WorldWideScience

Sample records for greater forecasting accuracy

  1. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  2. THE ACCURACY AND BIAS EVALUATION OF THE USA UNEMPLOYMENT RATE FORECASTS. METHODS TO IMPROVE THE FORECASTS ACCURACY

    Directory of Open Access Journals (Sweden)

    MIHAELA BRATU (SIMIONESCU

    2012-12-01

    Full Text Available In this study some alternative forecasts for the unemployment rate of USA made by four institutions (International Monetary Fund (IMF, Organization for Economic Co-operation and Development (OECD, Congressional Budget Office (CBO and Blue Chips (BC are evaluated regarding the accuracy and the biasness. The most accurate predictions on the forecasting horizon 201-2011 were provided by IMF, followed by OECD, CBO and BC.. These results were gotten using U1 Theil’s statistic and a new method that has not been used before in literature in this context. The multi-criteria ranking was applied to make a hierarchy of the institutions regarding the accuracy and five important accuracy measures were taken into account at the same time: mean errors, mean squared error, root mean squared error, U1 and U2 statistics of Theil. The IMF, OECD and CBO predictions are unbiased. The combined forecasts of institutions’ predictions are a suitable strategy to improve the forecasts accuracy of IMF and OECD forecasts when all combination schemes are used, but INV one is the best. The filtered and smoothed original predictions based on Hodrick-Prescott filter, respectively Holt-Winters technique are a good strategy of improving only the BC expectations. The proposed strategies to improve the accuracy do not solve the problem of biasness. The assessment and improvement of forecasts accuracy have an important contribution in growing the quality of decisional process.

  3. Using inferred probabilities to measure the accuracy of imprecise forecasts

    Directory of Open Access Journals (Sweden)

    Paul Lehner

    2012-11-01

    Full Text Available Research on forecasting is effectively limited to forecasts that are expressed with clarity; which is to say that the forecasted event must be sufficiently well-defined so that it can be clearly resolved whether or not the event occurred and forecasts certainties are expressed as quantitative probabilities. When forecasts are expressed with clarity, then quantitative measures (scoring rules, calibration, discrimination, etc. can be used to measure forecast accuracy, which in turn can be used to measure the comparative accuracy of different forecasting methods. Unfortunately most real world forecasts are not expressed clearly. This lack of clarity extends to both the description of the forecast event and to the use of vague language to express forecast certainty. It is thus difficult to assess the accuracy of most real world forecasts, and consequently the accuracy the methods used to generate real world forecasts. This paper addresses this deficiency by presenting an approach to measuring the accuracy of imprecise real world forecasts using the same quantitative metrics routinely used to measure the accuracy of well-defined forecasts. To demonstrate applicability, the Inferred Probability Method is applied to measure the accuracy of forecasts in fourteen documents examining complex political domains. Key words: inferred probability, imputed probability, judgment-based forecasting, forecast accuracy, imprecise forecasts, political forecasting, verbal probability, probability calibration.

  4. Ex-post evaluations of demand forecast accuracy

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Driscoll, Patrick Arthur

    2014-01-01

    Travel demand forecasts play a crucial role in the preparation of decision support to policy makers in the field of transport planning. The results feed directly into impact appraisals such as cost benefit analyses and environmental impact assessments, which are mandatory for large public works...... projects in many countries. Over the last couple of decades there has been an increasing attention to the lack of demand forecast accuracy, but since data availability for comprehensive ex- post appraisals is problematic, such studies are still relatively rare. The present paper presents a review...... of the largest ex-post studies of demand forecast accuracy for transport infrastructure projects. The focus is twofold; to provide an overview of observed levels of demand forecast inaccuracy and to explore the primary explanations offered for the observed inaccuracy. Inaccuracy in the form of both bias...

  5. THE ACCURACY OF EARNINGS FORECAST AND POST-IPO EARNINGS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Yanthi Hutagaol

    2017-03-01

    Full Text Available Prior studies showed that before IPO, many companies conducted earnings management in order to attractpotential investors through impressive earnings figures. This study aimed to investigate the tendency of earningsmanagement practice post - IPO. This practice of earnings management was motivated to preserve managers’reputation in achieving their earnings forecasts. Using a total of 165 IPOs in IDX during year 2000-2010, thisstudy employed descriptive analyses to identify the earnings management differences within the sample. A crosssectionanalysis was conducted to test the difference of earnings management indicator among the forecasters.Then, controlling for audit quality, ownership, firm size, and firm leverage, a regression analysis was performedto test the impact of earnings forecasts accuracy on the earnings management. The result of this research showedthat there was an indication that the forecasters conducted more earnings management than the non-forecasters.The study found that forecast accuracy was significantly related to managers’ behavior to manage post-IPOearnings. Further analysis showed that optimistic forecasters tended to engage more in more earning managementthan conservative forecasters. The cross section analysis confirmed that optimistic earnings forecast strengthenedthe relationship of forecast accuracy and post-IPO earnings management, while high audit quality failed toweaken it.

  6. Exploring the interactions between forecast accuracy, risk perception and perceived forecast reliability in reservoir operator's decision to use forecast

    Science.gov (United States)

    Shafiee-Jood, M.; Cai, X.

    2017-12-01

    Advances in streamflow forecasts at different time scales offer a promise for proactive flood management and improved risk management. Despite the huge potential, previous studies have found that water resources managers are often not willing to incorporate streamflow forecasts information in decisions making, particularly in risky situations. While low accuracy of forecasts information is often cited as the main reason, some studies have found that implementation of streamflow forecasts sometimes is impeded by institutional obstacles and behavioral factors (e.g., risk perception). In fact, a seminal study by O'Connor et al. (2005) found that risk perception is the strongest determinant of forecast use while managers' perception about forecast reliability is not significant. In this study, we aim to address this issue again. However, instead of using survey data and regression analysis, we develop a theoretical framework to assess the user-perceived value of streamflow forecasts. The framework includes a novel behavioral component which incorporates both risk perception and perceived forecast reliability. The framework is then used in a hypothetical problem where reservoir operator should react to probabilistic flood forecasts with different reliabilities. The framework will allow us to explore the interactions among risk perception and perceived forecast reliability, and among the behavioral components and information accuracy. The findings will provide insights to improve the usability of flood forecasts information through better communication and education.

  7. THE ACCURACY OF DEMAND FORECAST MODELS AS A CRITICAL FACTOR IN THE FINANCIAL PERFORMANCE OF THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cássia Rita Pereira Da Veiga

    2010-11-01

    Full Text Available Every organization needs to balance their production capacities with demand. The role of demand forecasting is to assist in the organization's strategic planning; this process allows administrators to anticipate the future and plot an appropriate course of action. On its own, however, a system of demand forecasting is not enough. It is the quality of information obtained by this system which enables the organization to achieve better operational planning. In this context, this paper presents case study research to: (a define the quantitative model to forecast demand with greater accuracy; and (b to verify the influence of accuracy in demand forecasting on financial performance. This is an ex-post facto descriptive inquiry with a time series in which we made use of historical data from five groups of products over the period 2004–2008. The results suggest that if a company employs the ARIMA model for groups A, B, and E; the Holt model for group D; and the Winter model for group C, revenues will increase by approximately $1,600,000 annually. Key-words: Accuracy. Demand forecasting. Financial performance. 

  8. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    Science.gov (United States)

    2016-06-01

    dataset ci = unit cost for item i fi = demand forecast for item i 28 ai = actual demand for item i A close look at fCIMIP metric reveals a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY...June 2016 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY

  9. Transit forecasting accuracy : ridership forecasts and capital cost estimates, final research report.

    Science.gov (United States)

    2009-01-01

    In 1992, Pickrell published a seminal piece examining the accuracy of ridership forecasts and capital cost estimates for fixed-guideway transit systems in the US. His research created heated discussions in the transit industry regarding the ability o...

  10. Investigating the role of time in affective forecasting: temporal influences on forecasting accuracy.

    NARCIS (Netherlands)

    Finkenauer, C.; Gallucci, M.; van Dijk, W.; Pollmann, M.M.H.

    2007-01-01

    Using extensive diary data from people taking their driver's license exam, the authors investigated the role of time in affective forecasting accuracy. Replicating existing findings, participants grossly overestimated the intensity and duration of their negative affect after failure and only

  11. Financial forecasts accuracy in Brazil's social security system.

    Directory of Open Access Journals (Sweden)

    Carlos Patrick Alves da Silva

    Full Text Available Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government's proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts.

  12. Financial forecasts accuracy in Brazil's social security system.

    Science.gov (United States)

    Silva, Carlos Patrick Alves da; Puty, Claudio Alberto Castelo Branco; Silva, Marcelino Silva da; Carvalho, Solon Venâncio de; Francês, Carlos Renato Lisboa

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government's proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts.

  13. Financial Analysts' Forecast Accuracy : Before and After the Introduction of AIFRS

    Directory of Open Access Journals (Sweden)

    Chee Seng Cheong

    2010-09-01

    Full Text Available We examine whether financial analysts’ forecast accuracy differs between the pre- and post- adoption ofAustralian Equivalents to the International Financial Reporting Standards (AIFRS. We find that forecastaccuracy has improved after Australia adopted AIFRS. As a secondary objective, this paper also investigatesthe role of financial analysts in reducing information asymmetry in today’s Australian capital market. We findweak evidence that more analysts following a stock do not help to improve forecast accuracy by bringingmore firm-specific information to the market.

  14. A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts

    Directory of Open Access Journals (Sweden)

    Hossein Hassani

    2015-08-01

    Full Text Available This paper introduces a complement statistical test for distinguishing between the predictive accuracy of two sets of forecasts. We propose a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS test, referred to as the KS Predictive Accuracy (KSPA test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. We perform a simulation study for the size and power of the proposed test and report the results for different noise distributions, sample sizes and forecasting horizons. The simulation results indicate that the KSPA test is correctly sized, and robust in the face of varying forecasting horizons and sample sizes along with significant accuracy gains reported especially in the case of small sample sizes. Real world applications are also considered to illustrate the applicability of the proposed KSPA test in practice.

  15. Analysts' Forecast Accuracy in Germany: The Effect of Different Accounting Principles and Changes of Accounting Principles

    OpenAIRE

    Jürgen Ernstberger; Simon Krotter; Christian Stadler

    2008-01-01

    This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data. Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usef...

  16. Analysts' Forecast Accuracy in Germany: The Effect of Different Accounting Principles and Changes of Accounting Principles

    Directory of Open Access Journals (Sweden)

    Jürgen Ernstberger

    2008-05-01

    Full Text Available This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data. Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usefulness of international accounting data and about the adoption effects of a change to such accounting principles.

  17. Wind power forecasting accuracy and uncertainty in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Miettinen, J.; Sillanpaeae, S.

    2013-04-15

    Wind power cannot be dispatched so the production levels need to be forecasted for electricity market trading. Lower prediction errors mean lower regulation balancing costs, since relatively less energy needs to go through balance settlement. From the power system operator point of view, wind power forecast errors will impact the system net imbalances when the share of wind power increases, and more accurate forecasts mean less regulating capacity will be activated from the real time Regulating Power Market. In this publication short term forecasting of wind power is studied mainly from a wind power producer point of view. The forecast errors and imbalance costs from the day-ahead Nordic electricity markets are calculated based on real data from distributed wind power plants. Improvements to forecasting accuracy are presented using several wind forecast providers, and measures for uncertainty of the forecast are presented. Aggregation of sites lowers relative share of prediction errors considerably, up to 60%. The balancing costs were also reduced up to 60%, from 3 euro/MWh for one site to 1-1.4 euro/MWh to aggregate 24 sites. Pooling wind power production for balance settlement will be very beneficial, and larger producers who can have sites from larger geographical area will benefit in lower imbalance costs. The aggregation benefits were already significant for smaller areas, resulting in 30-40% decrease in forecast errors and 13-36% decrease in unit balancing costs, depending on the year. The resulting costs are strongly dependent on Regulating Market prices that determine the prices for the imbalances. Similar level of forecast errors resulted in 40% higher imbalance costs for 2012 compared with 2011. Combining wind forecasts from different Numerical Weather Prediction providers was studied with different combination methods for 6 sites. Averaging different providers' forecasts will lower the forecast errors by 6% for day-ahead purposes. When combining

  18. Financial forecasts accuracy in Brazil’s social security system

    Science.gov (United States)

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government’s proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts. PMID:28859172

  19. Key Performance Indicators and Analysts' Earnings Forecast Accuracy: An Application of Content Analysis

    OpenAIRE

    Alireza Dorestani; Zabihollah Rezaee

    2011-01-01

    We examine the association between the extent of change in key performance indicator (KPI) disclosures and the accuracy of forecasts made by analysts. KPIs are regarded as improving both the transparency and relevancy of public financial information. The results of using linear regression models show that contrary to our prediction and the hypothesis of this paper, there is no significant association between the change in non- financial KPI disclosures and the accuracy of analysts' forecasts....

  20. Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia

    Science.gov (United States)

    Leonidas G. Lavdas

    1997-01-01

    National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...

  1. On the directional accuracy of survey forecasts: the case of gold and silver

    DEFF Research Database (Denmark)

    Fritsche, U.; Pierdzioch, C.; Rulke, J. C.

    2013-01-01

    We use a nonparametric market-timing test to study the directional accuracy of survey forecasts of the prices of gold and silver. We find that forecasters have market-timing ability with respect to the direction of change of the price of silver at various forecast horizons. In contrast, forecasters...... have no market-timing ability with respect to the direction of change in the gold price. Combining forecasts of both metal prices to set up a multivariate market-timing test yields no evidence of joint predictability of the directions of change of the prices of gold and silver....

  2. Forecasting space weather: Can new econometric methods improve accuracy?

    Science.gov (United States)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  3. Better Forecasting for Better Planning: A Systems Approach.

    Science.gov (United States)

    Austin, W. Burnet

    Predictions and forecasts are the most critical features of rational planning as well as the most vulnerable to inaccuracy. Because plans are only as good as their forecasts, current planning procedures could be improved by greater forecasting accuracy. Economic factors explain and predict more than any other set of factors, making economic…

  4. Short-term Inundation Forecasting for Tsunamis Version 4.0 Brings Forecasting Speed, Accuracy, and Capability Improvements to NOAA's Tsunami Warning Centers

    Science.gov (United States)

    Sterling, K.; Denbo, D. W.; Eble, M. C.

    2016-12-01

    Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.

  5. Accuracy gains of adding vote expectation surveys to a combined forecast of US presidential election outcomes

    Directory of Open Access Journals (Sweden)

    Andreas Graefe

    2015-02-01

    Full Text Available In averaging forecasts within and across four-component methods (i.e. polls, prediction markets, expert judgment and quantitative models, the combined PollyVote provided highly accurate predictions for the US presidential elections from 1992 to 2012. This research note shows that the PollyVote would have also outperformed vote expectation surveys, which prior research identified as the most accurate individual forecasting method during that time period. Adding vote expectations to the PollyVote would have further increased the accuracy of the combined forecast. Across the last 90 days prior to the six elections, a five-component PollyVote (i.e. including vote expectations would have yielded a mean absolute error of 1.08 percentage points, which is 7% lower than the corresponding error of the original four-component PollyVote. This study thus provides empirical evidence in support of two major findings from forecasting research. First, combining forecasts provides highly accurate predictions, which are difficult to beat for even the most accurate individual forecasting method available. Second, the accuracy of a combined forecast can be improved by adding component forecasts that rely on different data and different methods than the forecasts already included in the combination.

  6. The effort to increase the space weather forecasting accuracy in KSWC

    Science.gov (United States)

    Choi, J. S.

    2017-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.

  7. The Determinants of Sell-side Analysts’ Forecast Accuracy and Media Exposure

    Directory of Open Access Journals (Sweden)

    Samira Amadu Sorogho

    2017-09-01

    Full Text Available This study examines contributing factors to the differential forecasting abilities of sell-side analysts and the relation between the sentiments of these analysts and their media exposure. In particular, I investigate whether the level of optimism expressed in sell-side analysts’ reports of fifteen constituents of primarily the S&P 500 Oil and Gas Industry1, enhance the media appearance of these analysts. Using a number of variables estimated from the I/B/E/S Detail history database, 15,455 analyst reports collected from Thompson Reuters Investext and analyst media appearances obtained from Dow Jones Factiva from 1999 to 2014, I run a multiple linear regression to determine the effect of independent variables on dependent variables.  I find that an analyst’s forecast accuracy (as measured by the errors inherent in his forecasts is negatively associated with the analyst’s level of media exposure, experience, brokerage size, the number of times he revises his forecasts in a year and the number of companies followed by the analyst, and positively associated with the analyst’s level of optimism expressed in his reports, forecast horizon and the size of the company he follows.

  8. A new accuracy measure based on bounded relative error for time series forecasting.

    Science.gov (United States)

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  9. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-03-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  10. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-04-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  11. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  12. The accuracy comparison between ARFIMA and singular spectrum analysis for forecasting the sales volume of motorcycle in Indonesia

    Science.gov (United States)

    Sitohang, Yosep Oktavianus; Darmawan, Gumgum

    2017-08-01

    This research attempts to compare between two forecasting models in time series analysis for predicting the sales volume of motorcycle in Indonesia. The first forecasting model used in this paper is Autoregressive Fractionally Integrated Moving Average (ARFIMA). ARFIMA can handle non-stationary data and has a better performance than ARIMA in forecasting accuracy on long memory data. This is because the fractional difference parameter can explain correlation structure in data that has short memory, long memory, and even both structures simultaneously. The second forecasting model is Singular spectrum analysis (SSA). The advantage of the technique is that it is able to decompose time series data into the classic components i.e. trend, cyclical, seasonal and noise components. This makes the forecasting accuracy of this technique significantly better. Furthermore, SSA is a model-free technique, so it is likely to have a very wide range in its application. Selection of the best model is based on the value of the lowest MAPE. Based on the calculation, it is obtained the best model for ARFIMA is ARFIMA (3, d = 0, 63, 0) with MAPE value of 22.95 percent. For SSA with a window length of 53 and 4 group of reconstructed data, resulting MAPE value of 13.57 percent. Based on these results it is concluded that SSA produces better forecasting accuracy.

  13. China's soaring vehicle population: Even greater than forecasted?

    International Nuclear Information System (INIS)

    Wang Yunshi; Teter, Jacob; Sperling, Daniel

    2011-01-01

    China's vehicle population is widely forecasted to grow 6-11% per year into the foreseeable future. Barring aggressive policy intervention or a collapse of the Chinese economy, we suggest that those forecasts are conservative. We analyze the historical vehicle growth patterns of seven of the largest vehicle producing countries at comparable times in their motorization history. We estimate vehicle growth rates for this analogous group of countries to have 13-17% per year-roughly twice the rate forecasted for China by others. Applying these higher growth rates to China results in the total vehicle fleet reaching considerably higher volumes than forecasted by others, implying far higher global oil use and carbon emissions than projected by the International Energy Agency and others. - Highlights: → We use large, car-producing countries as models in forecasting vehicle ownership in China. → We find that vehicle growth rates in China could be twice as high as forecasted by others (including IEA). → Motorization is occurring quickly across all regions in China, not just the richer coastal areas.

  14. Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights

    NARCIS (Netherlands)

    L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)

    2009-01-01

    textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time

  15. Emotional Intelligence: A Theoretical Framework for Individual Differences in Affective Forecasting

    Science.gov (United States)

    Hoerger, Michael; Chapman, Benjamin P.; Epstein, Ronald M.; Duberstein, Paul R.

    2011-01-01

    Only recently have researchers begun to examine individual differences in affective forecasting. The present investigation was designed to make a theoretical contribution to this emerging literature by examining the role of emotional intelligence in affective forecasting. Emotional intelligence was hypothesized to be associated with affective forecasting accuracy, memory for emotional reactions, and subsequent improvement on an affective forecasting task involving emotionally-evocative pictures. Results from two studies (N = 511) supported our hypotheses. Emotional intelligence was associated with accuracy in predicting, encoding, and consolidating emotional reactions. Furthermore, emotional intelligence was associated with greater improvement on a second affective forecasting task, with the relationship explained by basic memory processes. Implications for future research on basic and applied decision making are discussed. PMID:22251053

  16. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    Science.gov (United States)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  17. Statistical and Machine Learning forecasting methods: Concerns and ways forward

    Science.gov (United States)

    Makridakis, Spyros; Assimakopoulos, Vassilios

    2018-01-01

    Machine Learning (ML) methods have been proposed in the academic literature as alternatives to statistical ones for time series forecasting. Yet, scant evidence is available about their relative performance in terms of accuracy and computational requirements. The purpose of this paper is to evaluate such performance across multiple forecasting horizons using a large subset of 1045 monthly time series used in the M3 Competition. After comparing the post-sample accuracy of popular ML methods with that of eight traditional statistical ones, we found that the former are dominated across both accuracy measures used and for all forecasting horizons examined. Moreover, we observed that their computational requirements are considerably greater than those of statistical methods. The paper discusses the results, explains why the accuracy of ML models is below that of statistical ones and proposes some possible ways forward. The empirical results found in our research stress the need for objective and unbiased ways to test the performance of forecasting methods that can be achieved through sizable and open competitions allowing meaningful comparisons and definite conclusions. PMID:29584784

  18. Statistical and Machine Learning forecasting methods: Concerns and ways forward.

    Science.gov (United States)

    Makridakis, Spyros; Spiliotis, Evangelos; Assimakopoulos, Vassilios

    2018-01-01

    Machine Learning (ML) methods have been proposed in the academic literature as alternatives to statistical ones for time series forecasting. Yet, scant evidence is available about their relative performance in terms of accuracy and computational requirements. The purpose of this paper is to evaluate such performance across multiple forecasting horizons using a large subset of 1045 monthly time series used in the M3 Competition. After comparing the post-sample accuracy of popular ML methods with that of eight traditional statistical ones, we found that the former are dominated across both accuracy measures used and for all forecasting horizons examined. Moreover, we observed that their computational requirements are considerably greater than those of statistical methods. The paper discusses the results, explains why the accuracy of ML models is below that of statistical ones and proposes some possible ways forward. The empirical results found in our research stress the need for objective and unbiased ways to test the performance of forecasting methods that can be achieved through sizable and open competitions allowing meaningful comparisons and definite conclusions.

  19. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  20. Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support

    NARCIS (Netherlands)

    C.G.H. Diks (Cees); V. Panchenko (Valentyn); O. Sokolinskiy (Oleg); D.J.C. van Dijk (Dick)

    2013-01-01

    textabstractThis paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample)

  1. Comparing the accuracy of copula-based multivariate density forecasts in selected regions of support

    NARCIS (Netherlands)

    Diks, C.; Panchenko, V.; Sokolinskiy, O.; van Dijk, D.

    2013-01-01

    This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional

  2. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  3. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Science.gov (United States)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  4. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay

    2004-01-01

    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  5. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  6. How uncertain are day-ahead wind forecasts?

    Energy Technology Data Exchange (ETDEWEB)

    Grimit, E. [3TIER Environmental Forecast Group, Seattle, WA (United States)

    2006-07-01

    Recent advances in the combination of weather forecast ensembles with Bayesian statistical techniques have helped to address uncertainties in wind forecasting. Weather forecast ensembles are a collection of numerical weather predictions. The combination of several equally-skilled forecasts typically results in a consensus forecast with greater accuracy. The distribution of forecasts also provides an estimate of forecast inaccuracy. However, weather forecast ensembles tend to be under-dispersive, and not all forecast uncertainties can be taken into account. In order to address these issues, a multi-variate linear regression approach was used to correct the forecast bias for each ensemble member separately. Bayesian model averaging was used to provide a predictive probability density function to allow for multi-modal probability distributions. A test location in eastern Canada was used to demonstrate the approach. Results of the test showed that the method improved wind forecasts and generated reliable prediction intervals. Prediction intervals were much shorter than comparable intervals based on a single forecast or on historical observations alone. It was concluded that the approach will provide economic benefits to both wind energy developers and investors. refs., tabs., figs.

  7. China's soaring vehicle population: Even greater than forecasted?

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunshi, E-mail: yunwang@ucdavis.edu [Institute of Transportation Studies, University of California, One Shields Avenue, Davis, CA 95616 (United States); Teter, Jacob, E-mail: jeteter@ucdavis.edu [Institute of Transportation Studies, University of California, One Shields Avenue, Davis, CA 95616 (United States); Sperling, Daniel, E-mail: dsperling@ucdavis.edu [Institute of Transportation Studies, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2011-06-15

    China's vehicle population is widely forecasted to grow 6-11% per year into the foreseeable future. Barring aggressive policy intervention or a collapse of the Chinese economy, we suggest that those forecasts are conservative. We analyze the historical vehicle growth patterns of seven of the largest vehicle producing countries at comparable times in their motorization history. We estimate vehicle growth rates for this analogous group of countries to have 13-17% per year-roughly twice the rate forecasted for China by others. Applying these higher growth rates to China results in the total vehicle fleet reaching considerably higher volumes than forecasted by others, implying far higher global oil use and carbon emissions than projected by the International Energy Agency and others. - Highlights: > We use large, car-producing countries as models in forecasting vehicle ownership in China. > We find that vehicle growth rates in China could be twice as high as forecasted by others (including IEA). > Motorization is occurring quickly across all regions in China, not just the richer coastal areas.

  8. Improving the accuracy of flood forecasting with transpositions of ensemble NWP rainfall fields considering orographic effects

    Science.gov (United States)

    Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei

    2016-08-01

    The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.

  9. Short-term wind power combined forecasting based on error forecast correction

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Wang, Chengfu; Dong, Xiaoming; Miao, Xiaofeng

    2016-01-01

    Highlights: • The correlation relationships of short-term wind power forecast errors are studied. • The correlation analysis method of the multi-step forecast errors is proposed. • A strategy selecting the input variables for the error forecast models is proposed. • Several novel combined models based on error forecast correction are proposed. • The combined models have improved the short-term wind power forecasting accuracy. - Abstract: With the increasing contribution of wind power to electric power grids, accurate forecasting of short-term wind power has become particularly valuable for wind farm operators, utility operators and customers. The aim of this study is to investigate the interdependence structure of errors in short-term wind power forecasting that is crucial for building error forecast models with regression learning algorithms to correct predictions and improve final forecasting accuracy. In this paper, several novel short-term wind power combined forecasting models based on error forecast correction are proposed in the one-step ahead, continuous and discontinuous multi-step ahead forecasting modes. First, the correlation relationships of forecast errors of the autoregressive model, the persistence method and the support vector machine model in various forecasting modes have been investigated to determine whether the error forecast models can be established by regression learning algorithms. Second, according to the results of the correlation analysis, the range of input variables is defined and an efficient strategy for selecting the input variables for the error forecast models is proposed. Finally, several combined forecasting models are proposed, in which the error forecast models are based on support vector machine/extreme learning machine, and correct the short-term wind power forecast values. The data collected from a wind farm in Hebei Province, China, are selected as a case study to demonstrate the effectiveness of the proposed

  10. The (in)accuracy of travel demand forecasts in the case of no-build alternatives

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Næss, Petter

    -build alternatives, in order to assess the impact of doing something rather than doing nothing. Previous research on the accuracy of demand forecasts has focused exclusively on the build alternatives, and revealed inaccuracies in the form of large imprecisions as well as systematic biases. However, little...... of dealing with congestion problems, which might prove more sustainable and resilient in the long run....

  11. Affective forecasting and self-rated symptoms of depression, anxiety, and hypomania: evidence for a dysphoric forecasting bias.

    Science.gov (United States)

    Hoerger, Michael; Quirk, Stuart W; Chapman, Benjamin P; Duberstein, Paul R

    2012-01-01

    Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n=325) supplied predicted and actual emotional reactions for three days surrounding an emotionally evocative relational event, Valentine's Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias-the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalisations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long-assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information-processing constructs, decision making, and broader domains of psychopathology.

  12. Affective Forecasting and Self-Rated Symptoms of Depression, Anxiety, and Hypomania: Evidence for a Dysphoric Forecasting Bias

    Science.gov (United States)

    Hoerger, Michael; Quirk, Stuart W.; Chapman, Benjamin P.; Duberstein, Paul R.

    2011-01-01

    Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n = 325) supplied predicted and actual emotional reactions for three days surrounding an emotionally-evocative relational event, Valentine’s Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias – the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalizations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information processing constructs, decision making, and broader domains of psychopathology. PMID:22397734

  13. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    Science.gov (United States)

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Forecaster Behaviour and Bias in Macroeconomic Forecasts

    OpenAIRE

    Roy Batchelor

    2007-01-01

    This paper documents the presence of systematic bias in the real GDP and inflation forecasts of private sector forecasters in the G7 economies in the years 1990–2005. The data come from the monthly Consensus Economics forecasting service, and bias is measured and tested for significance using parametric fixed effect panel regressions and nonparametric tests on accuracy ranks. We examine patterns across countries and forecasters to establish whether the bias reflects the inefficient use of i...

  15. The effect of cross listing on management forecast specificity and accuracy in the Netherlands

    NARCIS (Netherlands)

    A. de Jong (Abe); G.M.H. Mertens (Gerard); A.M. van der Poel (Marieke)

    2010-01-01

    textabstractAbstract: We investigate management forecasts by Dutch firms in relation to cross listings by these firms in the US or the UK. Cross listings are associated with legal and reputational bonding, since firms with a cross listing in the US or the UK face greater legal liability exposure and

  16. Robust forecast comparison

    OpenAIRE

    Jin, Sainan; Corradi, Valentina; Swanson, Norman

    2015-01-01

    Forecast accuracy is typically measured in terms of a given loss function. However, as a consequence of the use of misspecified models in multiple model comparisons, relative forecast rankings are loss function dependent. This paper addresses this issue by using a novel criterion for forecast evaluation which is based on the entire distribution of forecast errors. We introduce the concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish a ...

  17. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....

  18. Inflation Forecast Contracts

    OpenAIRE

    Gersbach, Hans; Hahn, Volker

    2012-01-01

    We introduce a new type of incentive contract for central bankers: inflation forecast contracts, which make central bankers’ remunerations contingent on the precision of their inflation forecasts. We show that such contracts enable central bankers to influence inflation expectations more effectively, thus facilitating more successful stabilization of current inflation. Inflation forecast contracts improve the accuracy of inflation forecasts, but have adverse consequences for output. On balanc...

  19. Exploring What Determines the Use of Forecasts of Varying Time Periods in Guanacaste, Costa Rica

    Science.gov (United States)

    Babcock, M.; Wong-Parodi, G.; Grossmann, I.; Small, M. J.

    2016-12-01

    Weather and climate forecasts are promoted as ways to improve water management, especially in the face of changing environmental conditions. However, studies indicate many stakeholders who may benefit from such information do not use it. This study sought to better understand which personal factors (e.g., trust in forecast sources, perceptions of accuracy) were important determinants of the use of 4-day, 3-month, and 12-month rainfall forecasts by stakeholders in water management-related sectors in the seasonally dry province of Guanacaste, Costa Rica. From August to October 2015, we surveyed 87 stakeholders from a mix of government agencies, local water committees, large farms, tourist businesses, environmental NGO's, and the public. The result of an exploratory factor analysis suggests that trust in "informal" forecast sources (traditional methods, family advice) and in "formal" sources (government, university and private company science) are independent of each other. The result of logistic regression analyses suggest that 1) greater understanding of forecasts is associated with a greater probability of 4-day and 3-month forecast use, but not 12-month forecast use, 2) a greater probability of 3-month forecast use is associated with a lower level of trust in "informal" sources, and 3), feeling less secure about water resources, and regularly using many sources of information (and specifically formal meetings and reports) are each associated with a greater probability of using 12-month forecasts. While limited by the sample size, and affected by the factoring method and regression model assumptions, these results do appear to suggest that while forecasts of all times scales are used to some extent, local decision makers' decisions to use 4-day and 3-month forecasts appear to be more intrinsically motivated (based on their level of understanding and trust) and the use of 12-month forecasts seems to be more motivated by a sense of requirement or mandate.

  20. The influence of the new ECMWF Ensemble Prediction System resolution on wind power forecast accuracy and uncertainty estimation

    DEFF Research Database (Denmark)

    Alessandrini, S.; Pinson, Pierre; Sperati, S.

    2011-01-01

    The importance of wind power forecasting (WPF) is nowadays commonly recognized because it represents a useful tool to reduce problems of grid integration and to facilitate energy trading. If on one side the prediction accuracy is fundamental to these scopes, on the other it has become also clear...... by a recalibration procedure that allowed obtaining a more uniform distribution among the 51 intervals, making the ensemble spread large enough to include the observations. After that it was observed that the EPS power spread seemed to have enough correlation with the error calculated on the deterministic forecast...

  1. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  2. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  3. Understanding Farmers’ Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles

    Science.gov (United States)

    Hu, Qi; Pytlik Zillig, Lisa M.; Lynne, Gary D.; Tomkins, Alan J.; Waltman, William J.; Hayes, Michael J.; Hubbard, Kenneth G.; Artikov, Ikrom; Hoffman, Stacey J.; Wilhite, Donald A.

    2006-09-01

    Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0 7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence.

  4. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  5. Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting

    International Nuclear Information System (INIS)

    Ardakani, F.J.; Ardehali, M.M.

    2014-01-01

    Highlights: • Novel effects of DSM data on electricity consumption forecasting is examined. • Optimal ANN models based on IPSO and SFL algorithms are developed. • Addition of DSM data to socio-economic indicators data reduces MAPE by 36%. - Abstract: Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030

  6. Using a Software Tool in Forecasting: a Case Study of Sales Forecasting Taking into Account Data Uncertainty

    Science.gov (United States)

    Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter

    2016-10-01

    Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.

  7. Adaptive time-variant models for fuzzy-time-series forecasting.

    Science.gov (United States)

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  8. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  9. PyForecastTools

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient of variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.

  10. Forecasting daily patient volumes in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by

  11. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  12. Accuracy and artifact: reexamining the intensity bias in affective forecasting.

    Science.gov (United States)

    Levine, Linda J; Lench, Heather C; Kaplan, Robin L; Safer, Martin A

    2012-10-01

    Research on affective forecasting shows that people have a robust tendency to overestimate the intensity of future emotion. We hypothesized that (a) people can accurately predict the intensity of their feelings about events and (b) a procedural artifact contributes to people's tendency to overestimate the intensity of their feelings in general. People may misinterpret the forecasting question as asking how they will feel about a focal event, but they are later asked to report their feelings in general without reference to that event. In the current investigation, participants predicted and reported both their feelings in general and their feelings about an election outcome (Study 1) and an exam grade (Study 3). We also assessed how participants interpreted forecasting questions (Studies 2 and 4) and conducted a meta-analysis of affective forecasting research (Study 5). The results showed that participants accurately predicted the intensity of their feelings about events. They overestimated only when asked to predict how they would feel in general and later report their feelings without reference to the focal event. Most participants, however, misinterpreted requests to predict their feelings in general as asking how they would feel when they were thinking about the focal event. Clarifying the meaning of the forecasting question significantly reduced overestimation. These findings reveal that people have more sophisticated self-knowledge than is commonly portrayed in the affective forecasting literature. Overestimation of future emotion is partly due to a procedure in which people predict one thing but are later asked to report another.

  13. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  14. Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting

    DEFF Research Database (Denmark)

    Kruse, Robinson; Leschinski, Christian; Will, Michael

    This paper extends the popular Diebold-Mariano test to situations when the forecast error loss differential exhibits long memory. It is shown that this situation can arise frequently, since long memory can be transmitted from forecasts and the forecast objective to forecast error loss differentials....... The nature of this transmission mainly depends on the (un)biasedness of the forecasts and whether the involved series share common long memory. Further results show that the conventional Diebold-Mariano test is invalidated under these circumstances. Robust statistics based on a memory and autocorrelation...... extensions of the heterogeneous autoregressive model. While we find that forecasts improve significantly if jumps in the log-price process are considered separately from continuous components, improvements achieved by the inclusion of implied volatility turn out to be insignificant in most situations....

  15. Short-term residential load forecasting: Impact of calendar effects and forecast granularity

    DEFF Research Database (Denmark)

    Lusis, Peter; Khalilpour, Kaveh Rajab; Andrew, Lachlan

    2017-01-01

    forecasting for a single-customer or even down at an appliance level. Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies...... how calendar effects, forecasting granularity and the length of the training set affect the accuracy of a day-ahead load forecast for residential customers. Root mean square error (RMSE) and normalized RMSE were used as forecast error metrics. Regression trees, neural networks, and support vector...... regression yielded similar average RMSE results, but statistical analysis showed that regression trees technique is significantly better. The use of historical load profiles with daily and weekly seasonality, combined with weather data, leaves the explicit calendar effects a very low predictive power...

  16. Improving the Forecasting Accuracy of Crude Oil Prices

    Directory of Open Access Journals (Sweden)

    Xuluo Yin

    2018-02-01

    Full Text Available Currently, oil is the key element of energy sustainability, and its prices and economy have a strong mutual influence. Modeling a good method to accurately predict oil prices over long future horizons is challenging and of great interest to investors and policymakers. This paper forecasts oil prices using many predictor variables with a new time-varying weight combination approach. In doing so, we first use five single-variable time-varying parameter models to predict crude oil prices separately. Second, every special model is assigned a time-varying weight by the new combination approach. Finally, the forecasting results of oil prices are calculated. The results show that the paper’s method is robust and performs well compared to random walk.

  17. A New Strategy for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available Electricity is a special energy which is hard to store, so the electricity demand forecasting remains an important problem. Accurate short-term load forecasting (STLF plays a vital role in power systems because it is the essential part of power system planning and operation, and it is also fundamental in many applications. Considering that an individual forecasting model usually cannot work very well for STLF, a hybrid model based on the seasonal ARIMA model and BP neural network is presented in this paper to improve the forecasting accuracy. Firstly the seasonal ARIMA model is adopted to forecast the electric load demand day ahead; then, by using the residual load demand series obtained in this forecasting process as the original series, the follow-up residual series is forecasted by BP neural network; finally, by summing up the forecasted residual series and the forecasted load demand series got by seasonal ARIMA model, the final load demand forecasting series is obtained. Case studies show that the new strategy is quite useful to improve the accuracy of STLF.

  18. The value of feedback in forecasting competitions

    OpenAIRE

    George Athanasopoulos; Rob J Hyndman

    2011-01-01

    In this paper we challenge the traditional design used for forecasting competitions. We implement an online competition with a public leaderboard that provides instant feedback to competitors who are allowed to revise and resubmit forecasts. The results show that feedback significantly improves forecasting accuracy.

  19. SKU demand forecasting in the presence of promotions

    NARCIS (Netherlands)

    Gür Ali, Ö.; Sayin, S.; Woensel, van T.; Fransoo, J.C.

    2009-01-01

    Promotions and shorter life cycles make grocery sales forecasting more difficult, requiring more complicated models. We identify methods of increasing complexity and data preparation cost yielding increasing improvements in forecasting accuracy, by varying the forecasting technique, the input

  20. Space Weather Forecasting Operational Needs: A view from NOAA/SWPC

    Science.gov (United States)

    Biesecker, D. A.; Onsager, T. G.; Rutledge, R.

    2017-12-01

    The gaps in space weather forecasting are many. From long lead time forecasts, to accurate warnings with lead time to take action, there is plenty of room for improvement. Significant numbers of new observations would improve this picture, but it's also important to recognize the value of numerical modeling. The obvious interplanetary mission concepts that would be ideal would be 1) to measure the in-situ solar wind along the entire Sun-Earth line from as near to the Sun as possible all the way to Earth 2) a string of spacecraft in 1 AU heliocentric orbits making in-situ measurements as well as remote-sensing observations of the Sun, corona, and heliosphere. Even partially achieving these ideals would benefit space weather services, improving lead time and providing greater accuracy further into the future. The observations alone would improve forecasting. However, integrating these data into numerical models, as boundary conditions or via data assimilation, would provide the greatest improvements.

  1. Two-sample Kalman filter and system error modelling for storm surge forecasting

    NARCIS (Netherlands)

    Sumihar, J.H.

    2009-01-01

    Two directions for improving the accuracy of sea level forecast are investigated in this study. The first direction seeks to improve the forecast accuracy of astronomical tide component. Here, a method is applied to analyze and forecast the remaining periodic components of harmonic analysis

  2. Improving Artificial Neural Network Forecasts with Kalman Filtering ...

    African Journals Online (AJOL)

    In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...

  3. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  4. Do Investors Learn About Analyst Accuracy?

    OpenAIRE

    Chang, Charles; Daouk, Hazem; Wang, Albert

    2008-01-01

    We study the impact of analyst forecasts on prices to determine whether investors learn about analyst accuracy. Our test market is the crude oil futures market. Prices rise when analysts forecast a decrease (increase) in crude supplies. In the 15 minutes following supply realizations, prices rise (fall) when forecasts have been too high (low). In both the initial price action relative to forecasts and in the subsequent reaction relative to realized forecast errors, the price response is stron...

  5. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  6. Forecasting U.S. Car Sales and Car Registrations in Japan: Rationality, Accuracy and Herding

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Rülke, Jan; Pierdzioch, Christian

    2011-01-01

    We analyze forecasts of car sales in the U.S. and forecasts of car registrations in Japan. We document a substantial heterogeneity of forecasts, and we show that, based on traditional criteria, forecasts are neither rational nor unbiased. We also report that forecasters anti-herd, that is...

  7. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    Science.gov (United States)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  8. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model

    Science.gov (United States)

    Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.

    2017-11-01

    , and is able to remove the false (inaccurately) forecasted data in the ANFIS model for extremely low flows. The present results have wider implications not only for streamflow forecasting purposes, but also for other hydro-meteorological forecasting variables requiring only the historical data input data, and attaining a greater level of predictive accuracy with the incorporation of the FFA algorithm as an optimization tool in an ANFIS model.

  9. Crop Insurance Inaccurate FCIC Price Forecasts Increase Program Costs

    National Research Council Canada - National Science Library

    1991-01-01

    ...) how FCIC can improve its forecast accuracy. We found that FCIC's corn, wheat, and soybeans price forecasts exhibit large bias errors that exceed those of other available alternative forecasts and that FCIC would have spent...

  10. Requirements and benefits of flow forecasting for improving hydropower generation

    NARCIS (Netherlands)

    Dong, Xiaohua; Vrijling, J.K.; Dohmen-Janssen, Catarine M.; Ruigh, E.; Booij, Martijn J.; Stalenberg, B.; Hulscher, Suzanne J.M.H.; van Gelder, P.H.A.J.M.; Verlaan, M.; Zijderveld, A.; Waarts, P.

    2005-01-01

    This paper presents a methodology to identify the required lead time and accuracy of flow forecasting for improving hydropower generation of a reservoir, by simulating the benefits (in terms of electricity generated) obtained from the forecasting with varying lead times and accuracies. The

  11. Economic impact analysis of load forecasting

    International Nuclear Information System (INIS)

    Ranaweera, D.K.; Karady, G.G.; Farmer, R.G.

    1997-01-01

    Short term load forecasting is an essential function in electric power system operations and planning. Forecasts are needed for a variety of utility activities such as generation scheduling, scheduling of fuel purchases, maintenance scheduling and security analysis. Depending on power system characteristics, significant forecasting errors can lead to either excessively conservative scheduling or very marginal scheduling. Either can induce heavy economic penalties. This paper examines the economic impact of inaccurate load forecasts. Monte Carlo simulations were used to study the effect of different load forecasting accuracy. Investigations into the effect of improving the daily peak load forecasts, effect of different seasons of the year and effect of utilization factors are presented

  12. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    Science.gov (United States)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  13. Forecast accuracy after pretesting with an application to the stock market

    NARCIS (Netherlands)

    Danilov, D.L.; Magnus, J.R.

    2004-01-01

    In econometrics, as a rule, the same data set is used to select the model and, conditional on the selected model, to forecast. However, one typically reports the properties of the (conditional) forecast, ignoring the fact that its properties are affected by the model selection (pretesting). This is

  14. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  15. How accurate are forecasts of costs of energy? A methodological contribution

    International Nuclear Information System (INIS)

    Siddons, Craig; Allan, Grant; McIntyre, Stuart

    2015-01-01

    Forecasts of the cost of energy are typically presented as point estimates; however forecasts are seldom accurate, which makes it important to understand the uncertainty around these point estimates. The scale of the differences between forecasts and outturns (i.e. contemporary estimates) of costs may have important implications for government decisions on the appropriate form (and level) of support, modelling energy scenarios or industry investment appraisal. This paper proposes a methodology to assess the accuracy of cost forecasts. We apply this to levelised costs of energy for different generation technologies due to the availability of comparable forecasts and contemporary estimates, however the same methodology could be applied to the components of levelised costs, such as capital costs. The estimated “forecast errors” capture the accuracy of previous forecasts and can provide objective bounds to the range around current forecasts for such costs. The results from applying this method are illustrated using publicly available data for on- and off-shore wind, Nuclear and CCGT technologies, revealing the possible scale of “forecast errors” for these technologies. - Highlights: • A methodology to assess the accuracy of forecasts of costs of energy is outlined. • Method applied to illustrative data for four electricity generation technologies. • Results give an objective basis for sensitivity analysis around point estimates.

  16. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  17. Forecasting nuclear power supply with Bayesian autoregression

    International Nuclear Information System (INIS)

    Beck, R.; Solow, J.L.

    1994-01-01

    We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)

  18. The use of ambient humidity conditions to improve influenza forecast.

    Science.gov (United States)

    Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia

    2017-11-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  19. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  20. Use of temperature to improve West Nile virus forecasts.

    Directory of Open Access Journals (Sweden)

    Nicholas B DeFelice

    2018-03-01

    Full Text Available Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.

  1. Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jui-Yi Ho

    2015-04-01

    Full Text Available The dynamic relationship between watershed characteristics and rainfall-runoff has been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary process, most deterministic flood forecasting approaches are ineffective without the assistance of adaptive algorithms. The purpose of this paper is to propose an effective flow forecasting system that integrates a rainfall forecasting model, watershed runoff model, and real-time updating algorithm. This study adopted a grey rainfall forecasting technique, based on existing hourly rainfall data. A geomorphology-based runoff model can be used for simulating impacts of the changing geo-climatic conditions on the hydrologic response of unsteady and non-linear watershed system, and flow updating algorithm were combined to estimate watershed runoff according to measured flow data. The proposed flood forecasting system was applied to three watersheds; one in the United States and two in Northern Taiwan. Four sets of rainfall-runoff simulations were performed to test the accuracy of the proposed flow forecasting technique. The results indicated that the forecast and observed hydrographs are in good agreement for all three watersheds. The proposed flow forecasting system could assist authorities in minimizing loss of life and property during flood events.

  2. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    Science.gov (United States)

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  3. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-01-01

    Full Text Available One of the most important research topics in smart grid technology is load forecasting, because accuracy of load forecasting highly influences reliability of the smart grid systems. In the past, load forecasting was obtained by traditional analysis techniques such as time series analysis and linear regression. Since the load forecast focuses on aggregated electricity consumption patterns, researchers have recently integrated deep learning approaches with machine learning techniques. In this study, an accurate deep neural network algorithm for short-term load forecasting (STLF is introduced. The forecasting performance of proposed algorithm is compared with performances of five artificial intelligence algorithms that are commonly used in load forecasting. The Mean Absolute Percentage Error (MAPE and Cumulative Variation of Root Mean Square Error (CV-RMSE are used as accuracy evaluation indexes. The experiment results show that MAPE and CV-RMSE of proposed algorithm are 9.77% and 11.66%, respectively, displaying very high forecasting accuracy.

  4. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  5. Comparison of the Short-Term Forecasting Accuracy on Battery Electric Vehicle between Modified Bass and Lotka-Volterra Model: A Case Study of China

    Directory of Open Access Journals (Sweden)

    Shunxi Li

    2017-01-01

    Full Text Available The potential demand of battery electric vehicle (BEV is the base of the decision-making to the government policy formulation, enterprise manufacture capacity expansion, and charging infrastructure construction. How to predict the future amount of BEV accurately is very important to the development of BEV both in practice and in theory. The present paper tries to compare the short-term accuracy of a proposed modified Bass model and Lotka-Volterra (LV model, by taking China’s BEV development as the case study. Using the statistics data of China’s BEV amount of 21 months from Jan 2015 to Sep 2016, we compare the simulation accuracy based on the value of mean absolute percentage error (MAPE and discuss the forecasting capacity of the two models according to China’s government expectation. According to the MAPE value, the two models have good prediction accuracy, but the Bass model is more accurate than LV model. Bass model has only one dimension and focuses on the diffusion trend, while LV model has two dimensions and mainly describes the relationship and competing process between the two populations. In future research, the forecasting advantages of Bass model and LV model should be combined to get more accurate predicting effect.

  6. The use of ambient humidity conditions to improve influenza forecast.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2017-11-01

    Full Text Available Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  7. Forecasting Interest Rates Using Geostatistical Techniques

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-11-01

    Full Text Available Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply the proposed method to forecast Euro Zero Rates (2003–2014 using the Ordinary Kriging method based on the anisotropic variogram. Furthermore, a comparison with other recent methods for forecasting yield curves is proposed. The results show that the model is characterized by good levels of predictions’ accuracy and it is competitive with the other forecasting models considered.

  8. Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR for Load Forecasting

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Lee

    2016-10-01

    Full Text Available Hybridizing chaotic evolutionary algorithms with support vector regression (SVR to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the search information sharing mechanism (tabu memory to improve the forecasting accuracy. This article presents an SVR-based load forecasting model that integrates quantum behaviors and the TS algorithm with the support vector regression model (namely SVRQTS to obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed model outperforms the alternatives.

  9. Short-term load forecasting of power system

    Science.gov (United States)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  10. Layered Ensemble Architecture for Time Series Forecasting.

    Science.gov (United States)

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  11. Do we need demographic data to forecast plant population dynamics?

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.

    2017-01-01

    Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist

  12. The psychology of intelligence analysis: drivers of prediction accuracy in world politics.

    Science.gov (United States)

    Mellers, Barbara; Stone, Eric; Atanasov, Pavel; Rohrbaugh, Nick; Metz, S Emlen; Ungar, Lyle; Bishop, Michael M; Horowitz, Michael; Merkle, Ed; Tetlock, Philip

    2015-03-01

    This article extends psychological methods and concepts into a domain that is as profoundly consequential as it is poorly understood: intelligence analysis. We report findings from a geopolitical forecasting tournament that assessed the accuracy of more than 150,000 forecasts of 743 participants on 199 events occurring over 2 years. Participants were above average in intelligence and political knowledge relative to the general population. Individual differences in performance emerged, and forecasting skills were surprisingly consistent over time. Key predictors were (a) dispositional variables of cognitive ability, political knowledge, and open-mindedness; (b) situational variables of training in probabilistic reasoning and participation in collaborative teams that shared information and discussed rationales (Mellers, Ungar, et al., 2014); and (c) behavioral variables of deliberation time and frequency of belief updating. We developed a profile of the best forecasters; they were better at inductive reasoning, pattern detection, cognitive flexibility, and open-mindedness. They had greater understanding of geopolitics, training in probabilistic reasoning, and opportunities to succeed in cognitively enriched team environments. Last but not least, they viewed forecasting as a skill that required deliberate practice, sustained effort, and constant monitoring of current affairs. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  13. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  14. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    Directory of Open Access Journals (Sweden)

    Alp Ustundag

    2009-12-01

    Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.

  15. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  16. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  17. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  18. Practical Results of Forecasting for the Natural Gas Market

    OpenAIRE

    Potocnik, Primoz; Govekar, Edvard

    2010-01-01

    Natural gas consumption forecasting is required to balance the supply and consumption of natural gas. Companies and natural gas distributors are motivated to forecast their consumption by the economic incentive model that dictates the cash flow rules corresponding to the forecasting accuracy. The rules are quite challenging but enable the company to gain positive cash flow by forecasting accurately their short-term natural gas consumption. In this chapter, some practical forecasting results f...

  19. Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach

    Science.gov (United States)

    Hamid, Mohd Fahmi Abdul; Shabri, Ani

    2017-05-01

    Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.

  20. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  1. Empirical testing of forecast update procedure forseasonal products

    DEFF Research Database (Denmark)

    Wong, Chee Yew; Johansen, John

    2008-01-01

    Updating of forecasts is essential for successful collaborative forecasting, especially for seasonal products. This paper discusses the results of a theoretical simulation and an empirical test of a proposed time-series forecast updating procedure. It involves a two-stage longitudinal case study...... of a toy supply chain. The theoretical simulation involves historical weekly consumer demand data for 122 toy products. The empirical test is then carried out in real-time with 291 toy products. The results show that the proposed forecast updating procedure: 1) reduced forecast errors of the annual...... provided less forecast accuracy improvement and it needed a longer time to achieve relatively acceptable forecast uncertainty....

  2. An Analysis of the Influence of Fundamental Values' Estimation Accuracy on Financial Markets

    OpenAIRE

    Takahashi, Hiroshi

    2010-01-01

    This research analyzed the influence of the differences in the forecast accuracy of fundamental values on the financial market. As a result of intensive experiments in the market, we made the following interesting findings: (1) improvements in forecast accuracy of fundamentalists can contribute to an increase in the number of fundamentalists; (2) certain situations might occur, according to the level of forecast accuracy of fundamentalists, in which fundamentalists and passive management coex...

  3. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  4. Evaluating Extensions to Coherent Mortality Forecasting Models

    Directory of Open Access Journals (Sweden)

    Syazreen Shair

    2017-03-01

    Full Text Available Coherent models were developed recently to forecast the mortality of two or more sub-populations simultaneously and to ensure long-term non-divergent mortality forecasts of sub-populations. This paper evaluates the forecast accuracy of two recently-published coherent mortality models, the Poisson common factor and the product-ratio functional models. These models are compared to each other and the corresponding independent models, as well as the original Lee–Carter model. All models are applied to age-gender-specific mortality data for Australia and Malaysia and age-gender-ethnicity-specific data for Malaysia. The out-of-sample forecast error of log death rates, male-to-female death rate ratios and life expectancy at birth from each model are compared and examined across groups. The results show that, in terms of overall accuracy, the forecasts of both coherent models are consistently more accurate than those of the independent models for Australia and for Malaysia, but the relative performance differs by forecast horizon. Although the product-ratio functional model outperforms the Poisson common factor model for Australia, the Poisson common factor is more accurate for Malaysia. For the ethnic groups application, ethnic-coherence gives better results than gender-coherence. The results provide evidence that coherent models are preferable to independent models for forecasting sub-populations’ mortality.

  5. A Novel Flood Forecasting Method Based on Initial State Variable Correction

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-12-01

    Full Text Available The influence of initial state variables on flood forecasting accuracy by using conceptual hydrological models is analyzed in this paper and a novel flood forecasting method based on correction of initial state variables is proposed. The new method is abbreviated as ISVC (Initial State Variable Correction. The ISVC takes the residual between the measured and forecasted flows during the initial period of the flood event as the objective function, and it uses a particle swarm optimization algorithm to correct the initial state variables, which are then used to drive the flood forecasting model. The historical flood events of 11 watersheds in south China are forecasted and verified, and important issues concerning the ISVC application are then discussed. The study results show that the ISVC is effective and applicable in flood forecasting tasks. It can significantly improve the flood forecasting accuracy in most cases.

  6. On the relation between forecast precision and trading profitability of financial analysts

    DEFF Research Database (Denmark)

    Marinelli, Carlo; Weissensteiner, Alex

    2014-01-01

    We analyze the relation between earnings forecast accuracy and the expected profitability of financial analysts. Modeling forecast errors with a multivariate normal distribution, a complete characterization of the payoff of each analyst is provided. In particular, closed-form expressions for the ......We analyze the relation between earnings forecast accuracy and the expected profitability of financial analysts. Modeling forecast errors with a multivariate normal distribution, a complete characterization of the payoff of each analyst is provided. In particular, closed-form expressions...... for the probability density function, for the expectation, and, more generally, for moments of all orders are obtained. Our analysis shows that the relationship between forecast precision and trading profitability needs not be monotonic, and that the impact of the correlation between the forecasts on the expected...

  7. The Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination

    Directory of Open Access Journals (Sweden)

    Liangping Wu

    2014-08-01

    Full Text Available Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combination methods into tourism forecasting. Moreover, we further investigate the performance of the four combination methods through the theoretical evaluation and the forecasting evaluation. The results of the theoretical evaluation show that the IOWGA operator combination method obtains extremely well performance and outperforms the other forecast combination methods. Furthermore, the IOWGA operator combination method can be of well forecast performance and performs almost the same to the variance-covariance combination method for the forecasting evaluation. The IOWGA operator combination method mainly reflects the maximization of improving forecasting accuracy and the variance-covariance combination method mainly reflects the decrease of the forecast error. For future research, it may be worthwhile introducing and examining other new combination methods that may improve forecasting accuracy or employing other techniques to control the time for updating the weights in combined forecasts.

  8. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  9. Forecasting biodiversity in breeding birds using best practices

    Science.gov (United States)

    Taylor, Shawn D.; White, Ethan P.

    2018-01-01

    Biodiversity forecasts are important for conservation, management, and evaluating how well current models characterize natural systems. While the number of forecasts for biodiversity is increasing, there is little information available on how well these forecasts work. Most biodiversity forecasts are not evaluated to determine how well they predict future diversity, fail to account for uncertainty, and do not use time-series data that captures the actual dynamics being studied. We addressed these limitations by using best practices to explore our ability to forecast the species richness of breeding birds in North America. We used hindcasting to evaluate six different modeling approaches for predicting richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites distributed throughout the continental United States. All models explained more than 50% of the variance in richness, but none of them consistently outperformed a baseline model that predicted constant richness at each site. The best practices implemented in this study directly influenced the forecasts and evaluations. Stacked species distribution models and “naive” forecasts produced poor estimates of uncertainty and accounting for this resulted in these models dropping in the relative performance compared to other models. Accounting for observer effects improved model performance overall, but also changed the rank ordering of models because it did not improve the accuracy of the “naive” model. Considering the forecast horizon revealed that the prediction accuracy decreased across all models as the time horizon of the forecast increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the value of specific best practices in making forecasts and evaluating forecasting methods. PMID:29441230

  10. Forecasting biodiversity in breeding birds using best practices

    Directory of Open Access Journals (Sweden)

    David J. Harris

    2018-02-01

    Full Text Available Biodiversity forecasts are important for conservation, management, and evaluating how well current models characterize natural systems. While the number of forecasts for biodiversity is increasing, there is little information available on how well these forecasts work. Most biodiversity forecasts are not evaluated to determine how well they predict future diversity, fail to account for uncertainty, and do not use time-series data that captures the actual dynamics being studied. We addressed these limitations by using best practices to explore our ability to forecast the species richness of breeding birds in North America. We used hindcasting to evaluate six different modeling approaches for predicting richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites distributed throughout the continental United States. All models explained more than 50% of the variance in richness, but none of them consistently outperformed a baseline model that predicted constant richness at each site. The best practices implemented in this study directly influenced the forecasts and evaluations. Stacked species distribution models and “naive” forecasts produced poor estimates of uncertainty and accounting for this resulted in these models dropping in the relative performance compared to other models. Accounting for observer effects improved model performance overall, but also changed the rank ordering of models because it did not improve the accuracy of the “naive” model. Considering the forecast horizon revealed that the prediction accuracy decreased across all models as the time horizon of the forecast increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the value of specific best practices in making forecasts and evaluating forecasting methods.

  11. A New Two-Stage Approach to Short Term Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Dragan Tasić

    2013-04-01

    Full Text Available In the deregulated energy market, the accuracy of load forecasting has a significant effect on the planning and operational decision making of utility companies. Electric load is a random non-stationary process influenced by a number of factors which make it difficult to model. To achieve better forecasting accuracy, a wide variety of models have been proposed. These models are based on different mathematical methods and offer different features. This paper presents a new two-stage approach for short-term electrical load forecasting based on least-squares support vector machines. With the aim of improving forecasting accuracy, one more feature was added to the model feature set, the next day average load demand. As this feature is unknown for one day ahead, in the first stage, forecasting of the next day average load demand is done and then used in the model in the second stage for next day hourly load forecasting. The effectiveness of the presented model is shown on the real data of the ISO New England electricity market. The obtained results confirm the validity advantage of the proposed approach.

  12. Forecasting interest rates with shifting endpoints

    DEFF Research Database (Denmark)

    Van Dijk, Dick; Koopman, Siem Jan; Wel, Michel van der

    2014-01-01

    We consider forecasting the term structure of interest rates with the assumption that factors driving the yield curve are stationary around a slowly time-varying mean or ‘shifting endpoint’. The shifting endpoints are captured using either (i) time series methods (exponential smoothing) or (ii......) long-range survey forecasts of either interest rates or inflation and output growth, or (iii) exponentially smoothed realizations of these macro variables. Allowing for shifting endpoints in yield curve factors provides substantial and significant gains in out-of-sample predictive accuracy, relative...... to stationary and random walk benchmarks. Forecast improvements are largest for long-maturity interest rates and for long-horizon forecasts....

  13. Using ensemble forecasting for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Landberg, L.; Badger, J. [Risoe National Lab., Roskilde (Denmark); Sattler, K.

    2003-07-01

    Short-term prediction of wind power has a long tradition in Denmark. It is an essential tool for the operators to keep the grid from becoming unstable in a region like Jutland, where more than 27% of the electricity consumption comes from wind power. This means that the minimum load is already lower than the maximum production from wind energy alone. Danish utilities have therefore used short-term prediction of wind energy since the mid-90ies. However, the accuracy is still far from being sufficient in the eyes of the utilities (used to have load forecasts accurate to within 5% on a one-week horizon). The Ensemble project tries to alleviate the dependency of the forecast quality on one model by using multiple models, and also will investigate the possibilities of using the model spread of multiple models or of dedicated ensemble runs for a prediction of the uncertainty of the forecast. Usually, short-term forecasting works (especially for the horizon beyond 6 hours) by gathering input from a Numerical Weather Prediction (NWP) model. This input data is used together with online data in statistical models (this is the case eg in Zephyr/WPPT) to yield the output of the wind farms or of a whole region for the next 48 hours (only limited by the NWP model horizon). For the accuracy of the final production forecast, the accuracy of the NWP prediction is paramount. While many efforts are underway to increase the accuracy of the NWP forecasts themselves (which ultimately are limited by the amount of computing power available, the lack of a tight observational network on the Atlantic and limited physics modelling), another approach is to use ensembles of different models or different model runs. This can be either an ensemble of different models output for the same area, using different data assimilation schemes and different model physics, or a dedicated ensemble run by a large institution, where the same model is run with slight variations in initial conditions and

  14. Combining forecast weights: Why and how?

    Science.gov (United States)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  15. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.

    2012-01-01

    some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss

  16. Effect of the accuracy of price forecasting on profit in a Price Based Unit Commitment

    International Nuclear Information System (INIS)

    Delarue, Erik; Van Den Bosch, Pieterjan; D'haeseleer, William

    2010-01-01

    This paper discusses and quantifies the so-called loss of profit (i.e., the sub-optimality of profit) that can be expected in a Price Based Unit Commitment (PBUC), when incorrect price forecasts are used. For this purpose, a PBUC model has been developed and utilized, using Mixed Integer Linear Programming (MILP). Simulations are used to determine the relationship between the Mean Absolute Percentage Error (MAPE) of a certain price forecast and the loss of profit, for four different types of power plants. A Combined Cycle (CC) power plant and a pumped storage unit show highest sensitivity to incorrect forecasts. A price forecast with a MAPE of 15%, on average, yields 13.8% and 12.1% profit loss, respectively. A classic thermal power plant (coal fired) and cascade hydro unit are less affected by incorrect forecasts, with only 2.4% and 2.0% profit loss, respectively, at the same price forecast MAPE. This paper further demonstrates that if price forecasts show an average bias (upward or downward), using the MAPE as measure of the price forecast might not be sufficient to quantify profit loss properly. Profit loss in this case has been determined as a function of both shift and MAPE of the price forecast. (author)

  17. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    OpenAIRE

    Alp Ustundag

    2009-01-01

    Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...

  18. Assessing the accuracy of forecasting: applying standard diagnostic assessment tools to a health technology early warning system.

    Science.gov (United States)

    Simpson, Sue; Hyde, Chris; Cook, Alison; Packer, Claire; Stevens, Andrew

    2004-01-01

    Early warning systems are an integral part of many health technology assessment programs. Despite this finding, to date, there have been no quantitative evaluations of the accuracy of predictions made by these systems. We report a study evaluating the accuracy of predictions made by the main United Kingdom early warning system. As prediction of impact is analogous to diagnosis, a method normally applied to determine the accuracy of diagnostic tests was used. The sensitivity, specificity, and predictive values of the National Horizon Scanning Centre's prediction methods were estimated with reference to an (imperfect) gold standard, that is, expert opinion of impact 3 to 5 years after prediction. The sensitivity of predictions was 71 percent (95 percent confidence interval [CI], 0.36-0.92), and the specificity was 73 percent (95 percent CI, 0.64-0.8). The negative predictive value was 98 percent (95 percent CI, 0.92-0.99), and the positive predictive value was 14 percent (95 percent CI, 0.06-0.3). Forecasting is difficult, but the results suggest that this early warning system's predictions have an acceptable level of accuracy. However, there are caveats. The first is that early warning systems may themselves reduce the impact of a technology, as helping to control adoption and diffusion is their main purpose. The second is that the use of an imperfect gold standard may bias the results. As early warning systems are viewed as an increasingly important component of health technology assessment and decision making, their outcomes must be evaluated. The method used here should be investigated further and the accuracy of other early warning systems explored.

  19. Device for forecasting reactor power-up routes

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu.

    1980-01-01

    Purpose: To improve the reliability and forecasting accuracy for a device forecasting the change of the state on line in BWR type reactors. Constitution: The present state in a nuclear reactor is estimated in a present state judging section based on measuring signals for thermal power, core flow rate, control rod density and the like from the nuclear reactor, and the estimated results are accumulated in an operation result collecting section. While on the other hand, a forecasting section forecasts the future state in the reactor based on the signals from the forecasting condition setting section. The actual result values from the collecting section and the forecasting results are compared to each other. If they are not equal, new setting signals are outputted from the setting section to perform the forecasting again. These procedures are repeated till the difference between the forecast results and the actual result values is minimized, by which accurate forecasting for the state of the reactor is made possible. (Furukawa, Y.)

  20. Daily Peak Load Forecasting of Next Day using Weather Distribution and Comparison Value of Each Nearby Date Data

    Science.gov (United States)

    Ito, Shigenobu; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Nakano, Hiroyuki

    By the development of industry, in recent years; dependence to electric energy is growing year by year. Therefore, reliable electric power supply is in need. However, to stock a huge amount of electric energy is very difficult. Also, there is a necessity to keep balance between the demand and supply, which changes hour after hour. Consequently, to supply the high quality and highly dependable electric power supply, economically, and with high efficiency, there is a need to forecast the movement of the electric power demand carefully in advance. And using that forecast as the source, supply and demand management plan should be made. Thus load forecasting is said to be an important job among demand investment of electric power companies. So far, forecasting method using Fuzzy logic, Neural Net Work, Regression model has been suggested for the development of forecasting accuracy. Those forecasting accuracy is in a high level. But to invest electric power in higher accuracy more economically, a new forecasting method with higher accuracy is needed. In this paper, to develop the forecasting accuracy of the former methods, the daily peak load forecasting method using the weather distribution of highest and lowest temperatures, and comparison value of each nearby date data is suggested.

  1. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  2. Financial Analysts’ Forecasts

    DEFF Research Database (Denmark)

    Stæhr, Simone

    . The primary focus is on financial analysts in the task of conducting earnings forecasts while a secondary focus is on investors’ abilities to interpret and make use of these forecasts. Simply put, financial analysts can be seen as information intermediators receiving inputs to their analyses from firm...... in the decision making and the magnitude of these constraints does sometimes vary with personal traits. Therefore, to the extent that financial analysts are subjects to behavioral biases their outputs to the investors are likely to be biased by their interpretation of information. Because investors need accuracy...... management and providing outputs to the investors. Amongst various outputs from the analysts are forecasts of earnings. According to decision theories mostly from the literature in psychology all humans are affected by cognitive constraints to some degree. These constraints may lead to unintentional biases...

  3. Forecasting urban water demand: A meta-regression analysis.

    Science.gov (United States)

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  4. Real-time emergency forecasting technique for situation management systems

    Science.gov (United States)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  5. Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior

    Directory of Open Access Journals (Sweden)

    Yuancheng Li

    2016-11-01

    Full Text Available The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays. Second, the similarity between user electricity behaviors is mined and the user electricity loads are clustered to classify the users with similar behaviors into the same cluster. Finally, the load forecasting model based on the Online Sequential Extreme Learning Machine (OS-ELM is applied to different clusters to conduct load forecasting and the load forecast is summed to obtain the system load. In order to prove the validity of the proposed method, we performed simulation experiments on the MATLAB platform using smart meter data from the Ireland electric power cooperation. The experimental results show that the proposed method is able to mine the user electricity behaviors deeply, improve the accuracy of load forecasting by the reasonable clustering of users, and reveal the relationship between forecasting accuracy and cluster numbers.

  6. Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service

    OpenAIRE

    Horvitz, Eric J.; Apacible, Johnson; Sarin, Raman; Liao, Lin

    2012-01-01

    We present research on developing models that forecast traffic flow and congestion in the Greater Seattle area. The research has led to the deployment of a service named JamBayes, that is being actively used by over 2,500 users via smartphones and desktop versions of the system. We review the modeling effort and describe experiments probing the predictive accuracy of the models. Finally, we present research on building models that can identify current and future surprises, via efforts on mode...

  7. Method of forecasting power distribution

    International Nuclear Information System (INIS)

    Kaneto, Kunikazu.

    1981-01-01

    Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)

  8. Automated flare forecasting using a statistical learning technique

    Science.gov (United States)

    Yuan, Yuan; Shih, Frank Y.; Jing, Ju; Wang, Hai-Min

    2010-08-01

    We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric magnetic parameters, i.e., the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The output is true or false for the occurrence of a certain level of flares within 24 hours. Experimental results, from a sample of 230 active regions between 1996 and 2005, show the accuracies of a 24-hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different levels. Comparison shows an improvement in the accuracy of X-class flare forecasting.

  9. Gas demand forecasting by a new artificial intelligent algorithm

    Science.gov (United States)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  10. Short-term Power Load Forecasting Based on Balanced KNN

    Science.gov (United States)

    Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei

    2018-03-01

    To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.

  11. An Analysis of the Influence of Fundamental Values' Estimation Accuracy on Financial Markets

    Directory of Open Access Journals (Sweden)

    Hiroshi Takahashi

    2010-01-01

    Full Text Available This research analyzed the influence of the differences in the forecast accuracy of fundamental values on the financial market. As a result of intensive experiments in the market, we made the following interesting findings: (1 improvements in forecast accuracy of fundamentalists can contribute to an increase in the number of fundamentalists; (2 certain situations might occur, according to the level of forecast accuracy of fundamentalists, in which fundamentalists and passive management coexist, or in which fundamentalists die out of the market, and furthermore; (3 where a variety of investors exist in the market, improvements in the forecast accuracy could increase the number of fundamentalists more than the number of investors that employ passive investment strategy. These results contribute to clarifying the mechanism of price fluctuations in financial markets and also indicate one of the factors for the low ratio of passive investors in asset management business.

  12. Use of Temperature to Improve West Nile Virus Forecasts

    Science.gov (United States)

    Shaman, J. L.; DeFelice, N.; Schneider, Z.; Little, E.; Barker, C.; Caillouet, K.; Campbell, S.; Damian, D.; Irwin, P.; Jones, H.; Townsend, J.

    2017-12-01

    Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether the inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that were on average 5%, 10%, 12%, and 6% more accurate, respectively, than the baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperatures influence rates of WNV transmission. The findings help build a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.

  13. Comparison between ARIMA and DES Methods of Forecasting Population for Housing Demand in Johor

    OpenAIRE

    Alias Ahmad Rizal; Zainun Noor Yasmin; Abdul Rahman Ismail

    2016-01-01

    Forecasting accuracy is a primary criterion in selecting appropriate method of prediction. Even though there are various methods of forecasting however not all of these methods are able to predict with good accuracy. This paper presents an evaluation of two methods of population forecasting for housing demand. These methods are Autoregressive Integrated Moving Average (ARIMA) and Double Exponential Smoothing (DES). Both of the methods are principally adopting univariate time series analysis w...

  14. Research on light rail electric load forecasting based on ARMA model

    Science.gov (United States)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  15. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    Science.gov (United States)

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  16. Automated flare forecasting using a statistical learning technique

    International Nuclear Information System (INIS)

    Yuan Yuan; Shih, Frank Y.; Jing Ju; Wang Haimin

    2010-01-01

    We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric magnetic parameters, i.e., the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The output is true or false for the occurrence of a certain level of flares within 24 hours. Experimental results, from a sample of 230 active regions between 1996 and 2005, show the accuracies of a 24-hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different levels. Comparison shows an improvement in the accuracy of X-class flare forecasting. (research papers)

  17. Identifying needs for streamflow forecasting in the Incomati basin, Southern Africa

    Science.gov (United States)

    Sunday, Robert; Werner, Micha; Masih, Ilyas; van der Zaag, Pieter

    2013-04-01

    Despite being widely recognised as an efficient tool in the operational management of water resources, rainfall and streamflow forecasts are currently not utilised in water management practice in the Incomati Basin in Southern Africa. Although, there have been initiatives for forecasting streamflow in the Sabie and Crocodile sub-basins, the outputs of these have found little use because of scepticism on the accuracy and reliability of the information, or the relevance of the information provided to the needs of the water managers. The process of improving these forecasts is underway, but as yet the actual needs of the forecasts are unclear and scope of the ongoing initiatives remains very limited. In this study questionnaires and focused group interviews were used to establish the need, potential use, benefit and required accuracy of rainfall and streamflow forecasts in the Incomati Basin. Thirty five interviews were conducted with professionals engaged in water sector and detailed discussions were held with water institutions, including the Inkomati Catchment Management Agency (ICMA), Komati Basin Water Authority (KOBWA), South African Weather Service (SAWS), water managers, dam operators, water experts, farmers and other water users in the Basin. Survey results show that about 97% of the respondents receive weather forecasts. In contrast to expectations, only 5% have access to the streamflow forecast. In the weather forecast, the most important variables were considered to be rainfall and temperature at daily and weekly time scales. Moreover, forecasts of global climatic indices such as El Niño or La Niña were neither received nor demanded. There was limited demand and/or awareness of flood and drought forecasts including the information on their linkages with global climatic indices. While the majority of respondents indicate the need and indeed use the weather forecast, the provision, communication and interpretation were in general found to be with too

  18. Research on combination forecast of port cargo throughput based on time series and causality analysis

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2013-03-01

    Full Text Available Purpose: The purpose of this paper is to develop a combined model composed of grey-forecast model and Logistic-growth-curve model to improve the accuracy of forecast model of cargo throughput for the port. The authors also use the existing data of a current port to verify the validity of the combined model.Design/methodology/approach: A literature review is undertaken to find the appropriate forecast model of cargo throughput for the port. Through researching the related forecast model, the authors put together the individual models which are significant to study further. Finally, the authors combine two individual models (grey-forecast model and Logistic-growth-curve model into one combined model to forecast the port cargo throughput, and use the model to a physical port in China to testify the validity of the model.Findings: Test by the perceptional data of cargo throughput in the physical port, the results show that the combined model can obtain relatively higher forecast accuracy when it is not easy to find more information. Furthermore, the forecast made by the combined model are more accurate than any of the individual ones.Research limitations/implications: The study provided a new combined forecast model of cargo throughput with a relatively less information to improve the accuracy rate of the forecast. The limitation of the model is that it requires the cargo throughput of the port have an S-shaped change trend.Practical implications: This model is not limited by external conditions such as geographical, cultural. This model predicted the port cargo throughput of one real port in China in 2015, which provided some instructive guidance for the port development.Originality/value: This is the one of the study to improve the accuracy rate of the cargo throughput forecast with little information.

  19. Seasonal forecasting of discharge for the Raccoon River, Iowa

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast

  20. Do analysts disclose cash flow forecasts with earnings estimates when earnings quality is low?

    OpenAIRE

    Bilinski, P.

    2014-01-01

    Cash flows are incrementally useful to earnings in security valuation mainly when earnings quality is low. This suggests that when earnings quality decreases, analysts will be more likely to supplement their earnings forecasts with cash flow estimates. Contrary to this prediction, we find that analysts do not disclose cash flow forecasts when the quality of earnings is low. This is because cash flow forecast accuracy depends on the accuracy of the accrual estimates and the precision of accrua...

  1. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy

    International Nuclear Information System (INIS)

    Jain, Rishee K.; Smith, Kevin M.; Culligan, Patricia J.; Taylor, John E.

    2014-01-01

    Highlights: • We develop a building energy forecasting model using support vector regression. • Model is applied to data from a multi-family residential building in New York City. • We extend sensor based energy forecasting to multi-family residential buildings. • We examine the impact temporal and spatial granularity has on model accuracy. • Optimal granularity occurs at the by floor in hourly temporal intervals. - Abstract: Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10 min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for

  2. Spatial load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Engel, M.V.; Buri, M.J.

    1995-04-01

    The reliability, efficiency, and economy of a power delivery system depend mainly on how well its substations, transmission lines, and distribution feeders are located within the utility service area, and how well their capacities match power needs in their respective localities. Often, utility planners are forced to commit to sites, rights of way, and equipment capacities year in advance. A necessary element of effective expansion planning is a forecast of where and how much demand must be served by the future T and D system. This article reports that a three-stage method forecasts with accuracy and detail, allowing meaningful determination of sties and sizes for future substation, transmission, and distribution facilities.

  3. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    Science.gov (United States)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  4. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt

    Directory of Open Access Journals (Sweden)

    Cécile Viboud

    2018-03-01

    Full Text Available Infectious disease forecasting is gaining traction in the public health community; however, limited systematic comparisons of model performance exist. Here we present the results of a synthetic forecasting challenge inspired by the West African Ebola crisis in 2014–2015 and involving 16 international academic teams and US government agencies, and compare the predictive performance of 8 independent modeling approaches. Challenge participants were invited to predict 140 epidemiological targets across 5 different time points of 4 synthetic Ebola outbreaks, each involving different levels of interventions and “fog of war” in outbreak data made available for predictions. Prediction targets included 1–4 week-ahead case incidences, outbreak size, peak timing, and several natural history parameters. With respect to weekly case incidence targets, ensemble predictions based on a Bayesian average of the 8 participating models outperformed any individual model and did substantially better than a null auto-regressive model. There was no relationship between model complexity and prediction accuracy; however, the top performing models for short-term weekly incidence were reactive models with few parameters, fitted to a short and recent part of the outbreak. Individual model outputs and ensemble predictions improved with data accuracy and availability; by the second time point, just before the peak of the epidemic, estimates of final size were within 20% of the target. The 4th challenge scenario − mirroring an uncontrolled Ebola outbreak with substantial data reporting noise − was poorly predicted by all modeling teams. Overall, this synthetic forecasting challenge provided a deep understanding of model performance under controlled data and epidemiological conditions. We recommend such “peace time” forecasting challenges as key elements to improve coordination and inspire collaboration between modeling groups ahead of the next pandemic threat

  5. An application of ensemble/multi model approach for wind power production forecasting

    Science.gov (United States)

    Alessandrini, S.; Pinson, P.; Hagedorn, R.; Decimi, G.; Sperati, S.

    2011-02-01

    The wind power forecasts of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast applied in this study is based on meteorological models that provide the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. For this purpose a training of a Neural Network (NN) to link directly the forecasted meteorological data and the power data has been performed. One wind farm has been examined located in a mountain area in the south of Italy (Sicily). First we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by the combination of models (RAMS, ECMWF deterministic, LAMI). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error (normalized by nominal power) of at least 1% compared to the singles models approach. Finally we have focused on the possibility of using the ensemble model system (EPS by ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first three days ahead period.

  6. Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-01-01

    Full Text Available Accurate electric power demand forecasting plays a key role in electricity markets and power systems. The electric power demand is usually a non-linear problem due to various unknown reasons, which make it difficult to get accurate prediction by traditional methods. The purpose of this paper is to propose a novel hybrid forecasting method for managing and scheduling the electricity power. EEMD-SCGRNN-PSVR, the proposed new method, combines ensemble empirical mode decomposition (EEMD, seasonal adjustment (S, cross validation (C, general regression neural network (GRNN and support vector regression machine optimized by the particle swarm optimization algorithm (PSVR. The main idea of EEMD-SCGRNN-PSVR is respectively to forecast waveform and trend component that hidden in demand series to substitute directly forecasting original electric demand. EEMD-SCGRNN-PSVR is used to predict the one week ahead half-hour’s electricity demand in two data sets (New South Wales (NSW and Victorian State (VIC in Australia. Experimental results show that the new hybrid model outperforms the other three models in terms of forecasting accuracy and model robustness.

  7. An investigation of forecast horizon and observation fit’s influence on an econometric rate forecast model in the liner shipping industry

    DEFF Research Database (Denmark)

    Nielsen, Peter; Jiang, Liping; Rytter, Niels Gorm Malý

    2014-01-01

    This paper evaluates the influence of forecast horizon and observation fit on the robustness and performance of a specific freight rate forecast model used in the liner shipping industry. In the first stage of the research, a forecast model used to predict container freight rate development...... of the forecast horizon and observation fit and their interactions on the forecast model's performance. The results underline the complicated nature of creating a suitable forecast model by balancing business needs, a desire to fit a good model and achieve high accuracy. There is strong empirical evidence from...... this study; that a robust model is preferable, that overfitting is a true danger, and that a balance must be achieved between forecast horizon and the number of observations used to fit the model. In addition, methodological guidance has also been provided on how to test, design, and choose the superior...

  8. A hybrid approach EMD-HW for short-term forecasting of daily stock market time series data

    Science.gov (United States)

    Awajan, Ahmad Mohd; Ismail, Mohd Tahir

    2017-08-01

    Recently, forecasting time series has attracted considerable attention in the field of analyzing financial time series data, specifically within the stock market index. Moreover, stock market forecasting is a challenging area of financial time-series forecasting. In this study, a hybrid methodology between Empirical Mode Decomposition with the Holt-Winter method (EMD-HW) is used to improve forecasting performances in financial time series. The strength of this EMD-HW lies in its ability to forecast non-stationary and non-linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy and offers a new forecasting method in time series. The daily stock market time series data of 11 countries is applied to show the forecasting performance of the proposed EMD-HW. Based on the three forecast accuracy measures, the results indicate that EMD-HW forecasting performance is superior to traditional Holt-Winter forecasting method.

  9. Evaluation of different operational strategies for lithium ion battery systems connected to a wind turbine for primary frequency regulation and wind power forecast accuracy improvement

    Energy Technology Data Exchange (ETDEWEB)

    Swierczynski, Maciej; Stroe, Daniel Ioan; Stan, Ana Irina; Teodorescu, Remus; Andreasen, Soeren Juhl [Aalborg Univ. (Denmark). Dept. of Energy Technology

    2012-07-01

    High penetration levels of variable wind energy sources can cause problems with their grid integration. Energy storage systems connected to wind turbine/wind power plants can improve predictability of the wind power production and provide ancillary services to the grid. This paper investigates economics of different operational strategies for Li-ion systems connected to wind turbines for wind power forecast accuracy improvement and primary frequency regulation. (orig.)

  10. Short term load forecasting using neuro-fuzzy networks

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.; Hassan, A. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Martinez, D. [Black Hills Power and Light, Rapid City, SD (United States)

    2005-07-01

    Details of a neuro-fuzzy network-based short term load forecasting system for power utilities were presented. The fuzzy logic controller was used to fuzzify inputs representing historical temperature and load curves. The fuzzified inputs were then used to develop the fuzzy rules matrix. Output membership function values were determined by evaluating the fuzzified inputs with the fuzzy rules. Output membership function values were used as inputs for the neural network portion of the system. The training process used a back propagation gradient descent algorithm to adjust the weight values of the neural network in order to reduce the error between the neural network output and the desired output. The neural network was then used to predict future load values. Sample data were taken from a local power company's daily load curve to validate the system. A 10 per cent forecast error was introduced in the temperature values to determine the effect on load prediction. Results of the study suggest that the combined use of fuzzy logic and neural networks provide greater accuracy than studies where either approach is used alone. 6 refs., 6 figs.

  11. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  12. Short-Term Load Forecast in Electric Energy System in Bulgaria

    Directory of Open Access Journals (Sweden)

    Irina Asenova

    2010-01-01

    Full Text Available As the accuracy of the electricity load forecast is crucial in providing better cost effective risk management plans, this paper proposes a Short Term Electricity Load Forecast (STLF model with high forecasting accuracy. Two kind of neural networks, Multilayer Perceptron network model and Radial Basis Function network model, are presented and compared using the mean absolute percentage error. The data used in the models are electricity load historical data. Even though the very good performance of the used model for the load data, weather parameters, especially the temperature, take important part for the energy predicting which is taken into account in this paper. A comparative evaluation between a traditional statistical method and artificial neural networks is presented.

  13. Objective Identification of Environmental Patterns Related to Tropical Cyclone Track Forecast Errors

    National Research Council Canada - National Science Library

    Sanabia, Elizabeth R

    2006-01-01

    The increase in skill of numerical model guidance and the use of consensus forecast techniques have led to significant improvements in the accuracy of tropical cyclone track forecasts at ranges beyond 72 hours...

  14. Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Hasantash

    2012-01-01

    Full Text Available Grey theory is about systematic analysis of limited information. The Grey-Markov model can improve the accuracy of forecast range in the random fluctuating data sequence. In this paper, we employed this model in energy system. The average errors of Energy Information Administrations predictions for world oil price and domestic crude oil production from 1982 to 2007 and from 1985 to 2008 respectively were used as two forecasted examples. We showed that the proposed Grey-Markov model can improve the forecast accuracy of original Grey forecast model.

  15. Forecasting Japanese encephalitis incidence from historical morbidity patterns: Statistical analysis with 27 years of observation in Assam, India.

    Science.gov (United States)

    Handique, Bijoy K; Khan, Siraj A; Mahanta, J; Sudhakar, S

    2014-09-01

    Japanese encephalitis (JE) is one of the dreaded mosquito-borne viral diseases mostly prevalent in south Asian countries including India. Early warning of the disease in terms of disease intensity is crucial for taking adequate and appropriate intervention measures. The present study was carried out in Dibrugarh district in the state of Assam located in the northeastern region of India to assess the accuracy of selected forecasting methods based on historical morbidity patterns of JE incidence during the past 22 years (1985-2006). Four selected forecasting methods, viz. seasonal average (SA), seasonal adjustment with last three observations (SAT), modified method adjusting long-term and cyclic trend (MSAT), and autoregressive integrated moving average (ARIMA) have been employed to assess the accuracy of each of the forecasting methods. The forecasting methods were validated for five consecutive years from 2007-2012 and accuracy of each method has been assessed. The forecasting method utilising seasonal adjustment with long-term and cyclic trend emerged as best forecasting method among the four selected forecasting methods and outperformed the even statistically more advanced ARIMA method. Peak of the disease incidence could effectively be predicted with all the methods, but there are significant variations in magnitude of forecast errors among the selected methods. As expected, variation in forecasts at primary health centre (PHC) level is wide as compared to that of district level forecasts. The study showed that adopted forecasting techniques could reasonably forecast the intensity of JE cases at PHC level without considering the external variables. The results indicate that the understanding of long-term and cyclic trend of the disease intensity will improve the accuracy of the forecasts, but there is a need for making the forecast models more robust to explain sudden variation in the disease intensity with detail analysis of parasite and host population

  16. Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods

    Directory of Open Access Journals (Sweden)

    Han Lin Shang

    2011-07-01

    Full Text Available Using the age- and sex-specific data of 14 developed countries, we compare the point and interval forecast accuracy and bias of ten principal component methods for forecasting mortality rates and life expectancy. The ten methods are variants and extensions of the Lee-Carter method. Based on one-step forecast errors, the weighted Hyndman-Ullah method provides the most accurate point forecasts of mortality rates and the Lee-Miller method is the least biased. For the accuracy and bias of life expectancy, the weighted Hyndman-Ullah method performs the best for female mortality and the Lee-Miller method for male mortality. While all methods underestimate variability in mortality rates, the more complex Hyndman-Ullah methods are more accurate than the simpler methods. The weighted Hyndman-Ullah method provides the most accurate interval forecasts for mortality rates, while the robust Hyndman-Ullah method provides the best interval forecast accuracy for life expectancy.

  17. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    International Nuclear Information System (INIS)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias; Zhang, Jie

    2017-01-01

    Highlights: • An ensemble model is developed to produce both deterministic and probabilistic wind forecasts. • A deep feature selection framework is developed to optimally determine the inputs to the forecasting methodology. • The developed ensemble methodology has improved the forecasting accuracy by up to 30%. - Abstract: With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by first layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.

  18. Uncertain Climate Forecasts From Multimodel Ensembles: When to Use Them and When to Ignore Them

    OpenAIRE

    Jewson, Stephen; Rowlands, Dan

    2010-01-01

    Uncertainty around multimodel ensemble forecasts of changes in future climate reduces the accuracy of those forecasts. For very uncertain forecasts this effect may mean that the forecasts should not be used. We investigate the use of the well-known Bayesian Information Criterion (BIC) to make the decision as to whether a forecast should be used or ignored.

  19. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  20. Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2014-07-01

    Full Text Available The scientific evaluation methodology for the forecast accuracy of wind power forecasting models is an important issue in the domain of wind power forecasting. However, traditional forecast evaluation criteria, such as Mean Squared Error (MSE and Mean Absolute Error (MAE, have limitations in application to some degree. In this paper, a modern evaluation criterion, the Diebold-Mariano (DM test, is introduced. The DM test can discriminate the significant differences of forecasting accuracy between different models based on the scheme of quantitative analysis. Furthermore, the augmented DM test with rolling windows approach is proposed to give a more strict forecasting evaluation. By extending the loss function to an asymmetric structure, the asymmetric DM test is proposed. Case study indicates that the evaluation criteria based on DM test can relieve the influence of random sample disturbance. Moreover, the proposed augmented DM test can provide more evidence when the cost of changing models is expensive, and the proposed asymmetric DM test can add in the asymmetric factor, and provide practical evaluation of wind power forecasting models. It is concluded that the two refined DM tests can provide reference to the comprehensive evaluation for wind power forecasting models.

  1. Forecasting risks of natural gas consumption in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Potocnik, Primoz; Govekar, Edvard; Grabec, Igor [Laboratory of Synergetics, Ljubljana (Slovenia). Faculty of Mechanical Engineering; Thaler, Marko; Poredos, Alojz [Laboratory for Refrigeration, Ljubljana (Slovenia). Faculty of Mechanical Engineering

    2007-08-15

    Efficient operation of modern energy distribution systems often requires forecasting future energy demand. This paper proposes a strategy to estimate forecasting risk. The objective of the proposed method is to improve knowledge about expected forecasting risk and to estimate the expected cash flow in advance, based on the risk model. The strategy combines an energy demand forecasting model, an economic incentive model and a risk model. Basic guidelines are given for the construction of a forecasting model that combines past energy consumption data, weather data and weather forecast. The forecasting model is required to estimate expected forecasting errors that are the basis for forecasting risk estimation. The risk estimation strategy also requires an economic incentive model that describes the influence of forecasting accuracy on the energy distribution systems' cash flow. The economic model defines the critical forecasting error levels that most strongly influence cash flow. Based on the forecasting model and the economic model, the development of a risk model is proposed. The risk model is associated with critical forecasting error levels in the context of various influential parameters such as seasonal data, month, day of the week and temperature. The risk model is applicable to estimating the daily forecasting risk based on the influential parameters. The proposed approach is illustrated by a case study of a Slovenian natural gas distribution company. (author)

  2. Forecasting risks of natural gas consumption in Slovenia

    International Nuclear Information System (INIS)

    Potocnik, Primoz; Thaler, Marko; Govekar, Edvard; Grabec, Igor; Poredos, Alojz

    2007-01-01

    Efficient operation of modern energy distribution systems often requires forecasting future energy demand. This paper proposes a strategy to estimate forecasting risk. The objective of the proposed method is to improve knowledge about expected forecasting risk and to estimate the expected cash flow in advance, based on the risk model. The strategy combines an energy demand forecasting model, an economic incentive model and a risk model. Basic guidelines are given for the construction of a forecasting model that combines past energy consumption data, weather data and weather forecast. The forecasting model is required to estimate expected forecasting errors that are the basis for forecasting risk estimation. The risk estimation strategy also requires an economic incentive model that describes the influence of forecasting accuracy on the energy distribution systems' cash flow. The economic model defines the critical forecasting error levels that most strongly influence cash flow. Based on the forecasting model and the economic model, the development of a risk model is proposed. The risk model is associated with critical forecasting error levels in the context of various influential parameters such as seasonal data, month, day of the week and temperature. The risk model is applicable to estimating the daily forecasting risk based on the influential parameters. The proposed approach is illustrated by a case study of a Slovenian natural gas distribution company

  3. Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm

    International Nuclear Information System (INIS)

    Xiao, Liye; Qian, Feng; Shao, Wei

    2017-01-01

    Highlights: • Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting. • Improve the accuracy of multi-step wind speed forecasting. • Modify bat algorithm with CG to improve optimized performance. - Abstract: As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.

  4. Wind Power accuracy and forecast. D3.1. Assumptions on accuracy of wind power to be considered at short and long term horizons

    Energy Technology Data Exchange (ETDEWEB)

    Morthorst, P.E.; Coulondre, J.M.; Schroeder, S.T.; Meibom, P.

    2010-07-15

    The main objective of the Optimate project (An Open Platform to Test Integration in new MArkeT designs of massive intermittent Energy sources dispersed in several regional power markets) is to develop a new tool for testing these new market designs with large introduction of variable renewable energy sources. In Optimate a novel network/system/market modelling approach is being developed, generating an open simulation platform able to exhibit the comparative benefits of several market design options. This report constitutes delivery 3.1 on the assumptions on accuracy of wind power to be considered at short and long term horizons. The report handles the issues of state-of-the-art prediction, how predictions for wind power enter into the Optimate model and a simple and a more advanced methodology of how to generate trajectories of prediction errors to be used in Optimate. The main conclusion is that undoubtedly, the advanced approach is to be preferred to the simple one seen from a theoretical viewpoint. However, the advanced approach was developed to the Wilmar-model with the purpose of describing the integration of large-scale wind power in Europe. As the main purpose of the Optimate model is not to test the integration of wind power, but to test new market designs assuming a strong growth in wind power production, a more simplified approach for describing wind power forecasts should be sufficient. Thus a further development of the simple approach is suggested, eventually including correlations between geographical areas. In this report the general methodologies for generating trajectories for wind power forecasts are outlined. However, the methods are not yet implemented. In the next phase of Optimate, the clusters will be defined and the needed data collected. Following this phase actual results will be generated to be used in Optimate. (LN)

  5. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.

    2011-01-01

    Research highlights: → A hybrid method is proposed to forecast the day-ahead prices in electricity market. → The method combines Wavelet-ARIMA and RBFN network models. → PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. → One of the merits of the proposed method is lower need to the input data. → The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  6. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    Energy Technology Data Exchange (ETDEWEB)

    Shafie-khah, M., E-mail: miadreza@gmail.co [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Moghaddam, M. Parsa, E-mail: parsa@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheikh-El-Eslami, M.K., E-mail: aleslam@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A hybrid method is proposed to forecast the day-ahead prices in electricity market. {yields} The method combines Wavelet-ARIMA and RBFN network models. {yields} PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. {yields} One of the merits of the proposed method is lower need to the input data. {yields} The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  7. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    Directory of Open Access Journals (Sweden)

    S. W. D. Turner

    2017-09-01

    Full Text Available Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.

  8. Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Lee

    2017-11-01

    Full Text Available Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded drawbacks including crossover and mutation operations of genetic algorithms. Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function and quantum computing with GA in an SVR model (named SVRCQGA to achieve more satisfactory forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model is superior to other competitive models.

  9. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach

    International Nuclear Information System (INIS)

    Lü, Xiaoshu; Lu, Tao; Kibert, Charles J.; Viljanen, Martti

    2015-01-01

    Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy

  10. Wind Power Forecasting Error Distributions: An International Comparison

    DEFF Research Database (Denmark)

    Hodge, Bri-Mathias; Lew, Debra; Milligan, Michael

    2012-01-01

    Wind power forecasting is essential for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that may occur is a critical factor for system operation functions, such as the setting of operating reserve...... levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations....

  11. An application of ensemble/multi model approach for wind power production forecast.

    Science.gov (United States)

    Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.

    2010-09-01

    The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic

  12. Development of an Adaptive Forecasting System: A Case Study of a PC Manufacturer in South Korea

    Directory of Open Access Journals (Sweden)

    Chihyun Jung

    2016-03-01

    Full Text Available We present a case study of the development of an adaptive forecasting system for a leading personal computer (PC manufacturer in South Korea. It is widely accepted that demand forecasting for products with short product life cycles (PLCs is difficult, and the PLC of a PC is generally very short. The firm has various types of products, and the volatile demand patterns differ by product. Moreover, we found that different departments have different requirements when it comes to the accuracy, point-of-time and range of the forecasts. We divide the demand forecasting process into three stages depending on the requirements and purposes. The systematic forecasting process is then introduced to improve the accuracy of demand forecasting and to meet the department-specific requirements. Moreover, a newly devised short-term forecasting method is presented, which utilizes the long-term forecasting results of the preceding stages. We evaluate our systematic forecasting methods based on actual sales data from the PC manufacturer, where our forecasting methods have been implemented.

  13. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin; Bowman, Kenneth P.; Genton, Marc G.

    2014-01-01

    pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal

  14. A composite stability index for dichotomous forecast of thunderstorms

    Science.gov (United States)

    Chaudhuri, Sutapa; Middey, Anirban

    2012-12-01

    Thunderstorms are the perennial feature of Kolkata (22° 32' N, 88° 20' E), India during the premonsoon season (April-May). Precise forecast of these thunderstorms is essential to mitigate the associated catastrophe due to lightning flashes, strong wind gusts, torrential rain, and occasional hail and tornadoes. The present research provides a composite stability index for forecasting thunderstorms. The forecast quality detection parameters are computed with the available indices during the period from 1997 to 2006 to select the most relevant indices with threshold ranges for the prevalence of such thunderstorms. The analyses reveal that the lifted index (LI) within the range of -5 to -12 °C, convective inhibition energy (CIN) within the range of 0-150 J/kg and convective available potential energy (CAPE) within the ranges of 2,000 to 7,000 J/kg are the most pertinent indices for the prevalence thunderstorms over Kolkata during the premonsoon season. A composite stability index, thunderstorm prediction index (TPI) is formulated with LI, CIN, and CAPE. The statistical skill score analyses show that the accuracy in forecasting such thunderstorms with TPI is 99.67 % with lead time less than 12 h during training the index whereas the accuracies are 89.64 % with LI, 60 % with CIN and 49.8 % with CAPE. The performance diagram supports that TPI has better forecast skill than its individual components. The forecast with TPI is validated with the observation of the India Meteorological Department during the period from 2007 to 2009. The real-time forecast of thunderstorms with TPI is provided for the year 2010.

  15. Wind forecasting for grid code compliance

    Energy Technology Data Exchange (ETDEWEB)

    Vanitha, V.; Kishore, S.R.N. [Amrita Vishwa Vidyapeetham Univ.. Dept. of Electrical and Electronics Engineering, Coimbatore (India)

    2012-07-01

    This work explores Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to forecast the average hourly wind speed. To determine the characteristics of ANFIS that best suited the target wind speed forecasting system, several ANFIS models were trained, tested and compared. Different types and number of inputs, training and checking sizes, type and number of membership functions and techniques to generate the initial (FIS) were analyzed. Comparisons with other forecasting methods were analyzed the models were given wind speed, direction and air pressure as inputs having the best forecasting accuracy. SCADA system is utilized to obtain the wind speed to the forecasting system in the host computer where ANFIS is present. The SCADA is located in the central room, the substation of the wind farm, or even at a remote off site point. The data obtained from the site is plotted at every instant and the predicted wind speed is displayed and also exported to the excel sheet which will be sent/e-mailed in the form of Graphs and excel sheets to the operator, State load dispatch centre (SLDC) and to the customer. (Author)

  16. Modeling and forecasting petroleum futures volatility

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2006-01-01

    Forecasts of oil price volatility are important inputs into macroeconometric models, financial market risk assessment calculations like value at risk, and option pricing formulas for futures contracts. This paper uses several different univariate and multivariate statistical models to estimate forecasts of daily volatility in petroleum futures price returns. The out-of-sample forecasts are evaluated using forecast accuracy tests and market timing tests. The TGARCH model fits well for heating oil and natural gas volatility and the GARCH model fits well for crude oil and unleaded gasoline volatility. Simple moving average models seem to fit well in some cases provided the correct order is chosen. Despite the increased complexity, models like state space, vector autoregression and bivariate GARCH do not perform as well as the single equation GARCH model. Most models out perform a random walk and there is evidence of market timing. Parametric and non-parametric value at risk measures are calculated and compared. Non-parametric models outperform the parametric models in terms of number of exceedences in backtests. These results are useful for anyone needing forecasts of petroleum futures volatility. (author)

  17. Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yuqi Dong

    2016-12-01

    Full Text Available Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actual values when dealing with non-linear time series data with periodicity, trend and randomness.

  18. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change

    International Nuclear Information System (INIS)

    Evans, Mary Anne; Scavia, Donald

    2011-01-01

    Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and precision can be optimized and model accuracy maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico, potentially indicating the greater importance of unmodeled processes in the latter system. Retrospective analyses demonstrate both directional and variable changes in sensitivity of hypoxia to nutrient loads.

  19. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    Science.gov (United States)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  20. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Hendrik F. [IBM, Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    2017-05-31

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  1. Fine tuning support vector machines for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Zhou Junyi; Shi Jing; Li Gong

    2011-01-01

    Research highlights: → A systematic approach to tuning SVM models for wind speed prediction is proposed. → Multiple kernel functions and a wide range of tuning parameters are evaluated, and optimal parameters for each kernel function are obtained. → It is found that the forecasting performance of SVM is closely related to the dynamic characteristics of wind speed. → Under the optimal combination of parameters, different kernels give comparable forecasting accuracy. -- Abstract: Accurate forecasting of wind speed is critical to the effective harvesting of wind energy and the integration of wind power into the existing electric power grid. Least-squares support vector machines (LS-SVM), a powerful technique that is widely applied in a variety of classification and function estimation problems, carries great potential for the application of short-term wind speed forecasting. In this case, tuning the model parameters for optimal forecasting accuracy is a fundamental issue. This paper, for the first time, presents a systematic study on fine tuning of LS-SVM model parameters for one-step ahead wind speed forecasting. Three SVM kernels, namely linear, Gaussian, and polynomial kernels, are implemented. The SVM parameters considered include the training sample size, SVM order, regularization parameter, and kernel parameters. The results show that (1) the performance of LS-SVM is closely related to the dynamic characteristics of wind speed; (2) all parameters investigated greatly affect the performance of LS-SVM models; (3) under the optimal combination of parameters after fine tuning, the three kernels give comparable forecasting accuracy; (4) the performance of linear kernel is worse than the other two kernels when the training sample size or SVM order is small. In addition, LS-SVMs are compared against the persistence approach, and it is found that they can outperform the persistence model in the majority of cases.

  2. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Sheng-wei; Wang, Ming-Jun; Miao, Yu-bin; Tu, Jun; Liu, Cheng-liang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample. (author)

  3. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei Shengwei [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: feishengwei@sohu.com; Wang Mingjun; Miao Yubin; Tu Jun; Liu Chengliang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample.

  4. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    Science.gov (United States)

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  5. Comparison between ARIMA and DES Methods of Forecasting Population for Housing Demand in Johor

    Directory of Open Access Journals (Sweden)

    Alias Ahmad Rizal

    2016-01-01

    Full Text Available Forecasting accuracy is a primary criterion in selecting appropriate method of prediction. Even though there are various methods of forecasting however not all of these methods are able to predict with good accuracy. This paper presents an evaluation of two methods of population forecasting for housing demand. These methods are Autoregressive Integrated Moving Average (ARIMA and Double Exponential Smoothing (DES. Both of the methods are principally adopting univariate time series analysis which uses past and present data for forecasting. Secondary data obtained from Department of Statistics, Malaysia was used to forecast population for housing demand in Johor. Forecasting processes had generated 14 models to each of the methods and these models where evaluated using Mean Absolute Percentage Error (MAPE. It was found that 14 of Double Exponential Smoothing models and also 14 of ARIMA models had resulted to 1.674% and 5.524% of average MAPE values respectively. Hence, the Double Exponential Smoothing method outperformed the ARIMA method by reducing 4.00 % in forecasting model population for Johor state. These findings help researchers and government agency in selecting appropriate forecasting model for housing demand.

  6. Modelling and forecasting monthly swordfish catches in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Konstantinos I. Stergiou

    2003-04-01

    Full Text Available In this study, we used the X-11 census technique for modelling and forecasting the monthly swordfish (Xiphias gladius catches in the Greek Seas during 1982-1996 and 1997 respectively, using catches reported by the National Statistical Service of Greece (NSSG. Forecasts built with X-11 were also compared with those derived from ARIMA andWinter’s exponential smoothing (WES models. The X-11 method captured the features of the study series and outperformed the other two methods, in terms of both fitting and forecasting performance, for all the accuracy measures used. Thus, with the exception of October, November and December 1997, when the corresponding absolute percentage error(APE values were very high (as high as 178.6% because of the low level of the catches, monthly catches during the remaining months of 1997 were predicted accurately, with a mean APE of 12.5%. In contrast, the mean APE values of the other two methods for the same months were higher (ARIMA: 14.6%; WES: 16.6%. The overall good performance of X-11 andthe fact that it provides an insight into the various components (i.e. the seasonal, trend-cycle and irregular components of the time series of interest justify its use in fisheries research. The basic features of the swordfish catches revealed by the application of the X-11 method, the effect of the length of the forecasting horizon on forecasting accuracy and the accuracy of the catches reported by NSSG are also discussed.

  7. Day-ahead wind speed forecasting using f-ARIMA models

    International Nuclear Information System (INIS)

    Kavasseri, Rajesh G.; Seetharaman, Krithika

    2009-01-01

    With the integration of wind energy into electricity grids, it is becoming increasingly important to obtain accurate wind speed/power forecasts. Accurate wind speed forecasts are necessary to schedule dispatchable generation and tariffs in the day-ahead electricity market. This paper examines the use of fractional-ARIMA or f-ARIMA models to model, and forecast wind speeds on the day-ahead (24 h) and two-day-ahead (48 h) horizons. The models are applied to wind speed records obtained from four potential wind generation sites in North Dakota. The forecasted wind speeds are used in conjunction with the power curve of an operational (NEG MICON, 750 kW) turbine to obtain corresponding forecasts of wind power production. The forecast errors in wind speed/power are analyzed and compared with the persistence model. Results indicate that significant improvements in forecasting accuracy are obtained with the proposed models compared to the persistence method. (author)

  8. Application Of Multi-grid Method On China Seas' Temperature Forecast

    Science.gov (United States)

    Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.

    2006-12-01

    Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.

  9. What kinds of traffic forecasts are possible?

    DEFF Research Database (Denmark)

    Næss, Petter; Strand, Arvid

    2012-01-01

    Based on metatheoretical considerations, this paper discusses which kinds of traffic forecasts are possible and which kinds are impossible to make with any reasonable degree of accuracy. It will be argued on ontological and epistemological grounds that it is inherently impossible to make exact......-called strategic, tactical and operational levels of traffic forecasting into three distinct methodological approaches reflecting the different degrees of openness/closure of the systems at hand: Scenario analyses at the strategic level; theoryinformed, mainly qualitative analyses supplemented with simple...

  10. Tourism Demand Modelling and Forecasting: A Review of Recent Research

    OpenAIRE

    Song, H; Li, G

    2008-01-01

    This paper reviews the published studies on tourism demand modelling and forecasting since 2000. One of the key findings of this review is that the methods used in analysing and forecasting the demand for tourism have been more diverse than those identified by other review articles. In addition to the most popular time-series and econometric models, a number of new techniques have emerged in the literature. However, as far as the forecasting accuracy is concerned, the study shows that there i...

  11. Forecasting ability of the investor sentiment endurance index: The case of oil service stock returns and crude oil prices

    International Nuclear Information System (INIS)

    He, Ling T.; Casey, K.M.

    2015-01-01

    Using a binomial probability distribution model this paper creates an endurance index of oil service investor sentiment. The index reflects the probability of the high or low stock price being the close price for the PHLX Oil Service Sector Index. Results of this study reveal the substantial forecasting ability of the sentiment endurance index. Monthly and quarterly rolling forecasts of returns of oil service stocks have an overall accuracy as high as 52% to 57%. In addition, the index shows decent forecasting ability on changes in crude oil prices, especially, WTI prices. The accuracy of 6-quarter rolling forecasts is 55%. The sentiment endurance index, along with the procedure of true forecasting and accuracy ratio, applied in this study provides investors and analysts of oil service sector stocks and crude oil prices as well as energy policy-makers with effective analytical tools

  12. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  13. A Novel Approach to Forecasting the Bulk Freight Market

    Directory of Open Access Journals (Sweden)

    Vangelis Tsioumas

    2017-03-01

    Full Text Available The fast-paced and ever changing freight market compels maritime executives to use sound forecasting tools. This paper aims to enhance the forecasting accuracy of the Baltic Dry Index (BDI by means of developing a multivariate Vector Autoregressive model with exogenous variables (VARX. The proposed model incorporates the Chinese steel production, the dry bulk fleet development and a new composite indicator, the Dry Bulk Economic Climate Index (DBECI. The predictive power of this approach is evaluated against a univariate ARIMA framework, which serves as a benchmark model. The selection of explanatory variables and the model specification are validated using a series of pertinent tests. The results demonstrate that the VARX model outperforms the ARIMA approach, suggesting that the selected independent variables can substantially improve the accuracy of BDI forecasts. The present study is of interest to maritime practitioners, as it provides useful insights into the direction of the freight market and allows them to make informed decisions.

  14. An Optimization of Inventory Demand Forecasting in University Healthcare Centre

    Science.gov (United States)

    Bon, A. T.; Ng, T. K.

    2017-01-01

    Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.

  15. Forecast models for suicide: Time-series analysis with data from Italy.

    Science.gov (United States)

    Preti, Antonio; Lentini, Gianluca

    2016-01-01

    The prediction of suicidal behavior is a complex task. To fine-tune targeted preventative interventions, predictive analytics (i.e. forecasting future risk of suicide) is more important than exploratory data analysis (pattern recognition, e.g. detection of seasonality in suicide time series). This study sets out to investigate the accuracy of forecasting models of suicide for men and women. A total of 101 499 male suicides and of 39 681 female suicides - occurred in Italy from 1969 to 2003 - were investigated. In order to apply the forecasting model and test its accuracy, the time series were split into a training set (1969 to 1996; 336 months) and a test set (1997 to 2003; 84 months). The main outcome was the accuracy of forecasting models on the monthly number of suicides. These measures of accuracy were used: mean absolute error; root mean squared error; mean absolute percentage error; mean absolute scaled error. In both male and female suicides a change in the trend pattern was observed, with an increase from 1969 onwards to reach a maximum around 1990 and decrease thereafter. The variances attributable to the seasonal and trend components were, respectively, 24% and 64% in male suicides, and 28% and 41% in female ones. Both annual and seasonal historical trends of monthly data contributed to forecast future trends of suicide with a margin of error around 10%. The finding is clearer in male than in female time series of suicide. The main conclusion of the study is that models taking seasonality into account seem to be able to derive information on deviation from the mean when this occurs as a zenith, but they fail to reproduce it when it occurs as a nadir. Preventative efforts should concentrate on the factors that influence the occurrence of increases above the main trend in both seasonal and cyclic patterns of suicides.

  16. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  17. Forecasting multivariate volatility in larger dimensions: some practical issues

    OpenAIRE

    Adam E Clements; Ayesha Scott; Annastiina Silvennoinen

    2012-01-01

    The importance of covariance modelling has long been recognised in the field of portfolio management and large dimensional multivariate problems are increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating whether simpler moving average based correlation forecasting methods have equal predictive accuracy as their more complex multivariate GARCH counterparts for large dimensional problems. We find simpler forecasting techn...

  18. The economic benefit of short-term forecasting for wind energy in the UK electricity market

    International Nuclear Information System (INIS)

    Barthelmie, R.J.; Murray, F.; Pryor, S.C.

    2008-01-01

    In the UK market, the total price of renewable electricity is made up of the Renewables Obligation Certificate and the price achieved for the electricity. Accurate forecasting improves the price if electricity is traded via the power exchange. In order to understand the size of wind farm for which short-term forecasting becomes economically viable, we develop a model for wind energy. Simulations were carried out for 2003 electricity prices for different forecast accuracies and strategies. The results indicate that it is possible to increase the price obtained by around pound 5/MWh which is about 14% of the electricity price in 2003 and about 6% of the total price. We show that the economic benefit of using short-term forecasting is also dependant on the accuracy and cost of purchasing the forecast. As the amount of wind energy requiring integration into the grid increases, short-term forecasting becomes more important to both wind farm owners and the transmission/distribution operators. (author)

  19. Robust Building Energy Load Forecasting Using Physically-Based Kernel Models

    Directory of Open Access Journals (Sweden)

    Anand Krishnan Prakash

    2018-04-01

    Full Text Available Robust and accurate building energy load forecasting is important for helping building managers and utilities to plan, budget, and strategize energy resources in advance. With recent prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption data became available. Many studies have developed physics-based white box models and data-driven black box models to predict building energy consumption; however, they require extensive prior knowledge about building system, need a large set of training data, or lack robustness to different forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on Gaussian Process Regression (GPR that incorporates physical insights about load data characteristics to improve accuracy while reducing training requirements. The GPR is a non-parametric regression method that models the data as a joint Gaussian distribution with mean and covariance functions and forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical insights to further improve the training efficiency and accuracy. We evaluate our method with three field datasets from two university campuses (Carnegie Mellon University and Stanford University for both short- and long-term load forecasting. The results show that our method performs more accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting models (up to 2.95 times smaller prediction error.

  20. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  1. Wave ensemble forecast system for tropical cyclones in the Australian region

    Science.gov (United States)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  2. Improving Seasonal Crop Monitoring and Forecasting for Soybean and Corn in Iowa

    Science.gov (United States)

    Togliatti, K.; Archontoulis, S.; Dietzel, R.; VanLoocke, A.

    2016-12-01

    Accurately forecasting crop yield in advance of harvest could greatly benefit farmers, however few evaluations have been conducted to determine the effectiveness of forecasting methods. We tested one such method that used a combination of short-term weather forecasting from the Weather Research and Forecasting Model (WRF) to predict in season weather variables, such as, maximum and minimum temperature, precipitation and radiation at 4 different forecast lengths (2 weeks, 1 week, 3 days, and 0 days). This forecasted weather data along with the current and historic (previous 35 years) data from the Iowa Environmental Mesonet was combined to drive Agricultural Production Systems sIMulator (APSIM) simulations to forecast soybean and corn yields in 2015 and 2016. The goal of this study is to find the forecast length that reduces the variability of simulated yield predictions while also increasing the accuracy of those predictions. APSIM simulations of crop variables were evaluated against bi-weekly field measurements of phenology, biomass, and leaf area index from early and late planted soybean plots located at the Agricultural Engineering and Agronomy Research Farm in central Iowa as well as the Northwest Research Farm in northwestern Iowa. WRF model predictions were evaluated against observed weather data collected at the experimental fields. Maximum temperature was the most accurately predicted variable, followed by minimum temperature and radiation, and precipitation was least accurate according to RMSE values and the number of days that were forecasted within a 20% error of the observed weather. Our analysis indicated that for the majority of months in the growing season the 3 day forecast performed the best. The 1 week forecast came in second and the 2 week forecast was the least accurate for the majority of months. Preliminary results for yield indicate that the 2 week forecast is the least variable of the forecast lengths, however it also is the least accurate

  3. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  4. Ownership balance, supervisory efficiency of independent directors and the quality of management earnings forecasts

    Directory of Open Access Journals (Sweden)

    Yunling Song

    2013-06-01

    Full Text Available In the Chinese securities market, with its characteristics of influence through personal relationships (Guanxi and underdeveloped standards of law and enforcement, can independent directors play the supervisory role expected by securities regulators? In this study we use the degree of precision and accuracy in corporate earnings forecasts as proxies for the quality of information disclosure by listed companies and examine the supervisory efficiency of independent directors with respect to information disclosure. Using data from 2007 to 2009, we find that in the absence of ownership balance, independent directors have a significant positive effect on the accuracy of management forecasts. In addition, the personal backgrounds of independent directors have specific effects on management earnings forecasts. Directors with certified public accountant (CPA expertise significantly improve the precision of management forecasts. However, directors with industrial expertise significantly reduce the precision of management forecasts. In other words, having directors with CPA expertise improves the independence of boards, but having independent directors with industrial expertise has the opposite effect.

  5. Assessing Variability and Errors in Historical Runoff Forecasting with Physical Models and Alternative Data Sources

    Science.gov (United States)

    Penn, C. A.; Clow, D. W.; Sexstone, G. A.

    2017-12-01

    Water supply forecasts are an important tool for water resource managers in areas where surface water is relied on for irrigating agricultural lands and for municipal water supplies. Forecast errors, which correspond to inaccurate predictions of total surface water volume, can lead to mis-allocated water and productivity loss, thus costing stakeholders millions of dollars. The objective of this investigation is to provide water resource managers with an improved understanding of factors contributing to forecast error, and to help increase the accuracy of future forecasts. In many watersheds of the western United States, snowmelt contributes 50-75% of annual surface water flow and controls both the timing and volume of peak flow. Water supply forecasts from the Natural Resources Conservation Service (NRCS), National Weather Service, and similar cooperators use precipitation and snowpack measurements to provide water resource managers with an estimate of seasonal runoff volume. The accuracy of these forecasts can be limited by available snowpack and meteorological data. In the headwaters of the Rio Grande, NRCS produces January through June monthly Water Supply Outlook Reports. This study evaluates the accuracy of these forecasts since 1990, and examines what factors may contribute to forecast error. The Rio Grande headwaters has experienced recent changes in land cover from bark beetle infestation and a large wildfire, which can affect hydrological processes within the watershed. To investigate trends and possible contributing factors in forecast error, a semi-distributed hydrological model was calibrated and run to simulate daily streamflow for the period 1990-2015. Annual and seasonal watershed and sub-watershed water balance properties were compared with seasonal water supply forecasts. Gridded meteorological datasets were used to assess changes in the timing and volume of spring precipitation events that may contribute to forecast error. Additionally, a

  6. Uncertainty Analysis of Multi-Model Flood Forecasts

    Directory of Open Access Journals (Sweden)

    Erich J. Plate

    2015-12-01

    Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.

  7. Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of EBC DP 2011-014)

    NARCIS (Netherlands)

    Pfajfar, D.; Zakelj, B.

    2012-01-01

    Abstract: This paper compares the behavior of subjects' uncertainty in different monetary policy environments when forecasting inflation in the laboratory. We find that inflation targeting produces lower uncertainty and higher accuracy of interval forecasts than inflation forecast targeting. We also

  8. Environmentally-driven ensemble forecasts of dengue fever

    Science.gov (United States)

    Yamana, T. K.; Shaman, J. L.

    2017-12-01

    Dengue fever is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas where dengue is found, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission remains a significant public health challenge. Recently, we developed a framework for forecasting dengue incidence using an dynamical model of disease transmission coupled with observational data of dengue cases using data-assimilation methods. Here, we investigate the use of environmental data to drive the disease transmission model. We produce retrospective forecasts of the timing and severity of dengue outbreaks, and quantify forecast predictive accuracy.

  9. An analog ensemble for short-term probabilistic solar power forecast

    International Nuclear Information System (INIS)

    Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G.

    2015-01-01

    Highlights: • A novel method for solar power probabilistic forecasting is proposed. • The forecast accuracy does not depend on the nominal power. • The impact of climatology on forecast accuracy is evaluated. - Abstract: The energy produced by photovoltaic farms has a variable nature depending on astronomical and meteorological factors. The former are the solar elevation and the solar azimuth, which are easily predictable without any uncertainty. The amount of liquid water met by the solar radiation within the troposphere is the main meteorological factor influencing the solar power production, as a fraction of short wave solar radiation is reflected by the water particles and cannot reach the earth surface. The total cloud cover is a meteorological variable often used to indicate the presence of liquid water in the troposphere and has a limited predictability, which is also reflected on the global horizontal irradiance and, as a consequence, on solar photovoltaic power prediction. This lack of predictability makes the solar energy integration into the grid challenging. A cost-effective utilization of solar energy over a grid strongly depends on the accuracy and reliability of the power forecasts available to the Transmission System Operators (TSOs). Furthermore, several countries have in place legislation requiring solar power producers to pay penalties proportional to the errors of day-ahead energy forecasts, which makes the accuracy of such predictions a determining factor for producers to reduce their economic losses. Probabilistic predictions can provide accurate deterministic forecasts along with a quantification of their uncertainty, as well as a reliable estimate of the probability to overcome a certain production threshold. In this paper we propose the application of an analog ensemble (AnEn) method to generate probabilistic solar power forecasts (SPF). The AnEn is based on an historical set of deterministic numerical weather prediction (NWP) model

  10. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  11. BAYESIAN FORECASTS COMBINATION TO IMPROVE THE ROMANIAN INFLATION PREDICTIONS BASED ON ECONOMETRIC MODELS

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2014-12-01

    Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.

  12. Combined time-varying forecast based on the proper scoring approach for wind power generation

    DEFF Research Database (Denmark)

    Chen, Xingying; Jiang, Yu; Yu, Kun

    2017-01-01

    Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here, based on forecasting error...... distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data of 3 years were used for testing. Simulation results...... demonstrate that the proposed method improves the accuracy of overall forecasts, even compared with a numerical weather prediction....

  13. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  14. Entity’s Irregular Demand Scheduling of the Wholesale Electricity Market based on the Forecast of Hourly Price Ratios

    Directory of Open Access Journals (Sweden)

    O. V. Russkov

    2015-01-01

    Full Text Available The article considers a hot issue to forecast electric power demand amounts and prices for the entities of wholesale electricity market (WEM, which are in capacity of a large user with production technology requirements prevailing over hourly energy planning ones. An electric power demand of such entities is on irregular schedule. The article analyses mathematical models, currently applied to forecast demand amounts and prices. It describes limits of time-series models and fundamental ones in case of hourly forecasting an irregular demand schedule of the electricity market entity. The features of electricity trading at WEM are carefully analysed. Factors that influence on irregularity of demand schedule of the metallurgical plant are shown. The article proposes method for the qualitative forecast of market price ratios as a tool to reduce a dependence on the accuracy of forecasting an irregular schedule of demand. It describes the differences between the offered method and the similar ones considered in research studies and scholarly works. The correlation between price ratios and relaxation in the requirements for the forecast accuracy of the electric power consumption is analysed. The efficiency function of forecast method is derived. The article puts an increased focus on description of the mathematical model based on the method of qualitative forecast. It shows main model parameters and restrictions the electricity market imposes on them. The model prototype is described as a programme module. Methods to assess an effectiveness of the proposed forecast model are examined. The positive test results of the model using JSC «Volzhsky Pipe Plant» data are given. A conclusion is drawn concerning the possibility to decrease dependence on the forecast accuracy of irregular schedule of entity’s demand at WEM. The effective trading tool has been found for the entities of irregular demand schedule at WEM. The tool application allows minimizing cost

  15. Forecasting the value of credit scoring

    Science.gov (United States)

    Saad, Shakila; Ahmad, Noryati; Jaffar, Maheran Mohd

    2017-08-01

    Nowadays, credit scoring system plays an important role in banking sector. This process is important in assessing the creditworthiness of customers requesting credit from banks or other financial institutions. Usually, the credit scoring is used when customers send the application for credit facilities. Based on the score from credit scoring, bank will be able to segregate the "good" clients from "bad" clients. However, in most cases the score is useful at that specific time only and cannot be used to forecast the credit worthiness of the same applicant after that. Hence, bank will not know if "good" clients will always be good all the time or "bad" clients may become "good" clients after certain time. To fill up the gap, this study proposes an equation to forecast the credit scoring of the potential borrowers at a certain time by using the historical score related to the assumption. The Mean Absolute Percentage Error (MAPE) is used to measure the accuracy of the forecast scoring. Result shows the forecast scoring is highly accurate as compared to actual credit scoring.

  16. A hybrid wavelet transform based short-term wind speed forecasting approach.

    Science.gov (United States)

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  17. Forecasting probabilistic seismic shaking for greater Tokyo from 400 years of intensity observations (Invited)

    Science.gov (United States)

    Bozkurt, S.; Stein, R. S.; Toda, S.

    2009-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past shaking. We calculate the time-averaged (Poisson) probability of severe shaking by using more than 10,000 intensity observations recorded since AD 1600 in a 350-km-wide box centered on Tokyo. Unlike other hazard assessment methods, source and site effects are included without modeling, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same; and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct here suggest that both assumptions are sound. The resulting 30-year probability of IJMA≥6 shaking (~PGA≥0.9 g or MMI≥IX) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba. This result means that there is a 30% chance that 4 million people would be subjected to IJMA≥6 shaking during an average 30-year period. We also produce exceedance maps of peak ground acceleration for building code regulations, and calculate short-term hazard associated with a hypothetical catastrophe bond. Our results resemble an independent assessment developed from conventional seismic hazard analysis for greater Tokyo. Over 10000 intensity observations stored and analyzed using geostatistical tools of GIS. Distribution of historical data is shown on this figure.

  18. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    Science.gov (United States)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  19. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    Science.gov (United States)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  20. A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Yuyang Gao

    2016-09-01

    Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.

  1. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  2. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  3. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...

  4. Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)

    NARCIS (Netherlands)

    Pfajfar, D.; Zakelj, B.

    2012-01-01

    Abstract: This paper compares the behavior of subjects' uncertainty in different monetary policy environments when forecasting inflation in the laboratory. We find that inflation targeting produces lower uncertainty and higher accuracy of interval forecasts than inflation forecast targeting. We also

  5. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  6. Forecasting daily political opinion polls using the fractionally cointegrated VAR model

    DEFF Research Database (Denmark)

    Nielsen, Morten Ørregaard; Shibaev, Sergei S.

    We examine forecasting performance of the recent fractionally cointegrated vector autoregressive (FCVAR) model. We use daily polling data of political support in the United Kingdom for 2010-2015 and compare with popular competing models at several forecast horizons. Our findings show that the four...... trend from the model follows the vote share of the UKIP very closely, and we thus interpret it as a measure of Euro-skepticism in public opinion rather than an indicator of the more traditional left-right political spectrum. In terms of prediction of vote shares in the election, forecasts generated...... variants of the FCVAR model considered are generally ranked as the top four models in terms of forecast accuracy, and the FCVAR model significantly outperforms both univariate fractional models and the standard cointegrated VAR (CVAR) model at all forecast horizons. The relative forecast improvement...

  7. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    DEFF Research Database (Denmark)

    Lundholm, Sisse Camilla

    To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  8. Forecasting Value-at-Risk under Different Distributional Assumptions

    Directory of Open Access Journals (Sweden)

    Manuela Braione

    2016-01-01

    Full Text Available Financial asset returns are known to be conditionally heteroskedastic and generally non-normally distributed, fat-tailed and often skewed. These features must be taken into account to produce accurate forecasts of Value-at-Risk (VaR. We provide a comprehensive look at the problem by considering the impact that different distributional assumptions have on the accuracy of both univariate and multivariate GARCH models in out-of-sample VaR prediction. The set of analyzed distributions comprises the normal, Student, Multivariate Exponential Power and their corresponding skewed counterparts. The accuracy of the VaR forecasts is assessed by implementing standard statistical backtesting procedures used to rank the different specifications. The results show the importance of allowing for heavy-tails and skewness in the distributional assumption with the skew-Student outperforming the others across all tests and confidence levels.

  9. Forecasting Dry Bulk Freight Index with Improved SVM

    Directory of Open Access Journals (Sweden)

    Qianqian Han

    2014-01-01

    Full Text Available An improved SVM model is presented to forecast dry bulk freight index (BDI in this paper, which is a powerful tool for operators and investors to manage the market trend and avoid price risking shipping industry. The BDI is influenced by many factors, especially the random incidents in dry bulk market, inducing the difficulty in forecasting of BDI. Therefore, to eliminate the impact of random incidents in dry bulk market, wavelet transform is adopted to denoise the BDI data series. Hence, the combined model of wavelet transform and support vector machine is developed to forecast BDI in this paper. Lastly, the BDI data in 2005 to 2012 are presented to test the proposed model. The 84 prior consecutive monthly BDI data are the inputs of the model, and the last 12 monthly BDI data are the outputs of model. The parameters of the model are optimized by genetic algorithm and the final model is conformed through SVM training. This paper compares the forecasting result of proposed method and three other forecasting methods. The result shows that the proposed method has higher accuracy and could be used to forecast the short-term trend of the BDI.

  10. State updating of a distributed hydrological model with Ensemble Kalman Filtering: Effects of updating frequency and observation network density on forecast accuracy

    Science.gov (United States)

    Rakovec, O.; Weerts, A.; Hazenberg, P.; Torfs, P.; Uijlenhoet, R.

    2012-12-01

    This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model (Rakovec et al., 2012a). The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. The uncertain precipitation model forcings were obtained using a time-dependent multivariate spatial conditional simulation method (Rakovec et al., 2012b), which is further made conditional on preceding simulations. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty. Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci. Discuss., 9, 3961-3999, doi:10.5194/hessd-9-3961-2012, 2012a. Rakovec, O., Hazenberg, P., Torfs, P. J. J. F., Weerts, A. H., and Uijlenhoet, R.: Generating spatial precipitation ensembles: impact of

  11. Forecasting stock market volatility: Do realized skewness and kurtosis help?

    Science.gov (United States)

    Mei, Dexiang; Liu, Jing; Ma, Feng; Chen, Wang

    2017-09-01

    In this study, we investigate the predictability of the realized skewness (RSK) and realized kurtosis (RKU) to stock market volatility, that has not been addressed in the existing studies. Out-of-sample results show that RSK, which can significantly improve forecast accuracy in mid- and long-term, is more powerful than RKU in forecasting volatility. Whereas these variables are useless in short-term forecasting. Furthermore, we employ the realized kernel (RK) for the robustness analysis and the conclusions are consistent with the RV measures. Our results are of great importance for portfolio allocation and financial risk management.

  12. Short term load forecasting of anomalous load using hybrid soft computing methods

    Science.gov (United States)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  13. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  14. Development of rainfall-runoff forecast model | Oyebode | Journal of ...

    African Journals Online (AJOL)

    ... and meterological variables involved in rainfall-runoff process to improve forecast accuracy of rainfallrunoff. ... The simulation was done using MATLAB® 7.0. The simulation results showed that neurofuzzy-based model has higher coefficient ...

  15. Forecasting behavior in smart homes based on sleep and wake patterns.

    Science.gov (United States)

    Williams, Jennifer A; Cook, Diane J

    2017-01-01

    The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

  16. Mutual Information-Based Inputs Selection for Electric Load Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Nenad Floranović

    2013-02-01

    Full Text Available Providing accurate load forecast to electric utility corporations is essential in order to reduce their operational costs and increase profits. Hence, training set selection is an important preprocessing step which has to be considered in practice in order to increase the accuracy of load forecasts. The usage of mutual information (MI has been recently proposed in regression tasks, mostly for feature selection and for identifying the real instances from training sets that contains noise and outliers. This paper proposes a methodology for the training set selection in a least squares support vector machines (LS-SVMs load forecasting model. A new application of the concept of MI is presented for the selection of a training set based on MI computation between initial training set instances and testing set instances. Accordingly, several LS-SVMs models have been trained, based on the proposed methodology, for hourly prediction of electric load for one day ahead. The results obtained from a real-world data set indicate that the proposed method increases the accuracy of load forecasting as well as reduces the size of the initial training set needed for model training.

  17. Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy

    Directory of Open Access Journals (Sweden)

    Baohui Men

    2017-12-01

    Full Text Available Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is proposed to forecast the rainfall with full consideration of the time-effectiveness of historical data. In view of the flaws of the fuzzy clustering method which is easy to fall into local optimal solution and low speed of operation, the ant colony algorithm is adopted to overcome these shortcomings and, as a result, refine the model. The method for determining weights is also improved by using the cross entropy. Besides, the forecast is conducted by analyzing the weighted average rainfall based on Thiessen polygon in the Beijing–Tianjin–Hebei region. Since the predictive errors are calculated, the results show that improved ant colony fuzzy clustering can effectively select historical data and enhance the accuracy of prediction so that the damage caused by extreme weather events like droughts and floods can be greatly lessened and even kept at bay.

  18. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  19. Forecasting of Water Consumptions Expenditure Using Holt-Winter’s and ARIMA

    Science.gov (United States)

    Razali, S. N. A. M.; Rusiman, M. S.; Zawawi, N. I.; Arbin, N.

    2018-04-01

    This study is carried out to forecast water consumption expenditure of Malaysian university specifically at University Tun Hussein Onn Malaysia (UTHM). The proposed Holt-Winter’s and Auto-Regressive Integrated Moving Average (ARIMA) models were applied to forecast the water consumption expenditure in Ringgit Malaysia from year 2006 until year 2014. The two models were compared and performance measurement of the Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) were used. It is found that ARIMA model showed better results regarding the accuracy of forecast with lower values of MAPE and MAD. Analysis showed that ARIMA (2,1,4) model provided a reasonable forecasting tool for university campus water usage.

  20. Evaluation of Operational Wave Forecasts for the Northeastern Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Beng-Chun Lee

    2010-01-01

    Full Text Available An operational regional wave forecasting system was established to fulfill the demands of maritime engineering applications on the northeastern coast of Taiwan. This Mixed system consisted of a nested SWAN numerical wave model and experienced marine meteorologists who were sent to the construction site as the in situ predictors to validate output from the numerical model so as to improve the forecasting accuracy.

  1. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin

    2012-04-01

    The emphasis on renewable energy and concerns about the environment have led to large-scale wind energy penetration worldwide. However, there are also significant challenges associated with the use of wind energy due to the intermittent and unstable nature of wind. High-quality short-term wind speed forecasting is critical to reliable and secure power system operations. This article begins with an overview of the current status of worldwide wind power developments and future trends. It then reviews some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented. © 2012 The Authors. International Statistical Review © 2012 International Statistical Institute.

  2. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  3. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  4. Assessing the accuracy of weather radar to track intense rain cells in the Greater Lyon area, France

    Science.gov (United States)

    Renard, Florent; Chapon, Pierre-Marie; Comby, Jacques

    2012-01-01

    The Greater Lyon is a dense area located in the Rhône Valley in the south east of France. The conurbation counts 1.3 million inhabitants and the rainfall hazard is a great concern. However, until now, studies on rainfall over the Greater Lyon have only been based on the network of rain gauges, despite the presence of a C-band radar located in the close vicinity. Consequently, the first aim of this study was to investigate the hydrological quality of this radar. This assessment, based on comparison of radar estimations and rain-gauges values concludes that the radar data has overall a good quality since 2006. Given this good accuracy, this study made a next step and investigated the characteristics of intense rain cells that are responsible of the majority of floods in the Greater Lyon area. Improved knowledge on these rainfall cells is important to anticipate dangerous events and to improve the monitoring of the sewage system. This paper discusses the analysis of the ten most intense rainfall events in the 2001-2010 period. Spatial statistics pointed towards straight and linear movements of intense rainfall cells, independently on the ground surface conditions and the topography underneath. The speed of these cells was found nearly constant during a rainfall event, but depend from event to ranges on average from 25 to 66 km/h.

  5. Influenza forecasting with Google Flu Trends.

    Science.gov (United States)

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  6. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    Science.gov (United States)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  7. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  8. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    generated, thus describing the likely accuracy of the forecast. The system is currently under development for Ethiopian maize with the potential to expand to other African countries.

  9. Forecasting electric demand of distribution system planing in rural and sparsely populated regions

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Buri, M.J. [ABB Automated Distribution Div., Raleigh, NC (United States); Finley, L.A. [Snohomish County PUD, Everett, WA (United States)

    1995-11-01

    Modern computerized distribution load forecasting methods, although accurate when applied to urban areas, give somewhat less satisfactory results when forecasting load growth in sparsely populated rural areas. This paper examines the differences between rural and urban load growth histories, identifying a major difference in the observed behavior of load growth. This difference is exploited in a new simulation forecasting algorithm. Tests show the new method is as accurate in forecasting rural load growth and as useful for analyzing DSM impacts than past methods, while requiring considerably lower computer resources and data than other simulation methods of comparable accuracy.

  10. Forecasting of integral parameters of solar cosmic ray events according to initial characteristics of an event

    International Nuclear Information System (INIS)

    Belovskij, M.N.; Ochelkov, Yu.P.

    1981-01-01

    The forecasting method for an integral proton flux of solar cosmic rays (SCR) based on the initial characteristics of the phe-- nomenon is proposed. The efficiency of the method is grounded. The accuracy of forecasting is estimated and the retrospective forecasting of real events is carried out. The parameters of the universal function describing the time progress of the SCR events are pre-- sented. The proposed method is suitable for forecasting practically all the SCR events. The timeliness of the given forecasting is not worse than that of the forecasting based on utilization of the SCR propagation models [ru

  11. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [University of Texas at Dallas; Feng, Cong [University of Texas at Dallas; Wang, Zhenke [University of Texas at Dallas; Zhang, Jie [University of Texas at Dallas

    2018-02-01

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  12. How accurate are the weather forecasts for Bierun (southern Poland)?

    Science.gov (United States)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  13. Automated time series forecasting for biosurveillance.

    Science.gov (United States)

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.

  14. Ensemble empirical model decomposition and neuro-fuzzy conjunction model for middle and long-term runoff forecast

    Science.gov (United States)

    Tan, Q.

    2017-12-01

    Forecasting the runoff over longer periods, such as months and years, is one of the important tasks for hydrologists and water resource managers to maximize the potential of the limited water. However, due to the nonlinear and nonstationary characteristic of the natural runoff, it is hard to forecast the middle and long-term runoff with a satisfactory accuracy. It has been proven that the forecast performance can be improved by using signal decomposition techniques to product more cleaner signals as model inputs. In this study, a new conjunction model (EEMD-neuro-fuzzy) with adaptive ability is proposed. The ensemble empirical model decomposition (EEMD) is used to decompose the runoff time series into several components, which are with different frequencies and more cleaner than the original time series. Then the neuro-fuzzy model is developed for each component. The final forecast results can be obtained by summing the outputs of all neuro-fuzzy models. Unlike the conventional forecast model, the decomposition and forecast models in this study are adjusted adaptively as long as new runoff information is added. The proposed models are applied to forecast the monthly runoff of Yichang station, located in Yangtze River of China. The results show that the performance of adaptive forecast model we proposed outperforms than the conventional forecast model, the Nash-Sutcliffe efficiency coefficient can reach to 0.9392. Due to its ability to process the nonstationary data, the forecast accuracy, especially in flood season, is improved significantly.

  15. Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China)

    NARCIS (Netherlands)

    Dong, Xiaohua; Dohmen-Janssen, Catarine M.; Booij, Martijn J.; Hulscher, Suzanne J.M.H.

    2006-01-01

    This paper presents a methodology to determine the effect of flow forecasting quality on the benefits of reservoir operation. The benefits are calculated in terms of the electricity generated, and the quality of the flow forecasting is defined in terms of lead time and accuracy of the forecasts. In

  16. Addressing forecast uncertainty impact on CSP annual performance

    Science.gov (United States)

    Ferretti, Fabio; Hogendijk, Christopher; Aga, Vipluv; Ehrsam, Andreas

    2017-06-01

    This work analyzes the impact of weather forecast uncertainty on the annual performance of a Concentrated Solar Power (CSP) plant. Forecast time series has been produced by a commercial forecast provider using the technique of hindcasting for the full year 2011 in hourly resolution for Ouarzazate, Morocco. Impact of forecast uncertainty has been measured on three case studies, representing typical tariff schemes observed in recent CSP projects plus a spot market price scenario. The analysis has been carried out using an annual performance model and a standard dispatch optimization algorithm based on dynamic programming. The dispatch optimizer has been demonstrated to be a key requisite to maximize the annual revenues depending on the price scenario, harvesting the maximum potential out of the CSP plant. Forecasting uncertainty affects the revenue enhancement outcome of a dispatch optimizer depending on the error level and the price function. Results show that forecasting accuracy of direct solar irradiance (DNI) is important to make best use of an optimized dispatch but also that a higher number of calculation updates can partially compensate this uncertainty. Improvement in revenues can be significant depending on the price profile and the optimal operation strategy. Pathways to achieve better performance are presented by having more updates both by repeatedly generating new optimized trajectories but also more often updating weather forecasts. This study shows the importance of working on DNI weather forecasting for revenue enhancement as well as selecting weather services that can provide multiple updates a day and probabilistic forecast information.

  17. New Approach To Hour-By-Hour Weather Forecast

    Science.gov (United States)

    Liao, Q. Q.; Wang, B.

    2017-12-01

    Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The

  18. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    Science.gov (United States)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and

  19. Short-Term fo F2 Forecast: Present Day State of Art

    Science.gov (United States)

    Mikhailov, A. V.; Depuev, V. H.; Depueva, A. H.

    An analysis of the F2-layer short-term forecast problem has been done. Both objective and methodological problems prevent us from a deliberate F2-layer forecast issuing at present. An empirical approach based on statistical methods may be recommended for practical use. A forecast method based on a new aeronomic index (a proxy) AI has been proposed and tested over selected 64 severe storm events. The method provides an acceptable prediction accuracy both for strongly disturbed and quiet conditions. The problems with the prediction of the F2-layer quiet-time disturbances as well as some other unsolved problems are discussed

  20. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  1. Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this work we consider forecasting macroeconomic variables during an economic crisis. The focus is on a speci…c class of models, the so-called single hidden-layer feedforward autoregressive neural network models. What makes these models interesting in the present context is that they form a cla...... during the economic crisis 2007–2009. Forecast accuracy is measured by the root mean square forecast error. Hypothesis testing is also used to compare the performance of the different techniques with each other....

  2. Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data

    Science.gov (United States)

    Fantazzini, Dean

    2014-01-01

    We propose the use of Google online search data for nowcasting and forecasting the number of food stamps recipients. We perform a large out-of-sample forecasting exercise with almost 3000 competing models with forecast horizons up to 2 years ahead, and we show that models including Google search data statistically outperform the competing models at all considered horizons. These results hold also with several robustness checks, considering alternative keywords, a falsification test, different out-of-samples, directional accuracy and forecasts at the state-level. PMID:25369315

  3. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  4. FORECASTING NEW PRODUCT SALES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.

    AFRIKAANSE OPSOMMING: Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.

  5. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  6. Variable Selection in Time Series Forecasting Using Random Forests

    Directory of Open Access Journals (Sweden)

    Hristos Tyralis

    2017-10-01

    Full Text Available Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.

  7. ECONOMIC FORECASTS BASED ON ECONOMETRIC MODELS USING EViews 5

    Directory of Open Access Journals (Sweden)

    Cornelia TomescuDumitrescu,

    2009-05-01

    Full Text Available The forecast of evolution of economic phenomena represent on the most the final objective of econometrics. It withal represent a real attempt of validity elaborate model. Unlike the forecasts based on the study of temporal series which have an recognizable inertial character the forecasts generated by econometric model with simultaneous equations are after to contour the future of ones of important economic variables toward the direct and indirect influences bring the bear on their about exogenous variables. For the relief of the calculus who the realization of the forecasts based on the econometric models its suppose is indicate the use of the specialized informatics programs. One of this is the EViews which is applied because it reduces significant the time who is destined of the econometric analysis and it assure a high accuracy of calculus and of the interpretation of results.

  8. Information Trading by Corporate Insiders Based on Accounting Accruals - Forecasting Economic Performance

    NARCIS (Netherlands)

    Hodgson, A.; van Praag, B.

    2006-01-01

    In this paper, we test whether directors’ (corporate insiders) trading in Australia, based on accounting accruals, provides incremental information in forecasting a firm's economic performance. We determine that directors’ trading on negative accruals in larger firms has greater forecasting content

  9. The Determinants of Sell-side Analysts' Forecast Accuracy and Media Exposure

    OpenAIRE

    Sorogho, Samira Amadu

    2017-01-01

    This study examines contributing factors to the differential forecasting abilities of sell-side analysts and the relation between the sentiments of these analysts and their media exposure. In particular, I investigate whether the level of optimism expressed in sell-side analysts’ reports of fifteen constituents of primarily the S&P 500 Oil and Gas Industry1, enhance the media appearance of these analysts. Using a number of variables estimated from the I/B/E/S Detail history database, 15,455 a...

  10. Estimation of clearness index using neural network with meteorological forecast; Kisho yoho wo nyuryoku toshita neural network ni yoru seiten shisu no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, S; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Discussions were given on estimation of clearness index in order to operate stably a solar energy utilizing system. All-sky insolation amount varies not only by change in the climate, but also seasonal change in the sun`s altitude. Therefore, a clearness index (ratio of all-sky insolation to out-of-atmosphere insolation) was used. The larger the value, the higher the solar ray permeability. The all-sky insolation amount is a measured value, while the out-of-atmosphere insolation amount is a calculated value. Although the clearness index may be roughly estimated by weather forecast, the clearness index varies largely even on the same weather forecast, especially for cloudy days, if a weather forecast actually having error is used. Therefore, discussions were given on estimation of the clearness index by using a neural network which uses meteorological information such as air temperatures and precipitation probabilities as inputs. Using multiple number of meteorological forecast information simultaneously has reduced the average square error to 49% of that using only the weather forecast. The estimation accuracy depends on the accuracy of meteorological forecast, but using multiple number of forecast information can improve the accuracy. 6 refs., 7 figs., 1 tab.

  11. Short-term forecasting of the chloride content in the mineral waters of the Ustroń Health Resort using SARIMA and Holt-Winters models

    Directory of Open Access Journals (Sweden)

    Dąbrowska Dominika

    2015-12-01

    Full Text Available The Ustroń S.A. Health Resort (southern Poland uses iodide-bromide mineral waters taken from Middle and Upper Devonian limestones and dolomites with a mineralisation range of 110-130 g/dm3 for curative purposes. Two boreholes - U-3 and U3-A drilled in the early 1970s were exploited. The aim of this paper is to estimate changes in mineral water quality of the Ustroń Health Resort by taking into consideration chloride content in the water from the U-3 borehole. The data has included the results of monthly analyses of chlorides from 2005 to 2015 during the tests carried out by the Mining Department of the Health Resort. The triple exponential smoothing (ETS function and the Seasonal Autoregressive Integrated Moving Average (SARIMA method of modelling time series were used for the calculations. The ability to properly forecast mineral water quality can result in a good status of the exploitation borehole and a limited number of failures in the exploitation system. Because of the good management of health resorts, it is possible to acquire more satisfied customers. The main goal of the article involves the real-time forecast accuracy, obtained results show that the proposed methods are effective for such situations. Presented methods made it possible to obtain a 24-month point and interval forecast. The results of these analyses indicate that the chloride content is forecast to be in the range of 72 to 83 g/l from 2015 to 2017. While comparing the two methods of analysis, a narrower range of forecast values and, therefore, greater accuracy were obtained for the ETS function. The good performance of the ETS model highlights its utility compared with complicated physically based numerical models.

  12. Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns

    Science.gov (United States)

    Williams, Jennifer A.; Cook, Diane J.

    2017-01-01

    Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555

  13. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  14. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-10-01

    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  15. Forecasting hourly patient visits in the emergency department to counteract crowding

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2017-01-01

    visits. The data for 2012-2014 were used to create linear regression models, autoregressive integrated moving average (ARIMA) models, and – for purposes of comparison – naïve models of hourly patient arrivals and ED occupancy. Using the models, patient arrivals and ED occupancy were forecasted for every...... hour of January 2015. Results: Hourly patient arrivals were forecasted with a mean percentage error of 47-58% (regression), 49-58% (ARIMA), and 60-76% (naïve). Increasing the forecasting interval decreased the mean percentage error. ED occupancy was forecasted with better accuracy by ARIMA than...... regression models. With ARIMA the mean percentage error of the forecasts of the hourly ED occupancy was 69-73% for three of the EDs and 101% for the last ED. Factors beyond calendar variables might possibly have improved the models of ED occupancy, provided that information about these factors had been...

  16. Filters or Holt Winters Technique to Improve the SPF Forecasts for USA Inflation Rate?

    Directory of Open Access Journals (Sweden)

    Mihaela Bratu (Simionescu

    2013-02-01

    Full Text Available In this study, transformations of SPF inflation forecasts were made in order to get moreaccurate predictions. The filters application and Holt Winters technique were chosen as possiblestrategies of improving the predictions accuracy. The quarterly inflation rate forecasts (1975 Q1-2012Q3 of USAmade by SPF were transformed using an exponential smoothing technique-HoltWinters-and these new predictions are better than the initial ones for all forecasting horizons of 4quarters. Some filters were applied to SPF forecasts (Hodrick-Prescott,Band-Pass and Christiano-Fitzegerald filters, but Holt Winters method was superior.Full sample asymmetric (Christiano-Fitzegerald and Band-Pass filtersmoothed values are more accurate than the SPF expectations onlyfor some forecast horizons.

  17. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    Science.gov (United States)

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  18. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [Univ. of Texas-Dallas, Richardson, TX (United States); Feng, Cong [Univ. of Texas-Dallas, Richardson, TX (United States); Wang, Zhenke [Univ. of Texas-Dallas, Richardson, TX (United States); Zhang, Jie [Univ. of Texas-Dallas, Richardson, TX (United States)

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  19. Forecasting Analysis of Shanghai Stock Index Based on ARIMA Model

    Directory of Open Access Journals (Sweden)

    Li Chenggang

    2017-01-01

    Full Text Available Prediction and analysis of the Shanghai Composite Index is conducive for investors to investing in the stock market, and providing investors with reference. This paper selects Shanghai Composite Index monthly closing price from Jan, 2005 to Oct, 2016 to construct ARIMA model. This paper carries on the forecast of the last three monthly closing price of Shanghai Stock Index that have occurred, and compared it with the actual value, which tests the accuracy and feasibility of the model in the short term Shanghai Stock Index forecast. At last, this paper uses the ARIMA model to forecast the Shanghai Composite Index closing price of the last two months in 2016.

  20. Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors

    International Nuclear Information System (INIS)

    Frías-Paredes, Laura; Mallor, Fermín; Gastón-Romeo, Martín; León, Teresa

    2017-01-01

    Highlights: • A new method to match time series is defined to assess energy forecasting accuracy. • This method relies in a new family of step patterns that optimizes the MAE. • A new definition of the Temporal Distortion Index between two series is provided. • A parametric extension controls both the temporal distortion index and the MAE. • Pareto optimal transformations of the forecast series are obtained for both indexes. - Abstract: Recent years have seen a growing trend in wind and solar energy generation globally and it is expected that an important percentage of total energy production comes from these energy sources. However, they present inherent variability that implies fluctuations in energy generation that are difficult to forecast. Thus, forecasting errors have a considerable role in the impacts and costs of renewable energy integration, management, and commercialization. This study presents an important advance in the task of analyzing prediction models, in particular, in the timing component of prediction error, which improves previous pioneering results. A new method to match time series is defined in order to assess energy forecasting accuracy. This method relies on a new family of step patterns, an essential component of the algorithm to evaluate the temporal distortion index (TDI). This family minimizes the mean absolute error (MAE) of the transformation with respect to the reference series (the real energy series) and also allows detailed control of the temporal distortion entailed in the prediction series. The simultaneous consideration of temporal and absolute errors allows the use of Pareto frontiers as characteristic error curves. Real examples of wind energy forecasts are used to illustrate the results.

  1. Time Series Analysis for Forecasting Hospital Census: Application to the Neonatal Intensive Care Unit.

    Science.gov (United States)

    Capan, Muge; Hoover, Stephen; Jackson, Eric V; Paul, David; Locke, Robert

    2016-01-01

    Accurate prediction of future patient census in hospital units is essential for patient safety, health outcomes, and resource planning. Forecasting census in the Neonatal Intensive Care Unit (NICU) is particularly challenging due to limited ability to control the census and clinical trajectories. The fixed average census approach, using average census from previous year, is a forecasting alternative used in clinical practice, but has limitations due to census variations. Our objectives are to: (i) analyze the daily NICU census at a single health care facility and develop census forecasting models, (ii) explore models with and without patient data characteristics obtained at the time of admission, and (iii) evaluate accuracy of the models compared with the fixed average census approach. We used five years of retrospective daily NICU census data for model development (January 2008 - December 2012, N=1827 observations) and one year of data for validation (January - December 2013, N=365 observations). Best-fitting models of ARIMA and linear regression were applied to various 7-day prediction periods and compared using error statistics. The census showed a slightly increasing linear trend. Best fitting models included a non-seasonal model, ARIMA(1,0,0), seasonal ARIMA models, ARIMA(1,0,0)x(1,1,2)7 and ARIMA(2,1,4)x(1,1,2)14, as well as a seasonal linear regression model. Proposed forecasting models resulted on average in 36.49% improvement in forecasting accuracy compared with the fixed average census approach. Time series models provide higher prediction accuracy under different census conditions compared with the fixed average census approach. Presented methodology is easily applicable in clinical practice, can be generalized to other care settings, support short- and long-term census forecasting, and inform staff resource planning.

  2. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application

    OpenAIRE

    Mingfei Niu; Shaolong Sun; Jie Wu; Yuanlei Zhang

    2015-01-01

    The accuracy of wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. In particular, reliable short-term wind speed forecasting can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, due to the strong stochastic nature and dynamic uncertainty of wind speed, the forecasting of wind speed data using different patterns is difficult. This paper proposes a novel combination bias c...

  3. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  4. Initial results with time series forecasting of TJ-II heliac waveforms

    International Nuclear Information System (INIS)

    Farias, G.; Dormido-Canto, S.; Vega, J.; Díaz, N.

    2015-01-01

    This article discusses about how to apply forecasting techniques to predict future samples of plasma signals during a discharge. One application of the forecasting could be to detect in real time anomalous behaviors in fusion waveforms. The work describes the implementation of three prediction techniques; two of them based on machine learning methods such as artificial neural networks and support vector machines for regression. The results have shown that depending on the temporal horizon, the predictions match the real samples in most cases with an error less than 5%, even more the forecasting of five samples ahead can reach accuracy over 90% in most signals analyzed.

  5. Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning

    Directory of Open Access Journals (Sweden)

    Ya’nan Wang

    2016-01-01

    Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.

  6. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  7. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  8. Short-term electricity prices forecasting in a competitive market: A neural network approach

    International Nuclear Information System (INIS)

    Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M.

    2007-01-01

    This paper proposes a neural network approach for forecasting short-term electricity prices. Almost until the end of last century, electricity supply was considered a public service and any price forecasting which was undertaken tended to be over the longer term, concerning future fuel prices and technical improvements. Nowadays, short-term forecasts have become increasingly important since the rise of the competitive electricity markets. In this new competitive framework, short-term price forecasting is required by producers and consumers to derive their bidding strategies to the electricity market. Accurate forecasting tools are essential for producers to maximize their profits, avowing profit losses over the misjudgement of future price movements, and for consumers to maximize their utilities. A three-layered feedforward neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting next-week electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed neural network approach, reporting the results from the electricity markets of mainland Spain and California. (author)

  9. Fishery landing forecasting using EMD-based least square support vector machine models

    Science.gov (United States)

    Shabri, Ani

    2015-05-01

    In this paper, the novel hybrid ensemble learning paradigm integrating ensemble empirical mode decomposition (EMD) and least square support machine (LSSVM) is proposed to improve the accuracy of fishery landing forecasting. This hybrid is formulated specifically to address in modeling fishery landing, which has high nonlinear, non-stationary and seasonality time series which can hardly be properly modelled and accurately forecasted by traditional statistical models. In the hybrid model, EMD is used to decompose original data into a finite and often small number of sub-series. The each sub-series is modeled and forecasted by a LSSVM model. Finally the forecast of fishery landing is obtained by aggregating all forecasting results of sub-series. To assess the effectiveness and predictability of EMD-LSSVM, monthly fishery landing record data from East Johor of Peninsular Malaysia, have been used as a case study. The result shows that proposed model yield better forecasts than Autoregressive Integrated Moving Average (ARIMA), LSSVM and EMD-ARIMA models on several criteria..

  10. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  11. Density Forecasts of Crude-Oil Prices Using Option-Implied and ARCH-Type Models

    DEFF Research Database (Denmark)

    Tsiaras, Leonidas; Høg, Esben

      The predictive accuracy of competing crude-oil price forecast densities is investigated for the 1994-2006 period. Moving beyond standard ARCH models that rely exclusively on past returns, we examine the benefits of utilizing the forward-looking information that is embedded in the prices...... as for regions and intervals that are of special interest for the economic agent. We find that non-parametric adjustments of risk-neutral density forecasts perform significantly better than their parametric counterparts. Goodness-of-fit tests and out-of-sample likelihood comparisons favor forecast densities...

  12. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  13. Urban Saturated Power Load Analysis Based on a Novel Combined Forecasting Model

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting model considers several influencing factors as the input variables. To improve forecasting performance, a novel combined forecasting model for saturated power load analysis was proposed in this paper, which combined the above two models. Meanwhile, the weights of these two models in the combined forecasting model were optimized by employing a fruit fly optimization algorithm. Using Hubei Province as the example, the effectiveness of the proposed combined forecasting model was verified, demonstrating a higher forecasting accuracy. The analysis result shows that the power load of Hubei Province will reach saturation in 2039, and the annual maximum power load will reach about 78,630 MW. The results obtained from this proposed hybrid urban saturated power load analysis model can serve as a reference for sustainable development for urban power grids, regional economies, and society at large.

  14. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting

    International Nuclear Information System (INIS)

    Wang Jianzhou; Jia Ruiling; Zhao Weigang; Wu Jie; Dong Yao

    2012-01-01

    Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.

  15. Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2013-09-01

    Full Text Available The small medium large system (SMLsystem is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs, which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems at the SMLsystem house represent 53:89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%–38:9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.

  16. Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods

    Directory of Open Access Journals (Sweden)

    Mustafa Akpinar

    2016-09-01

    Full Text Available Consumption of natural gas, a major clean energy source, increases as energy demand increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey has led to the formation of a market structure for the natural gas industry. This significant increase requires additional investments since a rise in consumption capacity is expected. One of the reasons for the consumption increase is the user-based natural gas consumption influence. This effect yields imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this paper, three univariate statistical methods, which have not been previously investigated for mid-term year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s Sakarya province. Residential and low-consumption commercial data is used, which may contain seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption while improving the accuracy of demand forecasting. In forecasting models, seasonality and single variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters exponential smoothing and autoregressive integrated moving average (ARIMA methods. Here, 2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013 monthly data used for finding seasonal effects and model requirements. The second series is 2014 monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and transformation process prior to forecasting was done. Forecasting results confirmed that as the computation complexity of the model increases, forecasting accuracy increases with lower error rates. Also, forecasting errors and the coefficients of determination values give more consistent results. Consequently

  17. Fuzzy time-series based on Fibonacci sequence for stock price forecasting

    Science.gov (United States)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia

    2007-07-01

    Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.

  18. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Optis, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-02

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present. Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.

  19. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Wang Jianzhou; Zhao Ge; Dong Yao

    2012-01-01

    Electricity demand forecasting could prove to be a useful policy tool for decision-makers; thus, accurate forecasting of electricity demand is valuable in allowing both power generators and consumers to make their plans. Although a seasonal ARIMA model is widely used in electricity demand analysis and is a high-precision approach for seasonal data forecasting, errors are unavoidable in the forecasting process. Consequently, a significant research goal is to further improve forecasting precision. To help people in the electricity sectors make more sensible decisions, this study proposes residual modification models to improve the precision of seasonal ARIMA for electricity demand forecasting. In this study, PSO optimal Fourier method, seasonal ARIMA model and combined models of PSO optimal Fourier method with seasonal ARIMA are applied in the Northwest electricity grid of China to correct the forecasting results of seasonal ARIMA. The modification models forecasting of the electricity demand appears to be more workable than that of the single seasonal ARIMA. The results indicate that the prediction accuracy of the three residual modification models is higher than the single seasonal ARIMA model and that the combined model is the most satisfactory of the three models. - Highlights: ► Three residual modification models are proposed to improve the precision of seasonal ARIMA. ► Accurate electricity demand forecast is helpful for a power production sector to come to a correct and reasonable decision. ► The results conclude that the residual modification approaches could enhance the prediction accuracy of seasonal ARIMA. ► The modification models could be applied to forecast electricity demand.

  20. A neutral network based technique for short-term forecasting of anomalous load periods

    Energy Technology Data Exchange (ETDEWEB)

    Sforna, M [ENEL, s.p.a, Italian Power Company (Italy); Lamedica, R; Prudenzi, A [Rome Univ. ` La Sapienza` , Rome (Italy); Caciotta, M; Orsolini Cencelli, V [Rome Univ. III, Rome (Italy)

    1995-01-01

    The paper illustrates a part of the research activity conducted by authors in the field of electric Short Term Load Forecasting (STLF) based on Artificial Neural Network (ANN) architectures. Previous experiences with basic ANN architectures have shown that, even though these architecture provide results comparable with those obtained by human operators for most normal days, they evidence some accuracy deficiencies when applied to `anomalous` load conditions occurring during holidays and long weekends. For these periods a specific procedure based upon a combined (unsupervised/supervised) approach has been proposed. The unsupervised stage provides a preventive classification of the historical load data by means of a Kohonen`s Self Organizing Map (SOM). The supervised stage, performing the proper forecasting activity, is obtained by using a multi-layer percept ron with a back propagation learning algorithm similar to the ones above mentioned. The unconventional use of information deriving from the classification stage permits the proposed procedure to obtain a relevant enhancement of the forecast accuracy for anomalous load situations.

  1. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  2. A stochastic HMM-based forecasting model for fuzzy time series.

    Science.gov (United States)

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  3. Real-time forecasting of the April 11, 2012 Sumatra tsunami

    Science.gov (United States)

    Wang, Dailin; Becker, Nathan C.; Walsh, David; Fryer, Gerard J.; Weinstein, Stuart A.; McCreery, Charles S.; ,

    2012-01-01

    The April 11, 2012, magnitude 8.6 earthquake off the northern coast of Sumatra generated a tsunami that was recorded at sea-level stations as far as 4800 km from the epicenter and at four ocean bottom pressure sensors (DARTs) in the Indian Ocean. The governments of India, Indonesia, Sri Lanka, Thailand, and Maldives issued tsunami warnings for their coastlines. The United States' Pacific Tsunami Warning Center (PTWC) issued an Indian Ocean-wide Tsunami Watch Bulletin in its role as an Interim Service Provider for the region. Using an experimental real-time tsunami forecast model (RIFT), PTWC produced a series of tsunami forecasts during the event that were based on rapidly derived earthquake parameters, including initial location and Mwp magnitude estimates and the W-phase centroid moment tensor solutions (W-phase CMTs) obtained at PTWC and at the U. S. Geological Survey (USGS). We discuss the real-time forecast methodology and how successive, real-time tsunami forecasts using the latest W-phase CMT solutions improved the accuracy of the forecast.

  4. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    Science.gov (United States)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  5. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  6. Road icing forecasting and detecting system

    Science.gov (United States)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  7. A Comparative Study Of Stock Price Forecasting Using Nonlinear Models

    Directory of Open Access Journals (Sweden)

    Diteboho Xaba

    2017-03-01

    Full Text Available This study compared the in-sample forecasting accuracy of three forecasting nonlinear models namely: the Smooth Transition Regression (STR model, the Threshold Autoregressive (TAR model and the Markov-switching Autoregressive (MS-AR model. Nonlinearity tests were used to confirm the validity of the assumptions of the study. The study used model selection criteria, SBC to select the optimal lag order and for the selection of appropriate models. The Mean Square Error (MSE, Mean Absolute Error (MAE and Root Mean Square Error (RMSE served as the error measures in evaluating the forecasting ability of the models. The MS-AR models proved to perform well with lower error measures as compared to LSTR and TAR models in most cases.

  8. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm

    International Nuclear Information System (INIS)

    Guo, Zhenhai; Chi, Dezhong; Wu, Jie; Zhang, Wenyu

    2014-01-01

    Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules

  9. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    Science.gov (United States)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized

  10. Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations

    International Nuclear Information System (INIS)

    Wang, Jie; Wang, Jun

    2016-01-01

    In an attempt to improve the forecasting accuracy of crude oil price fluctuations, a new neural network architecture is established in this work which combines Multilayer perception and ERNN (Elman recurrent neural networks) with stochastic time effective function. ERNN is a time-varying predictive control system and is developed with the ability to keep memory of recent events in order to predict future output. The stochastic time effective function represents that the recent information has a stronger effect for the investors than the old information. With the established model the empirical research has a good performance in testing the predictive effects on four different time series indices. Compared to other models, the present model is possible to evaluate data from 1990s to today with extreme accuracy and speedy. The applied CID (complexity invariant distance) analysis and multiscale CID analysis, are provided as the new useful measures to evaluate a better predicting ability of the proposed model than other traditional models. - Highlights: • A new forecasting model is developed by a random Elman recurrent neural network. • The forecasting accuracy of crude oil price fluctuations is improved by the model. • The forecasting results of the proposed model are more accurate than compared models. • Two new distance analysis methods are applied to confirm the predicting results.

  11. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  12. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  13. Model of medicines sales forecasting taking into account factors of influence

    Science.gov (United States)

    Kravets, A. G.; Al-Gunaid, M. A.; Loshmanov, V. I.; Rasulov, S. S.; Lempert, L. B.

    2018-05-01

    The article describes a method for forecasting sales of medicines in conditions of data sampling, which is insufficient for building a model based on historical data alone. The developed method is applicable mainly to new drugs that are already licensed and released for sale but do not yet have stable sales performance in the market. The purpose of this study is to prove the effectiveness of the suggested method forecasting drug sales, taking into account the selected factors of influence, revealed during the review of existing solutions and analysis of the specificity of the area under study. Three experiments were performed on samples of different volumes, which showed an improvement in the accuracy of forecasting sales in small samples.

  14. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    Science.gov (United States)

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  15. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  16. Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility

    Science.gov (United States)

    Tuba, Zoltán; Bottyán, Zsolt

    2018-04-01

    Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.

  17. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Ruelke

    2013-01-01

    We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-)herding of forecasters. Forecasts are consistent with herding (anti-herding) of forecasters if forecasts are biased towards (away from) t......) the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time....

  18. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  19. Transport safety and traffic forecasting: An economist's perspective

    Directory of Open Access Journals (Sweden)

    Kenneth Button

    2014-07-01

    Full Text Available This paper is concerned with forecasting traffic accidents at a relatively aggregate level and over a long time period; the sort of information that is required as part of a comprehensive cost-benefit analysis of a major transportation investment or policy change. It is not so focused on appraising the social value of specific safety measures, although some of the points made seem germane. Whereas there has been much ex ante analysis at the meso- and macro-levels looking at the causes of accidents and ways of reducing both their number and severity, much less ex post has been done considering the accuracy of predictions of accident rates after an investment or policy initiative. Given the evidence that exists on the accuracy of traffic forecasts, especially involving oft over-optimistic predictions of public transit and rail use, there is at least a prima facie case for arguing that many investment and policy decisions are being based, in part, on over favorable assumptions with regard to their aggregate safety impacts.

  20. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    Directory of Open Access Journals (Sweden)

    Christian Pierdzioch

    2012-11-01

    Full Text Available We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-herding of forecasters. Forecasts are consistent with herding (anti-herding of forecasters if forecasts are biased towards (away from the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time.

  1. A production throughput forecasting system in an automated hard disk drive test operation using GRNN

    Energy Technology Data Exchange (ETDEWEB)

    Samattapapong, N.; Afzulpurkar, N.

    2016-07-01

    The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations. In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO). The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application. The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for

  2. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    Science.gov (United States)

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Multi-Model Prediction for Demand Forecast in Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez Farias

    2018-03-01

    Full Text Available This paper presents a multi-model predictor called Qualitative Multi-Model Predictor Plus (QMMP+ for demand forecast in water distribution networks. QMMP+ is based on the decomposition of the quantitative and qualitative information of the time-series. The quantitative component (i.e., the daily consumption prediction is forecasted and the pattern mode estimated using a Nearest Neighbor (NN classifier and a Calendar. The patterns are updated via a simple Moving Average scheme. The NN classifier and the Calendar are executed simultaneously every period and the most suited model for prediction is selected using a probabilistic approach. The proposed solution for water demand forecast is compared against Radial Basis Function Artificial Neural Networks (RBF-ANN, the statistical Autoregressive Integrated Moving Average (ARIMA, and Double Seasonal Holt-Winters (DSHW approaches, providing the best results when applied to real demand of the Barcelona Water Distribution Network. QMMP+ has demonstrated that the special modelling treatment of water consumption patterns improves the forecasting accuracy.

  4. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    Science.gov (United States)

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  5. Hindicast and forecast of the Parsifal storm

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, L.; Cavaleri, L. [Istituto Studio Dinamica Grandi Masse, Venice (Italy); De girolamo, P.; Magnaldi, S. [Rome, Univ. `La Sapienza` (Italy). Dip. di Idraulica, Trasporti e Strade; Franco, L. [Rome, III Univ. (Italy). Dip. di Scienze dell`Ingegneria Civile

    1998-05-01

    On 2 November 1995 a Mistral storm in the Gulf of Lions sank the 16 metre yacht Parsifal claiming six lives out of the nine member crew. The authors analyse the storm with different meteorological and wave models, verifying the results against the available buoy and satellite measurements. Then the authors consider the accuracy of the storm forecasts and the information available the days before the accident. The limitations related to the resolution of the meteorological models are explored by hind casting the storm also with the winds produced by some limited area models. Finally, the authors discuss the present situation of wind and wave hind cast and forecast in the Mediterranean Sea, and the distribution of these results to the public.

  6. EXPENSES FORECASTING MODEL IN UNIVERSITY PROJECTS PLANNING

    Directory of Open Access Journals (Sweden)

    Sergei A. Arustamov

    2016-11-01

    Full Text Available The paper deals with mathematical model presentation of cash flows in project funding. We describe different types of expenses linked to university project activities. Problems of project budgeting that contribute most uncertainty have been revealed. As an example of the model implementation we consider calculation of vacation allowance expenses for project participants. We define problems of forecast for funds reservation: calculation based on methodology established by the Ministry of Education and Science calculation according to the vacation schedule and prediction of the most probable amount. A stochastic model for vacation allowance expenses has been developed. We have proposed methods and solution of the problems that increase the accuracy of forecasting for funds reservation based on 2015 data.

  7. A Modified LS+AR Model to Improve the Accuracy of the Short-term Polar Motion Prediction

    Science.gov (United States)

    Wang, Z. W.; Wang, Q. X.; Ding, Y. Q.; Zhang, J. J.; Liu, S. S.

    2017-03-01

    There are two problems of the LS (Least Squares)+AR (AutoRegressive) model in polar motion forecast: the inner residual value of LS fitting is reasonable, but the residual value of LS extrapolation is poor; and the LS fitting residual sequence is non-linear. It is unsuitable to establish an AR model for the residual sequence to be forecasted, based on the residual sequence before forecast epoch. In this paper, we make solution to those two problems with two steps. First, restrictions are added to the two endpoints of LS fitting data to fix them on the LS fitting curve. Therefore, the fitting values next to the two endpoints are very close to the observation values. Secondly, we select the interpolation residual sequence of an inward LS fitting curve, which has a similar variation trend as the LS extrapolation residual sequence, as the modeling object of AR for the residual forecast. Calculation examples show that this solution can effectively improve the short-term polar motion prediction accuracy by the LS+AR model. In addition, the comparison results of the forecast models of RLS (Robustified Least Squares)+AR, RLS+ARIMA (AutoRegressive Integrated Moving Average), and LS+ANN (Artificial Neural Network) confirm the feasibility and effectiveness of the solution for the polar motion forecast. The results, especially for the polar motion forecast in the 1-10 days, show that the forecast accuracy of the proposed model can reach the world level.

  8. Icing Forecasting of High Voltage Transmission Line Using Weighted Least Square Support Vector Machine with Fireworks Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-12-01

    Full Text Available Accurate forecasting of icing thickness has great significance for ensuring the security and stability of the power grid. In order to improve the forecasting accuracy, this paper proposes an icing forecasting system based on the fireworks algorithm and weighted least square support vector machine (W-LSSVM. The method of the fireworks algorithm is employed to select the proper input features with the purpose of eliminating redundant influence. In addition, the aim of the W-LSSVM model is to train and test the historical data-set with the selected features. The capability of this proposed icing forecasting model and framework is tested through simulation experiments using real-world icing data from the monitoring center of the key laboratory of anti-ice disaster, Hunan, South China. The results show that the proposed W-LSSVM-FA method has a higher prediction accuracy and it may be a promising alternative for icing thickness forecasting.

  9. Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives

    Science.gov (United States)

    Sanabria, Orlando

    Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.

  10. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  11. A simple approach to measure transmissibility and forecast incidence.

    Science.gov (United States)

    Nouvellet, Pierre; Cori, Anne; Garske, Tini; Blake, Isobel M; Dorigatti, Ilaria; Hinsley, Wes; Jombart, Thibaut; Mills, Harriet L; Nedjati-Gilani, Gemma; Van Kerkhove, Maria D; Fraser, Christophe; Donnelly, Christl A; Ferguson, Neil M; Riley, Steven

    2018-03-01

    Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen "future" simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes - other than the widespread depletion of susceptible individuals - that produce non-exponential patterns of incidence. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Institute of Scientific and Technical Information of China (English)

    Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li

    2015-01-01

    Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.

  13. Load Forecasting in Electric Utility Integrated Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Carvallo, Juan Pablo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsen, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sanstad, Alan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-19

    Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plans filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.

  14. Affordability Assessment to Implement Light Rail Transit (LRT for Greater Yogyakarta

    Directory of Open Access Journals (Sweden)

    Anjang Nugroho

    2015-06-01

    Full Text Available The high population density and the increasing visitors in Yogyakarta aggravate the traffic congestion problem. BRT (Bus Rapid Transit services, Trans Jogja has not managed to solve this problem yet. Introducing Light Rail Transit (LRT has been considered as one of the solutions to restrain the congestion in Greater Yogyakarta. As the first indication that the LRT can be built in Greater Yogyakarta, the transportation affordability index was used to understand whether the LRT tariff was affordable. That tariff was calculated based on government policy in determining railway tariff. The forecasted potential passengers and LRT route have been analyzed as the previous steps to get LRT tariff. Potential passenger was forecasted from gravity mode, and the proposed LRT route was chosen using Multi Criteria Decision Analysis (MCDA. The existing transportation affordability index was calculated for comparison analysis using the percentage of the expenditures for transportation made by monthly income of each household. The result showed that the LRT for Greater Yogyakarta was the most affordable transport mode compared to the Trans Jogja Bus and motorcycle. The affordability index of Tram Jogja for people having average income was 10.66% while another people with bottom quartile income was 13.56%. Keywords: Greater Yogyakarta, LRT, affordability.

  15. Development and Application of Econometric Models for Forecasting and Analysis of Monetary Policy Scenarios

    OpenAIRE

    Malugin, Vladimir; Demidenko , Mikhail; Kalechits, Dmitry; Miksjuk , Alexei; Tsukarev , Taras

    2009-01-01

    A system of econometric models designed for forecasting target monetary indicators as well as conducting monetary policy scenarios analysis is presented. The econometric models integrated in the system are represented in the error correction form and are interlinked by means of monetary policy instruments variables, common exogenous variables characterizing external shocks, and monetary policy target endogenous variables. Forecast accuracy estimates and monetary policy analysis results are pr...

  16. A travel time forecasting model based on change-point detection method

    Science.gov (United States)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  17. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    Science.gov (United States)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  18. Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application

    DEFF Research Database (Denmark)

    Galatzer-Levy, I. R.; Karstoft, K. I.; Statnikov, A.

    2014-01-01

    -traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics...... algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder......). The feature selection algorithm identified 16 predictors, present in >= 95% cross-validation trials. The accuracy of predicting non-remitting PTSD from that set (AUC = .77) did not differ from predicting from all available information (AUC = .78). Predicting from ASD symptoms was not better then chance (AUC...

  19. Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Pezeshki

    2016-02-01

    Full Text Available Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.

  20. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest

    Directory of Open Access Journals (Sweden)

    Nantian Huang

    2016-09-01

    Full Text Available The prediction accuracy of short-term load forecast (STLF depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original feature set was used to train an RF as the original model. After the training process, the prediction error of the original model on the test set was recorded and the permutation importance (PI value of each feature was obtained. Then, an improved sequential backward search method was used to select the optimal forecasting feature subset based on the PI value of each feature. Finally, the optimal forecasting feature subset was used to train a new RF model as the final prediction model. Experiments showed that the prediction accuracy of RF trained by the optimal forecasting feature subset was higher than that of the original model and comparative models based on support vector regression and artificial neural network.

  1. Ticket consumption forecast for Brazilian championship games

    Directory of Open Access Journals (Sweden)

    Adriana Bruscato Bortoluzzo

    Full Text Available Abstract For the efficiency of sales and marketing management of athletic clubs, it is crucial to find a way to appropriately estimate the level of demand for sporting events. More precise estimates allow for an appropriate financial and operational plan and a higher quality of service delivered to the fans. The focus of this study is to analyze and forecast the ticket consumption for soccer games in Brazilian stadiums. We compare the results of the regression model with normally distributed errors (benchmark, the TOBIT model and the Gamma generalized linear model. The models include explanatory variables related to the economic environment, product quality, as well as monetary and non-monetary incentives that people are given to attend sporting events at stadiums. We show that most of these variables are statistically significant to explain the amount of fans that go to stadiums. We used different measures of accuracy to evaluate the performance of demand forecasts and concluded that Gamma generalized linear model presented better results to forecast the ticket consumption for Brazilian championship games, when compared to a benchmark.

  2. Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Li-Ling Peng

    2016-03-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents an SVR model hybridized with the differential empirical mode decomposition (DEMD method and quantum particle swarm optimization algorithm (QPSO for electric load forecasting. The DEMD method is employed to decompose the electric load to several detail parts associated with high frequencies (intrinsic mode function—IMF and an approximate part associated with low frequencies. Hybridized with quantum theory to enhance particle searching performance, the so-called QPSO is used to optimize the parameters of SVR. The electric load data of the New South Wales (Sydney, Australia market and the New York Independent System Operator (NYISO, New York, USA are used for comparing the forecasting performances of different forecasting models. The results illustrate the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  3. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  4. Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model

    Science.gov (United States)

    Druce, Donald J.

    2001-08-01

    BC Hydro has used a conceptual hydrologic model for forecasting the seasonal inflows to its Mica project, on the Columbia River, for more than 20 years. The model estimates the snowpack on the forecast date using recently observed weather data and then calculates the runoff response to approximately 30 historical weather sequences over the remainder of the year. The ensemble of equally likely seasonal inflows makes up the forecast. Forecasts are issued as of the first of each month from January to August. The same model and modeller have made all of such forecasts for the Mica project. While some may see this as a failure to progress, others may see it as an unique opportunity to learn how well an older hydrologic model has performed, in practice, over the long term. Comments on both perspectives are offered, after the analyses of the forecasts have been presented. The forecasts have been analysed, as of each of the monthly forecast dates, to determine the accuracy of the mean and to establish any differences between ex post and ex ante measures of uncertainty. Results are then compared with those from a regression model that has also been used for forecasting the seasonal inflows to the Mica project over the same period of record.

  5. Integrating a Storage Factor into R-NARX Neural Networks for Flood Forecasts

    Science.gov (United States)

    Chou, Po-Kai; Chang, Li-Chiu; Chang, Fi-John; Shih, Ban-Jwu

    2017-04-01

    Because mountainous terrains and steep landforms rapidly accelerate the speed of flood flow in Taiwan island, accurate multi-step-ahead inflow forecasts during typhoon events for providing reliable information benefiting the decision-makings of reservoir pre-storm release and flood-control operation are considered crucial and challenging. Various types of artificial neural networks (ANNs) have been successfully applied in hydrological fields. This study proposes a recurrent configuration of the nonlinear autoregressive with exogenous inputs (NARX) network, called R-NARX, with various effective inputs to forecast the inflows of the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, during typhoon periods. The proposed R-NARX is constructed based on the recurrent neural network (RNN), which is commonly used for modelling nonlinear dynamical systems. A large number of hourly rainfall and inflow data sets collected from 95 historical typhoon events in the last thirty years are used to train, validate and test the models. The potential input variables, including rainfall in previous time steps (one to six hours), cumulative rainfall, the storage factor and the storage function, are assessed, and various models are constructed with their reliability and accuracy being tested. We find that the previous (t-2) rainfall and cumulative rainfall are crucial inputs and the storage factor and the storage function would also improve the forecast accuracy of the models. We demonstrate that the R-NARX model not only can accurately forecast the inflows but also effectively catch the peak flow without adopting observed inflow data during the entire typhoon period. Besides, the model with the storage factor is superior to the model with the storage function, where its improvement can reach 24%. This approach can well model the rainfall-runoff process for the entire flood forecasting period without the use of observed inflow data and can provide

  6. Numerical simulation of rainfall and temperature over Kenya using weather research and forecasting-environmental modelling system (WRF-EMS

    Directory of Open Access Journals (Sweden)

    Sagero Obaigwa Philip

    2016-01-01

    Full Text Available This paper focuses on one of the high resolution models used for weather forecasting at Kenya Meteorological Department (KMD. It reviews the skill and accuracy of the Weather Research and Forecasting (WRF - Environmental Modeling System (EMS model, in simulating weather over Kenya. The study period was March to May 2011, during the rainy season over Kenya. The model output was compared with the observed data from 27 synoptic stations spread over the study area, to determine the performance of the model in terms of its skill and accuracy in forecasting. The spatial distribution of rainfall and temperature showed that the WRF model was capable of reproducing the observed general pattern especially for temperature. The model has skill in forecasting both rainfall and temperature over the study area. However, the model may underestimate rainfall of more than 10 mm/day and displace its location and overestimate rainfall of less than 1 mm/day. Therefore, during the period of enhanced rainfall especially in the month of April and part of May the model forecast needs to be complemented by other models or forecasting methods before giving a forecast. There is need to improve its performance over the domain through review of the parameterization of small scale physical processes and more observed data need to be simulated into the model.

  7. A hybrid wind power forecasting model based on data mining and wavelets analysis

    International Nuclear Information System (INIS)

    Azimi, R.; Ghofrani, M.; Ghayekhloo, M.

    2016-01-01

    Highlights: • An improved version of K-means algorithm is proposed for clustering wind data. • A persistence based method is applied to select the best cluster for NN training. • A combination of DWT and HANTS methods is used to provide a deep learning for NN. • A hybrid of T.S.B K-means, DWT and HANTS and NN is developed for wind forecasting. - Abstract: Accurate forecasting of wind power plays a key role in energy balancing and wind power integration into the grid. This paper proposes a novel time-series based K-means clustering method, named T.S.B K-means, and a cluster selection algorithm to better extract features of wind time-series data. A hybrid of T.S.B K-means, discrete wavelet transform (DWT) and harmonic analysis time series (HANTS) methods, and a multilayer perceptron neural network (MLPNN) is developed for wind power forecasting. The proposed T.S.B K-means classifies data into separate groups and leads to more appropriate learning for neural networks by identifying anomalies and irregular patterns. This improves the accuracy of the forecast results. A cluster selection method is developed to determine the cluster that provides the best training for the MLPNN. This significantly accelerates the forecast process as the most appropriate portion of the data rather than the whole data is used for the NN training. The wind power data is decomposed by the Daubechies D4 wavelet transform, filtered by the HANTS, and pre-processed to provide the most appropriate inputs for the MLPNN. Time-series analysis is used to pre-process the historical wind-power generation data and structure it into input-output series. Wind power datasets with diverse characteristics, from different wind farms located in the United States, are used to evaluate the accuracy of the hybrid forecasting method through various performance measures and different experiments. A comparative analysis with well-established forecasting models shows the superior performance of the proposed

  8. Impact of onsite solar generation on system load demand forecast

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Pedro, Hugo T.C.; Coimbra, Carlos F.M.

    2013-01-01

    Highlights: • We showed the impact onsite solar generation on system demand load forecast. • Forecast performance degrades by 9% and 3% for 1 h and 15 min forecast horizons. • Error distribution for onsite case is best characterized as t-distribution. • Relation between error, solar penetration and solar variability is characterized. - Abstract: Net energy metering tariffs have encouraged the growth of solar PV in the distribution grid. The additional variability associated with weather-dependent renewable energy creates new challenges for power system operators that must maintain and operate ancillary services to balance the grid. To deal with these issues power operators mostly rely on demand load forecasts. Electric load forecast has been used in power industry for a long time and there are several well established load forecasting models. But the performance of these models for future scenario of high renewable energy penetration is unclear. In this work, the impact of onsite solar power generation on the demand load forecast is analyzed for a community that meets between 10% and 15% of its annual power demand and 3–54% of its daily power demand from a solar power plant. Short-Term Load Forecasts (STLF) using persistence, machine learning and regression-based forecasting models are presented for two cases: (1) high solar penetration and (2) no penetration. Results show that for 1-h and 15-min forecasts the accuracy of the models drops by 9% and 3% with high solar penetration. Statistical analysis of the forecast errors demonstrate that the error distribution is best characterized as a t-distribution for the high penetration scenario. Analysis of the error distribution as a function of daily solar penetration for different levels of variability revealed that the solar power variability drives the forecast error magnitude whereas increasing penetration level has a much smaller contribution. This work concludes that the demand forecast error distribution

  9. Wind field forecast for accidental release of radiative materials

    International Nuclear Information System (INIS)

    Kang Ling; Chen Jiayi; Cai Xuhui

    2003-01-01

    A meso-scale wind field forecast model was designed for emergency environmental assessment in case of accidental release of radiative materials from a nuclear power station. Actual practice of the model showed that it runs fast, has wind field prediction function, and the result given is accurate. With meteorological data collected from weather stations, and pre-treated by a wind field diagnostic model, the initial wind fields at different times were inputted as initial values and assimilation fields for the forecasting model. The model, in turn, worked out to forecast meso-scale wind field of 24 hours in a horizontal domain of 205 km x 205 km. And then, the diagnostic model was employed again with the forecasting data to obtain more detail information of disturbed wind field by local terrain in a smaller domain of 20.5 km x 20.5 km, of which the nuclear power station is at the center. Using observation data in January, April, July and October of 1996 over the area of Hangzhou Bay, wind fields in these 4 months were simulated by different assimilation time and number of the weather stations for a sensitive test. Results indicated that the method used here has increased accuracy of the forecasted wind fields. And incorporating diagnostic method with the wind field forecast model has greatly increased efficiency of the wind field forecast for the smaller domain. This model and scheme have been used in Environmental Consequence Assessment System of Nuclear Accident in Qinshan Area

  10. Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model

    Science.gov (United States)

    Kirkil, Gokhan

    2017-04-01

    Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.

  11. Hourly weather forecasts for gas turbine power generation

    Directory of Open Access Journals (Sweden)

    G. Giunta

    2017-06-01

    Full Text Available An hourly short-term weather forecast can optimize processes in Combined Cycle Gas Turbine (CCGT plants by helping to reduce imbalance charges on the national power grid. Consequently, a reliable meteorological prediction for a given power plant is crucial for obtaining competitive prices for the electric market, better planning and stock management, sales and supplies of energy sources. The paper discusses the short-term hourly temperature forecasts, at lead time day+1 and day+2, over a period of thirteen months in 2012 and 2013 for six Italian CCGT power plants of 390 MW each (260 MW from the gas turbine and 130 MW from the steam turbine. These CCGT plants are placed in three different Italian climate areas: the Po Valley, the Adriatic coast, and the North Tyrrhenian coast. The meteorological model applied in this study is the eni-Kassandra Meteo Forecast (e‑kmf™, a multi-model approach system to provide probabilistic forecasts with a Kalman filter used to improve accuracy of local temperature predictions. Performance skill scores, computed by the output data of the meteorological model, are compared with local observations, and used to evaluate forecast reliability. In the study, the approach has shown good overall scores encompassing more than 50,000 hourly temperature values. Some differences from one site to another, due to local meteorological phenomena, can affect the short-term forecast performance, with consequent impacts on gas-to-power production and related negative imbalances. For operational application of the methodology in CCGT power plant, the benefits and limits have been successfully identified.

  12. Study on the medical meteorological forecast of the number of hypertension inpatient based on SVR

    Science.gov (United States)

    Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng

    2017-06-01

    The purpose of this study is to build a hypertension prediction model by discussing the meteorological factors for hypertension incidence. The research method is selecting the standard data of relative humidity, air temperature, visibility, wind speed and air pressure of Lanzhou from 2010 to 2012(calculating the maximum, minimum and average value with 5 days as a unit ) as the input variables of Support Vector Regression(SVR) and the standard data of hypertension incidence of the same period as the output dependent variables to obtain the optimal prediction parameters by cross validation algorithm, then by SVR algorithm learning and training, a SVR forecast model for hypertension incidence is built. The result shows that the hypertension prediction model is composed of 15 input independent variables, the training accuracy is 0.005, the final error is 0.0026389. The forecast accuracy based on SVR model is 97.1429%, which is higher than statistical forecast equation and neural network prediction method. It is concluded that SVR model provides a new method for hypertension prediction with its simple calculation, small error as well as higher historical sample fitting and Independent sample forecast capability.

  13. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  14. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.

    2015-01-01

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  15. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    Science.gov (United States)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  16. Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

    Science.gov (United States)

    Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum

    2015-12-01

    The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.

  17. Real-time dynamic control of the Three Gorges Reservoir by coupling numerical weather rainfall prediction and flood forecasting

    DEFF Research Database (Denmark)

    Wang, Y.; Chen, H.; Rosbjerg, Dan

    2013-01-01

    In reservoir operation improvement of the accuracy of forecast flood inflow and extension of forecast lead-time can effectively be achieved by using rainfall forecasts from numerical weather predictions with a hydrological catchment model. In this study, the Regional Spectrum Model (RSM), which...... is developed by the Japan Meteorological Agency, was used to forecast rainfall with 5 days lead-time in the upper region of the Three Gorges Reservoir (TGR). A conceptual hydrological model, the Xinanjiang Model, has been set up to forecast the inflow flood of TGR by the Ministry of Water Resources Information...... season 2012 as example, real-time dynamic control of the FLWL was implemented by using the forecasted reservoir flood inflow as input. The forecasted inflow with 5 days lead-time rainfall forecast was evaluated by several performance indices, including the mean relative error of the volumetric reservoir...

  18. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    Science.gov (United States)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  19. Developments in radar and remote-sensing methods for measuring and forecasting rainfall.

    Science.gov (United States)

    Collier, C G

    2002-07-15

    Over the last 25 years or so, weather-radar networks have become an integral part of operational meteorological observing systems. While measurements of rainfall made using radar systems have been used qualitatively by weather forecasters, and by some operational hydrologists, acceptance has been limited as a consequence of uncertainties in the quality of the data. Nevertheless, new algorithms for improving the accuracy of radar measurements of rainfall have been developed, including the potential to calibrate radars using the measurements of attenuation on microwave telecommunications links. Likewise, ways of assimilating these data into both meteorological and hydrological models are being developed. In this paper we review the current accuracy of radar estimates of rainfall, pointing out those approaches to the improvement of accuracy which are likely to be most successful operationally. Comment is made on the usefulness of satellite data for estimating rainfall in a flood-forecasting context. Finally, problems in coping with the error characteristics of all these data using both simple schemes and more complex four-dimensional variational analysis are being addressed, and are discussed briefly in this paper.

  20. On the importance of the long-term seasonal component in day-ahead electricity price forecasting

    International Nuclear Information System (INIS)

    Nowotarski, Jakub; Weron, Rafał

    2016-01-01

    In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always taken into account, but the long-term seasonal component (LTSC) is believed to add unnecessary complexity to the already parameter-rich models and is generally ignored. Conducting an extensive empirical study involving state-of-the-art time series models we show that (i) decomposing a series of electricity prices into a LTSC and a stochastic component, (ii) modeling them independently and (iii) combining their forecasts can bring – contrary to a common belief – an accuracy gain compared to an approach in which a given time series model is calibrated to the prices themselves. - Highlights: • A new class of Seasonal Component AutoRegressive (SCAR) models is introduced. • Electricity prices are decomposed into a trend-seasonal and a stochastic component. • Both components are modeled independently, their forecasts are combined. • Significant accuracy gains can be achieved compared to commonly used approaches.

  1. Modelling and Forecasting Cruise Tourism Demand to İzmir by Different Artificial Neural Network Architectures

    Directory of Open Access Journals (Sweden)

    Murat Cuhadar

    2014-03-01

    Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.

  2. Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme

    International Nuclear Information System (INIS)

    Shayeghi, H.; Ghasemi, A.

    2013-01-01

    Highlights: • Presenting a hybrid CGSA-LSSVM scheme for price forecasting. • Considering uncertainties for filtering in input data and feature selection to improve efficiency. • Using DWT input featured LSSVM approach to classify next-week prices. • Used three real markets to illustrate performance of the proposed price forecasting model. - Abstract: At the present time, day-ahead electricity market is closely associated with other commodity markets such as fuel market and emission market. Under such an environment, day-ahead electricity price forecasting has become necessary for power producers and consumers in the current deregulated electricity markets. Seeking for more accurate price forecasting techniques, this paper proposes a new combination of a Feature Selection (FS) technique based mutual information (MI) technique and Wavelet Transform (WT) in this study. Moreover, in this paper a new modified version of Gravitational Search Algorithm (GSA) optimization based chaos theory, namely Chaotic Gravitational Search Algorithm (CGSA) is developed to find the optimal parameters of Least Square Support Vector Machine (LSSVM) to predict electricity prices. The performance and price forecast accuracy of the proposed technique is assessed by means of real data from Iran’s, Ontario’s and Spain’s price markets. The simulation results from numerical tables and figures in different cases show that the proposed technique increases electricity price market forecasting accuracy than the other classical and heretical methods in the scientific researches

  3. Accuracy of past projections of US energy consumption

    International Nuclear Information System (INIS)

    O'Neill, B.C.; Desai, Mausami

    2005-01-01

    Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of US energy consumption produced by the Energy Information Administration over the period 1982-2000. We find that energy consumption projections have tended to underestimate future consumption. Projections 10-13 years into the future have had an average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982

  4. The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection

    Directory of Open Access Journals (Sweden)

    Jin-peng Liu

    2017-07-01

    Full Text Available Short-term power load forecasting is an important basis for the operation of integrated energy system, and the accuracy of load forecasting directly affects the economy of system operation. To improve the forecasting accuracy, this paper proposes a load forecasting system based on wavelet least square support vector machine and sperm whale algorithm. Firstly, the methods of discrete wavelet transform and inconsistency rate model (DWT-IR are used to select the optimal features, which aims to reduce the redundancy of input vectors. Secondly, the kernel function of least square support vector machine LSSVM is replaced by wavelet kernel function for improving the nonlinear mapping ability of LSSVM. Lastly, the parameters of W-LSSVM are optimized by sperm whale algorithm, and the short-term load forecasting method of W-LSSVM-SWA is established. Additionally, the example verification results show that the proposed model outperforms other alternative methods and has a strong effectiveness and feasibility in short-term power load forecasting.

  5. Two quantitative forecasting methods for macroeconomic indicators in Czech Republic

    Directory of Open Access Journals (Sweden)

    Mihaela BRATU (SIMIONESCU

    2012-03-01

    Full Text Available Econometric modelling and exponential smoothing techniques are two quantitative forecasting methods with good results in practice, but the objective of the research was to find out which of the two techniques are better for short run predictions. Therefore, for inflation, unemployment and interest rate in Czech Republic some accuracy indicators were calculated for the predictions based on these methods. Short run forecasts on a horizon of 3 months were made for December 2011-February 2012, the econometric models being updated. For Czech Republic, the exponential smoothing techniques provided more accurate forecasts than the econometric models (VAR(2 models, ARMA procedure and models with lagged variables. One explication for the better performance of smoothing techniques would be that in the chosen countries the short run predictions more influenced by the recent evolution of the indicators.

  6. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  7. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks

    International Nuclear Information System (INIS)

    Cao Jiacong; Lin Xingchun

    2008-01-01

    An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate

  8. An Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy

    Directory of Open Access Journals (Sweden)

    Ming-Chang Wu

    2015-10-01

    Full Text Available Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN based models with an enforced learning strategy is proposed in this paper. Firstly, four different NNs, namely back propagation network (BPN, radial basis function network (RBFN, self-organizing map (SOM, and support vector machine (SVM, are used to construct streamflow forecasting models. Through the cross-validation test, NN-based models with superior performance in streamflow forecasting are detected. Then, an enforced learning strategy is developed to further improve the performance of the superior NN-based models, i.e., SOM and SVM in this study. Finally, the proposed flow forecasting model is obtained. Actual applications are conducted to demonstrate the potential of the proposed model. Moreover, comparison between the NN-based models with and without the enforced learning strategy is performed to evaluate the effect of the enforced learning strategy on model performance. The results indicate that the NN-based models with the enforced learning strategy indeed improve the accuracy of hourly streamflow forecasting. Hence, the presented methodology is expected to be helpful for developing improved NN-based streamflow forecasting models.

  9. Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis.

    Science.gov (United States)

    Bergs, Jochen; Heerinckx, Philipe; Verelst, Sandra

    2014-04-01

    To evaluate an automatic forecasting algorithm in order to predict the number of monthly emergency department (ED) visits one year ahead. We collected retrospective data of the number of monthly visiting patients for a 6-year period (2005-2011) from 4 Belgian Hospitals. We used an automated exponential smoothing approach to predict monthly visits during the year 2011 based on the first 5 years of the dataset. Several in- and post-sample forecasting accuracy measures were calculated. The automatic forecasting algorithm was able to predict monthly visits with a mean absolute percentage error ranging from 2.64% to 4.8%, indicating an accurate prediction. The mean absolute scaled error ranged from 0.53 to 0.68 indicating that, on average, the forecast was better compared with in-sample one-step forecast from the naïve method. The applied automated exponential smoothing approach provided useful predictions of the number of monthly visits a year in advance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Gold sales forecasting: The Box-Jenkins methodology

    Directory of Open Access Journals (Sweden)

    Johannes Tshepiso Tsoku

    2017-02-01

    Full Text Available The study employs the Box-Jenkins Methodology to forecast South African gold sales. For a resource economy like South Africa where metals and minerals account for a high proportion of GDP and export earnings, the decline in gold sales is very disturbing. Box-Jenkins time series technique was used to perform time series analysis of monthly gold sales for the period January 2000 to June 2013 with the following steps: model identification, model estimation, diagnostic checking and forecasting. Furthermore, the prediction accuracy is tested using mean absolute percentage error (MAPE. From the analysis, a seasonal ARIMA(4,1,4×(0,1,112 was found to be the “best fit model” with an MAPE value of 11% indicating that the model is fit to be used to predict or forecast future gold sales for South Africa. In addition, the forecast values show that there will be a decrease in the overall gold sales for the first six months of 2014. It is hoped that the study will help the public and private sectors to understand the gold sales or output scenario and later plan the gold mining activities in South Africa. Furthermore, it is hoped that this research paper has demonstrated the significance of Box-Jenkins technique for this area of research and that they will be applied in the future.

  11. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  12. Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates

    Directory of Open Access Journals (Sweden)

    Piotr Białowolski

    2012-03-01

    Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period.  Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.

  13. Accuracy Enhancement for Forecasting Water Levels of Reservoirs and River Streams Using a Multiple-Input-Pattern Fuzzification Approach

    Directory of Open Access Journals (Sweden)

    Nariman Valizadeh

    2014-01-01

    Full Text Available Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS is one of the most accurate models used in water resource management. Because the membership functions (MFs possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  14. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach.

    Science.gov (United States)

    Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  15. Deterministic Echo State Networks Based Stock Price Forecasting

    Directory of Open Access Journals (Sweden)

    Jingpei Dan

    2014-01-01

    Full Text Available Echo state networks (ESNs, as efficient and powerful computational models for approximating nonlinear dynamical systems, have been successfully applied in financial time series forecasting. Reservoir constructions in standard ESNs rely on trials and errors in real applications due to a series of randomized model building stages. A novel form of ESN with deterministically constructed reservoir is competitive with standard ESN by minimal complexity and possibility of optimizations for ESN specifications. In this paper, forecasting performances of deterministic ESNs are investigated in stock price prediction applications. The experiment results on two benchmark datasets (Shanghai Composite Index and S&P500 demonstrate that deterministic ESNs outperform standard ESN in both accuracy and efficiency, which indicate the prospect of deterministic ESNs for financial prediction.

  16. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  17. FORECAST: Regulatory effects cost analysis software manual -- Version 4.1. Revision 1

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1996-07-01

    The FORECAST program was developed to facilitate the preparation of the value-impact portion of NRC regulatory analyses. This PC program integrates the major cost and benefit considerations that may result from a proposed regulatory change. FORECAST automates much of the calculations typically needed in a regulatory analysis and thus reduces the time and labor required to perform these analyses. More importantly, its integrated and consistent treatment of the different value-impact considerations should help assure comprehensiveness, uniformity, and accuracy in the preparation of NRC regulatory analyses. The Current FORECAST Version 4.1 has been upgraded from the previous version and now includes an uncertainty package, an automatic cost escalation package, and other improvements. In addition, it now explicitly addresses public health impacts, occupational health impacts, onsite property damage, and government costs. Thus, FORECAST Version 4.1 can treat all attributes normally quantified in a regulatory analysis

  18. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    Science.gov (United States)

    2016-09-01

    were downloaded from the University of Wyoming’s weather website (http://www.weather.uwyo.edu/upperair/sounding.html). An alternative site is the RAOB...Midwest US Amarillo, TX AMA 2016-01-02-12 37.12, –98.66 Dodge City, KS DDC and Lamont, OK LMN 2016-02-10-12 Norman, OK OUN...0-, 24-, 48-, 72-, or 96-h forecast from the same day, 1, 2, 3, or 4 days earlier, respectively. For example, for a 12 Coordinated Universal Time

  19. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  20. An application and verification of ensemble forecasting on wind power to assess operational risk indicators in power grids

    Energy Technology Data Exchange (ETDEWEB)

    Alessandrini, S.; Ciapessoni, E.; Cirio, D.; Pitto, A.; Sperati, S. [Ricerca sul Sistema Energetico RSE S.p.A., Milan (Italy). Power System Development Dept. and Environment and Sustainable Development Dept.; Pinson, P. [Technical University of Denmark, Lyngby (Denmark). DTU Informatics

    2012-07-01

    Wind energy is part of the so-called not schedulable renewable sources, i.e. it must be exploited when it is available, otherwise it is lost. In European regulation it has priority of dispatch over conventional generation, to maximize green energy production. However, being variable and uncertain, wind (and solar) generation raises several issues for the security of the power grids operation. In particular, Transmission System Operators (TSOs) need as accurate as possible forecasts. Nowadays a deterministic approach in wind power forecasting (WPF) could easily be considered insufficient to face the uncertainty associated to wind energy. In order to obtain information about the accuracy of a forecast and a reliable estimation of its uncertainty, probabilistic forecasting is becoming increasingly widespread. In this paper we investigate the performances of the COnsortium for Small-scale MOdelling Limited area Ensemble Prediction System (COSMO-LEPS). First the ensemble application is followed by assessment of its properties (i.e. consistency, reliability) using different verification indices and diagrams calculated on wind power. Then we provide examples of how EPS based wind power forecast can be used in power system security analyses. Quantifying the forecast uncertainty allows to determine more accurately the regulation reserve requirements, hence improving security of operation and reducing system costs. In particular, the paper also presents a probabilistic power flow (PPF) technique developed at RSE and aimed to evaluate the impact of wind power forecast accuracy on the probability of security violations in power systems. (orig.)

  1. Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yunxuan Dong

    2017-04-01

    Full Text Available The process of modernizing smart grid prominently increases the complexity and uncertainty in scheduling and operation of power systems, and, in order to develop a more reliable, flexible, efficient and resilient grid, electrical load forecasting is not only an important key but is still a difficult and challenging task as well. In this paper, a short-term electrical load forecasting model, with a unit for feature learning named Pyramid System and recurrent neural networks, has been developed and it can effectively promote the stability and security of the power grid. Nine types of methods for feature learning are compared in this work to select the best one for learning target, and two criteria have been employed to evaluate the accuracy of the prediction intervals. Furthermore, an electrical load forecasting method based on recurrent neural networks has been formed to achieve the relational diagram of historical data, and, to be specific, the proposed techniques are applied to electrical load forecasting using the data collected from New South Wales, Australia. The simulation results show that the proposed hybrid models can not only satisfactorily approximate the actual value but they are also able to be effective tools in the planning of smart grids.

  2. Particle Swarm Optimization-based BP Neural Network for UHV DC Insulator Pollution Forecasting

    Directory of Open Access Journals (Sweden)

    Fangcheng Lü

    2014-02-01

    Full Text Available In order to realize the forecasting of the UHV DC insulator's pollution conditions, we introduced a PSOBP algorithm. A BP neural network (BPNN with leakage current, temperature, relative humidity and dew point as input neurons, and ESDD as output neuron was built to forecast the ESDD. The PSO was used to optimize the the BPNN, which had great improved the convergence rate of the BP neural network. The dew point as a brand new input unit has improved the iteration speed of the PSOBP algorithm in this study. It was the first time that the PSOBP algorithm was applied to the UHV DC insulator pollution forecasting. The experiment results showed that the method had great advantages in accuracy and speed of convergence. The research showed that this algorithm was suitable for the UHV DC insulator pollution forecasting.

  3. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Laila A. Puntel

    2018-04-01

    Full Text Available Historically crop models have been used to evaluate crop yield responses to nitrogen (N rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1 evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages; (2 determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3 quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77 using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81. Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively. At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR in 62% of the cases examined (n = 31 with an average error range of ±38 kg N ha−1 (22% of the average N rate. Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  4. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Science.gov (United States)

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years

  5. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  6. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities

    Science.gov (United States)

    Lv, Baolei; Cobourn, W. Geoffrey; Bai, Yuqi

    2016-12-01

    Empirical regression models for next-day forecasting of PM2.5 and O3 air pollution concentrations have been developed and evaluated for three large Chinese cities, Beijing, Nanjing and Guangzhou. The forecast models are empirical nonlinear regression models designed for use in an automated data retrieval and forecasting platform. The PM2.5 model includes an upwind air quality variable, PM24, to account for regional transport of PM2.5, and a persistence variable (previous day PM2.5 concentration). The models were evaluated in the hindcast mode with a two-year air quality and meteorological data set using a leave-one-month-out cross validation method, and in the forecast mode with a one-year air quality and forecasted weather dataset that included forecasted air trajectories. The PM2.5 models performed well in the hindcast mode, with coefficient of determination (R2) values of 0.54, 0.65 and 0.64, and normalized mean error (NME) values of 0.40, 0.26 and 0.23 respectively, for the three cities. The O3 models also performed well in the hindcast mode, with R2 values of 0.75, 0.55 and 0.73, and NME values of 0.29, 0.26 and 0.24 in the three cities. The O3 models performed better in summertime than in winter in Beijing and Guangzhou, and captured the O3 variations well all the year round in Nanjing. The overall forecast performance of the PM2.5 and O3 models during the test year varied from fair to good, depending on location. The forecasts were somewhat degraded compared with hindcasts from the same year, depending on the accuracy of the forecasted meteorological input data. For the O3 models, the model forecast accuracy was strongly dependent on the maximum temperature forecasts. For the critical forecasts, involving air quality standard exceedences, the PM2.5 model forecasts were fair to good, and the O3 model forecasts were poor to fair.

  7. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting

    International Nuclear Information System (INIS)

    Azimi, R.; Ghayekhloo, M.; Ghofrani, M.

    2016-01-01

    Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar

  8. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand

    International Nuclear Information System (INIS)

    Wang Jianzhou; Zhu Wenjin; Zhang Wenyu; Sun Donghuai

    2009-01-01

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined ε-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the ε-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved.

  9. A trend fixed on firstly and seasonal adjustment model combined with the epsilon-SVR for short-term forecasting of electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhu Wenjin, E-mail: crying.1@hotmail.co [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhang Wenyu [College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 (China); Sun Donghuai [Key Laboratory of Western Chinas Environmental Systems (Ministry of Education) College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000 (China)

    2009-11-15

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined epsilon-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the epsilon-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved.

  10. A trend fixed on firstly and seasonal adjustment model combined with the {epsilon}-SVR for short-term forecasting of electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianzhou; Zhu, Wenjin [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhang, Wenyu [College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 (China); Sun, Donghuai [Key Laboratory of Western Chinas Environmental Systems (Ministry of Education) College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000 (China)

    2009-11-15

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined {epsilon}-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the {epsilon}-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved. (author)

  11. FORECAST: Regulatory effects cost analysis software annual

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1991-11-01

    Over the past several years the NRC has developed a generic cost methodology for the quantification of cost/economic impacts associated with a wide range of new or revised regulatory requirements. This methodology has been developed to aid the NRC in preparing Regulatory Impact Analyses (RIAs). These generic costing methods can be useful in quantifying impacts both to industry and to the NRC. The FORECAST program was developed to facilitate the use of the generic costing methodology. This PC program integrates the major cost considerations that may be required because of a regulatory change. FORECAST automates much of the calculations typically needed in an RIA and thus reduces the time and labor required to perform these analysis. More importantly, its integrated and consistent treatment of the different cost elements should help assure comprehensiveness, uniformity, and accuracy in the preparation of needed cost estimates

  12. Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting

    Directory of Open Access Journals (Sweden)

    Shailendra Singh

    2018-02-01

    Full Text Available Responsible, efficient and environmentally aware energy consumption behavior is becoming a necessity for the reliable modern electricity grid. In this paper, we present an intelligent data mining model to analyze, forecast and visualize energy time series to uncover various temporal energy consumption patterns. These patterns define the appliance usage in terms of association with time such as hour of the day, period of the day, weekday, week, month and season of the year as well as appliance-appliance associations in a household, which are key factors to infer and analyze the impact of consumers’ energy consumption behavior and energy forecasting trend. This is challenging since it is not trivial to determine the multiple relationships among different appliances usage from concurrent streams of data. Also, it is difficult to derive accurate relationships between interval-based events where multiple appliance usages persist for some duration. To overcome these challenges, we propose unsupervised data clustering and frequent pattern mining analysis on energy time series, and Bayesian network prediction for energy usage forecasting. We perform extensive experiments using real-world context-rich smart meter datasets. The accuracy results of identifying appliance usage patterns using the proposed model outperformed Support Vector Machine (SVM and Multi-Layer Perceptron (MLP at each stage while attaining a combined accuracy of 81.82%, 85.90%, 89.58% for 25%, 50% and 75% of the training data size respectively. Moreover, we achieved energy consumption forecast accuracies of 81.89% for short-term (hourly and 75.88%, 79.23%, 74.74%, and 72.81% for the long-term; i.e., day, week, month, and season respectively.

  13. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  14. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  15. Inclusion of routine wind and turbulence forecasts in the Savannah River Plant's emergency response capabilities

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Gilhousen, D.B.

    1980-01-01

    The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours

  16. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-11-01

    Full Text Available The accuracy of reservoir flow forecasting has the most significant influence on the assurance of stability and annual operations of hydro-constructions. For instance, accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the preparation and prevention of lowland flooding and drought, as well as regulating electric energy. This raises the need to propose a model that accurately forecasts the incoming flow of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network with the Cuckoo Search (CS algorithm is presented. In particular, we used hydrographic data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN for prediction. The algorithm optimized the weights between layers and biases of the neuron network. Different forecasting models for the three scenarios were developed. The constructed models have shown high forecasting performance based on the performance indices calculated. These results were also compared with those obtained from the neural networks trained by the particle swarm optimization (PSO and back-propagation (BP, indicating that the proposed approach performed more effectively. Based on the experimental results, the scenario using the rainfall and the flow as input yielded the highest forecasting accuracy when compared with other scenarios. The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual values. It is expected that this work may be useful for hydrographic forecasting.

  17. Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system

    Science.gov (United States)

    Keane, R. J.; Plant, R. S.; Tennant, W. J.

    2015-12-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  18. A Comparison of Various Forecasting Methods for Autocorrelated Time Series

    Directory of Open Access Journals (Sweden)

    Karin Kandananond

    2012-07-01

    Full Text Available The accuracy of forecasts significantly affects the overall performance of a whole supply chain system. Sometimes, the nature of consumer products might cause difficulties in forecasting for the future demands because of its complicated structure. In this study, two machine learning methods, artificial neural network (ANN and support vector machine (SVM, and a traditional approach, the autoregressive integrated moving average (ARIMA model, were utilized to predict the demand for consumer products. The training data used were the actual demand of six different products from a consumer product company in Thailand. Initially, each set of data was analysed using Ljung‐Box‐Q statistics to test for autocorrelation. Afterwards, each method was applied to different sets of data. The results indicated that the SVM method had a better forecast quality (in terms of MAPE than ANN and ARIMA in every category of products.

  19. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    Science.gov (United States)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  20. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  1. Least square regression based integrated multi-parameteric demand modeling for short term load forecasting

    International Nuclear Information System (INIS)

    Halepoto, I.A.; Uqaili, M.A.

    2014-01-01

    Nowadays, due to power crisis, electricity demand forecasting is deemed an important area for socioeconomic development and proper anticipation of the load forecasting is considered essential step towards efficient power system operation, scheduling and planning. In this paper, we present STLF (Short Term Load Forecasting) using multiple regression techniques (i.e. linear, multiple linear, quadratic and exponential) by considering hour by hour load model based on specific targeted day approach with temperature variant parameter. The proposed work forecasts the future load demand correlation with linear and non-linear parameters (i.e. considering temperature in our case) through different regression approaches. The overall load forecasting error is 2.98% which is very much acceptable. From proposed regression techniques, Quadratic Regression technique performs better compared to than other techniques because it can optimally fit broad range of functions and data sets. The work proposed in this paper, will pave a path to effectively forecast the specific day load with multiple variance factors in a way that optimal accuracy can be maintained. (author)

  2. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models

    International Nuclear Information System (INIS)

    Nguyen, Hang T.; Nabney, Ian T.

    2010-01-01

    This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their NMSEs are 0.02314 and 0.15384 respectively. (author)

  3. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  4. Role of hybrid forecasting techniques for transportation planning of broiler meat under uncertain demand in thailand

    Directory of Open Access Journals (Sweden)

    Thoranin Sujjaviriyasup

    2014-12-01

    Full Text Available One of numerous problems experiencing in supply chain management is the demand. Most demands are appeared in terms of uncertainty. The broiler meat industry is inevitably encountering the same problem. In this research, hybrid forecasting model of ARIMA and Support Vector Machine (SVMs are developed to forecast broiler meat export. In addition, ARIMA, SVMs, and Moving Average (MA are chosen for comparing the forecasting efficiency. All the forecasting models are tested and validated using the data of Brazil’s export, Canada’s export, and Thailand’s export. The hybrid model provides accuracy of the forecasted values that are 98.71%, 97.50%, and 93.01%, respectively. In addition, the hybrid model presents the least error of all MAE, RMSE, and MAPE comparing with other forecasting models. As forecasted data are applied to transportation planning, the mean absolute percentage error (MAPE of optimal value of forecasted value and actual value is 14.53%. The hybrid forecasting model shows an ability to reduce risk of total cost of transportation when broiler meat export is forecasted by using MA(2, MA(3, ARIMA, and SVM are 50.59%, 60.18%, 68.01%, and 46.55%, respectively. The results indicate that the developed forecasting model is recommended to broiler meat industries’ supply chain decision.

  5. On the flood forecasting at the Bulgarian part of Struma River Basin

    International Nuclear Information System (INIS)

    Dimitrov, Dobri

    2004-01-01

    Struma is a mountain river flowing from North to South, from Bulgaria through Greece up to the Aegean Sea. It generates flush floods of snow melt - rainfall type mainly in the late spring. Flood forecasting there is needed to improve the flood mitigation measures at the Bulgarian territory of the basin as well as for effective reservoir management downstream Bulgarian border, secure flood handling at Greek territory and generally decrease the flood hazard. The paper summarizes the range of activities in the basin including: - the installation of automatic telemetric hydro meteorological observation network; - review of the results of relevant past projects; - analysis of historical hydro meteorological data; - design and calibration of flood forecasting models; - demonstrating the possibility to issue flood warnings with certain lead time and accuracy; - recent efforts to increase the lead time of the hydrological forecasts, applying forecasts from High Resolution Limited Area meteorological models and other activities in the frame of the EC 5th FP EFFS project.(Author)

  6. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)

  7. Fuel cycle forecasting - there are forecasts and there are forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Puechl, K H

    1975-12-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis.

  8. Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting

    International Nuclear Information System (INIS)

    Zhang, Wen Yu; Hong, Wei-Chiang; Dong, Yucheng; Tsai, Gary; Sung, Jing-Tian; Fan, Guo-feng

    2012-01-01

    The electric load forecasting is complicated, and it sometimes reveals cyclic changes due to cyclic economic activities or climate seasonal nature, such as hourly peak in a working day, weekly peak in a business week, and monthly peak in a demand planned year. Hybridization of support vector regression (SVR) with chaotic sequence and evolutionary algorithms has successfully been applied to improve forecasting accuracy, and to effectively avoid trapping in a local optimum. However, it has not been widely explored to employ SVR-based model to deal with cyclic electric load forecasting. This paper will firstly investigate the potentiality of a novel hybrid algorithm, namely chaotic genetic algorithm-simulated annealing algorithm (CGASA), with an SVR model to improve load forecasting accurate performance. In which, the proposed CGASA employs internal randomness of chaotic iterations to overcome premature local optimum. Secondly, the seasonal mechanism will then be applied to well adjust the cyclic load tendency. Finally, a numerical example from an existed reference is employed to compare the forecasting performance of the proposed SSVRCGASA model. The forecasting results show that the SSVRCGASA model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. -- Highlights: ► Hybridizing the seasonal adjustment mechanism into an SVR model. ► Employing chaotic sequence to improve the premature convergence of genetic algorithm and simulated annealing algorithm. ► Successfully providing significant accurate monthly load demand forecasting.

  9. Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Lin; Lou, Jianyong

    2015-01-01

    Highlights: • A novel active learning model for the probabilistic electricity price forecasting. • Heteroscedastic Gaussian process that captures the local volatility of the electricity price. • Variational Bayesian learning that avoids over-fitting. • Active learning algorithm that reduces the computational efforts. - Abstract: Electricity price forecasting is essential for the market participants in their decision making. Nevertheless, the accuracy of such forecasting cannot be guaranteed due to the high variability of the price data. For this reason, in many cases, rather than merely point forecasting results, market participants are more interested in the probabilistic price forecasting results, i.e., the prediction intervals of the electricity price. Focusing on this issue, this paper proposes a new model for the probabilistic electricity price forecasting. This model is based on the active learning technique and the variational heteroscedastic Gaussian process (VHGP). It provides the heteroscedastic Gaussian prediction intervals, which effectively quantify the heteroscedastic uncertainties associated with the price data. Because the high computational effort of VHGP hinders its application to the large-scale electricity price forecasting tasks, we design an active learning algorithm to select a most informative training subset from the whole available training set. By constructing the forecasting model on this smaller subset, the computational efforts can be significantly reduced. In this way, the practical applicability of the proposed model is enhanced. The forecasting performance and the computational time of the proposed model are evaluated using the real-world electricity price data, which is obtained from the ANEM, PJM, and New England ISO

  10. Electricity price forecasting using Enhanced Probability Neural Network

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposes a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Probability Neural Network (PNN) and Orthogonal Experimental Design (OED), an Enhanced Probability Neural Network (EPNN) is proposed in the solving process. In this paper, the Locational Marginal Price (LMP), system load and temperature of PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday, and weekend. With the OED to smooth parameters in the EPNN, the forecasting error can be improved during the training process to promote the accuracy and reliability where even the ''spikes'' can be tracked closely. Simulation results show the effectiveness of the proposed EPNN to provide quality information in a price volatile environment. (author)

  11. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  12. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  13. A hybrid sales forecasting scheme by combining independent component analysis with K-means clustering and support vector regression.

    Science.gov (United States)

    Lu, Chi-Jie; Chang, Chi-Chang

    2014-01-01

    Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting.

  14. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  15. Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2013-11-01

    Full Text Available Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD with artificial neural networks (ANN to forecast the short-term (1 h ahead wind speed/power. First, significant parameters for training the ANN are identified using the correlation coefficients. These significant parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind speed/power, the historical time series of wind speed/power is decomposed into several intrinsic mode functions (IMFs and a residual function through EMD. Each IMF becomes less volatile and therefore increases the accuracy of the neural network. The final forecasting results are achieved by aggregating all individual forecasting results from all IMFs and their corresponding residual functions. Real data related to the wind speed and wind power measured at a wind-turbine generator in Taiwan are used for simulation. The wind speed forecasting and wind power forecasting for the four seasons are studied. Comparative studies between the proposed method and traditional methods (i.e., artificial neural network without EMD, autoregressive integrated moving average (ARIMA, and persistence method are also introduced.

  16. Application research for 4D technology in flood forecasting and evaluation

    Science.gov (United States)

    Li, Ziwei; Liu, Yutong; Cao, Hongjie

    1998-08-01

    In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.

  17. Forecasting Housing Approvals in Australia: Do Forecasters Herd?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    Price trends in housing markets may reflect herding of market participants. A natural question is whether such herding, to the extent that it occurred, reflects herding in forecasts of professional forecasters. Using more than 6,000 forecasts of housing approvals for Australia, we did not find...

  18. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

    Science.gov (United States)

    Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros

    2018-05-01

    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

  19. FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA

    Directory of Open Access Journals (Sweden)

    Zoran Rakićević

    2015-04-01

    Full Text Available This paper presents an application of focus forecasting in a fast moving consumer goods (FMCG supply chain. Focus forecasting is tested in a real business case in a Serbian enterprise. The data used in the simulation refers to the historical sales of two types of FMCG with several different products. The data were collected and summarized across the whole distribution channel in the Serbian market from January 2012 to December 2013. We applied several well-known time series forecasting models using the focus forecasting approach, where for the future time period we used the method which had the best performances in the past. The focus forecasting approach mixes different standard forecasting methods on the data sets in order to find the one that was the most accurate during the past period. The accuracy of forecasting methods is defined through different measures of errors. In this paper we implemented the following forecasting models in Microsoft Excel: last period, all average, moving average, exponential smoothing with constant and variable parameter α, exponential smoothing with trend, exponential smoothing with trend and seasonality. The main purpose was not to evaluate different forecasting methods but to show a practical application of the focus forecasting approach in a real business case.

  20. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  1. A Modified Feature Selection and Artificial Neural Network-Based Day-Ahead Load Forecasting Model for a Smart Grid

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmad

    2015-12-01

    Full Text Available In the operation of a smart grid (SG, day-ahead load forecasting (DLF is an important task. The SG can enhance the management of its conventional and renewable resources with a more accurate DLF model. However, DLF model development is highly challenging due to the non-linear characteristics of load time series in SGs. In the literature, DLF models do exist; however, these models trade off between execution time and forecast accuracy. The newly-proposed DLF model will be able to accurately predict the load of the next day with a fair enough execution time. Our proposed model consists of three modules; the data preparation module, feature selection and the forecast module. The first module makes the historical load curve compatible with the feature selection module. The second module removes redundant and irrelevant features from the input data. The third module, which consists of an artificial neural network (ANN, predicts future load on the basis of selected features. Moreover, the forecast module uses a sigmoid function for activation and a multi-variate auto-regressive model for weight updating during the training process. Simulations are conducted in MATLAB to validate the performance of our newly-proposed DLF model in terms of accuracy and execution time. Results show that our proposed modified feature selection and modified ANN (m(FS + ANN-based model for SGs is able to capture the non-linearity(ies in the history load curve with 97 . 11 % accuracy. Moreover, this accuracy is achieved at the cost of a fair enough execution time, i.e., we have decreased the average execution time of the existing FS + ANN-based model by 38 . 50 % .

  2. Ridge Regression: A tool to forecast wheat area and production

    Directory of Open Access Journals (Sweden)

    Nasir Jamal

    2007-07-01

    Full Text Available This research study is designed to develop forecasting models for acreage and production of wheat crop for Chakwal district of Rawalpindi region keeping in view the assumptions of OLS estimation. The forecasting models are developed on the basis of 15 years data from 1984-85 to 1998-99 then wheat area and production for next five years from 1999-2000 to 2003-04 is forecasted through the models and compared with the actual figures. After evaluating the accuracy of the models, final models are developed on the basis of 20 years data for the period 1984-85 to 2003-04. These linear models can be used to forecast wheat area and production of next five years. The Urea fertilizer, DAP fertilizer and manures plays a significant role to enhance the production of wheat crop. Number of ploughs in the wheat fields is significant factor to increase the production of wheat crop. Good rains in the month of October and November significantly contributes to increase the production of wheat crop and mean maximum temperature in the month of March is a significant factor to reduce the production of wheat crop.

  3. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  4. Forecasting Nike’s Sales using Facebook Data

    DEFF Research Database (Denmark)

    Boldt, Linda Camilla; Vinayagamoorthy, Vinothan; Winder, Florian

    2016-01-01

    the method of social set analysis from the domain of computational social science to model sales from Big Social Data. The dataset consists of (a) selection of Nike’s Facebook pages with the number of likes, comments, posts etc. that have been registered for each page per day and (b) business data in terms......This paper tests whether accurate sales forecasts for Nike are possible from Facebook data and how events related to Nike affect the activity on Nike’s Facebook pages. The paper draws from the AIDA sales framework (Awareness, Interest, Desire,and Action) from the domain of marketing and employs...... of quarterly global sales figures published in Nike’s financial reports. An event study is also conducted using the Social Set Visualizer (SoSeVi). The findings suggest that Facebook data does have informational value. Some of the simple regression models have a high forecasting accuracy. The multiple...

  5. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response.

    Directory of Open Access Journals (Sweden)

    Nicholas Thapen

    Full Text Available In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model.

  6. The Next Level in Automated Solar Flare Forecasting: the EU FLARECAST Project

    Science.gov (United States)

    Georgoulis, M. K.; Bloomfield, D.; Piana, M.; Massone, A. M.; Gallagher, P.; Vilmer, N.; Pariat, E.; Buchlin, E.; Baudin, F.; Csillaghy, A.; Soldati, M.; Sathiapal, H.; Jackson, D.; Alingery, P.; Argoudelis, V.; Benvenuto, F.; Campi, C.; Florios, K.; Gontikakis, C.; Guennou, C.; Guerra, J. A.; Kontogiannis, I.; Latorre, V.; Murray, S.; Park, S. H.; Perasso, A.; Sciacchitano, F.; von Stachelski, S.; Torbica, A.; Vischi, D.

    2017-12-01

    We attempt an informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy achieved for the forecasting of major solar flares. We outline the consortium, top-level objectives and first results of the project, highlighting the diversity and fusion of expertise needed to deliver what was promised. The project's final product, featuring an openly accessible, fully modular and free to download flare forecasting facility will be delivered in early 2018. The project's three objectives, namely, science, research-to-operations and dissemination / communication, are also discussed: in terms of science, we encapsulate our close-to-final assessment on how close (or far) are we from a practically exploitable solar flare forecasting. In terms of R2O, we briefly describe the architecture of the FLARECAST infrastructure that includes rigorous validation for each forecasting step. From the three different communication levers of the project we finally focus on lessons learned from the two-way interaction with the community of stakeholders and governmental organizations. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  7. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    Science.gov (United States)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  8. Quantitative forecasting of PTSD from early trauma responses: a Machine Learning application.

    Science.gov (United States)

    Galatzer-Levy, Isaac R; Karstoft, Karen-Inge; Statnikov, Alexander; Shalev, Arieh Y

    2014-12-01

    There is broad interest in predicting the clinical course of mental disorders from early, multimodal clinical and biological information. Current computational models, however, constitute a significant barrier to realizing this goal. The early identification of trauma survivors at risk of post-traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics and determine their accuracy in forecasting non-remitting PTSD from information collected within 10 days of a traumatic event. Data on event characteristics, emergency department observations, and early symptoms were collected in 957 trauma survivors, followed for fifteen months. An ML feature selection algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder (ASD) symptoms alone. SVM also compared the prediction of a) PTSD diagnostic status at 15 months to b) posterior probability of membership in an empirically derived non-remitting PTSD symptom trajectory. Results are expressed as mean Area Under Receiver Operating Characteristics Curve (AUC). The feature selection algorithm identified 16 predictors, present in ≥ 95% cross-validation trials. The accuracy of predicting non-remitting PTSD from that set (AUC = .77) did not differ from predicting from all available information (AUC = .78). Predicting from ASD symptoms was not better then chance (AUC = .60). The prediction of PTSD status was less accurate than that of membership in a non-remitting trajectory (AUC = .71). ML methods may fill a critical gap in forecasting PTSD. The

  9. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  10. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    Science.gov (United States)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  11. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Cathy [WindLogics, St. Paul, MN (United States)

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  12. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Marko Intihar

    2017-11-01

    Full Text Available The paper examines the impact of integration of macroeconomic indicators on the accuracy of container throughput time series forecasting model. For this purpose, a Dynamic factor analysis and AutoRegressive Integrated Moving-Average model with eXogenous inputs (ARIMAX are used. Both methodologies are integrated into a novel four-stage heuristic procedure. Firstly, dynamic factors are extracted from external macroeconomic indicators influencing the observed throughput. Secondly, the family of ARIMAX models of different orders is generated based on the derived factors. In the third stage, the diagnostic and goodness-of-fit testing is applied, which includes statistical criteria such as fit performance, information criteria, and parsimony. Finally, the best model is heuristically selected and tested on the real data of the Port of Koper. The results show that by applying macroeconomic indicators into the forecasting model, more accurate future throughput forecasts can be achieved. The model is also used to produce future forecasts for the next four years indicating a more oscillatory behaviour in (2018-2020. Hence, care must be taken concerning any bigger investment decisions initiated from the management side. It is believed that the proposed model might be a useful reinforcement of the existing forecasting module in the observed port.

  13. CBO’s Revenue Forecasting Record

    Science.gov (United States)

    2015-11-01

    by squaring the errors, it places a greater weight on larger deviations. The mean absolute error is an easier measure to understand , but the RMSE... macroeconomic measures like GDP as a guide because that relationship has been significantly altered over time by changes to provisions of tax law. Instead...CBO projects revenues largely by identifying the macroeconomic variables in its economic forecasts that constitute the bases on which the various

  14. Forecasting the Number of Soil Samples Required to Reduce Remediation Cost Uncertainty

    OpenAIRE

    Demougeot-Renard, Hélène; de Fouquet, Chantal; Renard, Philippe

    2008-01-01

    Sampling scheme design is an important step in the management of polluted sites. It largely controls the accuracy of remediation cost estimates. In practice, however, sampling is seldom designed to comply with a given level of remediation cost uncertainty. In this paper, we present a new technique that allows one to estimate of the number of samples that should be taken at a given stage of investigation to reach a forecasted level of accuracy. The uncertainty is expressed both in terms of vol...

  15. AN EVALUATION OF POINT AND DENSITY FORECASTS FOR SELECTED EU FARM GATE MILK PRICES

    Directory of Open Access Journals (Sweden)

    Dennis Bergmann

    2018-01-01

    Full Text Available Fundamental changes to the common agricultural policy (CAP have led to greater market orientation which in turn has resulted in sharply increased variability of EU farm gate milk prices and thus farmers’ income. In this market environment reliable forecasts of farm gate milk prices are extremely important as farmers can make improved decisions with regards to cash flow management and budget preparation. In addition these forecasts may be used in setting fixed priced contracts between dairy farmers and processors thus providing certainty and reducing risk. In this study both point and density forecasts from various time series models for farm gate milk prices in Germany, Ireland and for an average EU price series are evaluated using a rolling window framework. Additionally forecasts of the individual models are combined using different combination schemes. The results of the out of sample evaluation show that ARIMA type models perform well on short forecast horizons (1 to 3 month while the structural time series approach performs well on longer forecast horizons (12 month. Finally combining individual forecasts of different models significantly improves the forecast performance for all forecast horizons.

  16. Drought forecasting in Luanhe River basin involving climatic indices

    Science.gov (United States)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  17. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  18. FORECASTING TOURIST ARRIVALS TO LANGKAWI ISLAND MALAYSIA

    OpenAIRE

    Kamarul Ariffin MANSOR; Wan Irham ISHAK

    2015-01-01

    Tourism is the act of travelling for a person or group of people from their own locality to a specific destination in a short term or long term period either for leisure or business purposes. Tourism is an important sector in the Malaysian economy where tourism development will lead to the positive economic development of the country and in general improve the quality of life for all citizens. Therefore, forecasting tourist arrivals with high accuracy becomes important since it may ensure t...

  19. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  20. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  1. Research on classified real-time flood forecasting framework based on K-means cluster and rough set.

    Science.gov (United States)

    Xu, Wei; Peng, Yong

    2015-01-01

    This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.

  2. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  3. Mixed price and load forecasting of electricity markets by a new iterative prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Daraeepour, Ali

    2009-01-01

    Load and price forecasting are the two key issues for the participants of current electricity markets. However, load and price of electricity markets have complex characteristics such as nonlinearity, non-stationarity and multiple seasonality, to name a few (usually, more volatility is seen in the behavior of electricity price signal). For these reasons, much research has been devoted to load and price forecast, especially in the recent years. However, previous research works in the area separately predict load and price signals. In this paper, a mixed model for load and price forecasting is presented, which can consider interactions of these two forecast processes. The mixed model is based on an iterative neural network based prediction technique. It is shown that the proposed model can present lower forecast errors for both load and price compared with the previous separate frameworks. Another advantage of the mixed model is that all required forecast features (from load or price) are predicted within the model without assuming known values for these features. So, the proposed model can better be adapted to real conditions of an electricity market. The forecast accuracy of the proposed mixed method is evaluated by means of real data from the New York and Spanish electricity markets. The method is also compared with some of the most recent load and price forecast techniques. (author)

  4. Stock price forecasting based on time series analysis

    Science.gov (United States)

    Chi, Wan Le

    2018-05-01

    Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.

  5. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Thomas Hoff [Clean Power Research, L.L.C., Napa, CA (United States); Kankiewicz, Adam [Clean Power Research, L.L.C., Napa, CA (United States)

    2016-02-26

    uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”

  6. Forecasting Global Horizontal Irradiance Using the LETKF and a Combination of Advected Satellite Images and Sparse Ground Sensors

    Science.gov (United States)

    Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.

    2017-12-01

    The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.

  7. Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting

    KAUST Repository

    Zhu, Xinxin

    2014-09-01

    Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.

  8. Loss aversion is an affective forecasting error.

    Science.gov (United States)

    Kermer, Deborah A; Driver-Linn, Erin; Wilson, Timothy D; Gilbert, Daniel T

    2006-08-01

    Loss aversion occurs because people expect losses to have greater hedonic impact than gains of equal magnitude. In two studies, people predicted that losses in a gambling task would have greater hedonic impact than would gains of equal magnitude, but when people actually gambled, losses did not have as much of an emotional impact as they predicted. People overestimated the hedonic impact of losses because they underestimated their tendency to rationalize losses and overestimated their tendency to dwell on losses. The asymmetrical impact of losses and gains was thus more a property of affective forecasts than a property of affective experience.

  9. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Paras; Senjyu, Tomonobu [Department of Electrical and Electronics, University of the Ryukyus, 1 Senbaru, Nagakami Nishihara, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Tokyo 103-8515 (Japan)

    2006-09-15

    In daily power markets, forecasting electricity prices and loads are the most essential task and the basis for any decision making. An approach to predict the market behaviors is to use the historical prices, loads and other required information to forecast the future prices and loads. This paper introduces an approach for several hour ahead (1-6h) electricity price and load forecasting using an artificial intelligence method, such as a neural network model, which uses publicly available data from the NEMMCO web site to forecast electricity prices and loads for the Victorian electricity market. An approach of selection of similar days is proposed according to which the load and price curves are forecasted by using the information of the days being similar to that of the forecast day. A Euclidean norm with weighted factors is used for the selection of the similar days. Two different ANN models, one for one to six hour ahead load forecasting and another for one to six hour ahead price forecasting have been proposed. The MAPE (mean absolute percentage error) results show a clear increasing trend with the increase in hour ahead load and price forecasting. The sample average of MAPEs for one hour ahead price forecasts is 9.75%. This figure increases to only 20.03% for six hour ahead predictions. Similarly, the one to six hour ahead load forecast errors (MAPE) range from 0.56% to 1.30% only. MAPE results show that several hour ahead electricity prices and loads in the deregulated Victorian market can be forecasted with reasonable accuracy. (author)

  10. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market

    International Nuclear Information System (INIS)

    Mandal, Paras; Senjyu, Tomonobu; Funabashi, Toshihisa

    2006-01-01

    In daily power markets, forecasting electricity prices and loads are the most essential task and the basis for any decision making. An approach to predict the market behaviors is to use the historical prices, loads and other required information to forecast the future prices and loads. This paper introduces an approach for several hour ahead (1-6 h) electricity price and load forecasting using an artificial intelligence method, such as a neural network model, which uses publicly available data from the NEMMCO web site to forecast electricity prices and loads for the Victorian electricity market. An approach of selection of similar days is proposed according to which the load and price curves are forecasted by using the information of the days being similar to that of the forecast day. A Euclidean norm with weighted factors is used for the selection of the similar days. Two different ANN models, one for one to six hour ahead load forecasting and another for one to six hour ahead price forecasting have been proposed. The MAPE (mean absolute percentage error) results show a clear increasing trend with the increase in hour ahead load and price forecasting. The sample average of MAPEs for one hour ahead price forecasts is 9.75%. This figure increases to only 20.03% for six hour ahead predictions. Similarly, the one to six hour ahead load forecast errors (MAPE) range from 0.56% to 1.30% only. MAPE results show that several hour ahead electricity prices and loads in the deregulated Victorian market can be forecasted with reasonable accuracy

  11. Forecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model

    Directory of Open Access Journals (Sweden)

    Xingsheng Gu

    2013-03-01

    Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.

  12. National Forecast Charts

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. National Forecast Charts

  13. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    Science.gov (United States)

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    2005-06-01

    Full Text Available For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy.

  15. Forecast for Artificial Muscle Tremor Behavior Based on Dynamic Additional Grey Catastrophe Prediction

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2018-02-01

    Full Text Available Recently, bio-inspired artificial muscles based on ionic polymers have shown a bright perspective in engineering and medical research, but the inherent tremor behavior can cause instability of output response. In this paper, dynamic additional grey catastrophe prediction (DAGCP is proposed to forecast the occurrence time of tremor behavior, providing adequate preparation time for the suppression of the chitosan-based artificial muscles. DAGCP constructs various dimensions of time subsequence models under different starting points based on the threshold of tremor occurrence times and peak-to-peak values in unit time. Next, the appropriate subsequence is selected according to grey correlation degree and prediction accuracy, then it is updated with the newly generated values to achieve a real-time forecast of forthcoming tremor time. Compared with conventional grey catastrophe prediction (GCP, the proposed method has the following advantages: (1 the degradation of prediction accuracy caused by the immobilization of original parameters is prevented; (2 the dynamic input, real-time update and gradual forecast of time sequence are incorporated into the model. The experiment results show that the novel DAGCP can predict forthcoming tremor time earlier and more accurately than the conventional GCP. The generation mechanism of tremor behavior is illustrated as well.

  16. Integrating observation and statistical forecasts over sub-Saharan Africa to support Famine Early Warning

    Science.gov (United States)

    Funk, Chris; Verdin, James P.; Husak, Gregory

    2007-01-01

    Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.

  17. Using HPC within an operational forecasting configuration

    Science.gov (United States)

    Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.

    2012-04-01

    Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.

  18. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  19. Forecasting telecommunication new service demand by analogy method and combined forecast

    Directory of Open Access Journals (Sweden)

    Lin Feng-Jenq

    2005-01-01

    Full Text Available In the modeling forecast field, we are usually faced with the more difficult problems of forecasting market demand for a new service or product. A new service or product is defined as that there is absence of historical data in this new market. We hardly use models to execute the forecasting work directly. In the Taiwan telecommunication industry, after liberalization in 1996, there are many new services opened continually. For optimal investment, it is necessary that the operators, who have been granted the concessions and licenses, forecast this new service within their planning process. Though there are some methods to solve or avoid this predicament, in this paper, we will propose one forecasting procedure that integrates the concept of analogy method and the idea of combined forecast to generate new service forecast. In view of the above, the first half of this paper describes the procedure of analogy method and the approach of combined forecast, and the second half provides the case of forecasting low-tier phone demand in Taiwan to illustrate this procedure's feasibility.

  20. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-12-01

    Full Text Available Accurate solar photovoltaic (PV power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN and support vector machines (SVM are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.

  1. A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2014-03-01

    Full Text Available River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydropower and an essential element of water balance. This study presents a system-theory-based model for river runoff forecasting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was calibrated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Following model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is acceptable.

  2. Out-of-sample Forecasting Performance of Won/Dollar Exchange Rate Return Volatility Model

    Directory of Open Access Journals (Sweden)

    Hojin Lee

    2009-06-01

    Full Text Available We compare the out-of-sample forecasting performance of volatility models using daily exchange rate for the KRW/USD during the period from 1992 to 2008. For various forecasting horizons, historical volatility models with a long memory tend to make more accurate forecasts. Especially, we carefully observe the difference between the EWMA and the GARCH(1,1 model. Our empirical finding that the GARCH model puts too much weight on recent observations relative to those in the past is consistent with prior evidence showing that asset market volatility has a long memory, such as Ding and Granger (1996. The forecasting model with the lowest MSFE and VaR forecast error among the models we consider is the EWMA model in which the forecast volatility for the coming period is a weighted average of recent squared return with exponentially declining weights. In terms of forecast accuracy, it clearly dominates the widely accepted GARCH and rolling window GARCH models. We also present a multiple comparison of the out-of-sample forecasting performance of volatility using the stationary bootstrap of Politis and Romano (1994. We find that the White's reality check for the GARCH(1,1 expanding window model and the FIGARCH(1,1 expanding window model clearly reject the null hypothesis and there exists a better model than the two benchmark models. On the other hand, when the EWMA model is the benchmark, the White's for all forecasting horizons are very high, which indicates the null hypothesis may not be rejected. The Hansen's report the same results. The GARCH(1,1 expanding window model and the FIGARCH(1,1 expanding window model are dominated by the best competing model in most of the forecasting horizons. In contrast, the RiskMetrics model seems to be the most preferred. We also consider combining the forecasts generated by averaging the six raw forecasts and a trimmed set of forecasts which calculate the mean of the four forecasts after disregarding the highest and

  3. FORECASTING TOURIST ARRIVALS TO LANGKAWI ISLAND MALAYSIA

    Directory of Open Access Journals (Sweden)

    Kamarul Ariffin MANSOR

    2015-06-01

    Full Text Available Tourism is the act of travelling for a person or group of people from their own locality to a specific destination in a short term or long term period either for leisure or business purposes. Tourism is an important sector in the Malaysian economy where tourism development will lead to the positive economic development of the country and in general improve the quality of life for all citizens. Therefore, forecasting tourist arrivals with high accuracy becomes important since it may ensure the development and the readiness of all tourism related industries such as hotels, transportation, food and services industries and their best shape. This study focuses on tourist arrivals in Langkawi Island as one of the major tourist attractions situated in the northerly region of Peninsular Malaysia. Importantly, this paper attempts to measure and compare the performance of forecasting with Exponential Smoothing, ARIMA and ARFIMA models using the R software package.

  4. Study on the Forecast of Ground Motion Parameters from Real Time Earthquake Information Based on Wave Form Data at the Front Site

    OpenAIRE

    萩原, 由訓; 源栄, 正人; 三辻, 和弥; 野畑, 有秀; Yoshinori, HAGIWARA; Masato, MOTOSAKA; Kazuya, MITSUJI; Arihide, NOBATA; (株)大林組 技術研究所; 東北大学大学院工学研究科; 山形大学地域教育文化学部生活総合学科生活環境科学コース; (株)大林組 技術研究所; Obayashi Corporation Technical Research Institute; Graduate School of Eng., Tohoku University; Faculty of Education, Art and Science, Yamagata University

    2011-01-01

    The Japan Meteorological Agency(JMA) provides Earthquake Early Warnings(EEW) for advanced users from August 1, 2006. Advanced EEW users can forecaste seismic ground motion (example: Seismic Intensity, Peak Ground Acceleration) from information of the earthquake in EEW. But there are limits to the accuracy and the earliness of the forecasting. This paper describes regression equation to decrease the error and to increase rapidity of the forecast of ground motion parameters from Real Time Earth...

  5. Daily air quality index forecasting with hybrid models: A case in China

    International Nuclear Information System (INIS)

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-01-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the

  6. Fog prediction using the modified asymptotic liquid water content vertical distribution formulation with the Weather Research and Forecasting model

    Science.gov (United States)

    Kim, E.; Lee, S.; Kim, J.; Chae, D.

    2017-12-01

    Fog forecasts have difficulty in forecasting due to temporal and spatial resolution problems, high numerical computations, complicated mechanisms related to turbulence in order to analyze the fog in the model, and a lack of appropriate fog physical processes. Conventional fog prediction is based on the surface visibility threshold "fog diagnosis method is based on the fog related variables near the surface, such as visibility, low stratus, relative humidity and wind speed but this method only predicts fog occurrence not fog intensity. To improve this, a new fog diagnostic scheme, based on an asymptotic analytical study of radiation fog (Zhou and Ferrier 2008, ZF08) is to increase the accuracy of fog prediction by calculating the vertical LWC considering cooling, turbulence and droplet settling, visibility, surface relative humidity and low stratus. In this study, we intend to improve fog prediction through the Weather Research and Forecasting (WRF) model using high-resolution data. Although the prediction accuracy can be improved by combining the WRF Planetary Boundary Layer (PBL) scheme and 1 dimension (1D) model, it is necessary to increase the vertical resolution in the boundary layer to implement the fog formation and persistence mechanism in the internal boundary layer in the PBL more accurately, we'll modify the algorithm to enhance the effects of turbulence and then compare the newly predicted fog and observations to determine the accuracy of the forecast of the fog occurring on the Korean peninsula.

  7. Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Brusco

    2017-11-01

    Full Text Available In recent years, the diffusion of electric plants based on renewable non-dispatchable sources has caused large imbalances between the power generation schedule and the actual generation in real time operations, resulting in increased costs for dispatching electric power systems. Although this type of source cannot be programmed, their production can be predicted using soft computing techniques that consider weather forecasts, reducing the imbalance costs paid to the transmission system operator (TSO. The problem is mainly that the forecasting procedures used by the TSO, distribution system operator (DSO or large producers and they are too expensive, as they use complex algorithms and detailed meteorological data that have to be bought, this can represent an excessive charge for small-scale producers, such as prosumers. In this paper, a cheap photovoltaic (PV production forecasting method, in terms of reduced computational effort, free-available meteorological data and implementation is discussed, and the economic results regarding the imbalance costs due to the utilization of this method are analyzed. The economic analysis is carried out considering several factors, such as the month, the day type, and the accuracy of the forecasting method. The user can utilize the implemented method to know and reduce the imbalance costs, by adopting particular load management strategies.

  8. A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider

    CERN Document Server

    Sammut, N J; Bottura, L; Deferne, G; Lamont, M; Miles, J; Sanfilippo, S; Strzelczyk, M; Venturini-Delsolaro, W; Xydi, P

    2008-01-01

    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.

  9. A GM (1, 1 Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

    Directory of Open Access Journals (Sweden)

    Ning-bo Zhao

    2014-01-01

    Full Text Available Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1 Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1 model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this approach, firstly, the GM (1, 1 model is used to forecast the trend by using limited data samples. Then, Markov chain model is integrated into GM (1, 1 model in order to enhance the forecast performance, which can solve the influence of random fluctuation data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM (1, 1 Markov chain model. The results show that the GM (1, 1 Markov chain model is able to forecast exhaust gas temperature accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

  10. Evaluation of probabilistic forecasts with the scoringRules package

    Science.gov (United States)

    Jordan, Alexander; Krüger, Fabian; Lerch, Sebastian

    2017-04-01

    Over the last decades probabilistic forecasts in the form of predictive distributions have become popular in many scientific disciplines. With the proliferation of probabilistic models arises the need for decision-theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way in order to better understand sources of prediction errors and to improve the models. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. In coherence with decision-theoretical principles they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This contribution presents the software package scoringRules for the statistical programming language R, which provides functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. For univariate variables, two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, ensemble weather forecasts take this form. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices. Recent developments include the addition of scoring rules to evaluate multivariate forecast distributions. The use of the scoringRules package is illustrated in an example on post-processing ensemble forecasts of temperature.

  11. Forecasting Performance of Asymmetric GARCH Stock Market Volatility Models

    Directory of Open Access Journals (Sweden)

    Hojin Lee

    2009-12-01

    Full Text Available We investigate the asymmetry between positive and negative returns in their effect on conditional variance of the stock market index and incorporate the characteristics to form an out-of-sample volatility forecast. Contrary to prior evidence, however, the results in this paper suggest that no asymmetric GARCH model is superior to basic GARCH(1,1 model. It is our prior knowledge that, for equity returns, it is unlikely that positive and negative shocks have the same impact on the volatility. In order to reflect this intuition, we implement three diagnostic tests for volatility models: the Sign Bias Test, the Negative Size Bias Test, and the Positive Size Bias Test and the tests against the alternatives of QGARCH and GJR-GARCH. The asymmetry test results indicate that the sign and the size of the unexpected return shock do not influence current volatility differently which contradicts our presumption that there are asymmetric effects in the stock market volatility. This result is in line with various diagnostic tests which are designed to determine whether the GARCH(1,1 volatility estimates adequately represent the data. The diagnostic tests in section 2 indicate that the GARCH(1,1 model for weekly KOSPI returns is robust to the misspecification test. We also investigate two representative asymmetric GARCH models, QGARCH and GJR-GARCH model, for our out-of-sample forecasting performance. The out-of-sample forecasting ability test reveals that no single model is clearly outperforming. It is seen that the GJR-GARCH and QGARCH model give mixed results in forecasting ability on all four criteria across all forecast horizons considered. Also, the predictive accuracy test of Diebold and Mariano based on both absolute and squared prediction errors suggest that the forecasts from the linear and asymmetric GARCH models need not be significantly different from each other.

  12. Statistical parameters as a means to a priori assess the accuracy of solar forecasting models

    International Nuclear Information System (INIS)

    Voyant, Cyril; Soubdhan, Ted; Lauret, Philippe; David, Mathieu; Muselli, Marc

    2015-01-01

    In this paper we propose to determinate and to test a set of 20 statistical parameters in order to estimate the short term predictability of the global horizontal irradiation time series and thereby to propose a new prospective tool indicating the expected error regardless the forecasting methods used. The mean absolute log return, which is a tool usually used in econometrics but never in global radiation prediction, proves to be a very good estimator. Some examples of the use of this tool are exposed, showing the interest of this statistical parameter in concrete cases of predictions or optimizations. This study gives a judgment for engineers and researchers on the installation or management of solar plants and could help in minimizing the energy crisis allowing to improve the renewable energy part of the energy mix. - Highlights: • Use of statistical parameter never used for the global radiation forecasting. • A priori index allowing to optimize easily and quickly a clear sky model. • New methodology allowing to quantify the prediction error regardless the predictor used. • The prediction error depends more on the location and the time series type than the machine Learning method used.

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Jeffrey M. [AWS Truepower, LLC, Albany, NY (United States); Manobianco, John [MESO, Inc., Troy, NY (United States); Schroeder, John [Texas Tech Univ., Lubbock, TX (United States). National Wind Inst.; Ancell, Brian [Texas Tech Univ., Lubbock, TX (United States). Atmospheric Science Group; Brewster, Keith [Univ. of Oklahoma, Norman, OK (United States). Center for Analysis and Prediction of Storms; Basu, Sukanta [North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth, and Atmospheric Sciences; Banunarayanan, Venkat [ICF International (United States); Hodge, Bri-Mathias [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Isabel [Electricity Reliability Council of Texas (United States)

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  14. A New Approach to Improve Accuracy of Grey Model GMC(1,n in Time Series Prediction

    Directory of Open Access Journals (Sweden)

    Sompop Moonchai

    2015-01-01

    Full Text Available This paper presents a modified grey model GMC(1,n for use in systems that involve one dependent system behavior and n-1 relative factors. The proposed model was developed from the conventional GMC(1,n model in order to improve its prediction accuracy by modifying the formula for calculating the background value, the system of parameter estimation, and the model prediction equation. The modified GMC(1,n model was verified by two cases: the study of forecasting CO2 emission in Thailand and forecasting electricity consumption in Thailand. The results demonstrated that the modified GMC(1,n model was able to achieve higher fitting and prediction accuracy compared with the conventional GMC(1,n and D-GMC(1,n models.

  15. Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting

    Science.gov (United States)

    Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang

    2018-03-01

    In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.

  16. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  17. High resolution ensemble forecasting for the Gulf of Mexico eddies and fronts

    Science.gov (United States)

    Counillon, F.; Bertino, L.

    2007-05-01

    As oil production moves further into deeper waters, the costs related to strong current hazards are increasing accordingly, and accurate three-dimensional forecasts of currents are urgently needed. To be useful, models have to locate eddies and fronts to an accuracy of 30 km at a nowcast stage, which is almost impossible to accomplish with the use of satellite data of the same accuracy. The use of stochastic forecast allows us to give confidence of our prediction. We are using a nested configuration of the Hybrid coordinate ocean model (HYCOM), where the TOPAZ system, which covers the Atlantic and the Artic, gives lateral boundary condition to a high-resolution (5km) model of the Gulf of Mexico (GOM). TOPAZ is a real-time forecasting coupled ocean-ice model, which assimilates sea level anomaly (SLA), sea surface temperature, and sea ice concentration, with the ensemble Kalman filter. The high- resolution model assimilates SLA using the ensemble optimal interpolation, which updates accordingly the currents, salinity, temperature, and layer interface at all depths. Here, we evaluate the ensemble forecast capabilities of our high-resolution model, for eddy Extreme that has been observed from altimeters around the 15th of July. We run 6 successive ensemble runs composed of 10 members of equal likelihood. Members differ by perturbations of the initial state, of the lateral boundary conditions, and of the atmospheric boundary conditions. We have started the experiment 1 month prior to the shedding event, because it was the time necessary for perturbation of boundary conditions to spread uniformly and reach a significant level across the GOM. The ensemble reproduces well the dynamics of the eddy shedding and produces a significant spread at the boundary of the eddy, but underestimates the RMS error of the SLA. Prior to the shedding time, the error growth increase, induced by the highly non-linear growth of cyclonic eddies at the boundary of the Loop Current. Additionally

  18. An Improved Artificial Colony Algorithm Model for Forecasting Chinese Electricity Consumption and Analyzing Effect Mechanism

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2016-01-01

    Full Text Available Electricity consumption forecast is perceived to be a growing hot topic in such a situation that China’s economy has entered a period of new normal and the demand of electric power has slowed down. Therefore, exploring Chinese electricity consumption influence mechanism and forecasting electricity consumption are crucial to formulate electrical energy plan scientifically and guarantee the sustainable economic and social development. Research has identified medium and long term electricity consumption forecast as a difficult study influenced by various factors. This paper proposed an improved Artificial Bee Colony (ABC algorithm which combined with multivariate linear regression (MLR for exploring the influencing mechanism of various factors on Chinese electricity consumption and forecasting electricity consumption in the future. The results indicated that the improved ABC algorithm in view of the various factors is superior to traditional models just considering unilateralism in accuracy and persuasion. The overall findings cast light on this model which provides a new scientific and effective way to forecast the medium and long term electricity consumption.

  19. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro, 5000, Mor., Mich. (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2009-01-15

    In this paper the short term wind speed forecasting in the region of La Venta, Oaxaca, Mexico, applying the technique of artificial neural network (ANN) to the hourly time series representative of the site is presented. The data were collected by the Comision Federal de Electricidad (CFE) during 7 years through a network of measurement stations located in the place of interest. Diverse configurations of ANN were generated and compared through error measures, guaranteeing the performance and accuracy of the chosen models. First a model with three layers and seven neurons was chosen, according to the recommendations of diverse authors, nevertheless, the results were not sufficiently satisfactory so other three models were developed, consisting of three layers and six neurons, two layers and four neurons and two layers and three neurons. The simplest model of two layers, with two input neurons and one output neuron, was the best for the short term wind speed forecasting, with mean squared error and mean absolute error values of 0.0016 and 0.0399, respectively. The developed model for short term wind speed forecasting showed a very good accuracy to be used by the Electric Utility Control Centre in Oaxaca for the energy supply. (author)

  20. Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: international evidence

    OpenAIRE

    Degiannakis, Stavros; Floros, Christos; Dent, P.

    2013-01-01

    The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period Value-at-Risk (VaR) and Expected Shortfall (ES) across 20 stock indices worldwide. The dataset is comprised of daily data covering the period from 1989 to 2009. The research addresses the question of whether or not accounting for long memory in the conditional variance specification improves the accuracy of the VaR and ES forecasts ...