculated cases exemplifies the runaway greenhouse state. The circulation patterns obtained are classified into four types: Type-I characterized by the dominance of a day-night thermally direct circulation, Type-II characterized by a zonal wave number one resonant Rossby wave over a meridionally broad westerly jet on the equator, Type-III characterized by a long time scale north-south asymmetric variation, and Type-IV characterized by a pair of mid-latitude westerly jets. With the increase of planetary rotation rate, the circulation evolves from Type-I to Type-II and then to Type-III gradually and smoothly, whereas the change from Type-III to Type-IV is abrupt and discontinuous. Over a finite range of planetary rotation rate, both Types-III and -IV emerge as statistically steady states, constituting multiple equilibria. In spite of the substantial changes in circulation, the net energy transport from the day side to the night side remains almost insensitive to planetary rotation rate, although the partition into dry static energy and latent heat energy transports changes. The reason for this notable insensitivity is that the outgoing longwave radiation over the broad area of the day side is constrained by the radiation limit of a moist atmosphere, so that the

  9. Monopole heat

    International Nuclear Information System (INIS)

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  10. Experimental Study of Evaporative Heat Transfer Characteristics of R-134a with Channel-Bending Angle in Microchannel Heat Exchangers

    International Nuclear Information System (INIS)

    Lee, Hae Seung; Jeon, Dong Soon; Kim, Young Lyoul; Kim, Seon Chang

    2010-01-01

    Experimental investigations have been carried out to examine the evaporative heat transfer characteristics of R-134a with the channel-bending angle (CBA) in microchannel heat exchangers. In this study, we examined the effects of evaporation temperature and Reynolds number of R-134a on the evaporative heat transfer characteristics of R-134a in microchannel heat exchangers with CBAs of 120 .deg. , 150 .deg. , and 180 .deg. under counterflow conditions. Experimental results show that the evaporative heat transfer rate and evaporative heat transfer coefficient increased with an increase in the Reynolds number of R-134a. Further, the evaporative heat transfer rate corresponding to CBAs of 120 .deg. and 150 .deg. increased to values greater than the evaporative heat transfer rate corresponding to 180 .deg. by approximately 17.1% and 13.3%, respectively, for evaporating temperatures in the range 4.9-14.9 .deg. C. The evaporative heat transfer coefficient was affected by the channel angle with increasing evaporative heat transfer coefficient at small channel bending angle

  11. Improving chemical solution deposited YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film properties via high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Dawley, J.T.; Clem, P.G.; Overmyer, D.L

    2003-12-01

    The superconducting and structural properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films grown from chemical solution deposited (CSD) metallofluoride-based precursors improve by using high heating rates to the desired growth temperature. This is due to avoiding the nucleation of undesirable a-axis grains at lower temperatures, from 650 to 800 deg. C in p(O{sub 2})=0.1%. Minimizing time spent in this range during the temperature ramp of the ex situ growth process depresses a-axis grain growth in favor of the desired c-axis orientation. Using optimized conditions, this results in high-quality YBCO films on LaAlO{sub 3}(1 0 0) with J{sub c}(77 K) {approx} 3 MA/cm{sup 2} for films thicknesses ranging from 60 to 140 nm. In particular, there is a dramatic decrease in a-axis grains in coated-conductors grown on CSD Nb-doped SrTiO{sub 3}(1 0 0) buffered Ni(1 0 0) tapes.

  12. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties

    Science.gov (United States)

    Hajibeygi, Mohsen; Maleki, Mahdiye; Shabanian, Meisam; Ducos, Franck; Vahabi, Henri

    2018-05-01

    New ternary nanocomposite systems containing polylvinyl chloride (PVC), chitosan modified ZnO (CMZN) nanoparticles and new synthesized polyamide (PA) were designed and prepared by solution casting method. As a potential reinforcement, CMZN was used in PVC system combined with and without PA. Morphology, mechanical, thermal and combustion properties of the all PVC systems were studied. In the presence of the CMZN, PA showed a synergistic effect on improvement of the all investigated properties of PVC. The 5 mass% loss temperature (T5) was increased from 195 °C to 243 °C in PVC/CMZN-PA nanocomposite containing 1 mass% of each PA and CMZN (PZP 2). The peak of heat release rate was decreased from 131 W/g for PVC to 104 W/g for PVC/CMZN-PA nanocomposite containing 3 mass% of each PA and CMZN (PZP 6). According to the tensile tests, compared to the neat PVC, the tensile strength was increased from 35.4 to 53.4 MPa for PZP 6.

  13. The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

    Science.gov (United States)

    Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.

    2013-11-01

    Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

  14. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  15. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Description of program or function: HEATING 7.2i and 7.3 are the most recent developments in a series of heat-transfer codes and obsolete all previous versions distributed by RSICC as SCA-1/HEATING5 and PSR-199/HEATING 6. Note that Unix and PC versions of HEATING7 are available in the CCC-545/SCALE 4.4 package. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat- generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run-time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. In June 1997 HEATING 7.3 was added to the HEATING 7.2i packages, and the Unix and PC versions of both 7.2i and 7.3 were merged into one package. HEATING 7.3 is being released as a beta-test version; therefore, it does not entirely replace HEATING 7.2i. There is no published documentation for HEATING 7.3; but a listing of input specifications, which reflects changes for 7.3, is included in the PSR-199 documentation. For 3-D

  16. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    Science.gov (United States)

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  17. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  18. FTR europia gamma heating

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1975-01-01

    Calculated and experimental gamma heating rates of europia in the Engineering Mockup Critical Assembly (EMC) were correlated. A calculated to experimental (C/E) ratio of 1.086 was established in validating the theoretical approach and computational technique applied in the calculations. Gamma heat deposition rates in the FTR with Eu 2 O 3 control absorbers were determined from three-dimensional calculations. Maximum gamma heating was found to occur near the tip of a half-inserted row 5 control rod assembly--12.8 watts/gm of europia. Gamma heating profiles were established for a single half-inserted europia absorber assembly. Local heat peaking was found not to alter significantly heating rates computed in the FTR core model, where larger mesh interval sizes precluded examination of spatially-limited heating gradients. These computations provide the basis for thermal-hydraulic analyses to ascertain temperature profiles in the FTR under europia control

  19. House of Commons No 2027. Proposal of law aiming at applying the reduced AVT rate to the selling and delivery of electricity, gas and fuel oil for domestic space heating use

    International Nuclear Information System (INIS)

    Nicolin, Y.

    2005-01-01

    The aim of this proposal is to apply the same 5.5% reduced added value tax to all energy sources when used for domestic space heating. This reduce tax rate is today only applied to wood wastes and products. (J.S.)

  20. An oral TRPV1 antagonist attenuates laser radiant-heat-evoked potentials and pain ratings from UV(B)-inflamed and normal skin.

    Science.gov (United States)

    Schaffler, Klaus; Reeh, Peter; Duan, W Rachel; Best, Andrea E; Othman, Ahmed A; Faltynek, Connie R; Locke, Charles; Nothaft, Wolfram

    2013-02-01

    Laser (radiant-heat) evoked potentials (LEPs) from vertex-EEG peak-to-peak (PtP) amplitude were used to determine acute antinociceptive/antihyperalgesic efficacy of ABT-102, a novel TRPV1 antagonist efficacious in preclinical pain models, compared with active controls and placebo in normal and UV(B)-inflamed skin. This was a randomized, placebo- and active-controlled, double-blind, intra-individual, crossover trial. Twenty-four healthy subjects received six sequences of single doses of ABT-102 (0.5, 2, 6 mg), etoricoxib 90 mg, tramadol 100 mg and placebo. Painful stimuli were induced by CO(2) -laser on normal and UV(B) -inflamed skin. LEPs and visual analogue scale (VAS-pain) ratings were taken at baseline and hourly up to 8 h post-dose from both skin types. Compared with placebo, significant mean decreases in the primary variable of LEP PtP-amplitude from UV(B)-inflamed skin were observed with ABT-102 6 mg (P < 0.001), ABT-102 2 mg (P = 0.002), tramadol 100 mg (P < 0.001), and etoricoxib 90 mg (P = 0.001) over the 8 h period; ABT-102 0.5 mg was similar to placebo. ABT-102 6 mg was superior to active controls over the 8 h period (P < 0.05) whereas ABT-102 2 mg was comparable. Improvements in VAS scores compared with placebo were observed with ABT-102 6 mg (P < 0.001) and ABT-102 2 mg (P = 0.002). ABT-102 average plasma concentrations were 1.3, 4.4 and 9.4 ng ml(-1) for the 0.5, 2 and 6 mg doses, respectively. There were no clinically significant safety findings. TRPV-1 antagonism appears promising in the management of clinical pain, but requires further investigation. © 2012 Abbott. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  1. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  2. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

    Science.gov (United States)

    Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

    2018-03-01

    The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.

  3. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  4. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    Science.gov (United States)

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring

  8. Greater trochanteric pain syndrome diagnosis and treatment.

    Science.gov (United States)

    Mallow, Michael; Nazarian, Levon N

    2014-05-01

    Lateral hip pain, or greater trochanteric pain syndrome, is a commonly seen condition; in this article, the relevant anatomy, epidemiology, and evaluation strategies of greater trochanteric pain syndrome are reviewed. Specific attention is focused on imaging of this syndrome and treatment techniques, including ultrasound-guided interventions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    International Nuclear Information System (INIS)

    Kim, Hae Hyun

    2015-01-01

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m 2 s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m 2 s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m 2 s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m"2. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m 2 s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations

  10. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Hyun [Div. of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2015-09-15

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m{sup 2}s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m{sup 2}s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m{sup 2}s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m{sup 2}. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m{sup 2}s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations.

  11. Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST

    International Nuclear Information System (INIS)

    Kang, Myeong Gie; Chun, Moon Hyun

    1996-01-01

    In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q v ersus ΔT has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q ≤ 50kW/m 2 ) and high heat fluxes (q > 50kW/m 2 ) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q , one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (h b ) is obtained as a function of heat flux (q ) only. 9 figs., 4 tabs., 15 refs. (Author)

  12. Introduction to heat transfer

    International Nuclear Information System (INIS)

    Weisman, J.

    1983-01-01

    Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer

  13. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  14. Lifetime prediction of EC, DPA, akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption

    NARCIS (Netherlands)

    Boers, M.N.; Klerk, W.P.C. de

    2005-01-01

    A lifetime prediction study is carried out on four triple base propellant compositions by artificial ageing. The ageing effects are studied with High Performance Liquid Chromatography (HPLC) and Heat Flow Calorimetry (HFC) in order to find the most effective stabilizer and to evaluate the advantages

  15. Lifetime prediction of EC, DPA, Akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption

    Energy Technology Data Exchange (ETDEWEB)

    Boers, Marco N.; Klerk, Willem (Wim) P.C. de [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk ZH (Netherlands)

    2005-10-01

    A lifetime prediction study is carried out on four triple base propellant compositions by artificial ageing. The ageing effects are studied with High Performance Liquid Chromatography (HPLC) and Heat Flow Calorimetry (HFC) in order to find the most effective stabilizer and to evaluate the advantages and disadvantages of both methods. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  16. Simultaneous bilateral isolated greater trochanter fracture

    Directory of Open Access Journals (Sweden)

    Maruti Kambali

    2013-01-01

    Full Text Available A 48-year-old woman sustained simultaneous isolated bilateral greater trochanteric fracture, following a road traffic accident. The patient presented to us 1 month after the injury. She presented with complaints of pain in the left hip and inability to walk. Roentgenograms revealed displaced comminuted bilateral greater trochanter fractures. The fracture of the left greater trochanter was reduced and fixed internally using the tension band wiring technique. The greater trochanter fracture on the right side was asymptomatic and was managed conservatively. The patient regained full range of motion and use of her hips after a postoperative follow-up of 6 months. Isolated fractures of the greater trochanter are unusual injuries. Because of their relative rarity and the unsettled controversy regarding their etiology and pathogenesis, several methods of treatment have been advocated. Furthermore, the reports of this particular type of injury are not plentiful and the average textbook coverage afforded to this entity is limited. In our study we discuss the mechanism of injury and the various treatment options available.

  17. Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer

    International Nuclear Information System (INIS)

    Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang

    2013-01-01

    In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.

  18. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  19. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  20. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  1. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  2. Thermoregulatory efficiency is increased after heat acclimation in tropical natives.

    Science.gov (United States)

    Magalhães, Flávio C; Passos, Renata L F; Fonseca, Michele A; Oliveira, Kenya P M; Ferreira-Júnior, João B; Martini, Angelo R P; Lima, Milene R M; Guimarães, Juliana B; Baraúna, Valério G; Silami-Garcia, Emerson; Rodrigues, Luiz O C

    2010-01-01

    To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40+/-0 degrees C and 45.1+/-0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32+/-5%) in comparison to the trunk (11+/-2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs' sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency.

  3. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  4. Influence of heat transfer on walls due to aerosol decomposition rate in the containment building of nuclear power plants during heavy incidents; Einfluss des Waermeuebergangs an Waenden auf die Aerosolabbaurate im Sicherheitsbehaelter von Kernkraftwerken bei schweren Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Braun, T.

    2004-07-01

    Today, German nuclear power plants are leading in safety standards worldwide. Increasing potentials arise continuously along with improvements in technology. One of these potentials is the best-estimate simulation of fission product transport in case of a severe accident. A main part of the fission products is allocated on aerosols. Therefore, the aerosol behavior before containment leakage is important for the radioactive source term to the environment. Having a good knowledge about the main aerosol phenomena, it is possible to simulate them numerically. This enables to develop and test safety measures to limit damages before accidents occur. Within this study, the main aerosol phenomena have been ascertained and accordingly classified into formation, transport and reduction. On this basis, simulations of one- and multi-component aerosol experiments of the KAEVER series have been performed with the COCOSYS code. Due to an overprediction of the computed volume condensation rate, the results showed an overestimation of the reduction rate of insoluble aerosols. The reason was found to be the underestimation of the wall condensation rate. Based on an additional plain thermal hydraulic multi compartment experiment, these uncertainties in the wall heat transfer correlations were investigated in detail. The results show a strong dependency between the wall condensation rate and the convective heat transfer, resp. the characteristic length. In case of mainly forced convection, correct values for the characteristic length led to an underestimation of the calculated heat transfer coefficients. The analysis of the heat transfer models show an inconsistency in the coupling of free and forced convection. Therefore, an improved and consistent convection model has been developed and implemented. Both models have been tested on different experiments. Although the new model shows only minor improvements, it could be proven that the influence for forced convection is significant

  5. Study on boiling heat transfer from diode elements in an integrated circuit chip

    Energy Technology Data Exchange (ETDEWEB)

    Hijikata, Kunio; Nagasaki, Takao; Kurata, Naoki (Tokyo Institute of Technology Faculty of Engineering (Japan))

    1989-02-25

    By temperature measurement of elements in boiling experiments with diodes in an integrated circuit (IC) chip, characteristics of boiling heat transfer from tiny heat generating elements in an IC chip and thermal transfer characteristics of multiple heating elements adjoining positioned were studied. The Package of an IC was removed by acid to expose the IC chip. Electricity is applied to the diode in the IC to study the heat transfer properties. The heat transfer rate from a tiny heating element on an IC is greater than that from the conventional continual heated surface. In the case of heat generation by two adjoining elements, the relationship between the total amount of heat and the temperature of elements shows the same characteristics as in the case with a single element. The boiling heat transfer properties of an element in an IC chip are influenced by such microstructure surrounding the element as the pattern of wiring. Heat transfer increases with the decreasing size of the heating element by the heat transfer to the substrate beneath the element. 10 refs., 15 figs.

  6. Greater trochanteric fracture with occult intertrochanteric extension.

    Science.gov (United States)

    Reiter, Michael; O'Brien, Seth D; Bui-Mansfield, Liem T; Alderete, Joseph

    2013-10-01

    Proximal femoral fractures are frequently encountered in the emergency department (ED). Prompt diagnosis is paramount as delay will exacerbate the already poor outcomes associated with these injuries. In cases where radiography is negative but clinical suspicion remains high, magnetic resonance imaging (MRI) is the study of choice as it has the capability to depict fractures which are occult on other imaging modalities. Awareness of a particular subset of proximal femoral fractures, namely greater trochanteric fractures, is vital for both radiologists and clinicians since it has been well documented that they invariably have an intertrochanteric component which may require surgical management. The detection of intertrochanteric or cervical extension of greater trochanteric fractures has been described utilizing MRI but is underestimated with both computed tomography (CT) and bone scan. Therefore, if MRI is unavailable or contraindicated, the diagnosis of an isolated greater trochanteric fracture should be met with caution. The importance of avoiding this potential pitfall is demonstrated in the following case of an elderly woman with hip pain and CT demonstrating an isolated greater trochanteric fracture who subsequently returned to the ED with a displaced intertrochanteric fracture.

  7. Butterfly valves: greater use in power plants

    International Nuclear Information System (INIS)

    McCoy, M.

    1975-01-01

    Improvements in butterfly valves, particularly in the areas of automatic control and leak tightness are described. The use of butterfly valves in nuclear power plants is discussed. These uses include service in component cooling, containment cooling, and containment isolation. The outlook for further improvements and greater uses is examined. (U.S.)

  8. Greater Somalia, the never-ending dream?

    DEFF Research Database (Denmark)

    Zoppi, Marco

    2015-01-01

    This paper provides an historical analysis of the concept of Greater Somalia, the nationalist project that advocates the political union of all Somali-speaking people, including those inhabiting areas in current Djibouti, Ethiopia and Kenya. The Somali territorial unification project of “lost...

  9. District heating from Forsmark

    International Nuclear Information System (INIS)

    1980-11-01

    The district heating system of Greater Stockholm must be based on other energy sources than oil. Two alternatives are assessed, namely heat from Forsmark or a coal fueled plant in the region of Stockholm. Forsmark 3 can produce both electricity and heat from the year 1988 on. The capacity can be increased by coal fueled blocks. For low electricity use, 115 TWh in the year 1990, the Forsmark alternative will be profitable. The alternative will be profitable. The alternative with a fossile fuelled plant will be profitable when planning for high consumption of electricity, 125 TWh. The Forsmark alternative means high investments and the introduction of new techniques. (G.B.)

  10. Parametric Analysis of the feasibility of low-temperature geothermal heat recovery in sedimentary basins

    Science.gov (United States)

    Tomac, I.; Caulk, R.

    2016-12-01

    The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.

  11. Development of a pencil-type single shield graphite quasi-adiabatic calorimeter and comparison of its performance with a double-shield graphite calorimeter for the measurement of nuclear heat deposition rate in a fusion environment

    International Nuclear Information System (INIS)

    Joneja, O.P.; Rosselet, M.; Ligou, J.; Gardel, P.

    1995-01-01

    Recently, heat deposition rate measurements were reported that used a quasi-adiabatic double-shield graphite calorimeter. It was found that for a better understanding of nuclear heating due to incident radiation, having a calorimeter that could be conveniently moved axially and radially inside large material blocks would be advisable. Here, a simpler design, based on three elements, i.e., core, jacket, and shield is conceived. The fabrication and testing details are presented, and the performance of the current calorimeter is compared with a double-shield calorimeter under similar conditions. Such a system is found to be extremely sensitive and can be employed successfully at the LOTUS facility for future nuclear heat deposition rate measurements in large blocks of materials. The current design paves the way for the convenient testing of a large amount of kerma factor data required for constructing future fusion machines. The same configuration with minor changes can be extended to most of the fusion materials of interest. The core of the new calorimeter measures 11 mm in diameter and height and has overall dimensions of 24 mm in diameter and 180 mm in height. The response of the calorimeter is measured by placing it in front of the Haefely neutron generator. 12 refs., 16 figs., 9 tabs

  12. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  13. Improving greater trochanteric reattachment with a novel cable plate system.

    Science.gov (United States)

    Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan

    2013-03-01

    Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Utilization of wind energy in greater Hanover

    International Nuclear Information System (INIS)

    Sahling, U.

    1993-01-01

    Since the beginning of the Eighties, the association of communities of Greater Hanover has dealt intensively with energy and ecopolitical questions in the scope of regional planning. Renewable energy sources play a dominant role in this context. This brochure is the third contribution to the subject ''Energy policy and environmental protection''. Experts as well as possibly interested parties are addressed especially. For all 8 contributions contained, separate entries have been recorded in this database. (BWI) [de

  15. Small cities face greater impact from automation

    OpenAIRE

    Frank, Morgan R.; Sun, Lijun; Cebrian, Manuel; Youn, Hyejin; Rahwan, Iyad

    2017-01-01

    The city has proven to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: How will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across U.S. urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content su...

  16. The Greater Sekhukhune-CAPABILITY outreach project.

    Science.gov (United States)

    Gregersen, Nerine; Lampret, Julie; Lane, Tony; Christianson, Arnold

    2013-07-01

    The Greater Sekhukhune-CAPABILITY Outreach Project was undertaken in a rural district in Limpopo, South Africa, as part of the European Union-funded CAPABILITY programme to investigate approaches for capacity building for the translation of genetic knowledge into care and prevention of congenital disorders. Based on previous experience of a clinical genetic outreach programme in Limpopo, it aimed to initiate a district clinical genetic service in Greater Sekhukhune to gain knowledge and experience to assist in the implementation and development of medical genetic services in South Africa. Implementing the service in Greater Sekhukhune was impeded by a developing staff shortage in the province and pressure on the health service from the existing HIV/AIDS and TB epidemics. This situation underscores the need for health needs assessment for developing services for the care and prevention of congenital disorders in middle- and low-income countries. However, these impediments stimulated the pioneering of innovate ways to offer medical genetic services in these circumstances, including tele-teaching of nurses and doctors, using cellular phones to enhance clinical care and adapting and assessing the clinical utility of a laboratory test, QF-PCR, for use in the local circumstances.

  17. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  18. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  19. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  20. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  1. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12% were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8°C in inlet temperature showed only a 6% increase in heat transfer rate.

  2. Greater happiness for a greater number: Is that possible in Austria?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2011-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the happiness of the great number could not be measured

  3. Greater happiness for a greater number: Is that possible? If so how? (Arabic)

    NARCIS (Netherlands)

    R. Veenhoven (Ruut); E. Samuel (Emad)

    2012-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time, the happiness of the great number could not be

  4. Greater happiness for a greater number: Is that possible in Germany?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2009-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the Happiness of the great number could not be measured

  5. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  6. Search for greater stability in nuclear regulation

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1985-01-01

    The need for greater stability in nuclear regulation is discussed. Two possible approaches for dealing with the problems of new and rapidly changing regulatory requirements are discussed. The first approach relies on the more traditional licensing reform initiatives that have been considered off and on for the past decade. The second approach considers a new regulator philosophy aimed at the root causes of the proliferation of new safety requirements that have been imposed in recent years. For the past few years, the concepts of deregulation and regulatory reform have been in fashion in Washington, and the commercial nuclear power program has not remained unaffected. Many look to these concepts to provide greater stability in the regulatory program. The NRC, the nuclear industry and the administration have all been avidly pursuing regulatory reform initiatives, which take the form of both legislative and administrative proposals. Many of these proposals look to the future, and, if adopted, would have little impact on currently operating nuclear power plants or plants now under construction

  7. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  8. Modeling heat loss from the udder of a dairy cow.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin

    2016-07-01

    A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Greater utilization of wood residue fuels through improved financial planning

    International Nuclear Information System (INIS)

    Billings, C.D.; Ziemke, M.C.; Stanford, R.

    1991-01-01

    Recent events have focused attention on the promotion of greater utilization of biomass fuel. Considerations include the need to reduce increases in global warming and also to improve ground level air quality by limiting the use of fossil fuels. However, despite all these important environmentally related considerations, economics remains the most important factor in the decision process used to determine the feasibility of using available renewable fuels instead of more convenient fossil fuels. In many areas of the Southeast, this decision process involves choosing between wood residue fuels such as bark, sawdust and shavings and presently plentiful natural gas. The primary candidate users of wood residue fuels are industries that use large amounts of heat and electric power and are located near centers of activity in the forest products industry such as sawmills, veneer mills and furniture factories. Given that such facilities both produce wood residues and need large amounts of heat and electricity, it is understandable that these firms are often major users of wood-fired furnaces and boilers. The authors have observed that poor or incomplete financial planning by the subject firms is a major barrier to economic utilization of inexpensive and widely available renewable fuels. In this paper, the authors suggest that wider usage of improved financial planning could double the present modest annual incidence of new commercial wood-fueled installation

  10. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  11. Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Md. Hasan Ali

    2017-10-01

    Full Text Available This paper highlights the thermal performance of reclined (parallel to ground surface and standing (perpendicular to ground surface slinky horizontal ground heat exchangers (HGHEs with different water mass flow rates in the heating mode of continuous and intermittent operations. A copper tube with an outer surface protected with low-density polyethylene was selected as the tube material of the ground heat exchanger. Effects on ground temperature around the reclined slinky HGHE due to heat extraction and the effect of variation of ground temperatures on reclined HGHE performance are discussed. A higher heat exchange rate was experienced in standing HGHE than in reclined HGHE. The standing HGHE was affected by deeper ground temperature and also a greater amount of backfilled sand in standing HGHE (4.20 m3 than reclined HGHE (1.58 m3, which has higher thermal conductivity than site soil. For mass flow rate of 1 L/min with inlet water temperature 7 °C, the 4-day average heat extraction rates increased 45.3% and 127.3%, respectively, when the initial average ground temperatures at 1.5 m depth around reclined HGHE increased from 10.4 °C to 11.7 °C and 10.4 °C to 13.7 °C. In the case of intermittent operation, which boosted the thermal performance, a short time interval of intermittent operation is better than a long time interval of intermittent operation. Furthermore, from the viewpoint of power consumption by the circulating pump, the intermittent operation is more efficient than continuous operation.

  12. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  13. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females?

    Directory of Open Access Journals (Sweden)

    Jill M Stapleton

    Full Text Available Studies have reported that older females have impaired heat loss responses during work in the heat compared to young females. However, it remains unclear at what level of heat stress these differences occur. Therefore, we examined whole-body heat loss [evaporative (HE and dry heat loss, via direct calorimetry] and changes in body heat storage (∆Hb, via direct and indirect calorimetry in 10 young (23±4 years and 10 older (58±5 years females matched for body surface area and aerobic fitness (VO2peak during three 30-min exercise bouts performed at incremental rates of metabolic heat production of 250 (Ex1, 325 (Ex2 and 400 (Ex3 W in the heat (40°C, 15% relative humidity. Exercise bouts were separated by 15 min of recovery. Since dry heat gain was similar between young and older females during exercise (p=0.52 and recovery (p=0.42, differences in whole-body heat