WorldWideScience

Sample records for greater alpine region

  1. Alpine plant distribution and thermic vegetation indicator on Gloria summits in the central Greater Caucasus

    International Nuclear Information System (INIS)

    Gigauri, K.; Abdaladze, O.; Nakhutsrishvili, G

    2016-01-01

    The distribution of plant species within alpine areas is often directly related to climate or climate-influenced ecological factors. Responding to observed changes in plant species, cover and composition on the GLORIA summits in the Central Caucasus, an extensive setup of 1m * 1m permanent plots was established at the treeline-alpine zones and nival ecotone (between 2240 and 3024 m a.s.l.) on the main watershed range of the Central Greater Caucasus nearby the Cross Pass, Kazbegi region, Georgia. Recording was repeated in a representative selection of 64 quadrates in 2008. The local climatic factors - average soil T degree C and growing degree days (GDD) did not show significant increasing trends. For detection of climate warming we used two indices: thermic vegetation indicator S and thermophilization indicator D. They were varying along altitudinal and exposition gradients. The thermic vegetation indicator decrease in all monitoring summits. The abundance rank of the dominant and endemic species did not change during monitoring period. (author)

  2. Snow, ice and water in alpine regions

    International Nuclear Information System (INIS)

    Baumgartner, H.

    2009-01-01

    This article takes a look at how climate change will have a deep impact on alpine regions. The findings discussed at a conference organised by the Swiss Hydrologic Commission are presented and discussed. Flooding incidents that occurred 'once in a century' are now becoming more frequent and were considered at the conference as being an indicator of climate change. Changing hydrological factors are also discussed and the influence of climate factors in alpine regions on the water quantities in the rivers are looked at. Also, the spontaneous emptying of glacial lakes as has already happened in Switzerland and the consequences to be drawn from such incidences are discussed.

  3. Photochemistry and aerosol in alpine region: mixing and transport; Photochimie et aerosol en region alpine: melange et transport

    Energy Technology Data Exchange (ETDEWEB)

    Chaxel, E

    2006-11-15

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  4. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-05-01

    Full Text Available The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs, are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project, which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to

  5. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Science.gov (United States)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2013-05-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the

  6. Measurements concerning the immission load in the Alpine region with passive samplers

    International Nuclear Information System (INIS)

    Kirchner, M.; Suppan, P.

    1994-02-01

    This project deals with measurements concerning the nuisance situation in various areas of the Alpine region using selected passive collectors for ozone and NO 2 . In a first partial step (phase I) a comparative experiment, building on a pilot test, with the use of different passive collectors in sites in the Alpine region was carried through. In a second stage of the project (Phase II) two types of passive collectors were used at suitable altitude profiles in the Alpine region to measure ozone levels. In this way, more detailed knowledge on the vertical distribution of ozone in areas with a varied orography was to be obtained. The study is a joint project of numerous scientific tasks forces from several countries and a number of institutions participating in the 'ARGE ALP' working group of Alpine countries. Results of the first project phase are reported. (orig./KW) [de

  7. Generic Regional Development Strategies from Local Stakeholders' Scenarios - an Alpine Village Experience

    Directory of Open Access Journals (Sweden)

    Wolfgang Loibl

    2010-09-01

    Full Text Available The article discusses the participatory elaboration of strategies for sustainable regional development in an Alpine tourist region in Austria to cope with global change effects evolving locally, considering climate change, economic change as well as (local societal change. Local stakeholders in an Alpine village in the Montafon region contributed in workshops to achieve the final results: participant teams conducted system analyses of the regional system to explore key elements of the region. Narrative scenarios described possible positive and negative development trends and indicated the critical issues controlling future development; 3D-images of landscape transition simulations show the consequences of certain development directions. Alternative development directions supported the local stakeholders to elaborate regional development strategies. In the end, the scientist team derived generic strategies for Alpine regions based on the locally developed strategy bundle. The article presents the intention, progress and outcome of the participatory approach and elaborates the potential to derive generic strategies from local ones and discusses the possibly occurring conflicts regarding cross-scale transfers of these local strategies. Overall, tourism was seen as a key element for future regional development, which can on the one hand derogate Alpine regions and is on the other hand threatened by climate change and diminution of landscape attractiveness. The suggested development strategies will help to cope with global change issues mitigating the negative consequences on the local society and environment.

  8. Photochemistry and aerosol in alpine region: mixing and transport

    International Nuclear Information System (INIS)

    Chaxel, E.

    2006-11-01

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  9. Technical Note: Seasonality in alpine water resources management - a regional assessment

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  10. Seasonality in the alpine water logistic system on a regional basis

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2007-08-01

    In this study the water logistic system is defined as the interaction of the subsystems water resources, water supply and water demand in terms of water flow. The analysis of a water balance in alpine regions is strongly influenced by both temporal and spatial seasonal fluctuations within these elements, the latter due to the vertical dimension of mountainous areas. Therefore the determination of different seasons plays a key role within the assessment of alpine water logistic systems. In most studies a water balance for a certain region is generated on an annual, monthly or classic 4-seasonal basis. This paper presents a GIS-based multi criteria method to determine an optimal winter and summer period, taking into account different water demand stakeholders, alpine hydrology and the characteristic present day water supply infrastructure of the Alps. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon the geographical datasets mean snow cover start and end date, winter was defined as the period from December to March, and summer as the period from April to November.

  11. Identification and climatology of Alpine pumping from a regional climate simulation

    Directory of Open Access Journals (Sweden)

    Maximilian eGraf

    2016-02-01

    Full Text Available The thermally driven circulation between the European Alps and the alpine foreland - named Alpine pumping – occurs regularly under clear and calm weather conditions. While previous studies focused on the impact of Alpine pumping on moist convection and transport of air pollutants, this study was motivated by its ventilation effect for Munich, located about 50 km north of the Alps in undulating and only slightly inclined terrain, where local thermal circulations are weak. Hourly data from a reanalysis driven regional climate simulation with COSMO-CLM model for the period 1989 to 2008 were analysed to identify days with Alpine pumping and to determine the mean diurnal characteristics of this regional thermal circulation. Four literature derived combinations of meteorological criteria were tested to identify days favorable for Alpine pumping from COSMO-CLM results. The first criterion selects days with a daily sum of solar radiation ≥20 MJ/m2 and has been used in an earlier observational study. On average 60 d/y are fulfilling the criterion in the model simulation, which compares well to the 67 d/y determined from observations. The other three criteria combinations consider a maximum wind velocity at 850 hPa, a maximum daily precipitation sum, and/or a maximum mean cloud cover. The mean annual number of selected days is lower for these criteria combinations and ranges between 20 and 52. Diurnal wind reversals occur on 77 to 81% of the selected days, depending on the criteria combinationThe daily solar radiation sum of 20 MJ/m2 is only exceeded during April to September, while days satisfying the criteria combinations without the radiation threshold occur all year round. In agreement with observations, the simulated regional thermally driven wind field extends up to ~100 km north of the Alps with average near-surface wind speeds of 0.5-1.5 m/s in the Munich area. With increasing distance from the Alps, the diurnal cycle of Alpine pumping is

  12. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    Science.gov (United States)

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  13. Relation between extinction and assisted colonization of plants in the arctic-alpine and boreal regions.

    Science.gov (United States)

    Pykälä, Juha

    2017-06-01

    Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic-alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic-alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic-alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic-alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic-alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry. © 2016 Society for Conservation Biology.

  14. A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region

    Science.gov (United States)

    Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe

    2018-06-01

    Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.

  15. [The seroconversion of Chlamydia abortus in sheep from the region of Vorarlberg before and after Alpine pasturing].

    Science.gov (United States)

    Blumer, S; Moestl, K; Krametter-Froetscher, R; Hässig, M; Pospischil, A; Borel, N

    2012-01-01

    In total, 796 serum samples of sheep on commune alpine pastures in the region of Vorarlberg were investigated by a commercial ELISA kit for antibodies against Chlamydia abortus, the agent of ovine enzootic abortion. The aim of the study was to determine the seroprevalence within this region and to compare these results with the seroprevalence in the neighboring canton Graubünden as well as to obtain data on the seroconversion after alpine pasturing. Therefore, 421 samples were collected before and 375 samples after alpine pasturing, whereas corresponding serum samples were available from 359 sheep. Within the region of Vorarlberg, a mean seroprevalence of 9.2 % was calculated with a threshold of 60 %. Seroconversion for C. abortus occurred in 5.0 % of animals with corresponding serum samples. Seroprevalence values were comparable to Swiss regions with similar management systems, although the neighboring canton Graubünden is known to have a much more higher seroprevalence of 43 %. In conclusion, the traditional animal exchange between these two regions is not significantly favoring the spread of C. abortus.

  16. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan.

    Science.gov (United States)

    Kayani, Sadaf; Ahmad, Mushtaq; Sultana, Shazia; Khan Shinwari, Zabta; Zafar, Muhammed; Yaseen, Ghulam; Hussain, Manzoor; Bibi, Tahira

    2015-04-22

    To best of our knowledge it is first quantitative ethno-botanical study from Alpine and Sub-alpine, Western Himalaya of Pakistan. The study aims to report, compare the uses and highlight the ethno-botanical significance of medicinal plants for treatment of various diseases. A total of 290 (278 males and 12 females) informants including 14 Local Traditional Healers (LTHs) were interviewed. Information was collected using semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Informant Consensus Factor (ICF), Relative frequency of citation (RFC), use value (UV), Fidelity Level (FL) and Jaccard index (JI). A total of 125 plant species (Gymnosperms 7 species, Monocotyledons 2 and 116 Di-cotyledons) belonging to 41 families are collected, identified and ethno-botanically assessed. The most dominant family is Ranunculaceae (20 species) followed by Rosaceae (14 species). In diseases treated, gastrointestinal tract (GIT) diseases have highest proportion (27.5%) followed by respiratory diseases (20%) in the mountain communities. The most dominant life form of plants used is herbs (78%) followed by shrubs (19%) while the most commonly used plant parts are leaves (44 reports) followed by underground part, the roots (37 reports). The highest ICF (0.68) is found for ear, nose and eye disease category followed by respiratory disorders (0.46). There are 15 medicinal plants having 100% FL. Use value (UV) and Relative frequency of citation (RFC) range from 0.03 to 0.53 and 0.04 to 0.23 respectively. In comparison, maximum similarity index is found in the studies with JI 19.52 followed by 17.39. Similarity percentage of plant uses range from 1.69% to 19.52% while dissimilarity percentage varies from 0% to 20%. The Alpine and Sub-alpine regions of Pakistan are rich in medicinal plants and still need more research exploration. On the other hand, ethno-botanical knowledge in study areas is decreasing day by day due to high emigration rates

  17. Global Warming and the Summertime Evapotranspiration Regime of the Alpine Region

    Energy Technology Data Exchange (ETDEWEB)

    Calanca, P.; Jasper, K. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, CH-8046 Zuerich (Switzerland); Roesch, A.; Wild, M. [Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2006-11-15

    Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961-1990 and a time-slice simulation valid for 2071-2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.

  18. Synoptic climatology evaluation of wind fields in the alpine region

    International Nuclear Information System (INIS)

    Lotteraner, C.

    2009-01-01

    The present investigation basically consists of two parts: In the first part, a 22-year set of 3-hourly 2D-wind analyses (1980-2001) that have been generated within the framework of the VERACLIM (VERA-Climatology) project are evaluated climatologically over the Alpine region. VERACLIM makes use of the VERA (Vienna Enhanced Resolution Analysis) analysis system, combining both the high spatial resolution as provided by the analysis algorithm and the high temporal resolution of a comprehensive synop data set, provided by ECMWF's (European Centre for Medium-Range Weather Forecasts) data archives. The obtained charts of averaged wind speed and the mean wind vector as well as the evaluations of frequency distribution of wind speed and wind direction on gridpoints for several different time periods should be interpreted very carefully as orographic influence is not taken into consideration in the analysis algorithm. However, the 3-hourly wind analyses of the time period 1980-2001 are suitable for investigation of the so-called Alpine Pumping. For that purpose, an arbitrarily chosen border has been drawn around the Alps and the Gauss theorem has been applied in a way that the mean diurnal variations of the two-dimensional divergence over the Alps could be evaluated. The sinusoidal run of the curve not only visualizes the 'breathing of the Alps' in an impressive way, it also enables us to roughly estimate the diurnal air volume exchange on days with a weak large-scale pressure gradient and strong incoming solar radiation. The second part of this investigation deals with the development of three different 'wind-fingerprints' which are included in the VERA-system in order to improve the analysis quality. The wind-fingerprints are designed in a way that they reflect the wind field pattern in the Alpine region on days with weak large-scale pressure gradient and strong incoming solar radiation. Using the fingerprints, both the effects of channelling as well as thermally induced

  19. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  20. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  1. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  2. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  3. Alpine grassland soil organic carbon stock and its uncertainty in the three rivers source region of the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Chang

    Full Text Available Alpine grassland of the Tibetan Plateau is an important component of global soil organic carbon (SOC stocks, but insufficient field observations and large spatial heterogeneity leads to great uncertainty in their estimation. In the Three Rivers Source Region (TRSR, alpine grasslands account for more than 75% of the total area. However, the regional carbon (C stock estimate and their uncertainty have seldom been tested. Here we quantified the regional SOC stock and its uncertainty using 298 soil profiles surveyed from 35 sites across the TRSR during 2006-2008. We showed that the upper soil (0-30 cm depth in alpine grasslands of the TRSR stores 2.03 Pg C, with a 95% confidence interval ranging from 1.25 to 2.81 Pg C. Alpine meadow soils comprised 73% (i.e. 1.48 Pg C of the regional SOC estimate, but had the greatest uncertainty at 51%. The statistical power to detect a deviation of 10% uncertainty in grassland C stock was less than 0.50. The required sample size to detect this deviation at a power of 90% was about 6-7 times more than the number of sample sites surveyed. Comparison of our observed SOC density with the corresponding values from the dataset of Yang et al. indicates that these two datasets are comparable. The combined dataset did not reduce the uncertainty in the estimate of the regional grassland soil C stock. This result could be mainly explained by the underrepresentation of sampling sites in large areas with poor accessibility. Further research to improve the regional SOC stock estimate should optimize sampling strategy by considering the number of samples and their spatial distribution.

  4. Climate change and tourism in the alpine regions of Switzerland

    OpenAIRE

    Bürki, R; Abegg, B; Elsasser, H

    2007-01-01

    For many alpine areas in Switzerland, winter tourism is the most important source of income, and snow-reliability is one of the key elements of the offers made by tourism in the Alps. 85% of Switzerland’s current ski resorts can be designated as snow-reliable. If climate change occurs, the level of snow-reliability will rise from 1200 m up to 1800 m over the next few decades. Only 44% of the ski resorts wouldthen still be snow-reliable. While some regions may be able to maintain their winter ...

  5. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Klanderud, K.; Totland, Oe. [Norwegian Univ. of Life Science, Dept. of Ecology and Natural Resource Management, Aas (Norway)

    2007-08-15

    Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. (au)

  6. Area burned in alpine treeline ecotones reflects region-wide trends

    Science.gov (United States)

    C. Alina Cansler; Donald McKenzie; Charles B. Halpern

    2016-01-01

    The direct effects of climate change on alpine treeline ecotones – the transition zones between subalpine forest and non-forested alpine vegetation – have been studied extensively, but climate-induced changes in disturbance regimes have received less attention. To determine if recent increases in area burned extend to these higher-elevation landscapes, we analysed...

  7. Decadal changes of weather types in the alpine region

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Talkner, P.; Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The annual occurrence of different weather types of Schuepp`s synoptic classification in the Alpine region has changed since the beginning of its recording 1945. The annual frequency (number of days) of convective types has increased and that of advective types has decreased. In parallel the number of long-lasting convective episodes rose and the number of long-lasting advective episodes lessened. Most of the change took place in winter. The frequencies of different weather types and the annual mean of certain meteorological parameters are significantly correlated. Moreover, there is a strong interdependence between the subclass of high pressure types and the North Atlantic Oscillation (NAO) index. (author) 3 figs., 3 refs.

  8. Neotectonic stress field of the south-eastern East European platform as related to the Late Alpine collision deformation of the Greater Caucasus

    Science.gov (United States)

    Kopp, Mikhail L.; Kolesnichenko, Aleksei; Vassiliev, Nikita; Mostryukov, Alexandre

    2013-04-01

    In the south-eastern East European platform and Urals, as well as the young Scythyan platform, the Late Alpine collision deformations are widely spread. First of all, these are crumbled aulacogen covers (the Azov Sea, Dnieper-Donets, and Pachelma aulacogens). In some places the covers were dislocated conformably with platform basements but commonly they were partly detached from it with formation of inversion foldbelts (such as the Donets coal basin in the Alpine stage, Saratov and Kerensk-Chembar dislocations). Basements of some anteclises (the Voronezh, Tokmovo, and Volga-Urals ones) dividing the aulacogens were also involved into deformations. There the greatest upthrusting of basement onto cover can be observed (e.g., the Zhigouli upthrust). In general the thrusting and folding occurred during the Early Miocene-Quaternary, with its periodicity strictly corresponding to that of the Late Alpine tectonic phases in the Greater Caucasus: Early Miocene (the H. Stille,s Styrian phase), terminal Miocene-initial Pliocene (the Attic and Rhodanian phases), Eo-Pleistocene (the Valachian phase). Beside the synchronous occurrences, there are some other evidences of relation of intraplate deformations to the Arabia-Eurasa collision in its Caucasian region: (i) sublatitudinal (up to WNW-ESE strike) orientation of the intraplate upthrusts and folds, (ii) wide distribution of structurally manifested strike-slip zones as well as similarity in orientation and location between the right and left strike-slips considered with those of the Greater Caucasus: domains of the formers are built up to the north the domains of the latters, (iii) directed southward increasing basement involvement into the neotectonic deformations. For example, in the Donets-Azov region a basement neotectonic megafold was imposed not only onto Donets Herzinian foldbelt but also on the Precambrian basement of the Rostov high of the Ukrainian shield. To some extent, this megafold resembles a northern wing of the

  9. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  10. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  11. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    Science.gov (United States)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the

  12. Alpine research today

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  13. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    Directory of Open Access Journals (Sweden)

    Berit Gehrke

    2018-04-01

    Full Text Available Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks.

  14. The GRETA project: the contribution of near-surface geothermal energy for the energetic self-sufficiency of Alpine regions

    Directory of Open Access Journals (Sweden)

    Alessandro Casasso

    2017-03-01

    Full Text Available The Alpine regions are deeply involved in the challenge set by climate change, which is a threat for their environment and for important economic activities such as tourism. The heating and cooling of buildings account for a major share of the total primary energy consumption in Europe, and hence the energy policies should focus on this sector to achieve the greenhouse gas reduction targets set by international agreements. Geothermal heat pump is one of the least carbon-intensive technologies for the heating and cooling of buildings. It exploits the heat stored within the ground, a local renewable energy source which is widely available across the Alpine territory. Nevertheless, it has been little considered by European policies and cooperation projects. GRETA (near-surface Geothermal REsources in the Territory of the Alpine space is a cooperation project funded by the EU INTERREG-Alpine Space program, aiming at demonstrating the potential of shallow geothermal energy and to foster its integration into energy planning instruments. It started in December 2015 and will last three years, involving 12 partners from Italy, France, Switzerland, Germany, Austria, and Slovenia. In this paper, the project is presented, along with the results of the first year of work.

  15. Pasture names with Romance and Slavic roots facilitate dissection of Y chromosome variation in an exclusively German-speaking alpine region.

    Science.gov (United States)

    Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther

    2012-01-01

    The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y

  16. Fragile areas in the Alpine region: a reading between innovation and marginality

    Directory of Open Access Journals (Sweden)

    Federica Corrado

    2010-05-01

    Full Text Available The paper proposes a reading and description of fragile Alpine areas that overturns the conventional standpoint, according to which marginality is often synonymous with handicap. The paper starts form a different point of view, able to recognize specific local potentialities that can still be activated with a specific creative effort. The reading regards fragile Alpine areas in the Provinces of Turin and Cuneo and is based on an empirical analysis of the actions underlying current micro-territorial innovative development trends.Cet article propose une lecture et une description des territoires alpins fragiles, en jetant un autre regard, où le concept de fragilité est associé à celui de handicap, c’est-à-dire un autre regard sur l’identification des potentiels locaux spécifiques qui peuvent être encore activés à travers une force créatrice propre aux Alpes. La lecture est effectuée en fonction des territoires alpins fragiles qui font partie des provinces de Turin et Coni et se base sur une analyse empirique des initiatives qui enclenchent en quelque façon des dynamiques micro-territoriales de développement innovant.

  17. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    Science.gov (United States)

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  18. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  19. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    Science.gov (United States)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  20. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China

    International Nuclear Information System (INIS)

    Qu, Jiansheng; Zeng, Jingjing; Li, Yan; Wang, Qin; Maraseni, Tek; Zhang, Lihua; Zhang, Zhiqiang; Clarke-Sather, Abigail

    2013-01-01

    This study assessed household CO 2 emissions (related to the consumption of necessary and luxury goods and services) of peasants and herdsmen households in arid-alpine regions in Gansu, Qinghai and Ningxia provinces, China. We also explored whether agriculture types, family income and family size have played any role in household CO 2 emissions. In order to address these issues, we: (i) developed assessment indicators for household emissions; (ii) conducted semi-structured questionnaire household surveys; and (iii) employed input-output analysis (IOA). The results showed that, the average household CO 2 emission per capita is 1.43 tons (t) CO 2 ; the proportion of subsistence emissions (related to the consumption of necessary goods and services) accounts for 93.24%, whereas luxury emissions (generated due to consumption of specific goods and services that are consumed only when household income improves) only account for 6.76%t. Moreover, household CO 2 emissions increase with family income and family size, but per capita emissions are inversely related to family size. The highest average household emissions were found in the alpine agricultural and pastoral region (6.18 t CO 2 ), followed by the irrigated agricultural region (6.07 t CO 2 ) and the rain-fed agricultural region (5.34 t CO 2 ). In consideration of insignificant amount of household emissions from these poor and vulnerable groups of the society, this study suggests to follow the principle of fairness while making energy conservation, emission reduction and adaptation policies. - Highlights: ► Per capita emissions decrease as the household size increases. ► The subsistence emissions accounts for 93.24% of the total emissions. ► If heating related emissions are excluded, household emissions are negligible. ► The reduction of emissions below current levels is almost impossible. ► Poor and vulnerable groups should be given special consideration

  1. The onset of alpine pastoral systems in the Eastern Alps

    Science.gov (United States)

    Oeggl, Klaus; Festi, Daniela; Putzer, Andreas

    2015-04-01

    Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern Alps. The implication is that his sojourn in the high-altitudes of the Alps is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern Alps. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern Alps. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.

  2. [Progresses of alpine treeline formation mechanism.

    Science.gov (United States)

    Cong, Yu; He, Hong Shi; Gu, Xiao Nan; Xu, Wen Ru; Liu, Kai; Zong, Sheng Wei; Du, Hai Bo

    2016-09-01

    Alpine treelines represent one of the most distinct vegetation boundaries between canopy closed montane forest and treeless alpine vegetation. This transitional ecotone is highly sensitive to global and regional climate change and is considered as an ideal indicator of such changes. Treeline studies have evolved from morphological description to various hypotheses of treeline formation. Although individual hypothesis may provide reasonable explanation locally, a generalized hypothesis that is applicable on the global scale is still lacking. Temperature is considered the limited factor controlling the distribution of alpine treeline as low temperature restricts biochemical processes of tree growth. However, which particular biochemical processes are affected by low temperature remains unknown. This paper summarized the mechanisms of treeline formation with a focus on how low temperature affects photosynthesis characteristics, nutrient characteristics, non-structural carbohydrate (NSC) and antioxidant system. We also reviewed the key issues and future perspectives in treeline research.

  3. La recherche alpine aujourd’hui

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  4. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  5. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  6. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  7. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    Science.gov (United States)

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  8. Ecological half-life of 137Cs in lichens in an alpine region.

    Science.gov (United States)

    Machart, Peter; Hofmann, Werner; Türk, Roman; Steger, Ferdinand

    2007-01-01

    About 17 years after the Chernobyl accident, lichen samples were collected in an alpine region in Austria (Bad Gastein), which was heavily contaminated by the Chernobyl fallout. Measured 137Cs activity concentrations in selected lichens (Cetraria islandica, Cetraria cucullata, and Cladonia arbuscula) ranged from 100 to 1100 Bq kg(-1) dry weight, depending on lichen species and sampling site. Ecological half-lives for 137Cs in different lichen samples, obtained by comparison with earlier measurements of the same lichen species at the same site, ranged from 2 to 6 years, with average values between 3 and 4 years. Comparison with earlier studies indicated that ecological half-lives hardly changed during the last 10 years, suggesting that ecological clearance mechanisms (e.g. washout or soil transfer) did not vary substantially at the selected sampling area.

  9. Ecological half-life of 137Cs in lichens in an alpine region

    International Nuclear Information System (INIS)

    Machart, Peter; Hofmann, Werner; Tuerk, Roman; Steger, Ferdinand

    2007-01-01

    About 17 years after the Chernobyl accident, lichen samples were collected in an alpine region in Austria (Bad Gastein), which was heavily contaminated by the Chernobyl fallout. Measured 137 Cs activity concentrations in selected lichens (Cetraria islandica, Cetraria cucullata, and Cladonia arbuscula) ranged from 100 to 1100 Bq kg -1 dry weight, depending on lichen species and sampling site. Ecological half-lives for 137 Cs in different lichen samples, obtained by comparison with earlier measurements of the same lichen species at the same site, ranged from 2 to 6 years, with average values between 3 and 4 years. Comparison with earlier studies indicated that ecological half-lives hardly changed during the last 10 years, suggesting that ecological clearance mechanisms (e.g. washout or soil transfer) did not vary substantially at the selected sampling area

  10. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex.

    Directory of Open Access Journals (Sweden)

    Christine Grossen

    2014-06-01

    Full Text Available The major histocompatibility complex (MHC is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex. At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2, Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus. We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8% to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.

  11. Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

    Science.gov (United States)

    Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel

    2014-01-01

    The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814

  12. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees

    Directory of Open Access Journals (Sweden)

    D. Gómez

    2017-09-01

    Full Text Available On the basis of the digital edition of the “Atlas of the vascular flora of the Pyrenees” (www.florapyrenaea. org, the alpine flora of this mountain range is delimited in order to know its diversity and the different patterns of its spatial distribution, along with some other environmental characteristics. The Pyrenean alpine flora is made up of 645 taxa (630 species and 15 subspecies. All the administrative regions harbour more than 60% of the alpine plants, with Catalonia and Aragon reaching the highest values (around 90%. Along the altitudinal gradient, the highest plant diversity is found between 2300 and 2600 m. a. s. l., although 25% of the total alpine flora goes beyond 3000 m. On the other hand, a remarkable number of alpine plants live in the lowlands, and thus more than 300 alpine plants can be found below 1500 m. The average altitude range of the alpine plants is 1369 m, 300 m wider than that observed for the whole Pyrenean flora. Life-forms, habitat distribution and habitat naturalness of alpine plants are significantly different from those of the whole Pyrenean flora. Distribution of abundance categories also shows values of rarity significantly lower among alpine plants than for the whole flora. More than half the Pyrenean endemic plants are present in the alpine flora. High diversity and wide ecological amplitude of the alpine flora must be taken into account either when considering vulnerability of alpine plants facing “global change” or when addressing conservation policies for the whole Pyrenees from a common perspective.

  13. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Alpine Space wind map - Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Remund, J. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents describes the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report discusses two modelling approaches investigated for use in the definition of a wind map for the alpine area. The method chosen and its application are discussed. The various sources of information for input to the model are listed and discussed.

  14. Alpine tourism

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine tourism are then identified, as well as the contradictions that frequently accompany them. In most cases, innovation is the result of a process that begins within the alpine community, frequently encouraged and supported by national and international institutions and with whose help structural difficulties are successfully overcome.La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier et la multiplication d’infrastructures et de pistes. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Ensuite, l’article propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui accompagnent souvent ces conditions. Dans la plupart des cas

  15. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  16. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    Science.gov (United States)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  17. Indicators for Alpine Pastures Multifunctional Use. The Case of Estates of the Regional Agricultural and Forestry Services Board of Lombardy

    Directory of Open Access Journals (Sweden)

    Michele Corti

    2010-03-01

    Full Text Available 18 Alpine pastures (AP, in the alpine provinces of Lombardy managed by ERSAF (Regional Agricultural and Forestry Services Board of the Lombardy Region were investigated to understand how to plan their future. In order to assess their potential multifunctional use three macro functions were considered: 1 agricultural economy (dairy and meat products and agritourism services; 2 leisure and education (direct use of the land; 3 public goods conservation and production (rural heritage, social values, landscape and nature. For each macro function several aspects (three to four were identified. They were evaluated through operational criteria (three to nine based on quantitative or qualitative estimates, the former based on linear measures the latter on synthetic evaluations by a panel of experts. By summing up operational criteria scores and applying weighting coefficients an index was calculated for each pasture aspect. These indicators were then used for statistical analysis. Clusters and principal components analysis grouped the pastures into categories suitable for various functions (agritourism and/or agricultural production, ecotourism. Furthermore they highlighted weaknesses and opportunities of individual estates. Results show that multifunctional use indicators could help the management planning of AP pertaining to public land .

  18. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  19. Climate change links fate of glaciers and an endemic alpine invertebrate

    Science.gov (United States)

    Muhlfeld, Clint C.; Giersch, J. Joseph; Hauer, F. Richard; Pederson, Gregory T.; Luikart, Gordon; Peterson, Douglas P.; Downs, Christopher C.; Fagre, Daniel B.

    2011-01-01

    Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. However, little is known about the effects of climate change on alpine stream biota, especially invertebrates. Here, we show a strong linkage between regional climate change and the fundamental niche of a rare aquatic invertebrate—themeltwater stonefly Lednia tumana—endemic toWaterton- Glacier International Peace Park, Canada and USA. L. tumana has been petitioned for listing under the U.S. Endangered Species Act due to climate-change-induced glacier loss, yet little is known on specifically how climate impacts may threaten this rare species and many other enigmatic alpine aquatic species worldwide. During 14 years of research, we documented that L. tumana inhabits a narrow distribution, restricted to short sections (∼500 m) of cold, alpine streams directly below glaciers, permanent snowfields, and springs. Our simulation models suggest that climate change threatens the potential future distribution of these sensitive habitats and persistence of L. tumana through the loss of glaciers and snowfields. Mountaintop aquatic invertebrates are ideal early warning indicators of climate warming in mountain ecosystems. Research on alpine invertebrates is urgently needed to avoid extinctions and ecosystem change.

  20. SEA in local land use planning - first experience in the Alpine States

    International Nuclear Information System (INIS)

    Jiricka, Alexandra; Proebstl, Ulrike

    2008-01-01

    In the Alpine area, planning decisions can result in far-reaching consequences because of the high sensitivity of the Alpine ecosystems. This article is based on two hypotheses: (1) The Alpine states/regions were aware of their sensitive environment and therefore recognized the necessity of introducing a comparable instrument to assess local land use planning. (2) By introducing this differentiated assessment tool, namely SEA, an increase in costs may be the consequence. However, better and more transparent planning can contribute to the enhancement of planning standards. To reveal the validity of these assumptions the legal implementation in the Alpine countries Austria, Germany, Italy and France was examined as well as first practical experience resulting from the determined procedures. The results of the implementation process in the four states were compared and discussed on the basis of selected process steps of SEA

  1. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial er...

  2. Le tourisme alpin

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier, la multiplication d’infrastructures et l’extension des domaines. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Puis il propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui les accompagnent souvent. Dans la plupart des cas l’innovation est le résultat d’un processus qui a été lancé et qui s’est développé au sein de la communauté alpine, souvent favorisé et soutenu par des institutions nationales et internationales, et grâce auquel les difficultés structurelles qui ont déjà été abordées précédemment ont pu être surmontées avec succès.The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine

  3. Study on Viscoelastic Deformation Monitoring Index of an RCC Gravity Dam in an Alpine Region Using Orthogonal Test Design

    Directory of Open Access Journals (Sweden)

    Yaoying Huang

    2018-01-01

    Full Text Available The main objective of this study is to present a method of determining viscoelastic deformation monitoring index of a Roller-compacted concrete (RCC gravity dam in an alpine region. By focusing on a modified deformation monitoring model considering frost heave and back analyzed mechanical parameters of the dam, the working state of viscoelasticity for the dam is illustrated followed by an investigation and designation of adverse load cases using orthogonal test method. Water pressure component is then calculated by finite element method, while temperature, time effect, and frost heave components are obtained through deformation statistical model considering frost heave. The viscoelastic deformation monitoring index is eventually determined by small probability and maximum entropy methods. The results show that (a with the abnormal probability 1% the dam deformation monitoring index for small probability and maximum entropy methods is 23.703 mm and 22.981 mm, respectively; thus the maximum measured displacement of the dam is less than deformation monitoring index, which indicates that the dam is currently in a state of safety operation and (b the obtained deformation monitoring index using orthogonal test method is more accurate due to the full consideration of more random factors; the method gained from this study will likely be of use to diagnose the working state for those RCC dams in alpine regions.

  4. Volatile organic compounds in alpine valleys: sources, evolutions and transformations; Les composes organiques volatils dans les vallees alpines: sources, evolutions et transformations

    Energy Technology Data Exchange (ETDEWEB)

    Colomb, A.

    2002-12-01

    Dynamic and chemical specificity in alpine valleys was the principal goal during the POVA project (Pollution des Vallees Alpines). Volatile Organic Compounds emissions in troposphere have important impacts on animal lives and environment. Then, the aim of this work was the improvement of the biogenic or anthropogenic VOC sources determination, of VOC transformation and evolution in mountain areas. During this project, the realisation of a daily continuous measurements campaign of a few chemical compounds allowed the understanding of the seasonal variations of these compounds. The goals of intensive field campaigns, realised in August 2000 and January 2001, were to understand photochemical process in a temporal and geographic small scale and to follow diurnal variation of different pollutants in summer and winter. Moreover, the VOC data would be used to develop and validate coupled atmospheric dynamic/chemical model. Therefore, these VOC measures give answer to two lacks of knowledge in alpine valleys about: - Biogenic and anthropogenic VOC respective part, and their main sources, - VOC photochemical reactions in alpine valleys, according to seasonal and diurnal cycles. Finally, we presented two atypical days results, in Maurienne valley during a Saharan episode in August 2000. This episode permitted to understand mass air transport mechanism in mountain region. (author)

  5. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    Science.gov (United States)

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides , and Quercus rehderiana ) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  6. Alpine hydropower schemes and their 'remote influence' on lakes and rivers downstream

    International Nuclear Information System (INIS)

    Wuest, A.

    2003-01-01

    This article discusses the effect that alpine dams and reservoirs have on lakes and rivers in the lowlands. Not only the contribution of Swiss alpine hydropower installations to Switzerland's electricity generation capacity is mentioned, but also the way they 'export' ecological deficits to lower-lying regions. Examples of this are quoted, including, for example, the filtering-out of around 50% of water-borne particles in the river Rhone by the dams in its catchment area. The consequences of such effects for the ecology of lakes and rivers are discussed. Further examples of how the alpine dams hold back nutrients and regulate the flow and temperature of rivers are given and the resulting ecological effects are commented on

  7. Tourism and Water: Themes of the Alpine Convention

    Science.gov (United States)

    Imhof, R.

    2012-04-01

    1) The contribution reflects the personal opinion of the author and does not necessarily reflect the point of view of the Permanent Secretariat. The Alpine Convention is a multilateral framework treaty signed in 1991 by the eight states of the Alpine bow as well as the European Community. Its main objectives are the sustainable development of the Alpine territory and the safeguarding of the interests of the people living within it, embracing the environmental, social and economic dimensions in the broadest sense. In order to achieve its objectives, over the years the Framework Convention has been equipped with a large number of thematic protocols, e.g. on tourism. The overall objective of the Protocol on Tourism, which first came into force in 2002, is to contribute to sustainable development in the Alpine region within the existing institutional framework, by encouraging environmentally-friendly tourism through specific measures and recommendations which take the interests of both the local population and tourists into account. The provisions of the Protocol on Tourism primarily concern tourism management and controlling tourist flows, structural developments such as ski lifts and ski slopes, accommodation and the balanced development of economically weak areas. Guidelines, development plans, sectoral plans have to be adopted at the appropriate territorial level in order to enable to assess the impact of tourism development on, inter alia, water. This extends also to ski slopes developments. For example the production of artificial snow production may be authorized only if the location's hydrological, climatic and ecological conditions allow. Water is listed among the twelve themes in relation to which the Contracting Parties are supposed to take measures and coordinate their policies (Article 2 of the Framework Convention). The Alpine Convention aims to preserve and re-establish healthy water systems, especially keeping waters clean and protecting the natural

  8. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  9. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  10. Regional CO2 budget, countermeasures and reduction aims for the Alpine tourist region of Davos, Switzerland

    International Nuclear Information System (INIS)

    Walz, A.; Calonder, G.-P.; Hagedorn, F.; Lardelli, C.; Lundstroem, C.; Stoeckli, V.

    2008-01-01

    In its latest report, the Intergovernmental Panel on Climate Change (IPCC) concludes that global climate change can still be slowed down if greenhouse gas emissions are rapidly and strongly reduced. We present a detailed regional CO 2 budget for the Alpine tourist region of Davos, Switzerland, including emissions and potential sinks. The aim of the study was (1) to estimate the most important CO 2 sources and sinks, (2) to identify the most efficient reduction measures and (3) to assess the feasibility of different reduction targets. The results show that the emissions due to heating contribute to a proportion of 86.3% to the total budget, which is mainly due to the harsh local climate and the tourism-focused local economy. They also show that the yearly CO 2 emissions per capita in Davos exceed the Swiss average of 6 tonnes by 25%. The augmentation of the carbon pool through the natural environment compares to 10.3% of the total emissions, and further afforestation of the community forest can contribute to an improvement of the total budget by 2.6%. The reduction aim of -15% until 2015 (compared with 2004), as set by the municipality itself, could be easily reached through better building insulation and the use of renewable energy sources. More ambitious aims, such as a 2000 W-society or CO 2 neutrality, however, will not be realised without major drawbacks in living standards

  11. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  12. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    Science.gov (United States)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant

  13. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  14. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    Science.gov (United States)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  15. A comparison of Alpine emissions to forest soil and spruce needle loads for persistent organic pollutants (POPs)

    Energy Technology Data Exchange (ETDEWEB)

    Belis, C.A., E-mail: claudio.belis@jrc.ec.europa.e [Regional Agency for Environmental Protection of Lombardia (Italy); Offenthaler, I.; Uhl, M.; Nurmi-Legat, J. [Umweltbundesamt GmbH (Austria); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Jakobi, G.; Kirchner, M. [Helmholtz Zentrum Muenchen, German Research Centre for Environment and Health (Germany); Knoth, W. [German Federal Environmental Agency (Germany); Kraeuchi, N. [WSL Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Levy, W. [Helmholtz Zentrum Muenchen, German Research Centre for Environment and Health (Germany); Magnani, T. [Regional Agency for Environmental Protection of Lombardia (Italy); Moche, W. [Umweltbundesamt GmbH (Austria); Schramm, K.-W. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Weiss, P. [Umweltbundesamt GmbH (Austria)

    2009-12-15

    The project MONARPOP analysed the concentrations of semivolatile organic compounds (SVOCs) in two important sink compartments, needles of Norway spruce (Picea abies [L.] Karst.) and forest soil from 40 remote Alpine forest sites in Austria, Germany, Italy, Slovenia and Switzerland. In the present study the load of PCDD/F, PCB, PBDE, PAH, HCB, HCH and DDT in the Alps calculated on the basis of measured data are compared with their estimated emissions in the Alpine region. It comes out that the masses of the studied pollutants stored in the forests are higher than the corresponding emissions in the Alpine area indicating that the Alps are a sink for POPs advected from surrounding areas. It is assumed that local emissions of PCDD/F and PAH deriving from biomass burning are probably underestimated and that the pool of these pollutants in the forests represents the accumulation over some decades. - The loads of POPs in the Alps are higher than their emissions in the Alpine region.

  16. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    Science.gov (United States)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  17. Influential factors on debris flow events and hillslope-channel connectivity in Alpine regions: case studies from two Alpine regions in Styria, Austria

    Science.gov (United States)

    Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver

    2016-04-01

    In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle

  18. Les Nouvelles Traversées Alpines : la “cité-Europe” à l’épreuve de l’acceptabilité alpine ? The New alpine crossings : The “city-Europe” faces up to the alpine acceptability

    Directory of Open Access Journals (Sweden)

    Kevin Sutton

    2012-12-01

    Full Text Available La pensée des traversées alpines est indissociable de celle des réseaux urbains alpins et, au-delà, européens. La nouvelle phase de percée des tunnels de base le réaffirme : les “Nouvelles Traversées Alpines” se retrouvent au coeur de l’enjeu de connexion des réseaux ferroviaires européens à grande vitesse. L’invention de la “cité-Europe” passe ainsi par la réinvention d’un pacte alpin autour du dessein de franchissement entre les villes de piedmonts et les communautés montagnardes traversées. Ces dernières ont, en effet, la capacité de bloquer un projet par leur refus. L’exemple du projet Lyon-Turin l’illustre, en contre-point de la réussite du tunnel de base du Lötschberg. La réussite suisse semble tenir à la capacité de conjuguer les inventions technique et sociale du tunnel, ne niant pas la dimension territoriale de cet objet réticulaire.It is impossible to think about the alpine crossings without thinking about the alpine and European urban nets. The construction of the basis tunnels recalls it: the “New Alpine Crossings” are the kernel of the connection issue between the European high-speed railways nets. The invention of a “city-Europe” needs a reinvented pact, between the cities of the plains and the alpine communities, based on the reaffirmation of a common crossing destiny. The alpine communities can thwart the project by refusing it, as the example of the Lyon-Turin project shows, in contrast to the successful Lötschberg basis tunnel. The Swiss success seems to come from the capacity to mix technical and social inventions, replacing the territorial dimension in the reticular fundament.

  19. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-11-01

    Full Text Available The East Himalaya-Hengduan Mountains (EH-HM region has a high biodiversity and harbours numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Q. spinosa, Q. aquifolioides and Q. rehderiana using both cytoplasmic-nuclear markers and ecological niche models (ENMs, and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG to the last glacial maximum (LGM, which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  20. Alpine treeline and timberline dynamics during the Holocene in the Northern Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Anca GEANTĂ

    2014-11-01

    Full Text Available High altitude environments (treeline and alpine communities are particularly sensitive to climate changes, disturbances and land-use changes due to their limited tolerance and adaptability range, habitat fragmentation and habitat restriction. The current and future climate warming is anticipated to shift the tree- and timberlines upwards thus affecting alpine plant communities and causing land-cover change and fragmentation of alpine habitats. An upslope movement of some trees, shrubs and cold adapted alpine herbs as a response to the current climate warming has already been noted in many montane and subalpine regions.Four Holocene peat and lacustrine sediment sequences located between 1670 and 1918 m a.s.l. (Fig.1, in the Rodna Mountains (Northern Romania, Eastern Carpathians are used with the aim to determine: i the sensitivity of high mountain habitats to climate, fire and land use changes; ii tree- and timberline shifts: and iii the influence of landscape topography on trees and shrubs.

  1. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    Science.gov (United States)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that

  2. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  3. Working toward integrated models of alpine plant distribution.

    Science.gov (United States)

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  4. Semenic Mountains’ alpine skiing area

    Directory of Open Access Journals (Sweden)

    Petru BANIAȘ

    2017-03-01

    Full Text Available The present paper presents, after a short history of alpine skiing which describes apparition, necessity, utility and universality of skiing during time, a comparative study referring to the alpine skiing domain in the Semenic Mountains area. In the paper are also presented general notions about alpine skiing methodology together with an ample description of the plateau area form Semenic Mountains, describing localization and touristic potential. Based on the SWOT analysis made for each slope, was realized a complex analysis of the entire skiing domain, an analysis which includes technical, financial, climatic and environmental aspects, along with an analysis of the marketing policy applied for the specific zone.

  5. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  6. Methods for measuring arctic and alpine shrub growth: A review

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.G.W.; Rayback, S.A.

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding of

  7. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    Science.gov (United States)

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  8. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digital relief analysis - Abstract of work package 7

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents an abstract of the development work carried out by the Swiss meteorology specialists METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report presents an abstract of the work done as part of the Work Package 7 of the Alpine Windharvest project.

  9. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    Science.gov (United States)

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  10. Alpine crossroads or origin of genetic diversity? Comparative phylogeography of two sympatric microgastropod species.

    Directory of Open Access Journals (Sweden)

    Alexander M Weigand

    Full Text Available The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa--Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826 (Gastropoda, Eupulmonata, Carychiidae--by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (recolonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant 'hot-spot' for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic transport could mislead the interpretation of observed phylogeographical patterns in general.

  11. The 'Alpine Windharvest' project - Overview; Projekt Alpine Windharvest - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Kunz, S. [Suisse Eole, Meteotest, Berne (Switzerland)

    2005-07-01

    This short introduction forms part of a final report for the Swiss Federal Office of Energy (SFOE) that presents the results of a project carried out by the Swiss wind-energy organisation 'Suisse Eole' and the meteorology specialists of the company METEOTEST. The project investigated the use of digital relief-analysis and formed part of a European wind-energy project that investigated the technical, legal and socio-economical aspects of the use of wind energy. The work-package 7 included the identification of wind-energy areas using comparative Geographic Information System (GIS) methods. An overview is provided of the wind-energy potential in the whole of the alpine region and five areas in which measurements are to be made, including GIS analyses, are defined.

  12. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction

    Directory of Open Access Journals (Sweden)

    Jianguo Chen

    2017-08-01

    Full Text Available Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides (Caryophyllaceae, a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.

  13. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    Science.gov (United States)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    alpine wetland surface and the atmosphere system is low. The actual measurements agree with omega theory. The latent heat flux is mainly influenced by solar radiation. From the above, our study has provided reference information for exploring the influences of environmental factors on the latent heat flux over the alpine wetlands of the Yellow River source region.

  14. Impact of the Chernobyl fallout in the alpine environment

    International Nuclear Information System (INIS)

    Gastberger, M.; Lettner, H.; Hofmann, W.; Pohl-Rueling, J.; Steinhaeusler, N.F.; Hubmer, A.

    1997-01-01

    In Austria the alpine regions received the highest fallout contamination, showing a very inhomogeneous spatial distribution of the surface deposition. About half of the national territory is within alpine regions, which are very different in times of underlying bedrock and soil characteristic. Since this is the controlling factor for the radionuclide uptake of the vegetation, it is crucial for the long-term effects of radioactive fallout. Different studies have been carried out in the Province of Salzburg (area: 7154 km 2 ) over the past ten years, addressing a broad spectrum of issues, such as: measurement of the spatial distribution of the fallout, research in monitoring techniques comparison of theoretical calculations with actual in vivo-measurements of nuclide uptake by man for different population groups, and the investigation of biological effects. When considering the radioecological effects of the Chernobyl fallout a distinction has to be made between the short-term effects immediately following the fallout and the long-term effects. While the short term effects are controlled by the physical characteristics of the fallout, similar for the whole region, the long-term effects are more determined by the radioecological properties of the environments affected which are much more variable than the fallout-characteristics

  15. Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management

    International Nuclear Information System (INIS)

    Britton, Andrea J.; Fisher, Julia M.

    2008-01-01

    Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50 kg N ha -1 y -1 were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10 kg N ha -1 y -1 (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species. - Low levels of N deposition increase productivity in alpine dwarf-shrub heath despite strong climatic constraints

  16. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  17. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers

    DEFF Research Database (Denmark)

    Edwards, Arwyn; Mur, Luis A. J.; Girdwood, Susan E.

    2014-01-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction...... revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine...... fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids...

  18. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    Science.gov (United States)

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  19. Larch dwarf mistletoe not found on alpine larch

    Science.gov (United States)

    Robert L. Mathiasen; Brian W. Geils; Clinton E. Carlson; Frank G. Hawksworth

    1995-01-01

    Reports of larch dwarf mistletoe parasitizing alpine larch are based on two collections of this host/parasite combination made by J.R. Weir in Montana during the early 1900s. Examination of host material from these collections indicates that the host is western larch, not alpine larch as previously reported. Attempts to locate larch dwarf mistletoe on alpine larch were...

  20. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  1. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  2. Alpine vegetation communities and the alpine-treeline ecotone boundary in New England as biomonitors for climate change

    Science.gov (United States)

    Kenneth D. Kimball; Douglas M. Weihrauch

    2000-01-01

    This study mapped and analyzed the alpine-treeline ecotone (ATE) boundary and alpine plant communities on the Presidential Range, New Hampshire and Mount Katahdin, Maine. These are sensitive biomonitoring parameters for plant community responses to climatic change. The ATE boundary spans a considerable elevational range, suggesting that shorter growing seasons with...

  3. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Kriebel, K.T.

    2000-07-01

    Three different climates have been identified by our evaluation of AVHRR (advanced very high resolution radiometer) data using APOLLO (AVHRR processing scheme over land, clouds and ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15 km by 14 km. The study area only comprises 540 km by 560 km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At nonvegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps. (orig.)

  4. Hydrologic response to valley-scale structure in alpine headwaters

    Science.gov (United States)

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2015-01-01

    Few systematic studies of valley-scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional-scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse-grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and 'rock-ice' features may have more storage capacity than previously thought.

  5. Recent crustal movements and geophysical interpretation of geodynamic processes in the Alpine mountain belt

    Science.gov (United States)

    Gubler, E.; Kahle, H. G.

    It is a well-known fact that the surface phenomena of global plate tectonics are most convincingly seen and felt along the boundaries of the moving lithospheric plates. These boundaries are morphologically expressed as mild-ocean ridges or as subduction zones such as deep sea trenches or Himalayan/Alpine fold belts, the latter of which are the subject of this paper. On a global scale, there are kinematic models giving an idea of what kind of rates can be expected. This is due to the fact that magnetic sea floor spreading anomalies are missing in the Alpine environment. On the other hand, the structure and kinematics of the Apulian microplate are of major interest to Switzerland because its northern boundary seems to be formed by the Alpine chain. In Switzerland there are some 14 special study groups actively working in this field of geodynamics. This paper is restricted to the geodetic and gravity studies. With emphasis on the assumed northern boundary of the Apulian microplate, the kinematics of relative plate movements in the Alpine area were investigated. A simplified tectonic map of this region is shown.

  6. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    Science.gov (United States)

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  7. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    Science.gov (United States)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  8. Semaine alpine 2008 : innover (dans) les Alpes

    OpenAIRE

    Bourdeau, Philippe; Bourdeau, Philippe; Corneloup, Jean; Corneloup, Jean; Finger-Stich, Andréa; Finger-Stich, Andréa; Giraut, Frédéric; Giraut, Frédéric; Kohler, Yann; Kohler, Yann; Macchiavelli, Andrea; Macchiavelli, Andrea; Scheurer, Thomas; Scheurer, Thomas; Ullrich, Aurelia

    2009-01-01

    Ce premier dossier en ligne se penche sur une question de grande actualité : l’innovation, pour interroger les conceptions et mises en œuvre de démarches innovantes dans les contextes montagnards. Ces textes sont issus de la « Semaine alpine », qui s’est déroulée en juin 2008 à l’Argentière-La Bessée, dans les Hautes-Alpes (France). Ces « Semaines alpines », en alternance avec les « Forums alpins », rassemblent tous les deux ans des chercheurs et des acteurs locaux de l’ensemble de l’arc alp...

  9. MAPPING AND ASSESSING MULTIPLE ECOSYSTEM SERVICES IN AN ALPINE REGION: A STUDY IN TRENTINO, ITALY

    Directory of Open Access Journals (Sweden)

    M. Ferrari

    2014-04-01

    Full Text Available This research aims to identify ecosystem services relevant for Trentino (a region in the Italian Alps, and to assess them through spatial indicators. 51 experts were involved in the identification of relevant ecosystem services and appropriate indicators to represent them. Indicators were computed using the database available at administrative level. Indicators represent the actual or the potential supply of ecosystem services, expressed in terms of either stock or flow. Moreover, indicators may refer to biophysical, economic or socio-cultural values. In total, the experts selected 25 ecosystem services and 57 assessment indicators. Accordingly, the selected indicators were mapped over different spatial units of ecosystem services representation, including land use and forest types. This research was the first attempt to assess a multiple set of ecosystem services for Trentino. The results provide new information that can be used to achieve the objectives of the EU Biodiversity Strategy by 2014. The proposed approach can be reasonably extended to other Alpine areas with similar morphology, land cover and land use.

  10. Alpine dams

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  11. Microsatellite Markers for the Chameleon Grasshopper (Kosciuscola tristis (Orthoptera: Acrididae, an Australian Alpine Specialist

    Directory of Open Access Journals (Sweden)

    Ange-Marie Risterucci

    2012-09-01

    Full Text Available A set of polymorphic loci was characterised using an enrichment library for the Australian alpine specialist, the chameleon grasshopper (Kosciuscola tristis, an atypical grasshopper known for its remarkable temperature-controlled colour change. The number of alleles per locus ranged from three to 20 and observed heterozygosity from 0.16 to 0.76. These are the first microsatellite markers for a non-endangered Australian alpine animal and will inform questions of gene flow across the sky islands of this unique and threatened region.

  12. Glucose homeostasis and cardiovascular disease biomarkers in older alpine skiers

    DEFF Research Database (Denmark)

    Dela, F; Niederseer, David; Patsch, Wolfgang

    2011-01-01

    Alpine skiing and ski training involves elements of static and dynamic training, and may therefore improve insulin sensitivity. Healthy men and women who where beginners/intermediate level of alpine skiing, were studied before (Pre) and immediately after (Post) 12 weeks of alpine ski training. Af...

  13. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  14. GLOBALIZATION OF ECONOMY AND GREATER CYCLES OF THE TOTAL REGIONAL PRODUCT, INFLATION AND UNEMPLOYMENT

    Directory of Open Access Journals (Sweden)

    V.A. Belkin

    2009-06-01

    Full Text Available The process of synchronization of greater and small waves of real gross national product of the USA and a total regional product of the Chelyabinsk area is shown on the materials of economic statistics. The conclusion about defining influence of dynamics of real gross national product of the USA on the basic macroeconomic parameters of the Chelyabinsk area owing to high dependence of its economy on export of metal products is done from here. It is evidently shown, that the modern world economic crisis quite keeps within the theory of greater cycles of an economic conjuncture of N.D. Kondratyev. To greater cycles of a total regional product of the Chelyabinsk area there correspond return greater cycles of inflation and unemployment.

  15. A half century of change in alpine treeline patterns at Glacier National Park, Montana, U.S.A.

    Science.gov (United States)

    Klasner, F.L.; Fagre, D.B.

    2002-01-01

    Using sequential aerial photography, we identified changes in the spatial distribution of subalpine fir (Abies lasiocarpa) habitat at the alpine treeline ecotone. Six 40-ha study sites in the McDonald Creek drainage of Glacier National Park contained subalpine fir forests that graded into alpine tundra. Over a 46-yr period, altitudinal changes in the location of alpine treeline ecotone were not observed. However, over this 46-yr period the area of krummholz, patch-forest, and continuous canopy forest increased by 3.4%, and tree density increased within existing patches of krummholz and patch-forest. Change in subalpine fir vegetation patterns within 100 m of trails was also compared to areas without trails. Within 100 m of trails, the number of small, discrete krummholz stands increased compared to areas without trails, but there was no significant change in total krummholz area. We used historical terrestrial photography to expand the period (to 70 yr) considered. This photography supported the conclusions that a more abrupt ecotone transition developed from forest to tundra at alpine treeline, that tree density within forested areas increased, and that krummholz became fragmented along trails. This local assessment of fine-grained change in the alpine treeline ecotone provides a comparative base for looking at ecotone change in other mountain regions throughout the world.

  16. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digital relief analysis - Abstract of work package 7; Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Digitale Relief-Analyse - Zusammenfassung von Arbeitspaket 7

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report describes the development work carried out by the Swiss meteorology specialists METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report presents a summary of work done on the digital relief analysis used in various stages of the project, its validation and use.

  17. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  18. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    W. Genxu

    2009-03-01

    Full Text Available Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one of the most crucial processes influencing cyclic variations in the hydrology of frozen soil regions, especially under different vegetation covers. The present study assesses the impact of changes in vegetation cover on the coupling of soil water and heat in a permafrost region. Soil moisture (θv, soil temperature (Ts, soil heat content, and differences in θvTs coupling were monitored on a seasonal and daily basis under three different vegetation covers (30, 65, and 93% on both thawed and frozen soils. Regression analysis of θv vs. Ts plots under different levels of vegetation cover indicates that soil freeze-thaw processes were significantly affected by the changes in vegetation cover. The decrease in vegetation cover of an alpine meadow reduced the difference between air temperature and ground temperature (ΔTa−s, and it also resulted in a decrease in Ts at which soil froze, and an increase in the temperature at which it thawed. This was reflected in a greater response of soil temperature to changes in air temperature (Ta. For ΔTa−s outside the range of −0.1 to 1.0°C, root zone soil-water temperatures showed a significant increase with increasing ΔTa−s; however, the magnitude of this relationship was dampened with increasing vegetation cover. At the time of maximum water content in the thawing season, the soil temperature decreased with increasing vegetation. Changes in vegetation cover also led to variations in θvTs coupling. With the increase in vegetation cover, the surface heat flux decreased. Soil heat storage at 20 cm in

  19. Holistic Analysis of the Urban Water Systems in Greater Cincinnati Region

    Science.gov (United States)

    Urban water and wastewater systems with two utilities in Greater Cincinnati region were evaluated as a case study to elucidates a bigger picture of a typical centralized urban water system. Two different integrated assessment metrics were used to analyze the same system. LCA an...

  20. Climate-induced glacier and snow loss imperils alpine stream insects

    Science.gov (United States)

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  1. Peucedanum ostruthium (L. Koch: Morphological and phytochemical variability of twelve accessions from the Swiss alpine region

    Directory of Open Access Journals (Sweden)

    McCardell, Jessica Heather

    2016-07-01

    Full Text Available Ostruthin, a natural bioactive compound mainly occurring in the roots of Peucedanum ostruthium, is the focus of this study. P. ostruthium was collected from twelve locations in the Swiss alpine region and reared in an experimental field, subdivided into twelve lots over two years. In the spring and fall, a portion of each of the twelve accessions was harvested and separated into above and below ground plant parts. The dried plants were then extracted with 60 % ethanol using accelerated solvent extraction (ASE and analyzed using high pressure liquid chromatography (HPLC.The above and below ground plant parts were then analyzed concerning their dry matter yield (DMY, their ostruthin concentration and their ostruthin yield. Focusing on ostruthin, it was found that the below ground plant parts harvested in the fall rendered the highest ostruthin yield. Furthermore, a variability concerning ostruthin among the twelve accessions was found. This variability among the accessions is of interest with regards to a breeding program used to develop a cultivar with a high ostruthin yield.

  2. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    Science.gov (United States)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  3. Ontogenetic niche shifts in three Vaccinium species on a sub-alpine mountain side

    DEFF Research Database (Denmark)

    Auffret, Alistair G.; Meineri, Eric; Bruun, Hans Henrik

    2010-01-01

    Background: Climate warming in arctic and alpine regions is expected to result in the altitudinal migration of plant species, but current predictions neglect differences between species' regeneration niche and established niche. Aims: To examine potential recruitment of Vaccinium myrtillus, V. ul...

  4. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    International Nuclear Information System (INIS)

    Khamis, K.; Hannah, D.M.; Brown, L.E.; Tiberti, R.; Milner, A.M.

    2014-01-01

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  5. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, K.; Hannah, D.M. [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, L.E. [School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Tiberti, R. [DSTA, Dipartimento di Scienze della Terra e dell' Ambiente, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy); Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, I-1101 Valsavarenche, Aosta (Italy); Milner, A.M., E-mail: a.m.milner@bham.ac.uk [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 (United States)

    2014-09-15

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  6. Residues of legacy organochlorine contaminants in the milk of Alpine and Saanen goats from the central region of Mexico.

    Science.gov (United States)

    Schettino, Beatriz; Gutiérrez, Rey; Ortiz, Rutilio; Vega, Salvador; Urban, Georgina; Ramírez, Acacia

    2013-08-01

    This study investigated a suite of legacy organochlorine contaminants in the milk of two breeds of goats raised in the central region of Mexico, where this agricultural production is of national (Mexican) economic importance. Forty milk samples from Alpine and Saanen goats were assessed. It was found that the concentrations of the majority of organochlorine pesticides in milk samples were lower than those stipulated in Mexican and international regulation. The values in both breeds of goat exceeded the upper permissible limits of Codex Alimentarius for delta hexachloro cyclohexane (HCH) (17.3 of samples of Saanen) and heptachlor plus heptachlor epoxide (50 % and 13 % of samples). It may be concluded that milk from these goat breeds from central Mexico showed some risks of contamination in certain times of the year (dry season). However, under further assessment and use of pesticides the goat's milk will likely be safe for human consumption and for use in products such as cheeses, regional candies and desserts (cajeta). In recent years, goat milk production has increased in the central regions and it is an economic alternative to milk from livestock. It is necessary to continue the monitoring of goat's milk to assess the presence and control of HCHs through best management practices.

  7. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.

    Science.gov (United States)

    Liang, Eryuan; Eckstein, Dieter

    2009-09-01

    Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated. Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data. The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation. The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.

  8. Myiasis in Dogs in the Greater Accra Region of Ghana.

    Science.gov (United States)

    Johnson, Sherry A M; Gakuya, Daniel W; Mbuthia, Paul G; Mande, John D; Afakye, Kofi; Maingi, Ndichu

    2016-01-01

    Myiasis is the infestation of tissues of live vertebrate animals and humans with dipterous larvae. In sub-Saharan Africa, Cordylobia anthropohaga and Cordylobia rodhaini are known to be responsible for cutaneous myiasis in animals and humans. Human cases of myiasis, purportedly acquired in Ghana but diagnosed in other countries, have been reported; however, published data on its occurrence in animals in Ghana is unavailable. This study assessed the prevalence of canine myiasis among owned dogs in the Greater Accra region (GAR) of Ghana. A cross-sectional study was conducted in the Greater Accra region of Ghana, selected for being the region with the highest estimated population density of owned dogs. Physical examination and demographic characteristics of the study dogs were assessed. Management of the dogs was assessed through a questionnaire administered to the dog owners. A total of 392 owned dogs were sampled. Twenty-nine (7.4%) had cutaneous myiasis caused by C. rodhaini. In addition, one (0.2%) of the dogs had intestinal myiasis, with Dermatobia hominis as the offending larvae. Among the breeds of dogs with myiasis, the mongrel was most affected, with 24 (82.8%) out of the 29 cases. The mongrels, majority of which (24; 82.8%) were males, were left to roam freely in the community. Results from this study demonstrate that C. rodhaini and D. hominis are important causes of myiasis in owned dogs in the GAR of Ghana. Dogs could play a role in the spread of myiasis to humans, with its attendant public health implications.

  9. Anterior cruciate ligament injury/reinjury in alpine ski racing

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases...... were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries...... injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful...

  10. Les barrages alpins

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  11. POPs and other persistent organic compounds in fish from remote alpine lakes in the Grisons, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.; Gujer, E.; Zennegg, M. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Lanfranchi, M. [Agency for Nature and Environment of the Canton Grisons, Chur (Switzerland)

    2004-09-15

    Global transfer of persistent semivolatile organic compounds, such as persistent organic pollutants (POPs), is effected by long-range atmospheric transport in combination with condensation and volatilization processes. Within the global atmosphere, evaporation in warm latitudes and deposition in cold latitudes leads to a transfer of contaminants towards the poles. The phenomenon of atmospheric migration of semivolatile chemicals, such as PCB and DDT, has been predicted and associated with the term ''global distillation'' by Goldberg, and the model has been extensively reviewed by Mackay and Wania. For comparatively less volatile components such as PCDD/F and PBDE, particle-bound deposition is the dominating transfer mechanism. Therefore, the input of these compounds in remote alpine regions without point sources is controlled by atmospheric deposition (dry and wet) and condensation. For organochlorine compounds, such as pesticides and polychlorinated biphenyls (PCB), it has been shown that accumulation is enhanced by temperaturecontrolled condensation also in alpine regions with low average temperatures. The hydrology of remote alpine lakes is determined by direct atmospheric deposition feeding and feeding with water from the surrounding catchment area, without significant inputs from tributaries or from nearby anthropogenic activities. Fish dwelling in these ecosystems represents an excellent indicator for the long-term input of bioaccumulating contaminants, such as POPs and other persistent organic compounds. In the present study, fish from 7 alpine lakes from the Grisons (Switzerland) situated between 2062 and 2637 m above sea level were investigated. With the exception of Laghetto Moesola which is situated adjacent to a mountain pass road, input from local anthropogenic emissions can be excluded for these lakes.

  12. Garnet peridotite found in the Greater Antilles

    Science.gov (United States)

    Abbott, Richard N., Jr.; Draper, Grenville; Keshav, Shantanu

    Although Alpine peridotites are relatively common in collisional orogenic zones, garnet-bearing peridotites are rare and only associated with high pressure/ultra-high pressure or temperature (HP/UHP or T) terranes [Brueckner and Medaris, 2000; Medaris, 1999]. Until recently all reported occurrences of Alpine-type garnet peridotites and HP/UHP terranes were in Eurasia and Africa, with one occurrence in the Seward Peninsula, Alaska [Till, 1981;Lieberman and Till, 1987]. Now a new Alpine-type garnet peridotite locality has been discovered in the Caribbean island of Hispaniola. This discovery is the second of its kind in the Americas.

  13. Drivers of spatial heterogeneity in nitrogen processing among three alpine plant communities in the Rocky Mountains

    Science.gov (United States)

    Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.

    2017-12-01

    Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using

  14. Global warming in the context of 2000 years of Australian alpine temperature and snow cover.

    Science.gov (United States)

    McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin

    2018-03-13

    Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.

  15. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  16. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - GIS analysis Franches Montagnes, Switzerland - Documentation of GIS concepts, methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, F.; Schaffner, B. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents part of the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report documents the use of the Geographic Information Systems (GIS) methodology for the 'Franches Montagnes' Region in Switzerland, whereby the most significant of the model's layers was found to be the wind velocity layer.

  17. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

    Science.gov (United States)

    Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

    2016-01-01

    The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

  18. Evidence for radiations of cheilanthoid ferns in the Greater Cape Floristic Region

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Rohwer, Jens G.; Russell, Stephen J.

    2011-01-01

    The Greater Cape Floristic Region (GCFR) of southern Africa is characterised by large, endemic radiations of flowering plants, the so-called ‘Cape Clades’, but it is unknown whether such radiations are also found in non-angiosperms. We hypothesise that GCFR-endemic lineages exist in the xeric...

  19. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.

    Science.gov (United States)

    Müller, Erich; Schwameder, Hermann

    2003-09-01

    There have been considerable changes in equipment design and movement patterns in the past few years both in alpine skiing and ski-jumping. These developments have been matched by methods of analysing movements in field conditions. They have yielded new insights into the skills of these specific winter sports. Analytical techniques have included electromyography, kinetic and kinematic methods and computer simulations. Our aim here is to review biomechanical research in alpine skiing and ski-jumping. We present in detail the techniques currently used in alpine skiing (carving technique) and ski-jumping (V-technique), primarily using data from the authors' own research. Finally, we present a summary of the most important results in biomechanical research both in alpine skiing and ski-jumping. This includes an analysis of specific conditions in alpine skiing (type of turn, terrain, snow, speed, etc.) and the effects of equipment, materials and individual-specific abilities on performance, safety and joint loading in ski-jumping.

  20. The significance of Gosau-type basins for the Late Cretaceous tectonic history of the Alpine-Carpathian Belt.

    NARCIS (Netherlands)

    Willingshofer, E.; Neubauer, F.; Cloetingh, S.A.P.L.

    1999-01-01

    A key feature of Late Creataceous tectonics throughout the Alpine-Carpathian-Pannonian (ALCAPA) region is the synchronous formation of sedimentary basins (Gosau basins) and exhumation of metamorphic domes. Initial subsidence, spatially varying in time (Cenomanian-Santonian), within Gosau-type basins

  1. Within-season variability of fighting behaviour in an Australian alpine grasshopper.

    Science.gov (United States)

    Muschett, Giselle; Umbers, Kate D L; Herberstein, Marie E

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system.

  2. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau

    Science.gov (United States)

    Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua

    2018-01-01

    Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.

  3. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  4. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Science.gov (United States)

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related

  5. Modelling of Aerodynamic Drag in Alpine Skiing

    OpenAIRE

    Elfmark, Ola

    2017-01-01

    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  6. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  7. Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae in alpine habitats of California

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2010-06-01

    Full Text Available Abstract Background Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta. The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta. Results Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch. Conclusions Grylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations

  8. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  9. Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow

    International Nuclear Information System (INIS)

    Kirchgeorg, Torben; Dreyer, Annekatrin; Gabrieli, Jacopo; Kehrwald, Natalie; Sigl, Michael; Schwikowski, Margit

    2013-01-01

    The occurrence and temporal variation of 18 perfluoroalkyl substances (PFASs) and 8 polybrominated diphenyl ethers (PBDEs) in the European Alps was investigated in a 10 m shallow firn core from Colle Gnifetti in the Monte Rosa Massif (4455 m above sea level). The firn core encompasses the years 1997–2007. Firn core sections were analyzed by liquid chromatography–tandem mass spectrometry (PFASs) and gas chromatography–mass spectrometry (PBDEs). We detected 12 PFASs and 8 PBDEs in the firn samples. Perfluorobutanoic acid (PFBA; 0.3–1.8 ng L −1 ) and perfluorooctanoic acid (PFOA; 0.2–0.6 ng L −1 ) were the major PFASs while BDE 99 ( −1 ) and BDE 47 (n.d.–2.6 ng L −1 ) were the major PBDEs. This study demonstrates the occurrence of PFASs and PBDEs in the European Alps and provides the first evidence that PFASs compositions may be changing to PFBA-dominated compositions. -- Highlights: •PFASs and PBDEs were detected in low ng L −1 concentrations in an Alpine firn core. •BDE 47, BDE 99 and BDE 209 are the dominating PBDEs. •PFOA, PFNA and PFBA are the major PFASs. •We demonstrate a change in the PFASs composition. •Atmospheric degradation of volatile precursor might be the main source for >C8 PFCAs. -- PFAS and PBDE concentrations in European Alpine snow provide information about the occurrence, accumulation and recent changes of these persistent organic pollutants in Alpine regions

  10. Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain.

    Science.gov (United States)

    Han, Qisheng; Huang, Jian; Long, Dongfeng; Wang, Xiaobing; Liu, Jianjun

    2017-07-01

    Alpine treeline ecotones represent ecosystems that are vulnerable to climate change. We investigated the ectomycorrhizal (ECM) community, which has potential to stabilize alpine ecosystems. ECM communities associated with Larix chinensis were studied in four zones along a natural ecotone from a mixed forest stand over pure forest stands, the timberline, and eventually, the treeline (3050-3450 m) in Tabai Mountain, China. Sixty operational taxonomic units (OTUs) of ECM fungi were identified by sequencing the rDNA internal transcribed spacer of ECM tips. The richness of ECM species increased with elevation. The soil C/N ratio was the most important factor explaining ECM species richness. The treeline zone harbored some unique ECM fungi whereas no unique genera were observed in the timberline and pure forest zone. Elevation and topography were equally important factors influencing ECM communities in the alpine region. We suggest that a higher diversity of the ECM fungal community associated with L. chinensis in the treeline zone could result from niche differentiation.

  11. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing.

    Directory of Open Access Journals (Sweden)

    Thomas Falda-Buscaiot

    Full Text Available The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet's plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski's surface([Formula: see text], /BW, and Pressure Time Integral relative to the entire foot surface (relPTI, % parameters were calculated for each turn phases based on plantar pressure data. Results indicated that [Formula: see text] under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections, and the turn phase (higher during steering2 vs. three other phases, although such modifications were observable only on the outside foot. Moreover, [Formula: see text] under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability.

  12. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - GIS analysis methodology - Workbook and results

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, F.; Schaffner, B. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The report describes the development of basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. The report deals with the use of Geographic Information Systems (GIS) methodology, which includes three steps: the identification of limiting factors for wind power production, the compilation of a GIS layer for each of these factors and, thirdly, their aggregation into a result layer. The methodology was implemented for four case studies in Austria, Italy, Slovenia and Switzerland.

  13. The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Wang, Cuizhen; Ji, Lei; Li, Jing; Wang, Kun; Dai, Lin

    2014-01-01

    The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.

  14. A simple spatial model exploring positive feedbacks at tropical alpine treelines

    NARCIS (Netherlands)

    Bader, M.; Rietkerk, M.; Bregt, A.K.

    2008-01-01

    Climate change could cause alpine treelines to shift in altitude or to change their spatial pattern, but little is known about the drivers of treeline dynamics and patterning. The position and patterns of tropical alpine treelines are generally attributed to land use, especially burning. Species

  15. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  16. Alpine deformations in Donbass: Periodicity, character of stresses, and their probable sources

    Science.gov (United States)

    Kopp, M. L.; Korchemagin, V. A.; Kolesnichenko, A. A.

    2010-09-01

    The periodicity, dynamics, and kinematics of the insufficiently studied Cenozoic (Alpine) movements in the Donets Fold Edifice and its framework are considered. The synthesis of the available data on the Donets Basin (Donbass) and the adjacent territories of the Russian and Scythian plates shows that the Early Alpine, or Laramian epoch of deformation in the Paleocene and the Late Alpine, or recent epoch of deformation in the early Miocene-Quaternary were divided by a tectonic pause in the Eocene and Oligocene. Judging from macrostructural pattern and results of mesotectonic observations, both epochs were characterized by meridional compression and latitudinal extension but substantially differed in the scope of deformation and the style of structure. The former developed to the west of the Donbass and resulted in compression of diapirs in the Dnieper-Donets Aulacogen, whereas the latter created the recent Donets-Azov Swell and brought about right-lateral strike-slip faulting along the North Donets and Persianovsky faults bounding the Donbass. The recent movements and related deformation in the eastern area, including the substantial role of right-lateral strike-slip faulting, more intense deformation in comparison with Laramian movements, and the mobilization of the basement not only in the Dnieper-Donets Aulacogen but also far beyond its limits allow us to connect these phenomena with coeval orogeny in the Greater Caucasus. The nature of the moderate Laramian movements confined to the axial zone of the aulacogen is more questionable; however, it can be explained in terms of within-plate reactivation of western and part of eastern Europe as a response to plate collision in the Alps, Dinarides, and Pontides in combination with coeval onset of spreading in the North Atlantic and Arctic, which created counter-pressure from the north. The eventual result of both processes was inversion and compression of some European aulacogens, including the Dnieper-Donets Aulacogen.

  17. Coincidence of the alpine-nival ecotone with the summer snowline

    International Nuclear Information System (INIS)

    Gottfried, M; Toechterle, R; Grabherr, G; Hantel, M; Maurer, C; Pauli, H

    2011-01-01

    The alpine-nival ecotone is the transition between the lower located alpine grassland/tundra zone and the upper located sparsely vegetated nival zone in the mountains. Its characteristics are qualitatively known. Here we study the dynamics of the ecotone through a quantitative approach based on plant data (from Mt Schrankogel, 3497 m, observations 1994 and 2004) and snow data (from 268 routine climate stations in the Alps, observations 1975-2004). We introduce the nivality index as the area ratio of nival and alpine plants, and the snow duration as the length of the summer snow cover. We fit a nonlinear probabilistic model to our field data; it yields state functions of both quantities. The nivality index curve comprises the entire information of the plant data in one analytical function; the snow duration curve represents the equivalent for the full snow data set. Thus all relevant parameters of both quantities follow from the respective state function. We find that the analytical profile of the alpine-nival ecotone at Mt Schrankogel (based on nivality index observations from the altitude interval 2910-3090 m) happens to sit right in the center of the independently determined summer snow profile across the entire Alps; specifically, the central altitude of the Schrankogel ecotone coincides almost perfectly with the central altitude of Alpine snow duration. Both state functions show extreme temperature sensitivity at 2967 m (vegetation) and 2897 m (snow), and both altitudes exhibit a positive trend during the measurement period.

  18. Coincidence of the alpine-nival ecotone with the summer snowline

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, M; Toechterle, R; Grabherr, G [Research Platform Mountain Limits, University of Vienna, Faculty Center of Biodiversity, Rennweg 14, Wien 1030 (Austria); Hantel, M; Maurer, C [Research Platform Mountain Limits, University of Vienna, Theoretical Meteorology Research Forum, Berggasse 11, Wien 1090 (Austria); Pauli, H, E-mail: michael.hantel@univie.ac.at [Institute of Mountain Research (IGF), Austrian Academy of Sciences, c/o Faculty Center of Biodiversity, University of Vienna, Rennweg 14, 1030 Wien (Austria)

    2011-01-15

    The alpine-nival ecotone is the transition between the lower located alpine grassland/tundra zone and the upper located sparsely vegetated nival zone in the mountains. Its characteristics are qualitatively known. Here we study the dynamics of the ecotone through a quantitative approach based on plant data (from Mt Schrankogel, 3497 m, observations 1994 and 2004) and snow data (from 268 routine climate stations in the Alps, observations 1975-2004). We introduce the nivality index as the area ratio of nival and alpine plants, and the snow duration as the length of the summer snow cover. We fit a nonlinear probabilistic model to our field data; it yields state functions of both quantities. The nivality index curve comprises the entire information of the plant data in one analytical function; the snow duration curve represents the equivalent for the full snow data set. Thus all relevant parameters of both quantities follow from the respective state function. We find that the analytical profile of the alpine-nival ecotone at Mt Schrankogel (based on nivality index observations from the altitude interval 2910-3090 m) happens to sit right in the center of the independently determined summer snow profile across the entire Alps; specifically, the central altitude of the Schrankogel ecotone coincides almost perfectly with the central altitude of Alpine snow duration. Both state functions show extreme temperature sensitivity at 2967 m (vegetation) and 2897 m (snow), and both altitudes exhibit a positive trend during the measurement period.

  19. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - CFD modelling evaluation - Summary of WindSim CFD modelling procedure and validation

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Cattin, R. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The report describes the development of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. The report deals with the use of computational fluid dynamics and wind simulation modelling techniques and their validation. Recommendations on the use of the results are made.

  20. Characterization of the shallow groundwater system in an alpine watershed: Handcart Gulch, Colorado, USA

    Science.gov (United States)

    Kahn, Katherine G.; Ge, Shemin; Caine, Jonathan S.; Manning, A.

    2008-01-01

    Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1-6.2??0-5 m/s. Discharge was estimated at 1.28??10-3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7??10-5-2.10??0-3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3??10-9 -2.0??10-4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system. ?? Springer-Verlag 2007.

  1. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat.

    Science.gov (United States)

    Koizumi, Takahiko; Nara, Kazuhide

    2017-06-24

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R 2 =0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R 2 =0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions.

  2. Alpine snow cover in a changing climate: a regional climate model perspective

    Science.gov (United States)

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph

    2013-08-01

    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  3. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  4. ADR characteristics and corporate governance in the Greater China region

    Directory of Open Access Journals (Sweden)

    Lee-Hsien Pan

    2012-04-01

    Full Text Available We examine the relationship between firm valuation and governance mechanisms, firm characteristics, and institutional factors of the American Depository Receipts (ADRs domiciled in the Greater China region. We find that China ADRs have the highest market-to-book value ratio followed by Hong Kong and Taiwan ADRs. It appears that Chinese firms with the poorest external governance environment stand to benefit the most from cross listing under the ADR programs. Listing in the U.S. that requires more stringent regulations and disclosure rules may strengthen the firms’ governance practices and thereby enhance their firm value. Among the internal governance mechanisms, institutional ownership and insider ownership are important for firm value.

  5. Evapotranspiration partitioning in the highest alpine meadow zones through in-situ chamber and dual stable water isotope approaches

    Science.gov (United States)

    Cui, J.; Tian, L.

    2017-12-01

    Understanding plant functionality within the water cycles of grassland ecosystems is crucial for obtaining both regional water balance and plant adaptability in the context of ongoing climate change. The transpiration to evapotranspiration ratio (T/ET) is an indicator of plant's contribution to ecosystem water cycle. In this study, we used high-frequency laser spectroscopy (L2130-i), three custom-built chambers, and eddy covariance techniques, to constrain the role played by plants in evapotranspiration over an alpine meadow ecosystem in the central Tibetan Plateau (TP). Three different sizes of chambers are used to direct measure the isotopic compositions in evapotranspiration (δET), evaporation (δE) and transpiration (δT). The consistent T/ET between δ18O and δD manifests that chamber and dual isotope tracers are robust methods to estimate T/ET in alpine meadow zone. Sensitivity analysis shows that the isotopic composition of evapotranspiration is the main contributor to, and the uncertainty source for, the T/ET estimate. The influence of meteorological and biotic factors on T/ET is also discussed. The results from this study indicate that plants play an important role in the water cycles of alpine meadow ecosystems despite the sparse distribution of plant cover. We also synthesized the published T/ET data over the entire TP region, and found a good relation between T/ET and leaf area index (LAI). Moreover, soil water content played some role in controlling T/ET beyond the LAI in arid/semiarid regions such as the TP. More than half of the TP is covered by grassland, but its low biomass and shallow rooting depth make it very vulnerable to climate change variables such as air temperature warming and variations in precipitation. Given the crucial role played by plants in an ecosystem's water cycle, any variations in grassland cover are likely to exert a critical impact on the regional hydrological cycle, and even the regional climate.

  6. Inventory of the Alpine Flora of Haramosh and Bagrote Valleys (Karakoram Range) District Gilgit, Gilgit-Baltistan, Pakistan

    International Nuclear Information System (INIS)

    Khan, S. W.; Abbas, Q.; Khatoon, S.; Raza, G.; Hussain, A.

    2016-01-01

    Inventorying of plant biodiversity of Haramosh and Bugrote valleys (District Gilgit, Gilgit-Baltistan, Pakistan) was done for fourteen years from 2001- 2014. The fourteen years inventorying revealed a rich plant biodiversity consisting of 232 species belonging to 106 genera and 34 families of flowering plants. The Alpine zone had 18 genera with 4 or more species; Pedicularis with 10 species was the largest genus of this zone, followed by Potentilla and Carex (each with 9 species) and Draba (8 species). Genera containing 9 or 10 species occurred only in Alpine zone. In the Alpine zone, 15 of the larger families were represented by 189 species, forming 81.46 percent of the Alpine flora. Although the highest number of species belonging to these larger families was present in the subalpine zone, but in terms of percentage their contribution was the highest in the Alpine flora. Percentage-wise the contribution of these families gradually increased from Desert zone to Alpine zone, because of their particular distribution patterns. Although the total number of species was the highest in the Subalpine zone, but in the species specific to any one zone, the Alpine zone had the highest number, that is, 96 of the total 232 species of Alpine zone were exclusively found in this zone only. Out of these 96 species specific to the Alpine zone, 53 belonged to such 22 genera that were exclusively found in the Alpine zone only. The Alpine zone was characterized by herbs and low shrubs, with Potentilla species as the dominants. A clear trend of migration of certain species both from lower to higher latitudes and altitudes was observed. The species richness index of Alpine zone however showed increasing trend probably due to species migrations towards the alpine zone. The major threats to the plant biodiversity were recognized as the deforestation and habitat loss due to over-exploitation of species, over-grazing by livestock, and climate changes due to global warming, which were

  7. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.

    Science.gov (United States)

    Arn, P H; Li, X; Smith, C; Hsu, M; Schwartz, D C; Jabs, E W

    1991-01-01

    Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.

  8. Vicariance, long-distance dispersal, and regional extinction-recolonization dynamics explain the disjunct circumpolar distribution of the arctic-alpine plant Silene acaulis.

    Science.gov (United States)

    Gussarova, Galina; Allen, Geraldine A; Mikhaylova, Yulia; McCormick, Laurie J; Mirré, Virginia; Marr, Kendrick L; Hebda, Richard J; Brochmann, Christian

    2015-10-01

    Many arctic-alpine species have vast geographic ranges, but these may encompass substantial gaps whose origins are poorly understood. Here we address the phylogeographic history of Silene acaulis, a perennial cushion plant with a circumpolar distribution except for a large gap in Siberia. We assessed genetic variation in a range-wide sample of 103 populations using plastid DNA (pDNA) sequences and AFLPs (amplified fragment length polymorphisms). We constructed a haplotype network and performed Bayesian phylogenetic analyses based on plastid sequences. We visualized AFLP patterns using principal coordinate analysis, identified genetic groups using the program structure, and estimated genetic diversity and rarity indices by geographic region. The history of the main pDNA lineages was estimated to span several glaciations. AFLP data revealed a distinct division between Beringia/North America and Europe/East Greenland. These two regions shared only one of 17 pDNA haplotypes. Populations on opposite sides of the Siberian range gap (Ural Mountains and Chukotka) were genetically distinct and appear to have resulted from postglacial leading-edge colonizations. We inferred two refugia in North America (Beringia and the southern Rocky Mountains) and two in Europe (central-southern Europe and northern Europe/East Greenland). Patterns in the East Atlantic region suggested transoceanic long-distance dispersal events. Silene acaulis has a highly dynamic history characterized by vicariance, regional extinction, and recolonization, with persistence in at least four refugia. Long-distance dispersal explains patterns across the Atlantic Ocean, but we found no evidence of dispersal across the Siberian range gap. © 2015 Botanical Society of America.

  9. Pattern-process interactions at alpine treeline in southwest Yukon, Canada

    Science.gov (United States)

    Danby, R.

    2011-12-01

    Results from an ensemble of studies conduced in southwest Yukon have uncovered a distinct "top-down/bottom-up" interaction at alpine treeline whereby terrain-induced gradients of solar radiation result in fundamental differences in plant-scale biological processes which, in turn, structure vegetation pattern at the landscape scale. Varied insolation creates differences in snow depth and timing of melt, soil temperature, and permafrost on opposing slopes that result in distinct physiological differences in white spruce (Picea glauca), the dominant treeline conifer. Measurement of young individuals indicated that secondary growth and lateral growth was significantly greater on south-facing slopes. Photosynthetic efficiency was reduced in individuals on south-facing slopes, while over-winter damage and mortality was significantly greater. Population-level processes also differed. Dendroecology and repeat photography indicated that treeline advanced on south-facing slopes during the 20th century, but that range expansion was limited on north-facing slopes. These process-related differences appear to be the mechanism for differences in treeline pattern at the landscape scale, including a higher treeline elevation and greater clustering of individuals on south-facing slopes. These results can be used to inform theory on the functional causation of treeline, rationalize differential treeline dynamics observed worldwide, and better inform predictions of future treeline dynamics.

  10. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  11. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  12. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  13. The role of solar UV radiation in the ecology of alpine lakes.

    Science.gov (United States)

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  14. Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Wenjiang Zhang

    2016-04-01

    Full Text Available Alpine wetlands in the Tibetan Plateau (TP play a crucial role in the regional hydrological cycle due to their strong influence on surface ecohydrological processes; therefore, understanding how TP wetlands respond to climate change is essential for projecting their future condition and potential vulnerability. We investigated the hydrological responses of a large TP wetland complex to recent climate change, by combining multiple satellite observations and in-situ hydro-meteorological records. We found different responses of runoff production to regional warming trends among three basins with similar climate, topography and vegetation cover but different wetland proportions. The basin with larger wetland proportion (40.1% had a lower mean runoff coefficient (0.173 ± 0.006, and also showed increasingly lower runoff level (−3.9% year−1, p = 0.002 than the two adjacent basins. The satellite-based observations showed an increasing trend of annual non-frozen period, especially in the wetland-dominated region (2.64 day·year−1, p < 0.10, and a strong extension of vegetation growing-season (0.26–0.41 day·year−1, p < 0.10. Relatively strong increasing trends in evapotranspiration (ET (~1.00 mm·year−1, p < 0.01 and the vertical temperature gradient above ground surface (0.043 °C·year−1, p < 0.05 in wetland-dominant areas were documented from satellite-based ET observations and weather station records. These results indicate recent surface drying and runoff reduction of alpine wetlands, and their potential vulnerability to degradation with continued climate warming.

  15. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    Science.gov (United States)

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2018-04-01

    A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT cycle of aquatic organisms should be considered when reconstructing long-term trends in the ecotoxicological state of lakes. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: a case study of the Muli coal mine in the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qian, Dawen; Yan, Changzhen; Xing, Zanpin; Xiu, Lina

    2017-10-14

    The Muli coal mine is the largest open-cast coal mine in the Qinghai-Tibet Plateau, and it consists of two independent mining sites named Juhugeng and Jiangcang. It has received much attention due to the ecological problems caused by rapid expansion in recent years. The objective of this paper was to monitor the mining area and its surrounding land cover over the period 1976-2016 utilizing Landsat images, and the network structure of land cover changes was determined to visualize the relationships and pattern of the mining-induced land cover changes. In addition, the responses of the surrounding landscape pattern were analysed by constructing gradient transects. The results show that the mining area was increasing in size, especially after 2000 (increased by 71.68 km 2 ), and this caused shrinkage of the surrounding lands, including alpine meadow wetland (53.44 km 2 ), alpine meadow (6.28 km 2 ) and water (6.24 km 2 ). The network structure of the mining area revealed the changes in lands surrounding the mining area. The impact of mining development on landscape patterns was mainly distributed within a range of 1-6 km. Alpine meadow wetland was most affected in Juhugeng, while alpine meadow was most affected in Jiangcang. The results of this study provide a reference for the ecological assessment and restoration of the Muli coal mine land.

  17. Seedling recruitment of forb species under experimental microhabitats in alpine grassland

    International Nuclear Information System (INIS)

    Li, S. S.; Yu, L.; Lin, W. G.; Pingi, T. F.

    2015-01-01

    Which factors limit plant seedling recruitment in alpine meadow of the Qinghai-Tibetan Plateau (QTP), China? This study examined the relative influence of seed mass and microsites (resulted from grazing disturbance) on field seedling emergence and survival of nineteen alpine herbaceous species with a range of traits in QTP. Seed mass had significant effects on seedling emergence and survival eliminating influence of light and nutrient variances among these species. The larger-seed species had more advantageous than the smaller-seed species in seedling survival, but it was disadvatage for seedling emergence, especially under high nutrient availability and low light intensity conditions. Light had obvious effects on seedling survival, but less effects on seedling emergence for these species. Moreover, nutrient and light treatments altered the regression relationships of seed mass and seedling emergence and survival and the order of significances was L25>L50>L100>L10>L4. These results suggested that seed mass may restrict seedling recruitment processes, however, light and nutrient availability all have significant effects on seedling emergence and survival for these alpine species. Moderate light intensity was propitious to seedling emergence and survival in alpine grassland. This suggests that ecological factors in alpine grassland provide a stochastic influence on different seed-mass species. These trends may help to explain why many small-seeded species of Asteraceae and Gramineae tend to be more abundant in disturbed habitats. (author)

  18. Dairy cattle on Norwegian alpine rangelands – grazing preferences and milk quality

    NARCIS (Netherlands)

    Sickel, H; Abrahamsen, R K; Eldegard, K; Lunnan, T; Norderhaug, A; Petersen, M.A.; Sickel, M.; Steenhuisen, F.; Ohlson, M.

    2014-01-01

    The results from the study ‘Effects of vegetation and grazing preferences on the quality of alpine dairy products’ will be presented. The main objective of the project was to investigate the connections bet - ween alpine rangeland vegetation, landscape use and grazing preferences of free ranging

  19. Pathogenic Yersinia enterocolitica O:3 isolated from a hunted wild alpine ibex.

    Science.gov (United States)

    Joutsen, S; Sarno, E; Fredriksson-Ahomaa, M; Cernela, N; Stephan, R

    2013-03-01

    Occurrence of Yersinia spp. in wild ruminants was studied and the strains were characterized to get more information on the epidemiology of enteropathogenic Yersinia in the wildlife. In total, faecal samples of 77 red deer, 60 chamois, 55 roe deer and 27 alpine ibex were collected during 3 months of the hunting season in 2011. The most frequently identified species was Y. enterocolitica found in 13%, 10%, 4% and 2% of roe deer, red deer, alpine ibex and chamois, respectively. Interestingly, one Y. enterocolitica O:3 strain, isolated from an alpine ibex, carried the important virulence genes located on the virulence plasmid (yadA and virF) and in the chromosome (ail, hreP, myfA and ystA). Most of the Y. enterocolitica strains belonged to biotype 1A of which 14 were ystB positive. Further studies are needed to clarify the importance of alpine ibex as a reservoir of pathogenic Y. enterocolitica.

  20. Innovation in the plural of the alpine cre-actors

    Directory of Open Access Journals (Sweden)

    Andréa Finger-Stich

    2009-06-01

    Full Text Available The capacity to innovate for a sustainable development of alpine territories cannot depend only on economic, legal and political conditions defined by the State at national and international levels. It depends also on local conditions that situate historically and geographically the actors in a continuity of social and ecological relationships. This approach highlights the collective – thus organisational – dimensions of the innovation process, including the imagination, the development, the implementation and even the diffusion of a new practice. Our point of view is that for contributing to the sustainable development of the Alps, innovations need to change the ecological, political, social and cultural relationships engaging the actors in these territories. This change affects as much the object territory as the subject actor of the territory. This is why innovating in the Alps means also innovating the Alps and the alpine actors (Cosalp, 2008. Based on a research about local people’s participation in the management of alpine communal forests, the article shows the importance of local interactions involving actors of diverse occupation, gender, age and origins1.La capacité d’innovation pour un développement durable des territoires alpins ne peut dépendre uniquement de conditions économiques, légales et politiques définies par les Etats aux échelles nationale et internationale. Elle dépend aussi de conditions locales, qui situent historiquement et géographiquement les acteurs dans une continuité de relations sociales et écologiques. Cette perspective accentue l’importance de la dimension collective, donc organisationnelle, du processus d’innovation, allant de l’imagination, puis au développement, à la réalisation – voire la diffusion – d’une nouvelle pratique. Le point de vue de cet article est qu’une innovation, pour contribuer au développement durable des Alpes, doit changer les relations

  1. L’innovation au pluriel des cré-acteurs alpins

    Directory of Open Access Journals (Sweden)

    Andréa Finger-Stich

    2009-06-01

    Full Text Available La capacité d’innovation pour un développement durable des territoires alpins ne peut dépendre uniquement de conditions économiques, légales et politiques définies par les Etats aux échelles nationale et internationale. Elle dépend aussi de conditions locales, qui situent historiquement et géographiquement les acteurs dans une continuité de relations sociales et écologiques. Cette perspective accentue l’importance de la dimension collective, donc organisationnelle, du processus d’innovation, allant de l’imagination, puis au développement, à la réalisation – voire la diffusion – d’une nouvelle pratique. Le point de vue de cet article est qu’une innovation, pour contribuer au développement durable des Alpes, doit changer les relations écologique, politique, sociale et culturelle, qui engagent les acteurs du territoire. Ce changement affecte tant l’objet territoire que le sujet acteur du territoire. C’est pourquoi, innover dans les Alpes revient aussi à innover les Alpes et les acteurs alpins(Cosalp, 2008. Sur la base d’une recherche sur la participation des populations locales dans la gestion de forêts communales alpines, l’article relève l’importance des interactions locales impliquant les acteurs d’occupations, genres, âges et origines divers1.The capacity to innovate for a sustainable development of alpine territories cannot depend only on economic, legal and political conditions defined by the State at national and international levels. It depends also on local conditions that situate historically and geographically the actors in a continuity of social and ecological relationships. This approach highlights the collective - thus organisational - dimensions of the innovation process, including the imagination, the development, the implementation and even the diffusion of a new practice. Our point of view is that for contributing to the sustainable development of the Alps, innovations need to

  2. MAPPING ALPINE VEGETATION LOCATION PROPERTIES BY DENSE MATCHING

    Directory of Open Access Journals (Sweden)

    R. Niederheiser

    2016-06-01

    Full Text Available Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  3. Predicting geographically distributed adult dental decay in the greater Auckland region of New Zealand.

    Science.gov (United States)

    Rocha, C M; Kruger, E; Whyman, R; Tennant, M

    2014-06-01

    To model the geographic distribution of current (and treated) dental decay on a high-resolution geographic basis for the Auckland region of New Zealand. The application of matrix-based mathematics to modelling adult dental disease-based on known population risk profiles to provide a detailed map of the dental caries distribution for the greater Auckland region. Of the 29 million teeth in adults in the region some 1.2 million (4%) are suffering decay whilst 7.2 million (25%) have previously suffered decay and are now restored. The model provides a high-resolution picture of where the disease burden lies geographically and presents to health planners a method for developing future service plans.

  4. Lessons from the restructuring of the Danish planning system and its impact on the Greater Copenhagen Region

    DEFF Research Database (Denmark)

    Galland, Daniel

    2013-01-01

    This paper explores the rise and decay of regional planning policies and institutions in the Greater Copenhagen Region (GCR) since the postwar era. The paper develops an understanding based on spatial selectivity and spatial rescaling as regards the fluctuating planning context in the GCR through...

  5. Uranium-series dating of fossil bones from alpine caves

    International Nuclear Information System (INIS)

    Leitner-Wild, E.; Steffan, I.

    1993-01-01

    During the course of an investigation of fossil cave bear populations the uranium-series method for absolute age determination has been applied to bone material. The applicability of the method to bone samples from alpine caves is demonstrated by the concordance of U/Th and U/Pa ages and cross-checks with the radiocarbon method. Stratigraphic agreement between bone ages and carbonate speleothem ages also indicates the potential of the uranium-series method as a suitable tool for the age determination of fossil bones from alpine cave environments. (Author)

  6. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Methods for measuring arctic and alpine shrub growth

    DEFF Research Database (Denmark)

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding...... of tundra vegetation dynamics and environmental changes. However, dendrochronological methods developed for trees, need to be adapted for the morphology and growth eccentricity of shrubs. Here, we review current and developing methods to measure radial and axial growth, estimate age, and assess growth...... dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  8. Treatment for moderate to severe atopic dermatitis in alpine and moderate maritime climates differentially affects helper T cells and memory B cells in children.

    Science.gov (United States)

    Heeringa, J J; Fieten, K B; Bruins, F M; van Hoffen, E; Knol, E F; Pasmans, S G M A; van Zelm, M C

    2018-06-01

    Treatment of atopic dermatitis (AD) is focused on topical anti-inflammatory therapy, epidermal barrier repair and trigger avoidance. Multidisciplinary treatment in both moderate maritime and alpine climates can successfully reduce disease activity in children with AD. However, it remains unclear whether abnormalities in B cell and T cell memory normalize and whether this differs between treatment strategies. To determine whether successful treatment in maritime and alpine climates normalizes B- and T lymphocytes in children with moderate to severe AD. The study was performed in the context of a trial (DAVOS trial, registered at Current Controlled Trials ISCRTN88136485) in which eighty-eight children with moderate to severe AD were randomized to 6 weeks of treatment in moderate maritime climate (outpatient setting) or in the alpine climate (inpatient setting). Before and directly after treatment, disease activity was determined with SA-EASI and serum TARC, and T cell and B cell subsets were quantified in blood. Both treatment protocols achieved a significant decrease in disease activity, which was accompanied by a reduction in circulating memory Treg, transitional B cell and plasmablast numbers. Alpine climate treatment had a significantly greater effect on disease activity and was accompanied by a reduction in blood eosinophils and increases in memory B cells, CD8+ TemRO, CD4+ Tcm and CCR7+ Th2 subsets. Clinically successful treatment of AD induces changes in blood B- and T cell subsets reflecting reduced chronic inflammation. In addition, multidisciplinary inpatient treatment in the alpine climate specifically affects memory B cells, CD8+ T cells and Th2 cells. These cell types could represent good markers for treatment efficacy. © 2018 John Wiley & Sons Ltd.

  9. Epidemiological link of a major cholera outbreak in Greater Accra region of Ghana, 2014.

    Science.gov (United States)

    Ohene-Adjei, Kennedy; Kenu, Ernest; Bandoh, Delia Akosua; Addo, Prince Nii Ossah; Noora, Charles Lwanga; Nortey, Priscillia; Afari, Edwin Andrew

    2017-10-11

    Cholera remains an important public health challenge globally. Several pandemics have occurred in different parts of the world and have been epidemiologically linked by different researchers to illustrate how the cases were spread and how they were related to index cases. Even though the risk factors associated with the 2014 cholera outbreak were investigated extensively, the link between index cases and the source of infection was not investigated to help break the transmission process. This study sought to show how the index cases from various districts of the Greater Accra Region may have been linked. We carried out a descriptive cross sectional study to investigate the epidemiological link of the 2014 cholera outbreak in the Greater Accra region of Ghana. An extensive review of all district records on cholera cases in the Greater Accra region was carried out. Index cases were identified with the help of line lists. Univariate analyses were expressed as frequency distributions, percentages, mean ± Standard Deviation, and rates (attack rates, case-fatality rates etc.) as appropriate. Maps were drawn using Arc GIS and Epi info software to describe the pattern of transmission. Up to 20,199 cholera cases were recorded. Sixty percent of the cases were between 20 and 40 years and about 58% (11,694) of the total cases were males. Almost 50% of the cases occurred in the Accra Metro district. Two-thirds of the index cases ate food prepared outside their home and had visited the Accra Metropolis. The 2014 cholera outbreak can be described as a propagated source outbreak linked to the Accra Metropolis. The link between index cases and the source of infection, if investigated earlier could have helped break the transmission process. Such investigations also inform decision-making about the appropriate interventions to be instituted to prevent subsequent outbreaks.

  10. A kinematic and kinetic study of alpine skiing technique in slalom

    OpenAIRE

    Reid, Robert C.

    2010-01-01

    Avhandling (doktorgrad) - Norges idrettshøgskole, 2010. Despite a large body of lay and professional literature covering numerous aspects of alpine skiing technique, only a limited number of published scientific investigations have examined the relationship between skier technical and tactical characteristics and racing performance. As a consequence, our scientific understanding of how the underlying mechanics of alpine ski racing technique relate to performance is surprisin...

  11. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.Y.; Geloof, I. van; Rietkerk, M.G.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low

  12. Energy Consumption and Greenhouse Gas Emissions Resulting From Tourism Travel in an Alpine Setting

    Directory of Open Access Journals (Sweden)

    Rainer Unger

    2016-11-01

    Full Text Available Tourism—with its social, economic, and ecological dimensions—can be an important driver of sustainable development of alpine communities. Tourism is essential for local people's incomes and livelihoods, but it can also have a major impact on the local environment, landscape aesthetics, and (mainly through tourist transport global climate change. A project currently underway is developing the Austrian mountain municipality of Alpbach into a role model for competitive and sustainable year-round alpine tourism using an integrated and spatially explicit approach that considers energy demand and supply related to housing, infrastructure, and traffic in the settlement and the skiing area. As the first outcome of the project, this article focuses on the development of the Model of Alpine Tourism and Transportation, a geographic information system–based tool for calculating, in detail, energy consumption and greenhouse gas emissions resulting from travel to a single alpine holiday destination. Analysis results show that it is crucial to incorporate both direct and indirect energy use and emissions as each contributes significantly to the climate impact of travel. The study fills a research gap in carbon impact appraisal studies of tourism transport in the context of alpine tourism at the destination level. Our findings will serve as a baseline for the development of comprehensive policies and agendas promoting the transformation toward sustainable alpine tourism.

  13. Climate change scenarios and key climate indices in the Swiss Alpine region

    Science.gov (United States)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  14. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A S.H.; Dommen, J; Furger, M; Graber, W K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  15. Climate change and alpine stream biology

    DEFF Research Database (Denmark)

    Hotaling, Scott; Finn, Debra S.; Joseph Giersch, J.

    2017-01-01

    micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call...

  16. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    Science.gov (United States)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ski racing; and 2) provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both male and female skiers and toward the effects of knee injury on long-term health outcomes, such as the early development of osteoarthritis. International collaborations may be necessary to generate sufficient statistical power for ACL injury/reinjury prevention research in alpine ski racing

  17. Facilitation among plants in alpine environments in the face of climate change

    Directory of Open Access Journals (Sweden)

    Fabien eAnthelme

    2014-08-01

    Full Text Available While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1 the magnitude of warming is predicted to vary along these gradients, and (2 alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and

  18. Facilitation among plants in alpine environments in the face of climate change.

    Science.gov (United States)

    Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

  19. Geochronologic constraints of the uplift and metamorphism along the Alpine Fault, South Island, New Zealand

    International Nuclear Information System (INIS)

    Chamberlain, C.P.; Zeitler, P.K.; Cooper, A.F.

    1995-01-01

    Geochronological studies of pegmatites and Alpine Schist exposed east of the Alpine Fault, South Island, New Zealand, reveal a complex history beginning with magmatism and metamorphism at c. 68 m.y. ago and ending with rapid uplift and exhumation in the last 5 m.y. Pegmatites exposed in the Mataketake Range give conventional U-Pb monazite and SHRIMP ion-probe zircon ages of 68 ± 2.6 Ma and 67.9 ± 2.5 Ma, respectively. Inasmuch as petrologic and isotopic data indicate that the Alpine pegmatites are melts derived from the Alpine Schist, the age of the pegmatites suggests that, at least locally, the high-grade metamorphism is considerably younger than previously assumed. We tentatively suggest that metamorphism, in at least some areas of the Alpine Schist, may be associated with Late Cretaceous transtension rather than resulting from the consequences of collision during the Rangitata Orogeny. 40 Ar/ 39 Ar studies of hornblendes from the Alpine Schist, collected from the Haast River to the Franz Josef Glacier area, reveal highly disturbed spectra. Despite this complexity, these analyses define a systematic decrease in ages both across-strike toward the Alpine Fault (Haast River traverse) and northwards along-strike towards Mt Cook. This pattern of decreasing 40 Ar/ 39 Ar hornblende ages is also observed in lower closure temperature systems such as zircon and apatite fission-track ages. We interpret the decrease in ages toward the fault to be the result of deeper exhumation in the immediate vicinity of the Alpine Fault, whereas we interpret the northward younging of fault-proximal samples to be a result of both more recent and possibly more extensive exhumation than occurred in areas to the south. (author). 55 refs., 4 figs., 2 tabs

  20. Effects of climate and socio-economic changes on water availability, use and management at the regional scale - a case study in the dry inner-alpine zone of Switzerland

    Science.gov (United States)

    Weingartner, Rolf; Reynard, Emmanuel; Graefe, Olivier; Liniger, Hanspeter; Rist, Stephan; Schaedler, Bruno; Schneider, Flurina

    2014-05-01

    The research program NRP 61 "Sustainable Water Management" of the Swiss National Science Foundation had set the goal to provide a basis for sustainable water management in Switzerland. As part of this research program the effects of climate and socio-economic changes on water availability, water use and water management were investigated in the Crans-Montana-Sierre region, situated in the dry inner-alpine Valais (project MontanAqua). The project followed an inter- and trans-disciplinary approach; stakeholders were involved from the very beginning. We assessed the current water situation with quantitative and qualitative methods: A dense hydro-meteorological network was built-up, tracer experiments were conducted and communal water uses as well as the current water management system were analyzed. These investigations paved the way to develop models to simulate possible changes in the near and far future. For this purpose, we applied existing regional climate change scenarios and developed socio-economic scenarios together with the stakeholders. The findings of MontanAqua can be summarized into five messages, each with a short recommendation: 1 - The socio-economic changes have a greater impact on the water situation in 2050 than climate change: A territorial development that limits water needs is recommended. This requires important changes of current water- and land-management practices. 2 - The water quantities available now and in 2050 are generally sufficient. However, shortages are possible in some areas and seasonally: We recommend establishing a regional water management which goes beyond the development of technical infrastructure such as storage facilities or connections between water supply networks. This measure should be accompanied by a clarification and negotiation of water rights at the regional level. 3 - Water issues are primarily regional management problems: We advocate for better cooperation between the eleven municipalities of the region and

  1. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.; Geloof, van I.; Rietkerk, M.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low temperatures,

  2. Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy

    Directory of Open Access Journals (Sweden)

    Aldo MARCHETTO

    2010-08-01

    Full Text Available Twelve Alpine lakes located in the Gran Paradiso National Park, in the western Italian Alps, were sampled during the ice free period in 2008 and analysed for the main morphological, chemical and physical variables in relation to the characteristics of their watershed, with the aim to create a reference database for present and future ecological studies and to support conservation politics with scientific data. The results highlighted that weathering process and direct precipitation input are the main factors determining the hydrochemistry of the studied lakes; moreover the morphological characteristics highly affects the physical properties of the lakes starting from stratification process. The acidification status, the atmospheric input of N compounds and the supply of nutrients were considered in detail. The studied lakes seem to be well preserved by acidification risk. Comparing data from Gran Paradiso National Park with data from European mountain regions ranging in N deposition rates, allows to consider long range anthropogenic impact: the detection of relative low Total Nitrogen (TN concentration is not necessarily a synonym of a soft impact of long range pollutants, being the final nitrogen concentration dependent from retention process, closely related to catchment characteristics, besides N deposition rates; moreover the dominance of Inorganic Nitrogen (IN on Organic Nitrogen (ON highlights that the lakes are interested by N deposition and probably by long range transport of pollutants produced in the urbanized area surrounding the massif. However the Gran Paradiso National Park area is by far less affected by atmospheric pollutants than other Alpine regions, as the Central Alps. Total Phosphorus (TP concentration in Gran Paradiso lakes (1-13 μg L-1, mean level = 4 μg L-1 is an index of oligotrophic and ultraoligotrophic conditions and according to Redfield's ratio phosphorus is mainly the phytoplankton growth limiting element

  3. Abiotic and biotic controls of spatial pattern at alpine treeline

    Science.gov (United States)

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  4. Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yunfei Feng

    2017-02-01

    Full Text Available Alpine grasslands on the Tibetan Plateau are claimed to be sensitive and vulnerable to climate change and human disturbance. The mechanism, direction and magnitude of climatic and anthropogenic influences on net primary productivity (NPP of various alpine pastures remain under debate. Here, we simulated the potential productivity (with only climate variables being considered as drivers; NPPP and actual productivity (based on remote sensing dataset including both climate and anthropogenic drivers; NPPA from 1993 to 2011. We denoted the difference between NPPP and NPPA as NPPpc to quantify how much forage can be potentially consumed by livestock. The actually consumed productivity (NPPac by livestock were estimated based on meat production and daily forage consumption per standardized sheep unit. We hypothesized that the gap between NPPpc and NPPac (NPPgap indicates the direction of vegetation dynamics, restoration or degradation. Our results show that growing season precipitation rather than temperature significantly relates with NPPgap, although warming was significant for the entire study region while precipitation only significantly increased in the northeastern places. On the Northern Tibetan Plateau, 69.05% of available alpine pastures showed a restoration trend with positive NPPgap, and for 58.74% of alpine pastures, stocking rate is suggested to increase in the future because of the positive mean NPPgap and its increasing trend. This study provides a potential framework for regionally regulating grazing management with aims to restore the degraded pastures and sustainable management of the healthy pastures on the Tibetan Plateau.

  5. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  6. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region].

    Science.gov (United States)

    Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang

    2013-10-01

    There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.

  7. Characterisation of alpine skis

    OpenAIRE

    Wikerman, Fredrik

    2016-01-01

    Skiing is a fast and competitive sport where skiers must push their performance limit to win medals, the di↵erence can be within hundreds of a second. Therefore, technical improvements are essential for assisting in the skier’s improvement. This thesis project is a joint project between KTH and the Swedish Ski Association and Swedish Ski Team with the purpose of obtaining a better understanding of the structural properties of alpine skis, aiming to improve the individual selection process of ...

  8. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples

    Science.gov (United States)

    John L. Korfmacher; Robert C. Musselman

    2007-01-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  9. Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem

    Directory of Open Access Journals (Sweden)

    Xiaoming Kang

    2016-05-01

    Full Text Available Quantifying the variability and changes in phenology and gross primary production (GPP of alpine wetlands in the Qinghai–Tibetan Plateau under climate change is essential for assessing carbon (C balance dynamics at regional and global scales. In this study, in situ eddy covariance (EC flux tower observations and remote sensing data were integrated with a modified, satellite-based vegetation photosynthesis model (VPM to investigate the variability in climate change, phenology, and GPP of an alpine wetland ecosystem, located in Zoige, southwestern China. Two-year EC data and remote sensing vegetation indices showed that warmer temperatures corresponded to an earlier start date of the growing season, increased GPP, and ecosystem respiration, and hence increased the C sink strength of the alpine wetlands. Twelve-year long-term simulations (2000–2011 showed that: (1 there were significantly increasing trends for the mean annual enhanced vegetation index (EVI, land surface water index (LSWI, and growing season GPP (R2 ≥ 0.59, p < 0.01 at rates of 0.002, 0.11 year−1 and 16.32 g·C·m−2·year−1, respectively, which was in line with the observed warming trend (R2 = 0.54, p = 0.006; (2 the start and end of the vegetation growing season (SOS and EOS experienced a continuous advancing trend at a rate of 1.61 days·year−1 and a delaying trend at a rate of 1.57 days·year−1 from 2000 to 2011 (p ≤ 0.04, respectively; and (3 with increasing temperature, the advanced SOS and delayed EOS prolonged the wetland’s phenological and photosynthetically active period and, thereby, increased wetland productivity by about 3.7–4.2 g·C·m−2·year−1 per day. Furthermore, our results indicated that warming and the extension of the growing season had positive effects on carbon uptake in this alpine wetland ecosystem.

  10. Organic Farming and Social-Ecological Resilience: the Alpine Valleys of Sölktäler, Austria

    Directory of Open Access Journals (Sweden)

    Rebecka Milestad

    2003-12-01

    Full Text Available Farming in the Austrian Alps is small in scale and involves a high degree of manual labor. In the face of structural changes in agriculture, alpine farms are finding it increasingly difficult to remain economically viable. Organic farming presents a promising alternative for alpine farmers because it receives considerable financial support under the Common Agricultural Policy of the European Union. Recent years have seen an increase in the number of organic farms in Austria in general, and in alpine areas in particular. Using data from an empirical study carried out in the alpine area of Sölktäler, Austria, this paper examines the issues of how closely the regulations and principles of organic farming match farmers' perspectives on sustainable agriculture and whether or not organic farming is capable of building social-ecological resilience for local farms. Qualitative interviews and a series of workshops were used to learn about farmers' "desired system state" with regard to their region, disturbances to this system, and their perspectives on organic farming. The desired system in Sölktäler as formulated by the farmers depicts a vivid farming community that manages a diverse traditional agricultural landscape and performs a number of ecological services. The desired system and the principles of organic farming have several aspects in common, and many management practices and features of the social system support social-ecological resilience. The vulnerability of farms increases, however, when farmers must deal with structural changes in agriculture, the erosion of traditional ecological knowledge, and societal transformation. In conclusion, organic farming is a tool that can be used to build social-ecological resilience for Sölktäler farms, because it secures economic funding for the area and makes it possible to sustain environmentally benign practices. What remains is the question of whether the farming community is capable of

  11. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2010-04-01

    Full Text Available Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP, Ecosystem Respiration (Reco, and Net Ecosystem Exchange (NEE were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI. The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2. The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.

  12. CanWEA regional issues and wind energy project siting : mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, M. [Jacques Whitford Ltd., Vancouver, BC (Canada)]|[Axys Environmental Consulting Ltd., Vancouver, BC (Canada)

    2008-07-01

    Planning and permitting considerations for wind energy project siting in mountainous areas were discussed. Mountainous regions have a specific set of environmental and socio-economic concerns. Potential disruptions to wildlife, noise, and visual impacts are a primary concern in the assessment of potential wind farm projects. Alpine habitats are unique and often contain fragile and endangered species. Reclamation techniques for mountainous habitats have not been extensively tested, and the sites are not as resilient as sites located in other ecosystems. In addition, alpine habitats are often migratory corridors and breeding grounds for threatened or endangered birds. In the winter months, alpine habitats are used by caribou, grizzly bears, and wolverine dens. Bats are also present at high elevations. It is often difficult to conduct baseline and monitoring studies in mountainous areas since alpine habitat is subject to rapid weather changes, and has a very short construction period. tabs., figs.

  13. Greater Vancouver regional district air quality management plan : implementation status report

    International Nuclear Information System (INIS)

    2001-03-01

    In December 1994, an Air Quality Management Plan (AQMP) was adopted by the Greater Vancouver Regional District. The AQMP included ways to improve air quality in the region, leading to reduced emissions from commercial and industrial operations. This Plan encourages cooperation with the various communities affected to achieve clean air lifestyles and manage emissions from human activity to enhance human health and the integrity of the environment. The reduction of total emissions of the common air contaminants sulphur and nitrogen oxides, particulate matter, carbon monoxide and volatile organic compounds by 38 per cent is the stated aim of the AQMP. Five years of planning resulted in the formulation of the AQMP. The issues addressed were assigned one of four priorities as follows: priority 1 deals with ground level ozone and fine particulate, priority 2 looks at visibility, hazardous air pollutants, and global climate change, priority 3 concerns odour, carbon monoxide, sulphur dioxide, acidic deposition, and nitrogen dioxide, and priority 4 contains total suspended particulate matter and volatile organic compounds. A total of 54 Emission Reduction Measures were established, and the document reviewed them. Progress is being made in all areas. 2 tabs., 3 figs

  14. A more holistic understanding of soil organic matter pools of alpine and pre-alpine grassland soils in a changing climate

    Science.gov (United States)

    Garcia Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Beck, Robert; Kögel-Knabner, Ingrid

    2016-04-01

    In southern Germany, the alpine and pre-alpine grassland systems (> 1 Mio ha) provide an important economic value via fodder used for milk and meat production and grassland soils support environmental key functions (C and N storage, water retention, erosion control and biodiversity hot spot). In addition, these grassland soils constitute important regions for tourism and recreation. However, the different land use and management practices in this area introduce changes which are likely to accelerate due to climate change. The newly launched SUPSALPS project within the BonaRes Initiative of the German Ministry for Education and Research is focused on the development and evaluation of innovative grassland management strategies under climate change with an emphasis on soil functions, which are on the one hand environmental sustainable and on the other hand economically viable. Several field experiments of the project will be initialized in order to evaluate grassland soil functioning for a range of current and climate adapted management practices. A multi-factorial design combines ongoing and new plant-soil meso-/macrocosm and field studies at a multitude of existing long-term research sites along an elevation gradient in Bavaria. One of the specific objectives of the project is to improve our knowledge on the sensitivity of specific soil organic matter (SOM) fractions to climate change. Moreover, the project aims to determine the processes and mechanisms involved in the build-up and stabilization of C and N pools under different management practices. In order to derive sensitive SOM pools, a promising physical fractionation method was developed that enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20μm and oPOM 20 μm; medium + fine silt and clay, management changes.

  15. Toward a DNA taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA.

    Directory of Open Access Journals (Sweden)

    Laurent Vuataz

    Full Text Available Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1 marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe.

  16. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  17. Paleomagnetism and the alpine tectonics of Eurasia

    NARCIS (Netherlands)

    Raven, Th.

    1964-01-01

    The following paper by Gregor and Zijderveld is the first of a series planned to report results of paleomagnetic investigations in the Alpine area from Italy to the Himalayas. These investigations are carried out in close collaboration between the well-equipped paleomagnetic laboratory of

  18. The consequences of elevated CO² and land use in alpine ecosystems

    OpenAIRE

    Inauen, Nicole

    2014-01-01

    The consequences of elevated CO2 and land use in alpine ecosystems This PhD thesis addresses two main aspects of Global Change and their impacts on alpine vegetation and eco-hydrology, (1) the steadily increasing concentration of CO2 in the atmosphere as well as (2) land use and its current decline across the Alps. Current and future rises of atmospheric CO2 concentration are commonly expected to stimulate photosynthesis and to reduce carbon limitation of plant growth. Whether this hypoth...

  19. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Science.gov (United States)

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups

  20. Identifying key conservation threats to Alpine birds through expert knowledge

    Science.gov (United States)

    Pedrini, Paolo; Brambilla, Mattia; Rolando, Antonio; Girardello, Marco

    2016-01-01

    Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community. PMID:26966659

  1. Identifying key conservation threats to Alpine birds through expert knowledge

    Directory of Open Access Journals (Sweden)

    Dan E. Chamberlain

    2016-02-01

    Full Text Available Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds. For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.

  2. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space

    Directory of Open Access Journals (Sweden)

    Lothar Eysn

    2015-05-01

    Full Text Available In this study, eight airborne laser scanning (ALS-based single tree detection methods are benchmarked and investigated. The methods were applied to a unique dataset originating from different regions of the Alpine Space covering different study areas, forest types, and structures. This is the first benchmark ever performed for different forests within the Alps. The evaluation of the detection results was carried out in a reproducible way by automatically matching them to precise in situ forest inventory data using a restricted nearest neighbor detection approach. Quantitative statistical parameters such as percentages of correctly matched trees and omission and commission errors are presented. The proposed automated matching procedure presented herein shows an overall accuracy of 97%. Method based analysis, investigations per forest type, and an overall benchmark performance are presented. The best matching rate was obtained for single-layered coniferous forests. Dominated trees were challenging for all methods. The overall performance shows a matching rate of 47%, which is comparable to results of other benchmarks performed in the past. The study provides new insight regarding the potential and limits of tree detection with ALS and underlines some key aspects regarding the choice of method when performing single tree detection for the various forest types encountered in alpine regions.

  4. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  5. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    Science.gov (United States)

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested. Copyright © 2016. Published by Elsevier Ltd.

  6. The snow vole (Chionomys nivalis) as an appropriate environmental bioindicator in alpine ecosystems

    International Nuclear Information System (INIS)

    Metcheva, Roumiana; Beltcheva, Michaela; Chassovnikarova, Tsenka

    2008-01-01

    The snow vole (Chionomys nivalis, Martins, 1842) is a common species in the Bulgarian high mountains. Its populations are distributed in different altitudes, regions, and keep stable population density. This is the reason the species has been tested as a bioindicator for environmental quality in alpine ecosystems. The cumulative environmental impact in snow vole populations was evaluated using cytogenetical, hematological, ecotoxicological, radiometrical, ecophysiological, and morphophysiological indices. Standard karyotype, chromosomal aberrations, and other diversions have been observed. These investigations reveal that the snow vole is one of the most appropriate species that can be used as a biomonitor for environmental assessment in mountain areas

  7. The snow vole (Chionomys nivalis) as an appropriate environmental bioindicator in alpine ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Metcheva, Roumiana [Institute of Zoology, Bulgarian Academy of Science, 1, Tzar Osvoboditel blvd., Sofia, 1000 Bulgaria (Bulgaria)], E-mail: rummech@yahoo.com; Beltcheva, Michaela; Chassovnikarova, Tsenka [Institute of Zoology, Bulgarian Academy of Science, 1, Tzar Osvoboditel blvd., Sofia, 1000 Bulgaria (Bulgaria)

    2008-03-01

    The snow vole (Chionomys nivalis, Martins, 1842) is a common species in the Bulgarian high mountains. Its populations are distributed in different altitudes, regions, and keep stable population density. This is the reason the species has been tested as a bioindicator for environmental quality in alpine ecosystems. The cumulative environmental impact in snow vole populations was evaluated using cytogenetical, hematological, ecotoxicological, radiometrical, ecophysiological, and morphophysiological indices. Standard karyotype, chromosomal aberrations, and other diversions have been observed. These investigations reveal that the snow vole is one of the most appropriate species that can be used as a biomonitor for environmental assessment in mountain areas.

  8. Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands

    DEFF Research Database (Denmark)

    Karg, Sabine

    Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands.......Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands....

  9. Regional energy resource development and energy security under CO2 emission constraint in the greater Mekong sub-region countries (GMS)

    International Nuclear Information System (INIS)

    Watcharejyothin, Mayurachat; Shrestha, Ram M.

    2009-01-01

    The paper evaluates effects of energy resource development within the Greater Mekong Sub-region (GMS) on energy supply mix, energy system cost, energy security and environment during 2000-2035. A MARKAL-based integrated energy system model of the five GMS countries was developed to examine benefits of regional energy resource development for meeting the energy demand of these countries. The study found that an unrestricted energy resource development and trade within the region would reduce the total-regional energy systems cost by 18% and would abate the total CO 2 emission by 5% as compared to the base case. All the five countries except Myanmar would benefit from the expansion of regional energy resource integration in terms of lower energy systems costs and better environmental qualities. An imposition of CO 2 emission reduction constraint by 5% on each of the study countries from that of the corresponding emissions under the unrestricted energy resource development in the GMS is found to improve energy security, reduce energy import and fossil fuels dependences and increase volume of power trade within the region. The total energy system cost under the joint CO 2 emission reduction strategy would be less costly than that under the individual emission targets set for each country.

  10. A COMPARISON OF GROUND REACTION FORCES DETERMINED BY PORTABLE FORCE-PLATE AND PRESSURE-INSOLE SYSTEMS IN ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Kosuke Nakazato

    2011-12-01

    Full Text Available For the determination of ground reaction forces in alpine skiing, pressure insole (PI systems and portable force plate (FP systems are well known and widely used in previous studies. The purposes of this study were 1 to provide reference data for the vertical component of the ground reaction forces (vGRF during alpine skiing measured by the PI and FP systems, and 2 to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier's level, skiing mode and pitch. Ten expert and ten intermediate level skiers performed 10 double turns with the skiing technique "Carving in Short Radii" as High Dynamic Skiing mode and "Parallel Ski Steering in Long Radii" as Low Dynamic Skiing mode on both the steep (23 ° and the flat (15 ° slope twice. All subjects skied with both the PI and the FP system simultaneously. During the outside phase, the mean vGRF and the maximum vGRF determined by the FP are greater than the PI (p < 0.01. Additionally during the inside phase, the mean vGRF determined by the FP were greater than the PI (p < 0.01. During the edge changing phases, the mean vGRF determined by the FP were greater than the PI (p < 0.01. However, the minimum vGRF during the edge changing phases determined by the FP were smaller than the PI (p < 0.01 in the High-Steep skiing modes of Experts and Intermediates (p < 0.001. We have found that generally, the PI system underestimates the total vGRF compared to the FP system. However, this difference depends not only the phase in the turn (inside, outside, edge changing, but also is affected by the skier's level, the skiing mode performed and pitch.

  11. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance.

    Science.gov (United States)

    Arroyo, Mary T K; Dudley, Leah S; Jespersen, Gus; Pacheco, Diego A; Cavieres, Lohengrin A

    2013-12-01

    How high-alpine plants confront stochastic conditions for animal pollination is a critical question. We investigated the effect of temperature on potential flower longevity (FL) measured in pollinator-excluded flowers and actual FL measured in pollinated flowers in self-incompatible Oxalis compacta and evaluated if plastically prolonged potential FL can ameliorate slow pollination under cool conditions. Pollinator-excluded and hand-pollinated flowers were experimentally warmed with open-top chambers (OTCs) on a site at 3470 m above sea level (asl). Flower-specific temperatures, and pollinator-excluded and open-pollination flower life-spans were measured at six alpine sites between 3100 and 3470 m asl. Fruit set was analyzed in relation to inferred pollination time. Warming reduced potential FL. Variable thermal conditions across the alpine landscape predicted potential and actual FL; flower senescence was pollination-regulated. Actual FL and potential FL were coupled. Prolonged potential FL generally increased fruit set under cooler conditions. Plastic responses permit virgin flowers of O. compacta to remain open longer under cooler temperatures, thereby ameliorating slow pollination, and to close earlier when pollination tends to be faster under warmer conditions. Plastic potential FL provides adaptive advantages in the cold, thermally variable alpine habitat, and has important implications for reproductive success in alpine plants in a warming world. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. The Alpine loop of the tethys zone

    NARCIS (Netherlands)

    Bemmelen, R.W. van

    The Alpine loop in Europe results from semi-autochthonous crustal movements which are restricted to the mobile Tethys zone. Its evolution cannot be explained by a uniform northward drift and push of the African continent; it has to be sought, in the first place, in geodynamic processes occurring in

  13. SEASONAL VARIATION IN OVULATORY ACTIVITY OF NUBIAN, ALPINE AND NUBIAN X CREOLE DOES UNDER TROPICAL PHOTOPERIOD (22° N

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia Morales

    2011-09-01

    Full Text Available In the present study, seasonal variation in ovulatory activity of Nubian, Alpine and Criollox Nubian goats in the semiarid region of central-northern Mexico (22° 14’ N was examined. The study was conducted under natural photoperiod and climate conditions during a whole year. Eight female goats per breed were grouped separately and exposed to visual, olfactory and audible signals of bucks. Blood samples were obtained twice per week and serum progesterone concentrations were determined. All goats presented a clear pattern of seasonal ovulatory activity based on serum progesterone profiles. Length of the ovulatory activity period did not differ between genotypes (P >0.10, and had an average duration of 4.3 months. Nevertheless Criollo x Nubian goats presented greater individual variation in dates of onset and end as well as length of this period (P <0.05. Results indicate that female goats of genotypes which differ in latitude of origin, express a similar restricted pattern of seasonal ovulatory activity when subjected to small annual changes in phtoperiod, adequate nutrition and incomplete socio-sexual stimulus.

  14. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    Science.gov (United States)

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  15. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    Science.gov (United States)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10

  16. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    Directory of Open Access Journals (Sweden)

    Jordan MJ

    2017-03-01

    Full Text Available Matthew J Jordan,1 Per Aagaard,2 Walter Herzog1 1Human Performance Laboratory, The University of Calgary, Calgary, AB, Canada; 2Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC, University of Southern Denmark, Odense M, Denmark Abstract: The purpose of the present review was to: 1 provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL injury in alpine ski racing; and 2 provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness. While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both

  17. Renewable Energy, Authenticity, and Tourism: Social Acceptance of Photovoltaic Installations in a Swiss Alpine Region

    Directory of Open Access Journals (Sweden)

    Annina Helena Michel

    2015-05-01

    Full Text Available With the increasing emergence of renewable energy sites in Switzerland, new impacts on the landscape can be observed. Above the Alpine village of Bellwald, a pilot project testing avalanche barriers as a possible site for photovoltaic installations was inaugurated in 2012. This study focused on social aspects of the project and asked questions about local residents' and tourists' perceptions of and attitudes toward the installations. Its findings reveal that the new elements are not perceived as a drastic intrusion into the landscape, because the view was already affected by the avalanche barriers, which are accepted because of their vital protective function. No significant difference was found between residents' and tourists' evaluation of the new photovoltaic installations. However, different factors influenced the perceptions of these 2 groups. In both groups, conceptions related to place played an important role in the evaluation of possible photovoltaic sites.

  18. The price of safety: costs for mitigating and coping with Alpine hazards

    Science.gov (United States)

    Pfurtscheller, C.; Thieken, A. H.

    2013-10-01

    Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.

  19. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu, Wenjie; Chen, Shengyun; Zhao, Qian; Ren, Jiawen; Qin, Dahe; Sun, Zhizhong

    2014-01-01

    The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics. (letter)

  20. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Yi, Shuhua; Chen, Jianjun; Qin, Yu; Xu, Gaowei

    2016-11-01

    There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika) on alpine grassland on the Qinghai-Tibet Plateau (QTP). On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ˜ m2), our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ˜ 1000 m2) by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1) the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2) pika consumed 8-21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  1. Forestry-related pathways for the movement of exotic plant pests into and within the greater Caribbean region

    Science.gov (United States)

    Leslie Newton; Heike Meissner; Andrea. Lemay

    2011-01-01

    Forests of the Greater Caribbean Region (GCR) are important ecologically and economically. These unique ecosystems are under increasing pressure from exotic pests, which may cause extensive environmental damage and cost billions of dollars in control programs, lost production, and forest restoration.

  2. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  3. Statistical significant changes in ground thermal conditions of alpine Austria during the last decade

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Longer data series (e.g. >10 a) of ground temperatures in alpine regions are helpful to improve the understanding regarding the effects of present climate change on distribution and thermal characteristics of seasonal frost- and permafrost-affected areas. Beginning in 2004 - and more intensively since 2006 - a permafrost and seasonal frost monitoring network was established in Central and Eastern Austria by the University of Graz. This network consists of c.60 ground temperature (surface and near-surface) monitoring sites which are located at 1922-3002 m a.s.l., at latitude 46°55'-47°22'N and at longitude 12°44'-14°41'E. These data allow conclusions about general ground thermal conditions, potential permafrost occurrence, trend during the observation period, and regional pattern of changes. Calculations and analyses of several different temperature-related parameters were accomplished. At an annual scale a region-wide statistical significant warming during the observation period was revealed by e.g. an increase in mean annual temperature values (mean, maximum) or the significant lowering of the surface frost number (F+). At a seasonal scale no significant trend of any temperature-related parameter was in most cases revealed for spring (MAM) and autumn (SON). Winter (DJF) shows only a weak warming. In contrast, the summer (JJA) season reveals in general a significant warming as confirmed by several different temperature-related parameters such as e.g. mean seasonal temperature, number of thawing degree days, number of freezing degree days, or days without night frost. On a monthly basis August shows the statistically most robust and strongest warming of all months, although regional differences occur. Despite the fact that the general ground temperature warming during the last decade is confirmed by the field data in the study region, complications in trend analyses arise by temperature anomalies (e.g. warm winter 2006/07) or substantial variations in the winter

  4. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  5. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.

    Science.gov (United States)

    Niemeijer, A R; Boulton, C; Toy, V G; Townend, J; Sutherland, R

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T  = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing ( V  Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  6. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  7. Can We Model the Scenic Beauty of an Alpine Landscape?

    Directory of Open Access Journals (Sweden)

    Erich Tasser

    2013-03-01

    Full Text Available During the last decade, agriculture has lost its importance in many European mountain regions and tourism, which benefits from attractive landscapes, has become a major source of income. Changes in landscape patterns and elements might affect scenic beauty and therefore the socio-economic welfare of a region. Our study aimed at modeling scenic beauty by quantifying the influence of landscape elements and patterns in relationship to distance. Focusing on Alpine landscapes in South and North Tyrol, we used a photographic questionnaire showing different landscape compositions. As mountain landscapes offer long vistas, we related scenic beauty to different distance zones. Our results indicate that the near zone contributes by 64% to the valuation of scenic beauty, the middle zone by 22%, and the far zone by 14%. In contrast to artificial elements, naturalness and diversity increased scenic beauty. Significant differences between different social groups (origin, age, gender, cultural background occurred only between the local population and tourists regarding great landscape changes. Changes towards more homogenous landscapes were perceived negatively, thus political decision makers should support the conservation of the cultural landscape.

  8. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  9. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  10. Regional energy resource development and energy security under CO{sub 2} emission constraint in the greater Mekong sub-region countries (GMS)

    Energy Technology Data Exchange (ETDEWEB)

    Watcharejyothin, Mayurachat; Shrestha, Ram M. [School of Environment, Resources and Development, Asian Institute of Technology (Thailand)

    2009-11-15

    The paper evaluates effects of energy resource development within the Greater Mekong Sub-region (GMS) on energy supply mix, energy system cost, energy security and environment during 2000-2035. A MARKAL-based integrated energy system model of the five GMS countries was developed to examine benefits of regional energy resource development for meeting the energy demand of these countries. The study found that an unrestricted energy resource development and trade within the region would reduce the total-regional energy systems cost by 18% and would abate the total CO{sub 2} emission by 5% as compared to the base case. All the five countries except Myanmar would benefit from the expansion of regional energy resource integration in terms of lower energy systems costs and better environmental qualities. An imposition of CO{sub 2} emission reduction constraint by 5% on each of the study countries from that of the corresponding emissions under the unrestricted energy resource development in the GMS is found to improve energy security, reduce energy import and fossil fuels dependences and increase volume of power trade within the region. The total energy system cost under the joint CO{sub 2} emission reduction strategy would be less costly than that under the individual emission targets set for each country. (author)

  11. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Science.gov (United States)

    Hübl, Johannes; McArdell, Brian W.; Walter, Fabian

    2018-01-01

    The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449

  12. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Directory of Open Access Journals (Sweden)

    Andreas Schimmel

    2018-05-01

    Full Text Available The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz, several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio.

  13. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  14. Modelling atmospheric circulations for the study of Alpine valleys pollution; Modelisation des circulations atmospheriques pour l'etude de la pollution des vallees alpines

    Energy Technology Data Exchange (ETDEWEB)

    Brulfert, G

    2004-11-15

    Local weather phenomena observed in alpine valleys frequently lead to the accumulation of emitted anthropogenic airborne species in the low layers of the atmosphere. The development of a numerical model allows reproducing the chemical evolution of air mass during POVA intensive period of observations. In Chamonix and Maurienne valley, computations of photochemical indicators (NO{sub y}, O{sub 3}/NO{sub z}, H{sub 2}O{sub 2}/HNO{sub 3}) prove the ozone regime to be control by volatile organic compounds. Moreover simulation highlighted that the major part of this secondary pollutant is regionally produced. The development of an indicator who localised ozone production sites can help to define abatement scenarios. The chemical mechanism RACM allows describing the evolution of many species. It is possible to conclude that in winter road traffic and heating are the main sources of volatile organic compounds. (author)

  15. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    Science.gov (United States)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital

  16. Tomography images of the Alpine roots and surrounding upper mantle

    Science.gov (United States)

    Plomerova, Jaroslava; Babuska, Vladislav

    2017-04-01

    Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre

  17. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    S. Yi

    2016-11-01

    Full Text Available There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika on alpine grassland on the Qinghai-Tibet Plateau (QTP. On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ∼  m2, our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ∼  1000 m2 by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1 the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2 pika consumed 8–21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  18. Effect of body condition score of does and use of bucks subjected to added artificial light on estrus response of Alpine goats.

    Science.gov (United States)

    Rivas-Muñoz, Raymundo; Carrillo, Evaristo; Rodriguez-Martinez, Rafael; Leyva, Carlos; Mellado, Miguel; Véliz, Francisco Gerardo

    2010-08-01

    The effects of body condition score of does and exposure to sexually active bucks after exposure to long-day artificial photoperiod were examined in mature anovulatory French Alpine goat in Northern Mexico. In June, goats in good (2.3 +/- 0.2, scale 1 to 4; n = 10) or poor (1.6 +/- 0.3; n = 10) body condition were exposed during 15 day to sexually active bucks, which had been exposed to long photoperiod (16:8-h light-dark cycle, starting in December). A third group of goats in good body condition was exposed to bucks kept under the natural photoperiod of this region (26 degrees N). All goats in good body condition exposed to bucks treated with prolonged photoperiod exhibited estrus behavior, whereas only 50% of the does in poor body condition showed estrous behavior during the 15-day buck exposure. None of the does in good body condition showed estrus when exposed to bucks under natural photoperiod. These results revealed that a good body condition is required for maximum estrus response in anestrous Alpine goats and that exposure of bucks to long photoperiod in winter is essential for an adequate stimulus to reestablish estrus cycles in anovulatory Alpine does in Northern Mexico.

  19. Model-Based Attribution of High-Resolution Streamflow Trends in Two Alpine Basins of Western Austria

    Directory of Open Access Journals (Sweden)

    Christoph Kormann

    2016-02-01

    Full Text Available Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower

  20. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by ∼0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation

  1. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  2. Deep genetic divergence between disjunct Refugia in the Arctic-Alpine King's Crown, Rhodiola integrifolia (Crassulaceae.

    Directory of Open Access Journals (Sweden)

    Eric G DeChaine

    Full Text Available Despite the strength of climatic variability at high latitudes and upper elevations, we still do not fully understand how plants in North America that are distributed between Arctic and alpine areas responded to the environmental changes of the Quaternary. To address this question, we set out to resolve the evolutionary history of the King's Crown, Rhodiola integrifolia using multi-locus population genetic and phylogenetic analyses in combination with ecological niche modeling. Our population genetic analyses of multiple anonymous nuclear loci revealed two major clades within R. integrifolia that diverged from each other ~ 700 kya: one occurring in Beringia to the north (including members of subspecies leedyi and part of subspecies integrifolia, and the other restricted to the Southern Rocky Mountain refugium in the south (including individuals of subspecies neomexicana and part of subspecies integrifolia. Ecological niche models corroborate our hypothesized locations of refugial areas inferred from our phylogeographic analyses and revealed some environmental differences between the regions inhabited by its two subclades. Our study underscores the role of geographic isolation in promoting genetic divergence and the evolution of endemic subspecies in R. integrifolia. Furthermore, our phylogenetic analyses of the plastid spacer region trnL-F demonstrate that among the native North American species, R. integrifolia and R. rhodantha are more closely related to one another than either is to R. rosea. An understanding of these historic processes lies at the heart of making informed management decisions regarding this and other Arctic-alpine species of concern in this increasingly threatened biome.

  3. Carbon sequestration in Himalaya's alpine meadows: Mitigating cropping encroachment on pastures in Northern Pakistan

    OpenAIRE

    Rueff, Henri; Syed Rehman, Aziz; Rahim, Inam; Maselli, Daniel; Nafees, Mohammad; Wiesmann, Urs

    2011-01-01

    Rangelands store about 30% of the world’s carbon and support over 120 million pastoralists globally. Adjusting the management of remote alpine pastures bears a substantial climate change mitigation potential that can provide livelihood support for marginalized pastoralists through carbon payment. Landless pastoralists in Northern Pakistan seek higher income by cropping potatoes and peas over alpine pastures. However, tilling steep slopes without terracing exposes soil to erosion. Moreover, yi...

  4. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand

    Science.gov (United States)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (< 1 cm to < 7 cm) layered structure or a relatively thick (10s cm) package lacking a detectable macroscopic fabric. Lithological and related rheological contrasts are widely assumed to govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial

  5. A new approach for surveying the Alpine Salamander (Salamandra atra in Austria

    Directory of Open Access Journals (Sweden)

    Ursula Reinthaler-Lottermoser

    2010-12-01

    Full Text Available The Alpine Salamander is a small pitch black amphibian which is endemic to the European Alps and the Dinarides. It is strictly protected according to the European FFH guidelines. Despite its central role in the alpine ecosystem our actual published record in Austria is small. In order to resolve this shortcoming our project explores its distribution in Austria. It uses a participatory and community based approach to gather data. Everybody can enter and look at Alpine Salamander observations on our website www.alpensalamander.eu. This approach also allows us to establish an “oral history” of Salamander observations in the past 50 years by conducting interviews in the local community. Since July 2009 the website and salamander report database are online. From the actual data (more than 5600 records we already obtained an overview about the present distribution and data quality. The data are an excellent basis for detailed scientific studies on these remarkable amphibians. With this new and highly interactive approach science and education are combined to initiate protection measures with the public.

  6. Continuous recording of seismic signals in Alpine permafrost

    Science.gov (United States)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  7. Classification of the eastern alpine vegetation of Lesotho | Morris ...

    African Journals Online (AJOL)

    Five vegetation communities in the alpine catchment of Lesotho were identified by hierarchical classification of the botanical composition data. Discriminant analysis indicated that these communities occupy particular topographic positions. The community-environmental relationships identified in this study were similar to ...

  8. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  9. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Kristensen, M.; Pötzelsberger, B.; Scheiber, P.

    2015-01-01

    We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen...

  10. 78 FR 28273 - Alpine Investors IV SBIC, LP; Notice Seeking Exemption Under Section 312 of the Small Business...

    Science.gov (United States)

    2013-05-14

    ... SMALL BUSINESS ADMINISTRATION [License No. 09/09-0461] Alpine Investors IV SBIC, LP; Notice... hereby given that Alpine Investors IV SBIC, LP, 3 Embarcadero Center, Suite 2330, San Francisco, CA, a...'') Rules and [[Page 28274

  11. Modelling atmospheric circulations for the study of Alpine valleys pollution; Modelisation des circulations atmospheriques pour l'etude de la pollution des vallees alpines

    Energy Technology Data Exchange (ETDEWEB)

    Brulfert, G.

    2004-11-15

    Local weather phenomena observed in alpine valleys frequently lead to the accumulation of emitted anthropogenic airborne species in the low layers of the atmosphere. The development of a numerical model allows reproducing the chemical evolution of air mass during POVA intensive period of observations. In Chamonix and Maurienne valley, computations of photochemical indicators (NO{sub y}, O{sub 3}/NO{sub z}, H{sub 2}O{sub 2}/HNO{sub 3}) prove the ozone regime to be control by volatile organic compounds. Moreover simulation highlighted that the major part of this secondary pollutant is regionally produced. The development of an indicator who localised ozone production sites can help to define abatement scenarios. The chemical mechanism RACM allows describing the evolution of many species. It is possible to conclude that in winter road traffic and heating are the main sources of volatile organic compounds. (author)

  12. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  13. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record

    Science.gov (United States)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.

    2017-12-01

    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  14. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  15. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    Margesin, R.

    2000-01-01

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  16. Vegetation Structure and Temperature Regimes of Tropical Alpine Treelines

    NARCIS (Netherlands)

    Bader, M.Y.; Rietkerk, M.G.; Bregt, A.K.

    2007-01-01

    Alpine treeline ecotones can be gradual transitions, abrupt boundaries, or patchy mosaics, and these different patterns may indicate important processes and dynamic properties. We present observed spatial patterns of a wide range of tropical treelines and try to explain these patterns. Treelines

  17. Vegetation structure and temperature regimes of tropical alpine treelines

    NARCIS (Netherlands)

    Bader, M.; Rietkerk, M.; Bregt, A.K.

    2007-01-01

    Alpine treeline ecotones can be gradual transitions, abrupt boundaries, or patchy mosaics, and these different patterns may indicate important processes and dynamic properties. We present observed spatial patterns of a wide range of tropical treelines and try to explain these patterns. Treelines

  18. Remotely Sensed Estimation of Net Primary Productivity (NPP and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2017-07-01

    Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.

  19. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo

    2016-06-01

    Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phosphate sorption characteristics of European alpine soils

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Kopáček, Jiří; Camarero, L.; Garcia-Pausas, J.

    2011-01-01

    Roč. 75, č. 3 (2011), s. 862-870 ISSN 0361-5995 R&D Projects: GA ČR(CZ) GA526/09/0567; GA AV ČR(CZ) KJB600960907 Grant - others:EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphate sorption * alpine soil s * acidification Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.979, year: 2011

  1. Exploring the patterns of alpine vegetation of Eastern Bhutan: a case study from the Merak Himalaya.

    Science.gov (United States)

    Jamtsho, Karma; Sridith, Kitichate

    2015-01-01

    A survey was conducted from March to September 2012 along the altitudinal gradient of the Jomokungkhar trail in the Merak Himalaya of Sakteng Wildlife Sanctuary to study the floristic compositions and the patterns of alpine vegetation of Eastern Bhutan. The vegetation of the sampled plots is classified into five types of communities based on the hierarchical cluster analysis at similarity index 63% viz., (1) Riverine Community; (2) Abies-Rhododendron Woodland Community; (3) Juniperus Scrub Community; (4) Rhododendron Krummholz and (5) Alpine Meadow, based on the floristic compositions. In addition, it was noticed that the fragile alpine environment of the Merak Himalaya has high plant diversity and important plants that are susceptible to the anthropogenic pressures.

  2. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    Science.gov (United States)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  3. Are low altitude alpine tundra ecosystems under threat? A case study from the Parc National de la Gaspésie, Québec

    International Nuclear Information System (INIS)

    Dumais, Catherine; Ropars, Pascale; Denis, Marie-Pier; Dufour-Tremblay, Geneviève; Boudreau, Stéphane

    2014-01-01

    According to the 2007 IPCC report, the alpine tundra ecosystems found on low mountains of the northern hemisphere are amongst the most threatened by climate change. A treeline advance or a significant erect shrub expansion could result in increased competition for the arctic-alpine species usually found on mountaintops and eventually lead to their local extinction. The objectives of our study were to identify recent changes in the cover and growth of erect woody vegetation in the alpine tundra of Mont de la Passe, in the Parc National de la Gaspésie (Québec, Canada). The comparison of two orthorectified aerial photos revealed no significant shift of the treeline between 1975 and 2004. During the same period however, shrub species cover increased from 20.2% to 30.4% in the lower alpine zone. Dendrochronological analyses conducted on Betula glandulosa Michx. sampled at three different positions along an altitudinal gradient (low, intermediate and high alpine zone) revealed that the climatic determinants of B. glandulosa radial growth become more complex with increasing altitude. In the lower alpine zone, B. glandulosa radial growth is only significantly associated positively to July temperature. In the intermediate alpine zone, radial growth is associated positively to July temperature but negatively to March temperature. In the high alpine zone, radial growth is positively associated to January, July and August temperature but negatively to March temperature. The positive association between summer temperatures and radial growth suggests that B. glandulosa could potentially benefit from warmer temperatures, a phenomenon that could lead to an increase in its cover over the next few decades. Although alpine tundra vegetation is not threatened in the short-term in the Parc National de la Gaspésie, erect shrub cover, especially B. glandulosa, could likely increase in the near future, threatening the local arctic-alpine flora. (letter)

  4. Observed long-term greening of alpine vegetation—a case study in the French Alps

    Science.gov (United States)

    Carlson, Bradley Z.; Corona, Monica C.; Dentant, Cédric; Bonet, Richard; Thuiller, Wilfried; Choler, Philippe

    2017-11-01

    We combined imagery from multiple sources (MODIS, Landsat-5, 7, 8) with land cover data to test for long-term (1984-2015) greening or browning trends of vegetation in a temperate alpine area, the Ecrins National Park, in the context of recent climate change and domestic grazing practices. We showed that over half (56%) of the Ecrins National Park displayed significant increases in peak normalized difference vegetation index (NDVImax) over the last 16 years (2000-2015). Importantly, the highest proportional increases in NDVImax occurred in rocky habitats at high elevations (> 2500 m a.s.l.). While spatial agreement in the direction of change in NDVImax as detected by MODIS and Landsat was high (76% overlap), correlations between log-response ratio values were of moderate strength (approx. 0.3). In the context of above treeline habitats, we found that proportional increases in NDVImax were higher between 1984 and 2000 than between 2000 and 2015, suggesting a slowing of greening dynamics during the recent decade. The timing of accelerated greening prior to 2000 coincided with a pronounced increase in the amount of snow-free growing degree-days that occurred during the 1980s and 1990s. In the case of grasslands and low-shrub habitats, we did not find evidence for a negative effect of grazing on greening trends, possibly due to the low grazing intensity typically found in the study area. We propose that the emergence of a longer and warmer growing season enabled high-elevation plant communities to produce more biomass, and also allowed for plant colonization of habitats previously characterized by long-lasting snow cover. Increasing plant productivity in an alpine context has potential implications for biodiversity trajectories and for ecosystem services in mountain landscapes. The presented evidence for long-term greening trends in a representative region of the European Alps provides the basis for further research on mechanisms of greening in alpine landscapes.

  5. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae).

    Science.gov (United States)

    Weng, Yi-Ming; Yang, Man-Miao; Yeh, Wen-Bin

    2016-04-01

    Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain-island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice-free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain-island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long-term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65-1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.

  6. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  7. Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks

    Directory of Open Access Journals (Sweden)

    Simone Eliza Facione Guimarães

    2010-06-01

    Full Text Available It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test was done. In 24 ejaculates, it were done thermo-resistance test, and in 21 ejaculates it were determined the concentration of total soluble proteins in seminal plasma. The male goats presented difference in the semen physical and morphological aspects, in the hiposmotic test and thermo-resistance test, but they did not presented difference in total soluble proteins concentration in seminal plasma. Results of the slow thermo-resistance test and hiposmotic test were positively correlated (r = 0.60. It was concluded, according to our results, that the concentration of total soluble proteins in seminal plasma can not be used as a parameter to predict the seminal quality of Alpine bucks.It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test

  8. Clean air benefits and costs in the GVRD [Greater Vancouver Regional District

    International Nuclear Information System (INIS)

    Gislason, G.; Martin, J.; Williams, D.; Caton, B.; Rich, J.; Rojak, S.; Robinson, J.; Stuermer, A. von

    1994-01-01

    Air pollution is a major concern in the Greater Vancouver Regional District in British Columbia. An analysis was conducted to assess the costs and benefits of an innovative plan to reduce the emissions of five primary pollutants in the GVRD: nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), particulates, and CO. The study adopts a damage function approach in which the benefits of reduced emissions are given by the averted damages to human health, crops, and so on. Under a base case scenario, motor vehicle emission controls and additional measures proposed in the region's air quality management plan (AQMP) are projected to lead to emission reductions of 873,000 tonnes in the GVRD by the year 2020, compared to the emission level projected without intervention. The AQMP is projected to avert over its life some 2,800 premature deaths, 33,000 emergency room visits, 13 million restricted activity days, and 5 million symptoms. Crop losses due to ozone are projected to decrease by 1-4%/y over the next several decades due to the AQMP. Damage averted to materials and property per tonne of pollutant reduced ranges from $30 for VOC to $180 for particulates. Under base-case conservative assumptions, the AQMP generates $5.4 billion in benefits and $3.8 billion in costs, nearly 2/3 of which are paid by the industrial and commercial sectors. 1 tab

  9. Geochemistry of the triassic-Jurassic alpine continental deposits: origin and geodynamic implications

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Goffe, B.; Toulhoat, P.

    1997-01-01

    Mid-Triassic to mid-Jurassic Alpine continental deposits are known all along the former Brianconnais peninsula. They constitutes small karstic pockets on the thick Triassic calcareous series and their chemistry evolves between bauxites s.s. and aluminous argilites. Most of them were deeply buried during the Alpine orogenesis as recorded by HP-LT metamorphism. Only the deposits of the Pre-Alps were submitted to lower PT conditions (diagenesis-anchizone boundary) during their incorporation in the thrust wedge of the 'Prealpes Medianes'. These formations are known for containing traces of light elements (Li, F) and heavy elements (Zn, REE...). In order to understand the possible origin of these elements, we studied the geochemistry (major and trace elements) of two representative deposits, one in Vanoise which underwent a HP-LT metamorphism, the other one in the Pre-Alps, which was only submitted to diagenesis. Trace elements patterns allow us to preclude an autochthonous origin for these formations as well as the intervention of metasomatism, and demonstrate a granitic origin. Moreover, discrimination diagrams for granites indicate an obvious alkaline granitic origin for these deposits. In the framework of the Alpine palaeogeography, we then discuss the possible granitic sources. Two main sources can be invoked: either a Brianconnais s.s. formation (crystalline or sediments), which supposes a more intense erosion as classically admitted, or more distant sources such as the Corso-Sardinian alkaline acid-rocks, which supposes a complex palaeo-hydrography. This confirms the sedimentary origin of the light elements in these rocks and precludes the intervention of light elements-rich hydrothermal fluids migrating through Alpine metamorphic units. (author)

  10. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment.

    Science.gov (United States)

    Offenthaler, I; Jakobi, G; Kaiser, A; Kirchner, M; Kräuchi, N; Niedermoser, B; Schramm, K-W; Sedivy, I; Staudinger, M; Thanner, G; Weiss, P; Moche, W

    2009-12-01

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity.

  11. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Torrential processes like flooding, heavy bedload transport or debris flows in steep mountain channels emerge during intense, highly localized rainfall events. They pose a serious risk on the densely populated Alpine region. Hydrogeomorphic hazards are profoundly nonlinear, threshold mediated phenomena frequently causing costly damage to infrastructure and people. Thus, in the context of climate change, there is an ever rising interest in whether sediment cascades of small alpine catchments react to changing precipitation patterns and how the climate signal is propagated through the fluvial system. We intend to answer the following research questions: (i) What are critical meteorological characteristics triggering torrential events in the Eastern Alps of Austria? (ii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which factors control the internal susceptibility? (iii) Do torrential processes show an increase in magnitude and frequency or a shift in seasonality in the recent past? (iv) Which future changes can be expected under different climate scenarios? Quantifications of bedload transport in small alpine catchments are rare and often associated with high uncertainties. Detailed knowledge though exists for the Schöttlbach catchment, a 71 km2 study area in Styria in the Eastern Alps. The torrent is monitored since a heavy precipitation event resulted in a disastrous flood in July 2011. Sediment mobilisation from slopes as well as within-channel storage and fluxes are regularly measured by photogrammetric methods and sediment impact sensors (SIS). The associated hydro-meteorological conditions are known from a dense station network. Changing states of connectivity can thus be related to precipitation and internal dynamics (sediment availability, cut-and-fill cycles). The site-specific insights are then conceptualized for application to a broader scale. Therefore, a Styria wide database of torrential

  12. Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation

    Science.gov (United States)

    Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Folini, Doris; Hill, Matthias; Hofer, Peter; Buchmann, Brigitte; Simmonds, Peter G.; Greally, Brian R.; O'Doherty, Simon

    2004-03-01

    At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi-continuously by gas chromatography-mass spectrometry (GCMS). Measurement data from the years 2000-2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC-substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer

  13. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater

  14. The Alpine convention and protocols - the starting points for sustainable development in the Slovenian Alps and its neighbouring regions

    Directory of Open Access Journals (Sweden)

    Vesna Kolar-Planinšič

    1999-12-01

    Full Text Available The article presents the international agreement Alpine Convention. The states which have signed the agreement have undertaken to the common politics for the preservation and sustainable use of sources. The areas covered by the convention: population and culture, physical planning, prevention of air polution, soil conservation, water management, nature conservation and landscape planning, mountain farming, mountain forestry, tourism and recreation, transport, energy and waste management are presented as well as their aims. The primary stress is given to the protocols: "Physical Planning and Sustainable Development" and "Nature Conservation and Landscape Planning",with the emphasis to the sustainable development. They represent cover and their aims are implemented in all the others protocols.

  15. Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition

    Directory of Open Access Journals (Sweden)

    Nicole Porter

    2017-02-01

    Full Text Available Reviewed: Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition By Deidre Slattery. Clayton South, Australia: CSIRO Publishing, 2015. xvii + 302 pp. AU$ 45.00, US$ 35.95. ISBN 978-1-486-30171-3.

  16. MILK COAGULATION PROPERTIES OF CATTLE BREEDS REARED IN ALPINE AREA

    Directory of Open Access Journals (Sweden)

    Giulio Visentin

    2015-09-01

    Full Text Available The aim of the present study was to apply mid-infrared spectroscopy prediction models developed for milk coagulation properties (MCP to a spectral dataset of 123,240 records collected over a 2-year period in the Alpine area, and to investigate sources of variation of the predicted MCP. Mixed linear models included fixed effects of breed, month and year of sampling, days in milk, parity, and the interactions between the main effects. Random effects were herd nested within breed, cow nested within breed, and the residual. All fixed effects were significant (P<0.05 in explaining the variation of MCP. In particular, milk clotting characteristics varied significantly among breeds, and local Alpine Grey breed exhibited the most favourable processing characteristics. Milk coagulation properties varied across lactation and were at their worst after the peak.

  17. Experts’ Perceptions of the Effects of Forest Biomass Harvesting on Sustainability in the Alpine Region

    Directory of Open Access Journals (Sweden)

    Gianluca Grilli

    2015-06-01

    Full Text Available Background and Purpose: In the EU political agenda, the use of forest biomass for energy has grown rapidly and significantly, in order to mitigate carbon dioxide emissions and reduce the energy dependence on fossil fuels of European member countries. The target of the EU climate and energy package is to raise the share of renewable energy consumption produced from renewable resources to 20% in 2020 (Directive 2009/28/EC. With regards to biomass energy, the supply of forest wood biomass is expected to rise by 45% (reference period: 2006-2020, in response to increasing demand for renewable sources. The increase of forest biomass supply could have both positive and negative effects on several forest ecosystem services (ESs and local development. These effects should be assessed in a proper manner and taken into account when formulating management strategies. The aim of the paper is to assess the environmental, economic and social sustainability of forest biomass harvesting for energy, using the Figure of Merit (FoM approach. Materials and Methods: Sustainability was assessed through a set of four indicators: two focused on experts’ opinions regarding the effects of forest biomass harvesting and the other two focused on the cost-benefit analysis (potential energy obtained and costs for wood chips. The research was developed through four case studies located in the Alpine Region. A semi-structured questionnaire was administered face-to-face to 32 selected experts. The perceived effects of forest biomass harvesting for energy on ESs and local development were evaluated by experts using a 5-point Likert scale (from “quite negative effect” to “quite positive effect”. Results: All experts agree that forest biomass harvesting has a positive effect on forest products provision and local economic development (employment of local workforce, local entrepreneurship and market diversification, while the effects on other ESs are controversial (e

  18. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  19. New P-T and U-Pb constraints on Alpine Schist metamorphism in south Westland, New Zealand

    International Nuclear Information System (INIS)

    Scott, J.M.; Auer, A.; Muhling, J.R.; Czertowicz, T.A.; Cooper, A.F.; Billia, M.A.; Kennedy, A.K.

    2015-01-01

    Metamorphic mineral compositions of a staurolite-bearing greyschist from the middle reaches of the Moeraki River valley in south Westland reveal peak equilibration at c. 558±50 degrees C and c. 6.1±1.2 kbar. Two c. 83 Ma U-Pb monazite age populations from the cores of monazite-apatite-allanite-epidote corona structures in mylonitised schists from near Fox Glacier confirm that Alpine Schist metamorphism occurred during the Late Cretaceous. The published spread in Late Cretaceous metamorphic ages indicates that metamorphism was diachronous or was a protracted event. Further dating is required to pin down the cryptic transition into the Jurassic-Early Cretaceous metamorphosed Otago Schist, but the Alpine Schist must extend at least 11 km east of the Alpine Fault in south Westland and overprint the suture between the Pounamu and Rakaia terranes. The P-T-t results imply that the Late Cretaceous crust represented by portions of the Alpine Schist was probably of similar thickness to that beneath the Southern Alps today, but with dehydration and partial melting occurring near the base. The crust under Westland and Otago may be dry and therefore strong. (author).

  20. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  1. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  2. Importance of regional variation in conservation planning: A rangewide example of the Greater Sage-Grouse

    Science.gov (United States)

    Doherty, Kevin E.; Evans, Jeffrey S.; Coates, Peter S.; Juliusson, Lara; Fedy, Bradley C.

    2016-01-01

    We developed rangewide population and habitat models for Greater Sage-Grouse (Centrocercus urophasianus) that account for regional variation in habitat selection and relative densities of birds for use in conservation planning and risk assessments. We developed a probabilistic model of occupied breeding habitat by statistically linking habitat characteristics within 4 miles of an occupied lek using a nonlinear machine learning technique (Random Forests). Habitat characteristics used were quantified in GIS and represent standard abiotic and biotic variables related to sage-grouse biology. Statistical model fit was high (mean correctly classified = 82.0%, range = 75.4–88.0%) as were cross-validation statistics (mean = 80.9%, range = 75.1–85.8%). We also developed a spatially explicit model to quantify the relative density of breeding birds across each Greater Sage-Grouse management zone. The models demonstrate distinct clustering of relative abundance of sage-grouse populations across all management zones. On average, approximately half of the breeding population is predicted to be within 10% of the occupied range. We also found that 80% of sage-grouse populations were contained in 25–34% of the occupied range within each management zone. Our rangewide population and habitat models account for regional variation in habitat selection and the relative densities of birds, and thus, they can serve as a consistent and common currency to assess how sage-grouse habitat and populations overlap with conservation actions or threats over the entire sage-grouse range. We also quantified differences in functional habitat responses and disturbance thresholds across the Western Association of Fish and Wildlife Agencies (WAFWA) management zones using statistical relationships identified during habitat modeling. Even for a species as specialized as Greater Sage-Grouse, our results show that ecological context matters in both the strength of habitat selection (i

  3. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    Science.gov (United States)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as

  4. Crime in relation to urban design. Case study: The Greater Cairo Region

    Directory of Open Access Journals (Sweden)

    Heba Adel

    2016-09-01

    Full Text Available Crime is a part of any social system and known to human communities since its origins. It differs from community to another, even within one community it doesn’t occur equally in all places and nor by the same way. It is also concentrated in some places more than others, sometimes increases, sometimes decreases, etc. Previous researches have proved that crime rate has significant correlation with different social factors: education levels, poverty rates and lack of social organization, while others have drawn the attention to its relation with the built environment. They proposed that crime occurs in places where both opportunities and criminals are available. The role of this paper is to identify urban circumstances related to crime occurrence within the Greater Cairo Region, and to propose different ways to reduce these crimes. Consecutively, agglomeration’s main districts were scrutinized according to social analysis, street-network pattern and land-use.

  5. Preserved organic matter in the Serpentinized Ocean-Continent Transition of Alpine Tethys

    Science.gov (United States)

    Mateeva, T.; Wolff, G. A.; Kusznir, N.; Manatschal, G.; Wheeler, J.

    2017-12-01

    Serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. At modern hydrothermal vents, serpentinization has been observed to support hydrogen-driven microbial environments including methanotrophic biosystems. An important question is: "Are such bio-systems locally restricted to hydrothermal vents or are they more pervasive, being linked with the exhumation of serpentinized mantle at the seafloor?" Fieldwork sampling of km scale exposures of orogenically exhumed serpentinized mantle in the Alps allows 3D mantle sampling that is not possible at ocean ridges and provides an opportunity to investigate the organic matter in an ophiolite sequence relative to the seafloor. Samples from the fossil Tethyan OCT, exhumed during Alpine collisional orogeny, have been examined for the presence or absence of biomarkers typical of methanotrophy within serpentinized exhumed mantle. Samples from the Totalp unit, Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps from the Tethyan magma-poor OCT were selected for analysis because they have little Alpine deformation and underwent only low-grade Alpine metamorphism. Hand specimens and cores taken from these locations have been analysed to search for the presence or absence of biomarkers in the serpentinite and its overlying lithologies. Thin sections of samples from these OCT locations reveal multiple serpentinization events and calcification phases. All the lithologies sampled show the presence of hydrocarbons such as n-alkanes, low molecular weight polynuclear aromatic hydrocarbons (PAHs, of mixed petrogenic and pyrogenic source), hopanes, steranes (of marine origin), and branched alkanes (pristane and phytane, non-specific marine origin). The identifiable biomarkers and the isotopic data are consistent with organic matter of a marine origin and do not provide any evidence for a methanotrophic bio-system. It is noteworthy that basement mantle rocks still

  6. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  7. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions

    International Nuclear Information System (INIS)

    Jódar, J.; Custodio, E.; Liotta, M.; Lambán, L.J.; Herrera, C.; Martos-Rosillo, S.; Sapriza, G.; Rigo, T.

    2016-01-01

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (A_δ) varies along a vertical transect. A clear relationship between A_δ and local evaporation is obtained, with slopes of − 0.87 ‰/100 mm/yr and − 7.3 ‰/100 mm/yr for A_δ_"1_"8_O and A_δ_"2_H, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between A_δ and elevation is obtained, with vertical gradients of 0.16 ‰/100 mm/yr and 1.46 ‰/100 mm/yr for A_δ_"1_"8_O and A_δ_"2_H, respectively. - Highlights: • Amplitude of seasonal isotopic composition of rainfall depends on local evaporation. • Isotopic amplitude depends on elevation if the air moisture sources are common. • Local evaporation is controlled by atmospheric local and synoptic conditions.

  8. Réseaux écologiques dans l’Arc alpin

    Directory of Open Access Journals (Sweden)

    Thomas Scheurer

    2009-07-01

    Full Text Available Face au constat d’une perte accrue de biodiversité et de phénomènes nouveaux, tels le changement climatique, les initiatives de mise en place de réseaux écologiques se multiplient. Les réflexions et les actions conduites autour de la thématique de la connectivité écologique font naître une perception complètement nouvelle des pratiques de la protection de la nature : un changement d’une conception patrimoniale conservatrice vers une approche plus fonctionnelle des systèmes naturels. La place et le rôle des espaces protégés au sein de leur région sont redéfinis, les situant  dans un contexte territorial plus large et engendrant de nouvelles collaborations entre acteurs locaux. L’approche alpine pour la réalisation d’un réseau écologique transalpin, illustrée par différents exemples, souligne l’importance d’un cadre international pour ces démarches et d’une ouverture sur l’ensemble du territoire impliquant en plus des acteurs classiques de la protection de la nature, la collaboration avec des secteurs jusqu’à présent peu impliqués.In response to decreasing biodiversity and new phenomena such as climate change, the number of initiatives aimed at creating ecological networks is increasing. Research and activities based on the theme of ecological connectivity are generating a completely new perception of methods of protecting the natural environment: there is a shift from a conservationist approach to natural systems to one that is more functional. The place and role of protected areas within their regions are being redefined. Such areas are now situated in a wider territorial context and new cooperative arrangements are encouraged with local actors. The alpine approach adopted in establishing a transalpine ecological network, illustrated by several examples, underlines the importance of both an international framework for such activities and the need to extend them to include not only the classic actors

  9. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    Science.gov (United States)

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  10. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline.

    Science.gov (United States)

    Baig, M N; Tranquillini, W

    1980-01-01

    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  11. Distribution and diversity of Arctic-Alpine species in the Balkans

    DEFF Research Database (Denmark)

    Stevanovic, Vladimir; Vukojicic, Snezana; Sinzar-Sekulic, Jasmina

    2009-01-01

    The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain...

  12. Modelling mass movement susceptibility for Alpine infrastructure in the Karavank Mountains (Austria/Slovenia)

    Science.gov (United States)

    Bauer, C.; Kern, K.; Lieb, G. K.

    2012-12-01

    The aim of this study is the generation of indicative susceptibility maps on a regional scale that can be used as a decision support tool for land use management (i.e. risk potential on alpine infrastructure). The study in particular focuses on geomorphological processes (rockfall and debris flows in unconsolidated rock) that reshape the land surface by erosion, transport and deposition. When interacting with human activity (e.g. road, alpine trails) such naturally occurring processes can quickly become natural hazards. The study area is located in the Karavank Mountains, a border region between Austria and Slovenia, and covers approx. 200 sq km with maximum altitudes above 2.000 m a.s.l. (Hochstuhl: 2.237 m a.s.l.). The Karavanks form an east-west striking mountain chain (approx. 120 km total length) of the southeastern Alps that consists mainly of thick Triassic carbonate sequences and, with less extent, Paleozoic carbonate rocks crystalline rocks. The mountain chain is separated into the Northern Karavanks and the Southern Karavanks by a structural boundary (Periadriatic Line). In addition, the area is known for extreme weather events due to Adriatic cyclones with daily accumulated precipitation of more than 200 mm that regularly trigger hazardous and torrential processes like rockfall events and debris flows. To assess the triggering factors and trajectories, two different disposition and process models (one for rockfall and one for debris flow, respectively) were developed. The information about potential source areas was obtained by combining various types of information (e.g. DTM derivatives, geotechnical units, vegetation). Threshold slope values for potential rockfall source areas were attributed to different lithological units according to field observations. The defined threshold slope angles cover values from 42° in Triassic carbonates up to 46° in massive crystalline rocks. For debris flows areas with a slope inclination model is based on the idea

  13. Diet of otters (Lutra lutra in various habitat types in the Pannonian biogeographical region compared to other regions of Europe

    Directory of Open Access Journals (Sweden)

    József Lanszki

    2016-08-01

    Full Text Available Knowledge of the effect of habitat type and region on diet and feeding behaviours of a species facilitates a better understanding of factors impacting populations, which contributes to effective conservation management. Using spraint analysis and relative frequency of occurrence data from the literature, we described the dietary patterns of Eurasian otters (Lutra lutra in 23 study sites within the Pannonian biogeographical region in Hungary. Our results indicated that diet composition varied by habitat type and is therefore context dependant. The differences among habitat types were however lower than expected. We noticed a decline in the fish consumption with a concomitant increase in trophic niche breadth and amphibian consumption in rivers, ponds (fish farms, backwaters, marshes and small watercourses. The main differences in diet were not attributed to the consumption of primary and secondary food types (fish and amphibians, but rather to differences in other, less important food types (mammals, birds. Using hierarchical cluster analysis, rivers and ponds could clearly be separated from other habitat types. We found the main fish diet of otters in most of these areas consisted of small (<100 g, eurytopic, littoral and non-native, mostly invasive species. Dietary studies from 91 sites in six European biogeographical regions showed that fish are consumed most frequently in the Atlantic and Boreal, less in the Continental and Pannonian, and least in the Alpine and Mediterranean regions. Comparative analysis indicated that the Mediterranean region (with frequent crayfish consumption and Alpine region (frequent amphibian consumption cluster separate from the other regions.

  14. Towards Automation in Landcover Mapping from LiDAR Data in Alpine Environment

    Science.gov (United States)

    Dorninger, Peter; Briese, Christian; Nothegger, Clemens; Klauser, Armin

    2010-05-01

    laser scanning data. Additionally, a vegetation index was derived from the orthophoto. Using a supervised classification approach based on well known testing sites, the following classes could be determined: forest, dwarf-pines, grass land, debris, and bare rock. After a generalization step, we compared the results to two existing topographic landcover maps showing high correlation. However, the method showed several shortcomings in shadowed areas in the orthophoto. Furthermore, a separation of debris and bare rock was only possibly by a slope threshold. To overcome these problems, we investigated another testing site, situated in the alpine region of Lower Austria, Austria. The data was acquired by a Riegl LMS-Q560 FWF laser scanner. In this case we did not use an orthophoto. Instead we considered additional parameters derived from the FWF data. These were a distance corrected amplitude and the pulse width, and, especially in regions with high vegetation, multiple echoes were available. Furthermore, we derived highly robust local tangential planes for each point (Nothegger & Dorninger, 2008). Due to those tangential planes being computed in three-dimensions, the computation of the slope angles, especially in steep regions, becomes more reliable. Additionally, quality parameters provided by the plane estimation were considered for the classification. For example, the local roughness measure indicates vegetation. So it could be demonstrated that point based classification of LiDAR data allows for landcover classification in alpine areas. To achieve reliable results from FE/LE laser scanning data, the integration of image data was necessary. However, this introduced typical shortcomings of geomorphological interpretation in vegetation and shadowed areas. The use of FWF laser scanning allows overcoming these shortcomings and increasing the automation of reliable landcover mapping including the characteristics of alpine geomorphic features. References: C. Nothegger, P

  15. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  16. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pu, Yang; Jia, Jihong; Cao, Jicheng

    2017-12-01

    As part of an investigation of the sources of aliphatic hydrocarbons to the sediments of alpine Lake Ximencuo, leaves of the eight dominant vascular plants were collected and their hydrocarbon contents were analyzed. A series of unsaturated aliphatic hydrocarbons were identified in the plant leaves; in particular, Festuca sp. contain a series of n-alkadienes that have rarely been reported in previous studies. The comparison of n-alkane proxies (ACL 27-33, ACL T, P aq, and CPI) and δ13Corg among plant leaves, surface soils, and lake sediments suggests that organic proxies have been altered to varying degrees during the transport and burial process of organic materials. It is believed that microbial reworking and source changes have great impacts on organic proxies in the alpine lake system. In addition, the cluster analysis for plant leaves depending on n-alkane compositions and the ACL T proxy generates similar results. Accordingly, we postulate that the average chain length of plant waxes might be a potential indicator of plant classification in regions such as the Qinghai-Tibet Plateau.

  17. ALPINE VEGETATION ECOTONE DYNAMICS IN GANGOTRI CATCHMENT USING REMOTE SENSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. P. Singh

    2012-09-01

    Full Text Available Analysis of the satellite imagery reveals two different perspectives of the vegetation ecotone dynamics in Gangotri catchment. On one hand, there is evidence of upward shift in the alpine tree and vegetation ecotone over three decades. On the other hand, there has been densification happening at the past treeline. The time series fAPAR data of two decades from NOAA-AVHRR confirms the greening trend in the area. The density of trees in Chirbasa has gone up whereas in Bhojbasa there is no significant change in NDVI but the number of groves has increased. Near Gaumukh the vegetal activity has not shown any significant change. We found that the treeline extracted from satellite imagery has moved up about 327±80m and other vegetation line has moved up about 401±77m in three decades. The vertical rate of treeline shift is found to be 11m/yr with reference to 1976 treeline; however, this can be 5m/yr if past toposheet records (1924 – 45 are considered as reliable reference. However, the future IPCC scenario based bioclimatic fundamental niche modelling of the Betula utilis (a surrogate to alpine treeline suggests that treeline could be moving upward with an average rate of 3m/yr. This study not only confirms that there is an upward shift of vegetation in the alpine zone of Himalayas, but also indicate that old vegetation ecotones have grown denser

  18. Climate change and mountain Grouse: recent evidences from alpine habitats

    Directory of Open Access Journals (Sweden)

    Brugnoli A

    2013-02-01

    Full Text Available Current climate change, referring as well to the observed rain and temperature patterns as to the increased frequency and intensity of extreme weather conditions, has a deep influence on biotic communities and, in particular, on mountain Grouse. These species show great adaptation to coldness, are highly sedentary and have quite “strict” ecological requirements, when it deals with habitat selection. Moreover, their alpine ranges are dangerously marginal to the main distribution areas, which increases the risk of dramatic changes in occurrence, demography and ecology. However, not all the species will predictably be exposed in the same way to the menace of climate change over the next 50-100 years. This article gives a brief review of the main data acquired in the alpine environment in this matter. It also underlines the utmost need to proceed with research and monitoring activities, in order to effectively adapt and manage conservation strategies on mid-long terms.

  19. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    Science.gov (United States)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to

  20. Extruded pea (Pisum sativum as alternative to soybean protein for dairy cows feeding in organic Alpine farms

    Directory of Open Access Journals (Sweden)

    Flaviana Gottardo

    2010-04-01

    the two groups of cows (7.0 vs 6.6 kg/cow/d for Soy-free and Control, respectively, their total time spent eating and ruminating was not affected by the diet. Based on these findings, extruded peas can be considered a valuable alternative to soybean in the protein feeding of cattle raised for organic milk production in the Alpine region.

  1. The Swiss Alpine Glacier's Response to the '2°C Target

    Science.gov (United States)

    Salzmann, Nadine; Machguth, Horst

    2010-05-01

    The "2°C target" for global warming (relative to pre-industrial level) became a main focus in the climate change debate since the UN Climate Change Conference in Copenhagen (COP15) in December 2009 at the latest. While this target implies to be a ‘clear' goal for politicians and decision makers, the effective impacts that a global mean air temperature increase of 2°C has on natural and human systems on regional to local scales remain complex. So far, most impact studies use only relative and static 2°C delta change approaches. Here, however, we use results from latest climate model outputs an take into account the warming that has already occurred in a specific region. Global warming is not equally distributed around the globe. Observations show that during the last century air temperature trends significantly differ between regions. In Switzerland, for example, air temperature has increased about twice as much as the global mean during the last century. In glacierised mountain regions, where glaciers represent an important source for fresh water and control a great part of the hydrological cycle, the retreat or disappearance of glaciers as a consequence of climatic changes will have major socio-economical consequences on the people living there and the adjacent lowland. A trend to negative glacier mass balances is observed and well documented for many mountain ranges all over the world. Based on climate model projections it is very likely that this trend continues or even accelerates. Here, we make an effort to assess the impact of a global 2°C (that is about 4°C for Switzerland) air temperature increase compared to pre-industrial conditions for the Swiss Alpine glaciers. We use 12 homogenised long-term climate observations to define the warming that has already taken place. The ‘remaining' temperature increase up to the level of 2°C, is based on results from a selection of Regional Climate Model results that have been simulated in the recently finished

  2. Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns.

    Directory of Open Access Journals (Sweden)

    Yan Geng

    Full Text Available The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1 belowground biomass (BGB is most closely related to spatial variation in Rs due to high root biomass density, and (2 soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO(2 m(-2 s(-1, ranging from 0.39 to 12.88 µmol CO(2 m(-2 s(-1, with average daily mean Rs of 2.01 and 5.49 µmol CO(2 m(-2 s(-1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB, SOC, soil moisture (SM, and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80% of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82% of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale.

  3. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism.

    Science.gov (United States)

    Mandaric, Ladislav; Diamantini, Elena; Stella, Elisa; Cano-Paoli, Karina; Valle-Sistac, Jennifer; Molins-Delgado, Daniel; Bellin, Alberto; Chiogna, Gabriele; Majone, Bruno; Diaz-Cruz, M Silvia; Sabater, Sergi; Barcelo, Damia; Petrovic, Mira

    2017-07-15

    Knowledge regarding the impact of tourism on the emergence of pharmaceuticals and personal care products (PPCPs) in Alpine river waters is limited and scarce. Therefore, a study on the occurrence patterns and spatiotemporal variability of 105 PPCPs in an Alpine river basin located in the Trentino-Alto Adige region (North-Eastern Italy) has been conducted. We observed that the total concentration of analyzed PPCPs was generally higher in all sampling sites during winter than in the summer. The analysis of tourist data revealed that during both sampling campaigns the number of tourists was lower in the downstream sites in comparison with the upstream area of the basin (Val di Sole). Particularly, sampling sites located near important tourist resorts have shown the highest abundance of the PPCPs during winter, being analgesics/anti-inflammatories, antihypertensives and antibiotics the most abundant pharmaceutically active compounds (PhACs). Diclofenac showed the highest concentration amongst PhACs, reaching concentrations up to 675ngL -1 in the sampling site situated downstream of the Tonale wastewater treatment plant (WWTP). Antihypertensives were found at concentrations >300ngL -1 , while antibiotics were quantified up to 196ngL -1 , respectively. Amongst personal care products (PCPs), the most abundant compound was octyl-dimethyl-p-aminobenzoic acid (ODPABA) with concentrations reaching up to 748ngL -1 in the sampling site situated within the Rotaliana district. In general, concentrations and detection frequencies were higher in water than in the sediment samples. The most frequently detected PhACs in sediments from both sampling campaigns were antibiotics, while amongst PCPs in sediments, octocrylene (OC) showed the highest concentration in both sampling campaigns. As a result, this study highlights the potential impact of tourism on the water quality of the Alpine aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  5. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  6. Site- and Species-Specific Influences on Sub-Alpine Conifer Growth in Mt. Rainier National Park, USA

    Directory of Open Access Journals (Sweden)

    Myesa Legendre-Fixx

    2017-12-01

    Full Text Available Identifying the factors that influence the climate sensitivity of treeline species is critical to understanding carbon sequestration, forest dynamics, and conservation in high elevation forest/meadow ecotones. Using tree cores from four sub-alpine conifer species collected from three sides of Mt. Rainier, WA, USA, we investigated the influences of species identity and sites with different local climates on radial growth–climate relationships. We created chronologies for each species at each site, determined influential plant-relevant annual and seasonal climatic variables influencing growth, and investigated how the strength of climate sensitivity varied across species and location. Overall, similar climate variables constrained growth on all three sides of the mountain for each of the four study species. Summer warmth positively influenced radial growth, whereas snow, spring warmth, previous summer warmth, and spring humidity negatively influenced growth. We discovered only a few subtle differences in the climate sensitivity of co-occurring species at the same site and between the same species at different sites in pairwise comparisons. A model including species by climate interactions provided the best balance between parsimony and fit, but did not lead to substantially greater predictive power relative to a model without site or species interactions. Our results imply that at treeline in moist temperate regions like Mt. Rainier, the same climatic variables drive annual variation in growth across species and locations, despite species differences in physiology and site differences in mean climates.

  7. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  8. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation

    International Nuclear Information System (INIS)

    Pilon, J.J.; Lambers, H.; Baas, W.; Tosserams, M.; Rozema, J.; Atkin, O.K.

    1999-01-01

    We investigated whether alpine and lowland Poa species exhibit inherent differences in leaf cuticular waxes, leaf UV absorbing compounds and/or growth responses to UV-B treatment. All plants were grown hydroponically in a growth cabinet (constant 20°; 14 hr photoperiod; 520 μmol photons m −2 s −1 PAR). Two alpine (P. fawcettiae and P. costiniana), one sub-alpine (P. alpina) and three temperate lowland species (P. pratensis, P. compressa and P. trivialis) were grown under conditions without UV radiation for 36 days. In a subsequent experiment, four Poa species (P. costiniana, P. alpina, P. compressa and P. trivialis) were also exposed for 21 days to UV-B/(UV-A) radiation ('UV-B treatment') that resulted in daily UV-B radiation of 7.5 kJ m −2 day −1 , with control plants being grown without UV-B ('UV-A control treatment'). All treatments were carried out in the same growth cabinet. There was no altitudinal trend regarding wax concentrations per unit leaf area, when the six species grown under UV-less conditions, were compared at similar developmental stage (20–30 g shoot fresh mass). However, large differences in cuticular wax chemical composition were observed between the alpine and lowland species grown under UV-less conditions. For example, a single primary alcohol was present in the waxes of the lowland and sub-alpine species (C 26 H 53 OH), but was virtually absent in the alpine species. Although alkanes were present in all six species (primarily C 29 H 60 and C 31 H 64 ), the proportion of total wax present as alkanes was highest in the alpine species. Aldehydes were only present in the waxes of the alpine species. Conversely, substantial amounts of triterpenoids were mainly present in the three lowland species (squalene and lupeol were the dominant forms). The proportion of total wax present as long-chain esters (LCE-s) was similar in all six species grown in the absence of UV radiation. Acetates were observed only in the wax of

  9. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    Science.gov (United States)

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  10. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  11. Treeline proximity alters an alpine plant-herbivore interaction.

    Science.gov (United States)

    Illerbrun, Kurt; Roland, Jens

    2011-05-01

    Rising treeline threatens the size and contiguity of alpine meadows worldwide. As trees encroach into previously open habitat, the movement and population dynamics of above-treeline alpine species may be disrupted. This process is well documented in studies of the Rocky Mountain apollo butterfly (Parnassius smintheus). However, subtler consequences of treeline rise remain poorly understood. In this study, we examine whether treeline proximity affects feeding behaviour of P. smintheus larvae, due to altered habitat affecting the distribution and availability of their host plant, lance-leaved stonecrop (Sedum lanceolatum). Understanding differential larval exploitation of food resources in relation to the treeline is an important step in predicting the consequences of continued treeline rise. Parnassius smintheus larvae feed more intensively on S. lanceolatum away from the treeline despite the relative paucity of hosts in these areas, and despite higher fitness penalties associated with the plant's herbivory-induced chemical defenses. Sedum lanceolatum growing near the treeline is less attractive, and therefore represents a less significant resource for P. smintheus larvae than its abundance might imply. If treeline rise continues, we suggest that this pattern of altered resource exploitation may represent a mechanism by which larvae are adversely affected even while adult movement among and within meadows appears sufficient for maintaining population health, and total host availability seems ample.

  12. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  13. Strategies for Talent Management: Greater Philadelphia Companies in Action

    Science.gov (United States)

    Council for Adult and Experiential Learning (NJ1), 2008

    2008-01-01

    Human capital is one of the critical issues that impacts the Greater Philadelphia region's ability to grow and prosper. The CEO Council for Growth (CEO Council) is committed to ensuring a steady and talented supply of quality workers for this region. "Strategies for Talent Management: Greater Philadelphia Companies in Action" provides…

  14. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    Science.gov (United States)

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  15. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    Science.gov (United States)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire

  16. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  17. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions

    Energy Technology Data Exchange (ETDEWEB)

    Jódar, J., E-mail: jjb.aquageo@gmail.com [Department of Civil Engineering and Environment, Technical University of Catalonia (UPC), Barcelona (Spain); Custodio, E., E-mail: emilio.custodio@upc.edu [Department of Civil Engineering and Environment, Technical University of Catalonia (UPC), Barcelona (Spain); Liotta, M., E-mail: marcello.liotta@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo (Italy); Lambán, L.J., E-mail: javier.lamban@igme.es [Geological Institute of Spain (IGME) (Spain); Herrera, C., E-mail: cherrera@ucn.cl [Departamento de Ciencias Geológicas, Universidad Católica del Norte UCN, Antofagasta (Chile); Centro para el Desarrollo de Tecnologías de Explotación Sustentable de Recursos Hídricos en Zonas Áridas (CEITSAZA), Antofagasta (Chile); Martos-Rosillo, S., E-mail: s.martos@igme.es [Geological Institute of Spain (IGME) (Spain); Sapriza, G., E-mail: gsapriza@gmail.com [Departamento del Agua, Centro Universitario Región Litoral Norte, Universidad de la República del Uruguay, Salto (Uruguay); Rigo, T., E-mail: tomeur@meteo.cat [Meteorological Service of Catalonia, Barcelona (Spain)

    2016-04-15

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (A{sub δ}) varies along a vertical transect. A clear relationship between A{sub δ} and local evaporation is obtained, with slopes of − 0.87 ‰/100 mm/yr and − 7.3 ‰/100 mm/yr for A{sub δ{sup 1}{sup 8}O} and A{sub δ{sup 2}H}, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between A{sub δ} and elevation is obtained, with vertical gradients of 0.16 ‰/100 mm/yr and 1.46 ‰/100 mm/yr for A{sub δ{sup 1}{sup 8}O} and A{sub δ{sup 2}H}, respectively. - Highlights: • Amplitude of seasonal isotopic composition of rainfall depends on local evaporation. • Isotopic amplitude depends on elevation if the air moisture sources are common. • Local evaporation is controlled by atmospheric local and synoptic conditions.

  18. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    Science.gov (United States)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  19. Vertical distribution of the alpine lepidoptera in the Carpathians and in the Balkan peninsula in relation to the zonation of the vegetation

    Directory of Open Access Journals (Sweden)

    Varga, Z. S.

    2001-12-01

    Full Text Available The vertical distribution of arctic-alpine, alpine and Balkanic oreal species is discussed in connection with the vertical zonation of the vegetation, climatic conditions, substrate, type of alpine vegetation and co-occurrences of related species. Arctic-alpine species have mostly a Eurasian distribution and occur in the Arctic and in the alpine and subnival zones of the Central and Southern European high mountains with expressed glacial morphology and alpine vegetation. Alpine species are mostly European species and they are connected to the alpine and subnival zones of Central and South European high mountains. Balkanic oreal species are mostly southeast European species which in some cases occur locally in the southern parts of the Alps and Carpathians. Balkanic oreal species are most numerous at the timberline, preferred habitats being grasslands in the upper subalpine belts. The more diverse habitats of limestone mountains are usually home to a higher number of alpine (s. l. species than that of the mountains consisting of acidic rocks. The apparent petrophily of several alpine and tundro-alpine species correlates with their sheltering behaviour. The vertical distribution of butterflies is probably influenced also by the competition of closely related species. Closely related species often show some types of habitat partitioning. Data on species numbers and vertical distribution of species are presented in the tables 1-4.

    [de]
    Die vertikale Verbreitung der arktisch-alpinen, alpinen und balkanischen Orealarten wird hier im Zusammenhang mit den vertikalen Stufenfolgen der Vegetation, den klimatischen Verhdltnissen, den geologischen und geomorphologischen Bedingungen, den Vegetationstypen und dem Vorkommen der verwandten Arten behandelt. Die arktisch-alpinen Arten haben meist eine eurasiatische Verbreitung, und sie kommen sowohl in derArktis und in den alpinen-subnivalen Stufen der mittel- und südeuropaischen Hochgebirge vor. Die

  20. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region

    Directory of Open Access Journals (Sweden)

    Xihua Yang

    2015-01-01

    Full Text Available This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE, mean relative error (MRE, root mean squared error (RMSE, and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS. The IDW method was then used to produce forty-year (1990–2009 and 2040–2059 time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR. The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.

  1. Active summer carbon storage for winter persistence in trees at the cold alpine treeline.

    Science.gov (United States)

    Li, Mai-He; Jiang, Yong; Wang, Ao; Li, Xiaobin; Zhu, Wanze; Yan, Cai-Feng; Du, Zhong; Shi, Zheng; Lei, Jingpin; Schönbeck, Leonie; He, Peng; Yu, Fei-Hai; Wang, Xue

    2018-03-12

    The low-temperature limited alpine treeline is one of the most obvious boundaries in mountain landscapes. The question of whether resource limitation is the physiological mechanism for the formation of the alpine treeline is still waiting for conclusive evidence and answers. We therefore examined non-structural carbohydrates (NSC) and nitrogen (N) in treeline trees (TATs) and low-elevation trees (LETs) in both summer and winter in 11 alpine treeline cases ranging from subtropical monsoon to temperate continental climates across Eurasia. We found that tissue N concentration did not decrease with increasing elevation at the individual treeline level, but the mean root N concentration was lower in TATs than in LETs across treelines in summer. The TATs did not have lower tissue NSC concentrations than LETs in summer. However, the present study with multiple tree species across a large geographical scale, for the first time, revealed a common phenomenon that TATs had significantly lower NSC concentration in roots but not in the aboveground tissues than LETs in winter. Compared with LETs, TATs exhibited both a passive NSC storage in aboveground tissues in excess of carbon demand and an active starch storage in roots at the expense of growth reduction during the growing season. This starch accumulation disappeared in winter. Our results highlight some important aspects of the N and carbon physiology in relation to season in trees at their upper limits. Whether or to what extent the disadvantages of winter root NSC and summer root N level of TATs affect the growth of treeline trees and the alpine treeline formation needs to be further studied.

  2. Morphological and karyological relationship within Alpine-Dinaric populations of the genus Iris L., Pallidae series (A. Kern. Trinajstić (Iridaceae

    Directory of Open Access Journals (Sweden)

    Bożena Mitić

    2014-01-01

    Full Text Available The relationships within the Alpine-Dinaric and cultivated populations of the genus Iris, Pallidae series, have been analysed by methods of multivariate statistics (Cluster, PCA and MST analyses. The bases for multivariate analyses were seven morphological characteristics (stem length, length of largest leaf, greatest width of the largest leaf, length of smallest leaf, greatest width of the smallest leaf, the number of leaves and the number of flowers and relative chromosome length for 12 chromosome pairs. In spite of two similar looking isolated populations (Stara Baška and Konavle, the presence of four groups within the series was established, to which a species status can be ascribed: I. pallida Lam. separated as a horticultural species, /. cengialti Ambr. - endemic in Alpine region, /. illyrica Tomm. - endemic to the northern Adriatic Littoral and I. pseudopallida Trinajstić - endemic to the southern Adriatic Littoral. To differentiate the established groups, in PCA analysis the most significant features turned out to be: relative chromosome length of eleventh and tenth chromosome pairs, the length of the smallest leaf, relative chromosome length of the seventh chromosome pair and length of the stem.

  3. Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation II: Regional distribution patterns

    International Nuclear Information System (INIS)

    Lehndorff, E.; Schwark, L.

    2009-01-01

    The spatial distribution of an important air pollutant class, three-ring polycyclic aromatic hydrocarbons and their derivatives (PAH-3), has been monitored for the Greater Cologne Conurbation (GCC) using pine needle as passive samplers. The GCC comprises one of the most heavily populated, trafficked, and industrialized regions in Germany. Here, 71 locations covering 3600 km 2 were sampled and, for the first time, isopleths maps constructed to investigate the regional variability in PAH-3 concentration and composition. The highest PAH-3 loads on needles (1000-1500 ng g -1 ) were detected downwind of three lignite fuelled power plants, followed by Cologne City (600-700 ng g -1 ) and smaller towns (400-600 ng g -1 ), whereas rural and forest regions yielded PAH-3 loads of 60-300 ng g -1 . PAH-3 ratios facilitated source reconciliation, with high dibenzothiophene versus retene values indicating lignite combustion and high 9/(9 + 1)-methylphenanthrene ratios depicting traffic emissions in inner cities. PAH-3 ratios depended on topography and outlined the heavily industrialized Rhine Valley, demonstrating atmospheric dispersal of PAH-3. - Regional high-resolution biomonitoring identified lignite combustion in power plants to dominate over urban traffic and other emission sources.

  4. Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape.

    Directory of Open Access Journals (Sweden)

    Lucie Zinger

    2011-05-01

    Full Text Available The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.

  5. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    Science.gov (United States)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  6. Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site

    Science.gov (United States)

    Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.

    2012-04-01

    The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological

  7. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  8. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment

    Energy Technology Data Exchange (ETDEWEB)

    Offenthaler, I. [Umweltbundesamt GmbH (Austria); Jakobi, G. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kaiser, A. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Kirchner, M. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kraeuchi, N. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Niedermoser, B. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Sedivy, I. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Staudinger, M. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Thanner, G.; Weiss, P. [Umweltbundesamt GmbH (Austria); Moche, W., E-mail: wolfgang.moche@umweltbundesamt.a [Umweltbundesamt GmbH (Austria)

    2009-12-15

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity. - Equipment for direction-specific air sampling and bulk deposition sampling in mountains was developed and tested.

  9. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  10. A deposition record of inorganic ions from a high-alpine glacier

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Bruetsch, S.; Gaeggeler, H.W.; Schotterer, U.; Schwikowski, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The lowest five metres of an ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4450m a.s.l., Switzerland) were analysed for ammonium, calcium, chloride, magnesium, nitrate, potassium, sodium, and sulphate by ion chromatography. (author) 1 fig., 3 refs.

  11. Modelling channel incision and alpine hillslope development using laser altimetry data

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.

    2009-01-01

    This paper presents a new approach to simulate drainage basin evolution and demonstrates that high resolution elevation data can be used as useful tool for a dynamic simulation of Alpine landscape development, in which channel incision is incorporated in high spatial detail. A vector channel

  12. Biomechanical factors influencing the performance of elite Alpine ski racers.

    Science.gov (United States)

    Hébert-Losier, Kim; Supej, Matej; Holmberg, Hans-Christer

    2014-04-01

    Alpine ski racing is a popular international winter sport that is complex and challenging from physical, technical, and tactical perspectives. Despite the vast amount of scientific literature focusing on this sport, including topical reviews on physiology, ski-snow friction, and injuries, no review has yet addressed the biomechanics of elite alpine ski racers and which factors influence performance. In World Cup events, winning margins are often mere fractions of a second and biomechanics may well be a determining factor in podium place finishes. The aim of this paper was to systematically review the scientific literature to identify the biomechanical factors that influence the performance of elite alpine ski racers, with an emphasis on slalom, giant slalom, super-G, and downhill events. Four electronic databases were searched using relevant medical subject headings and key words, with an additional manual search of reference lists, relevant journals, and key authors in the field. Articles were included if they addressed human biomechanics, elite alpine skiing, and performance. Only original research articles published in peer-reviewed journals and in the English language were reviewed. Articles that focused on skiing disciplines other than the four of primary interest were excluded (e.g., mogul, ski-cross and freestyle skiing). The articles subsequently included for review were quality assessed using a modified version of a validated quality assessment checklist. Data on the study population, design, location, and findings relating biomechanics to performance in alpine ski racers were extracted from each article using a standard data extraction form. A total of 12 articles met the inclusion criteria, were reviewed, and scored an average of 69 ± 13% (range 40-89%) upon quality assessment. Five of the studies focused on giant slalom, four on slalom, and three on downhill disciplines, although these latter three articles were also relevant to super-G events

  13. Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and Geothermal Gradient from Ti-in-quartz Thermobarometry

    OpenAIRE

    Kidder, Steven; Toy, Virginia; Prior, Dave; Little, Tim; MacRae, Colin

    2018-01-01

    We constrain the thermal state of the central Alpine Fault using approximately 750 Ti-in-quartz SIMS analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than an order of magnitude from 0.24 to ~5 ppm, suggesting recrystallization of quartz over a 300° range in temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between 2 and 4 ppm and do not vary as a function of grain size or bul...

  14. Benchmarking homogenization algorithms for monthly data

    Czech Academy of Sciences Publication Activity Database

    Venema, V. K. C.; Mestre, O.; Aquilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertačník, G.; Szentimrey, T.; Štěpánek, Petr; Zahradníček, Pavel; Viarre, J.; Mueller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Duran, M. P.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    Roč. 8, č. 1 (2012), s. 89-115 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : climate data * instrumental time-series * greater alpine region * homogeneity test * variability * inhomogeneities Subject RIV: EH - Ecology, Behaviour Impact factor: 3.556, year: 2012

  15. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  16. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    Science.gov (United States)

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  17. Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxotó breed

    Directory of Open Access Journals (Sweden)

    Adriana Mello de Araújo

    2006-01-01

    Full Text Available Brazilian naturalized goat breeds are adapted to the semiarid conditions prevalent in the Northeast region of the country (which has the largest Brazilian goat heard and represent an as yet uninvestigated source of genetic diversity. Currently, imported goat breeds are crossed with Brazilian naturalized goat breeds, endangering the genetic potential of the naturalized breeds. We used 11 microsatellite markers to determine the genetic diversity among imported (non-naturalized dairy Alpine and Saanen goats and naturalized Brazilian Moxotó goats. We genotyped 292 goats from three herds (one private, one from the University of Minas Gerais and the Moxotó conservation herd from Embrapa Caprinos and found that the general heterozygosity was 0.6952 for Alpine, 0.7043 for Saanen and 0.4984 for Moxotó goats. The number of alleles ranged from 5 (INRA005 to 11 (BM3205, with an average of 7 alleles per locus in the imported breeds and 3.5 alleles per locus in the Moxotó breed. Mean differentiation between populations was higher for herds (F ST S = 0.0768 than for breeds (F ST P = 0.0263, indicating similarity between the imported breeds and the existence of crosses between them. Nei's genetic distance was highest between the Moxotó breed and the imported breeds. These indicate that further studies using these molecular markers would be fruitful.

  18. Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

    International Nuclear Information System (INIS)

    Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Ding, Yongjian; Xiang, Bo

    2014-01-01

    Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai–Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost. (letter)

  19. The relative age effect and the influence on performance in youth alpine ski racing.

    Science.gov (United States)

    Müller, Lisa; Hildebrandt, Carolin; Raschner, Christian

    2015-03-01

    The relative age effect (RAE), which refers to an over representation of athletes born early in a selection year, recently was proven to be present in alpine skiing. However, it was not made apparent whether the RAE exists as early as at the youngest level of youth ski racing at national level, nor whether the relative age influences racing performance. As a consequence, the purpose of the present study was twofold: first, to examine the extent of the RAE and second, to assess the influence the relative age has on the overall performance at the youngest levels of youth ski racing. The study included the investigation of 1,438 participants of the Austrian Kids Cup and 1,004 participants of the Teenager Cup at the provincial level, as well as 250 finalists of the Kids Cup and 150 finalists of the Teenager Cup at the national level. Chi²-tests revealed a highly significant RAE already at the youngest level of youth ski racing (Kids Cup) at both the provincial and national levels. There are not again favorably selected the relatively older athletes from the first into the second level of youth ski racing (Teenager Cup). Among the athletes of the Kids Cup, the relative age quarter distribution differed highly significantly from the distribution of the total sample with an over representation of relatively older athletes by comparison taking the top three positions. The data revealed that relative age had a highly significant influence on performance. This study demonstrated that the RAE poses a problem as early as the youngest level of youth ski racing, thereby indicating that many young talented kids are discriminated against, diminishing any chance they might have of becoming elite athletes despite their talents and efforts. The RAE influences not only the participation rate in alpine skiing, but also the performances. As a result, changes in the talent development system are imperative. Key pointsThe relative age influences not only the participation in youth ski

  20. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  1. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  2. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  3. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis

    OpenAIRE

    Wilson, Leigh Ann; Gerard Morgan, Geoffrey; Hanigan, Ivan Charles; Johnston, Fay H; Abu-Rayya, Hisham; Broome, Richard; Gaskin, Clive; Jalaludin, Bin

    2013-01-01

    Background This study examined the association between unusually high temperature and daily mortality (1997?2007) and hospital admissions (1997?2010) in the Sydney Greater Metropolitan Region (GMR) to assist in the development of targeted health programs designed to minimise the public health impact of extreme heat. Methods Sydney GMR was categorized into five climate zones. Heat-events were defined as severe or extreme. Using a time-stratified case-crossover design with a conditional logisti...

  4. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    International Nuclear Information System (INIS)

    Husen, S.; Clinton, J. F.; Kissling, E.

    2011-01-01

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  5. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Husen, S.; Clinton, J. F. [Swiss Seismological Service, ETH Zuerich, Zuerich (Switzerland); Kissling, E. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland)

    2011-10-15

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  6. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming

    Czech Academy of Sciences Publication Activity Database

    Alatalo, J.M.; Jägerbrand, A.K.; Čuchta, Peter

    2015-01-01

    Roč. 5, December (2015), s. 18161 ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Collembola * alpine subarctic sites * experimental warming Subject RIV: EH - Ecology, Behaviour Impact factor: 5.228, year: 2015

  7. Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2-enriched dwarf shrubs at treeline.

    Science.gov (United States)

    Asshoff, Roman; Hättenschwiler, Stephan

    2005-01-01

    The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO(2) on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO(2) depending on plant species and nymph developmental stage. Changes in RGR correlated with CO(2)-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO(2) resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO(2). When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO(2), V. myrtillus and V. uliginosum consumption increased under elevated CO(2) in females while it decreased in males compared to ambient CO(2)-grown leaves. Our findings suggest that rising atmospheric CO(2) distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.

  8. Les territoires fragiles dans la région alpine : une proposition de lecture entre innovation et marginalité

    Directory of Open Access Journals (Sweden)

    Federica Corrado

    2010-05-01

    Full Text Available Cet article propose une lecture et une description des territoires alpins fragiles, en jetant un autre regard, où le concept de fragilité est associé à celui de handicap, c’est-à-dire un autre regard sur l’identification des potentiels locaux spécifiques qui peuvent être encore activés à travers une force créatrice propre aux Alpes. La lecture est effectuée en fonction des territoires alpins fragiles qui font partie des provinces de Turin et Coni et se base sur une analyse empirique des initiatives qui enclenchent en quelque façon des dynamiques micro-territoriales de développement innovant.The paper proposes a reading and description of fragile Alpine areas that overturns the conventional standpoint, according to which marginality is often synonymous with handicap. The paper starts form a different point of view, able to recognize specific local potentialities that can still be activated with a specific creative effort. The reading regards fragile Alpine areas in the Provinces of Turin and Cuneo and is based on an empirical analysis of the actions underlying current micro-territorial innovative development trends.

  9. Drones application on snow and ice surveys in alpine areas

    Science.gov (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a

  10. Temperature sensitivity of extreme precipitation events in the south-eastern Alpine forelands

    Science.gov (United States)

    Schroeer, Katharina; Kirchengast, Gottfried

    2016-04-01

    How will convective precipitation intensities and patterns evolve in a warming climate on a regional to local scale? Studies on the scaling of precipitation intensities with temperature are used to test observational and climate model data against the hypothesis that the change of precipitation with temperature will essentially follow the Clausius-Clapeyron (CC) equation, which corresponds to a rate of increase of the water holding capacity of the atmosphere by 6-7 % per Kelvin (CC rate). A growing number of studies in various regions and with varying approaches suggests that the overall picture of the temperature-precipitation relationship is heterogeneous, with scaling rates shearing off the CC rate in both upward and downward directions. In this study we investigate the temperature scaling of extreme precipitation events in the south-eastern Alpine forelands of Austria (SEA) based on a dense rain gauge net of 188 stations, with sub-daily precipitation measurements since about 1990 used at 10-min resolution. Parts of the study region are European hot-spots for severe hailstorms and the region, which is in part densely populated and intensively cultivated, is generally vulnerable to climate extremes. Evidence on historical extremely heavy short-time and localized precipitation events of several hundred mm of rain in just a few hours, resulting in destructive flash flooding, underline these vulnerabilities. Heavy precipitation is driven by Mediterranean moisture advection, enhanced by the orographic lifting at the Alpine foothills, and hence trends in positive sea surface temperature anomalies might carry significant risk of amplifying future extreme precipitation events. In addition, observations from the highly instrumented subregion of south-eastern Styria indicate a strong and robust long-term warming trend in summer of about 0.7°C per decade over 1971-2015, concomitant with a significant increase in the annual number of heat days. The combination of these

  11. Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

    2000-12-30

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  12. Dating the past 7000 years of major earthquakes on the Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Clark, KJ.; Biasi, G.

    2009-01-01

    The Alpine Fault, New Zealand, is a major plate boundary fault that accommodates two thirds of the motion between the Australian and Pacific plates. The Hokuri Stream locality at the southern end of the Alpine Fault has the potential to contain a long record of earthquakes. The field component of this study involved the description, measurement and sampling of multiple river bank outcrops of the Hokuri sedimentary sequence. Sampling was undertaken by two approaches: discrete sediment sampling and continuous push-core sampling. Radiocarbon samples were processed at the Rafter Radiocarbon Laboratory, New Zealand. 123 samples were dated and the most commonly dated organic fractions were individual leaves, reeds, and seeds. 15 refs., 6 figs.

  13. The Elaboration Process of Municipal Education Plans in the Greater São Paulo ABC Region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Garcia

    2018-03-01

    Full Text Available This study analyzed the elaboration process of the Municipal Education Plans (PME in Greater São Paulo ABC region (Brazil, placing the analysis in a broader framework to understand the influences made by the Lesbian, Gay, Bisexual and Transgender (LGBT movement and those practiced by the Catholic Church. A case study was used as a methodological approach. Results revealed the loosening in the drawing up of plans, the influence of the Church over the councilmen, inducing them to make alterations in final documents, ratifying the Church’s influence, which is historic in Brazil, and the education weakening regarding prejudice and discrimination, that are recognized demands of the LGBT movement. These results are important in order to provoke the debate in Education Departments and universities.

  14. The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa.

    Science.gov (United States)

    Gehrke, Berit; Kandziora, Martha; Pirie, Michael D

    2016-01-01

    Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  16. Alpine treeline of western North America: linking organism-to-landscape dynamics.

    Science.gov (United States)

    George P. Malanson; David R. Butler; Daniel B. Fagre; Stephen J. Walsh; Diana F. Tomback; Lori D. Daniels; Lynn M. Resler; William K. Smith; Daniel J. Weiss; David L. Peterson; Andrew G. Bunn; Christopher A. Hiemstra; Daniel Liptzin; Patrick S. Bourgeron; Zehao Shen; Constance I. Millar

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree diebackdepend on microsite patterns. Growth forms affect wind...

  17. A Retrospective Analysis of Concurrent Pathology in ACL-Reconstructed Knees of Elite Alpine Ski Racers

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Doyle-Baker, Patricia; Heard, Mark

    2017-01-01

    /chondral surgery, 60% of meniscal tears and 80% of chondral lesions had worsened since the time of primary ACLR. CONCLUSION: Concurrent injury was common in this group of elite ski racers. Primary ACL tears were typically accompanied by lateral compartment chondral lesions and complex meniscal tears that worsened...... over time. ACL/MCL tears were the most common multiligament injury pattern.......BACKGROUND: Anterior cruciate ligament (ACL) tear is the most frequent injury in alpine ski racing, and there is a high prevalence of ACL reinjury. Limited data exist on the concurrent pathology with primary ACL tears in elite alpine ski racers and the magnitude of injury progression after primary...

  18. Socio-economic considerations of cleaning Greater Vancouver's air

    International Nuclear Information System (INIS)

    2005-08-01

    Socio-economic considerations of better air quality on the Greater Vancouver population and economy were discussed. The purpose of the study was to provide socio-economic information to staff and stakeholders of the Greater Vancouver Regional District (GVRD) who are participating in an Air Quality Management Plan (AQMP) development process and the Sustainable Region Initiative (SRI) process. The study incorporated the following methodologies: identification and review of Canadian, American, and European quantitative socio-economic, cost-benefit, cost effectiveness, competitiveness and health analyses of changes in air quality and measures to improve air quality; interviews with industry representatives in Greater Vancouver on competitiveness impacts of air quality changes and ways to improve air quality; and a qualitative analysis and discussion of secondary quantitative information that identifies and evaluates socio-economic impacts arising from changes in Greater Vancouver air quality. The study concluded that for the Greater Vancouver area, the qualitative analysis of an improvement in Greater Vancouver air quality shows positive socio-economic outcomes, as high positive economic efficiency impacts are expected along with good social quality of life impacts. 149 refs., 30 tabs., 6 appendices

  19. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bojan Nemec

    2014-10-01

    Full Text Available High precision Global Navigation Satellite System (GNSS measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  20. Geochemistry and petrography of the MacAlpine Hills lunar meteorites

    Science.gov (United States)

    Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1991-01-01

    MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).

  1. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    Directory of Open Access Journals (Sweden)

    Guangjian Wu

    2012-04-01

    Full Text Available This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau. This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5.41% along Qilian Shan and 3.85% in the Southern Tibetan Plateau. The iron fractional solubility averages about 0.25% in Eastern Tien Shan, 0.05–2% along Qilian Shan and 1.5% in the Southern Tibetan Plateau. Among the controlling factors that can affect iron solubility in Asian dust, such as dust composition and particle grain size, acidity seems to be the most significant and can increase the iron solubility by one or two orders of magnitude with acidification of pH=0.66. Our results reveal that iron solubility of dust in the remote downwind sites is higher than that in high-alpine snow, confirming the strong pH-dependence of iron solubility, and indicating that Asian dust shows a large variation in iron solubility on a regional scale.

  2. Dense image matching of terrestrial imagery for deriving high-resolution topographic properties of vegetation locations in alpine terrain

    Science.gov (United States)

    Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.

    2018-04-01

    The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.

  3. Stable isotopes (C, N, O, H) of feathers collected in an Italian alpine region, during postbreeding migration

    Science.gov (United States)

    Bontempo, Luana; Ceppa, Florencia; Pedrini, Paolo; Tenan, Simone; Camin, Federica

    2013-04-01

    Over the last 20 years the analysis of stable isotope ratios of carbon, nitrogen, oxygen, hydrogen and sulphur have gradually become a formidable tool for the animal ecologists (Hobson and Wassenaar, 1997; Marra et al., 1998; Inger and Bearhop, 2008). In particular many studies have been developed on tracking the movement and the diet of birds in time and space, fundamental to understanding their ecology, but also inherently difficult to determine. The aim of this study was to deepen the origin and behaviour of migratory bird species crossing the Trentino area, an Italian alpine region, during the post-nuptial migration period, and monitored by a long term study by ringing activities (Progetto Alpi, Pedrini et al. 2008). About 800 samples of feathers from 48 local bird species were collected during 2010 - 2012 years. Analysis of d13C, d15N, d18O and dD were performed on these samples using an Isotope Ratio Mass Spectrometer (IRMS) interfaced with an Elemental Analyser or a pyrolyser after a pre-treatment of the feathers (cleaning with diethyl ether:methanol 2:1, equilibration to ambient humitity for 4 days and, for d18O and dD a final drying step wth P2O5 for another 4 days). A first survey of the obtained data is presented in this work. As expected, the first statistical elaboration/'look' of them confirmed that 13C can be used to trace the importance of different carbon pools to a consumer (e.g. C3, C4 or CAM plants, marine algae) whereas d15N vary as a function of a variety of biological, geochemical and anthropogenic processes and is a very effective tracer of trophic level. In particular, it was interesting to note that the specie Loxia curvirostra showed particularly high d13C and low d15N values probably due to the eating of conifer seeds and whereas the specie Motacilla flava, that bases its diet primarily on worms and insects, presented high d15N values. On the other hand d18O values mainly depends by geographical/diet factors whereas dD values are

  4. A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China

    Science.gov (United States)

    Chang, Y.; Ding, Y.; Zhao, Q.; Zhang, S.

    2017-12-01

    The accurate estimation of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates affected by climate change, such as the Tibetan Plateau (TP). The MOD16 ET product has also been validated and applied in many countries with various climates, however, its performance varies under different climates and regions. Several have studied ET based on satellite-based models on the TP. However, only a few studies on the performance of MOD16 in the TP with heterogeneous land cover have been reported. This study proposes an improved algorithm for estimating ET based on a proposed modified MOD16 method over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraint for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was introduced to decrease the uncertainty of soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons between ET observed using Eddy Covariance (EC) and estimated using both the original method and modified method suggest that the modified algorithm had better performance than the original MOD16 method. This result was achieved considering that the coefficient of determination (R2) increased from 0.28 to 0.70, and the root mean square error (RMSE) decreased from 1.31 to 0.77 mm d-1. The modified algorithm also outperformed on precipitation days compared to non-precipitation days at Suli and Hulugou sites, while it performed well for both non-precipitation and precipitation days at Tanggula site. Comparisons of the 8-day ET estimation using the MOD16 product, original MOD16 method, and modified MOD16 method with observed ET suggest that MOD16 product underestimated ET over the alpine meadow of the TP during the growing season

  5. Bacteria and pelagic food webs in Pristine alpine lakes (Retezat Mountains, Romania)

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Cogalniceanu, D.; Nedoma, Jiří; Parpala, L.; Postolache, C.; Tudorancea, C.; Vadineanu, A.; Valcu, C. M.; Zinevici, V.

    2006-01-01

    Roč. 3, - (2006), s. 1-10 ISSN 1841-7051 Grant - others:EC(XE) EVK1-CT-1999-00032; EC(XE) GOCE-CT-2003-505298 Institutional research plan: CEZ:AV0Z60170517 Keywords : alpine lakes * pelagic bacteria * chlorophyll * zooplankton Subject RIV: EH - Ecology, Behaviour

  6. Relationships between stocking rate, livestock production systems and Alpine grasslands management

    Directory of Open Access Journals (Sweden)

    Enrico Sturaro

    2010-01-01

    Full Text Available This study was conducted in order to identify the relationships between stocking rate, management system, topographic conditions and weed encroachment of summer pastures in “Lessinia”, a pre-Alpine area in the Veneto region (North-Eastern Italy. Using the data from a field survey on 46 summer pastures (30 with dairy cows and 16 with other bovine categories, various ANOVA/ANCOVA models were used to test the effects on stocking rate of livestock category, supplementary concentrate feeding, and pasture weed encroachment, slope and elevation. Stocking rate was higher in summer pastures with dairy cows than in those with other bovine categories, and in pastures with moderate slopes than in those with higher ones, but was unaffected by supplementary concentrate feeding, altitude and weed encroachment. This indicates that in the considered areas stocking rate is not constrained by pasture productivity and is kept at sub-optimal levels. Future research is needed to make more clear the effects that the present management status may have on the evolution of pastures productivity and biodiversity value.

  7. Holocene geochemical footprint from Semi-arid alpine wetlands in southern Spain

    Science.gov (United States)

    García-Alix, Antonio; Jiménez-Espejo, Francisco J.; Jiménez-Moreno, Gonzalo; Toney, Jaime L.; Ramos-Román, María J.; Camuera, Jon; Anderson, R. Scott; Delgado-Huertas, Antonio; Martínez-Ruiz, Francisca; Queralt, Ignasi

    2018-02-01

    Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ˜2500 to ˜3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.

  8. Differing long term trends for two common amphibian species (Bufo bufo and Rana temporaria in alpine landscapes of Salzburg, Austria.

    Directory of Open Access Journals (Sweden)

    Martin Kyek

    Full Text Available This study focuses on the population trends of two widespread European anuran species: the common toad (Bufo bufo and the common frog (Rana temporaria. The basis of this study is data gathered over two decades of amphibian fencing alongside roads in the Austrian state of Salzburg. Different statistical approaches were used to analyse the data. Overall average increase or decrease of each species was estimated by calculating a simple average locality index. In addition the statistical software TRIM was used to verify these trends as well as to categorize the data based on the geographic location of each migration site. The results show differing overall trends for the two species: the common toad being stable and the common frog showing a substantial decline over the last two decades. Further analyses based on geographic categorization reveal the strongest decrease in the alpine range of the species. Drainage and agricultural intensification are still ongoing problems within alpine areas, not only in Salzburg. Particularly in respect to micro-climate and the availability of spawning places these changes appear to have a greater impact on the habitats of the common frog than the common toad. Therefore we consider habitat destruction to be the main potential reason behind this dramatic decline. We also conclude that the substantial loss of biomass of a widespread species such as the common frog must have a severe, and often overlooked, ecological impact.

  9. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    Science.gov (United States)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  10. [Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season].

    Science.gov (United States)

    He, Run-lian; Chen, Ya-mei; Deng, Chang-chun; Yan, Wan-qin; Zhang, Jian; Liu, Yang

    2015-03-01

    In order to understand the relationship between litter decomposition and soil fauna diversity during snow cover season, litterbags with plant debris of Actinothuidium hookeri, Cystopteris montana, two representative understory plants in the alpine timberline ecotone, and their mixed litter were incubated in the dark coniferous forest, timberline and alpine meadow, respectively. After a snow cover season, the mass loss and soil fauna in litterbags were investigated. After decomposition with a snow cover season, alpine meadow showed the highest mass loss of plant debris in comparison with coniferous forest and timberline, and the mass loss of A. hookeri was more significant. The mixture of two plants debris accelerated the mass loss, especially in the timberline. A total of 968 soil invertebrates, which belonged to 5 classes, 10 orders and 35 families, were captured in litterbags. Acarina and Collembola were the dominant groups in plant debris. The numbers of individuals and groups of soil faunal communities in litter of timberline were higher than those of alpine meadow and dark coniferous forest. Canonical correspondence analysis (CCA) indicated that the groups of soil animals were related closely with the average temperature, and endemic species such as Isoptera and Geophilomorpha were observed only in coniferous forest, while Hemiptera and Psocoptera only in.the alpine meadow. The diversity of soil faunal community was more affected by plant debris varieties in the timberline than in the coniferous forest and alpine meadow. Multiple regression analysis indicated that the average temperature and snow depth explained 30.8% of the variation of litter mass loss rate, soil animals explained 8.3%, and altogether explained 34.1%. Snow was one of the most critical factors impacting the decomposition of A. hookeri and C. montana debris in the alpine timberline ecotone.

  11. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: new insight from the western Italian Alps.

    Directory of Open Access Journals (Sweden)

    Simona Imperio

    Full Text Available Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence.

  12. Influence of climate and regeneration microsites on Pinus contorta invasion into an alpine ecosystem in New Zealand

    Directory of Open Access Journals (Sweden)

    Melanie A. Harsch

    2016-08-01

    Full Text Available In many regions, alien conifers have spread widely at lower elevations and are increasingly found colonizing alpine areas. Although studies have addressed conifer invasions at low elevations, little is known about the rates and constraints on spread into higher elevations. Here, we assess the relative importance of climate and the availability of regeneration microsites on the establishment of the alien species Pinus contorta into a high elevation site in New Zealand. Spread has occurred from two stands planted at the elevation of the native treeline (1347–1388 masl in the 1960s. Most stems established between 1350 and 1450 masl and P. contorta individuals were found up to 270 m above the original plantings. Although the population has increased by 180% in the last 20 years, population growth rate has been declining. Furthermore, comparisons with studies from other mountain ranges around the world and at low elevations in New Zealand suggest this is a relatively limited spread. Our results suggest that climate variation did not have a significant effect on establishment patterns, as opposed to availability of regeneration microsites. Soil and alpine mat microsites favoured establishment of P. contorta and, although these microsites did not appear to be saturated, microsite availability may be an important limiting factor for the spread of P. contorta. Thus management strategies should focus on preventing spread in addition to removing already established stems.

  13. PV plants for Alpine huts: Installation and operating experience at seven ENEL plants

    International Nuclear Information System (INIS)

    Belli, G.; Iliceto, A.; Previ, A.

    1988-01-01

    The problem of supplying electric power to isolated users far from the electricity distribution grid is one of general interest. Such consumers are nowadays generally supplied with electricity produced by small diesel generator-sets, and only recently have photovoltaic arrays and wind-turbines offered an alternative to the internal combustion engine. ENEL, as a State-owned electricity utility, is interested in the development of this particular application of renewable energy sources. Enlarging a low-voltage distribution network to connect consumers whose power requirements are extremely low (about 1000 kWh/year) may, in certain conditions, be uneconomical, both for the utility, which has to absorb most of the expense involved in construction and maintenance, and for the consumer himself. The paper reports the design criteria, the tests and the problems encountered in electrifying seven alpine huts belonging to CAI (Italian Alpine Club)

  14. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  15. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  16. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  17. Characterising hydrological behaviour of springs draining different alpine formations

    Science.gov (United States)

    Volze, N.; Smoorenburg, M.; Kienzler, P.; Naef, F.; Rabenstein, L.; Kinzelbach, W.

    2012-04-01

    The project SACflood (Susceptibility of alpine catchment flood runoff to changes in meteorological boundary conditions) concentrates on alpine areas and wants to identify catchments that show a damped reaction to runoff but may react unexpectedly strong to increased precipitation as observed in 2005 in the Schächen. The catchment showed a delayed and damped behaviour for smaller precipitation events but reacted with strongly increased discharge when a threshold amount of rainfall was reached, causing a flood with high damages. This is attributed to the complex interaction of storage and drainage mechanisms that are not yet well enough understood. Typical alpine geomorphic formations are identified that are likely to be associated with large storages which could considerably delay runoff reaction but still contribute to flow within a timescale relevant for flood formation. From these geomorphic formations deep drainage is measured as outflow from several springs. In addition natural tracers are measured in the springs. On a steep hill slope, associated to one of the observed springs, ground water levels are observed. Geoelectric profiles were recorded to depict the structure of the underground. Discharge measurements from the springs show remarkable differences between the sites. After long dry periods certain springs do not react to rainfall immediately but need considerable amounts of rain to increase discharge. Even steep slopes as well as large talus areas can substantially delay runoff. Observations of the groundwater levels reveal an unexpected picture of the underground. The water table is not as often assumed above the bedrock but at a depth of several meters within the highly fractured bedrock material. This can result in a much higher storage capacity of such slopes despite the steepness of the surface. On the basis of the results from field work conceptual ideas are developed. The influence of parameters such as the depth of the unsaturated zone and the

  18. Radiology services for children in HIV- and TB-endemic regions: scope for greater collaboration between radiologists and clinicians caring for children

    International Nuclear Information System (INIS)

    Dramowski, Angela; Morsheimer, Megan M.; Schaaf, H.S.; Rabie, Helena; Sorour, Gillian; Cotton, Mark F.; Frigati, Lisa

    2009-01-01

    There is limited literature documenting the interaction between radiologists and clinicians caring for children, especially in regions where HIV and tuberculosis (TB) are endemic. The dual burden of these diseases in resource-limited settings creates unique challenges for radiographic interpretation and utilization. This review aims to heighten awareness of issues confronting radiologists and clinicians caring for children and to encourage greater collaboration between these two disciplines in HIV- and TB-endemic regions. The Child-Friendly Healthcare Initiative is discussed, emphasizing opportunities to promote child friendliness in radiology services. (orig.)

  19. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  20. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    NARCIS (Netherlands)

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  1. Close-Range Sensing Techniques in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  2. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    Science.gov (United States)

    Du, Haibo; Liu, Jie; Li, Mai-He; Büntgen, Ulf; Yang, Yue; Wang, Lei; Wu, Zhengfang; He, Hong S

    2018-03-01

    Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics. © 2017 John Wiley & Sons Ltd.

  3. Forgotten Edible alpine plants in the canton of Valais

    OpenAIRE

    Abbet, Christian Paul

    2014-01-01

    Tradition possesses plenty of forgotten wild edible plants and may help researchers in the quest for new food varieties. Swiss alpine cantons, especially the canton of Valais, have still had a viable tradition. However, societal changes and extensive urbanization have caused this knowledge to be confined to lateral valleys. This contribution aimed to document wild edible plants which were collected in the canton of Valais. 38 informants originating from four different valleys of the canton (V...

  4. The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.

    Science.gov (United States)

    Gettman, Larry R.; Huckel, Jack R.

    The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…

  5. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  6. Feed selection and radiocaesium intake by reindeer, sheep and goats grazing alpine summer habitats in southern Norway

    International Nuclear Information System (INIS)

    Staaland, H.; Garmo, T.H.; Hove, K.; Pedersen, O.

    1995-01-01

    Radiocaesium concentrations ( 137 Cs) were measured in extrusa from oesophageally fistulated sheep, goats and reindeer grazing alpine summer vegetation in Griningsdalen, Southern Norway in the period 1987-1989. The experiments with sheep and goats were conducted in different sub-alpine areas. The reindeer were, in addition, grazed in three areas in the low alpine zone. Grazing bouts lasted for 10-20 min and bite selections were recorded every 15 s through the grazing bout. Reindeer and goats had the most diverse food selection whereas sheep fed mainly on grasses, forbs and to some extent, on leaves of willow. The reindeer extrusa had the highest radiocaesium activity, apparently to a large extent caused by intake of lichens in areas where this type of plants were present. Depending on the type of vegetation in the grazed areas the transfer of radiocaesium from soil to grazed vegetation (Bq kg -1 dry extrusa/Bq m -2 soil) was estimated to 0.02-0.04 in sheep, 0.02-0.05 in goats and 0.02-0.43 in reindeer for 1987. (author)

  7. Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

    Science.gov (United States)

    Pasculli, Antonio; Audisio, Chiara; Sciarra, Nicola

    2017-12-01

    In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.

  8. The Balearic Islands in the Alpine Orogeny

    Energy Technology Data Exchange (ETDEWEB)

    Bourrouilh, R.

    2016-10-01

    The place of the Balearic Islands in the Alpine orogeny is examined using detailed sedimentology studies, stratigraphical studies from the Lower Devonian (Lochkovian) to modern times and a careful tectonic review of sedimentary formations from the Western Mediterranean. Despite being considered as the ultimate end of the north-eastern termination of the Betic Cordillera, the history of the Balearic archipelago seems to be closer to the tectonic opening of the Gulf of Valencia and to the Corsica-Sardinia rotation, and thus to the tectonic history of the Western Mediterranean Sea, than to the tectonics of the Betic Cordillera which appear as its symmetrical image with respect to this opening. (Author)

  9. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    Science.gov (United States)

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  10. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    Science.gov (United States)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can

  11. Population Spatial Dynamics of Larix potaninii in Alpine Treeline Ecotone in the Eastern Margin of the Tibetan Plateau, China

    OpenAIRE

    Jia’nan Cui; Jihong Qin; Hui Sun

    2017-01-01

    The high-altitude treeline is known to be sensitive to climate variability, and is thus considered as a bio-monitoring indicator of climate change. However, our understanding of the population dynamics and the cumulative climate-change effects on the alpine treeline ecotone in recent decades is limited. Here, we investigated the population dynamics of Larix potainii on the south- and north-facing slopes in the alpine treeline ecotone in the eastern margin of the Tibetan Plateau, China, includ...

  12. Adverse child health impacts resulting from food adulterations in the Greater China Region.

    Science.gov (United States)

    Li, Wai Chin; Chow, Chin Fung

    2017-09-01

    Food adulteration has a long history in human society, and it still occurs in modern times. Because children are relatively vulnerable to food adulterants, studying the health impacts of food adulteration on children is important. This article provides an overview of the child health impacts of food adulterants in two recent food adulteration incidents in the Greater China Region: (1) a plasticizer incident in Taiwan and (2) a 2,4,6-triamino-1,3,5-triazine (melamine)-tainted milk incident in China. The involved food adulterants, di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP) and melamine, are harmful to the hippocampus, kidneys, reproductive organs and immune system of children, and they also increase the risk of cancer. To detect food adulteration and to avoid further harm caused by food adulteration, simple screening methods have been developed, and they have recently emerged as a new focus area for research. This article also summarizes the simple screening methods used to analyse the aforementioned food adulterants and reports how governments reacted to the recent food incidents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  14. Soil nematodes in alpine meadows of the Tatra National Park (Slovak Republic)

    Czech Academy of Sciences Publication Activity Database

    Háněl, Ladislav

    2017-01-01

    Roč. 54, č. 1 (2017), s. 48-67 ISSN 0440-6605 R&D Projects: GA ČR(CZ) GA14-09231S Institutional support: RVO:60077344 Keywords : soil nematodes * diversity * maturity * soil food web * alpine meadow Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.472, year: 2016

  15. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  16. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevey, Janet; Vellend, Mark; Ruger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...

  17. Constructing Consistent Multiscale Scenarios by Transdisciplinary Processes: the Case of Mountain Regions Facing Global Change

    OpenAIRE

    Fridolin Simon. Brand; Roman Seidl; Quang Bao. Le; Julia Maria. Brändle; Roland Werner. Scholz

    2013-01-01

    Alpine regions in Europe, in particular, face demanding local challenges, e.g., the decline in the agriculture and timber industries, and are also prone to global changes, such as in climate, with potentially severe impacts on tourism. We focus on the Visp region in the Upper Valais, Switzerland, and ask how the process of stakeholder involvement in research practice can contribute to a better understanding of the specific challenges and future development of mountainous regions under global ...

  18. EXPLORING THE POTENTIAL OF AERIAL PHOTOGRAMMETRY FOR 3D MODELLING OF HIGH-ALPINE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    K. Legat

    2016-03-01

    Based on the very promising results, some general recommendations for aerial photogrammetry processing in high-alpine areas are made to achieve best possible accuracy of the final 3D-, 2.5D- and 2D products.

  19. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia.

    Science.gov (United States)

    Broome, Richard A; Cope, Martin E; Goldsworthy, Brett; Goldsworthy, Laurie; Emmerson, Kathryn; Jegasothy, Edward; Morgan, Geoffrey G

    2016-02-01

    This study investigates the mortality effect of primary and secondary PM2.5 related to ship exhaust in the Sydney greater metropolitan region of Australia. A detailed inventory of ship exhaust emissions was used to model a) the 2010/11 concentration of ship-related PM2.5 across the region, and b) the reduction in PM2.5 concentration that would occur if ships used distillate fuel with a 0.1% sulfur content at berth or within 300 km of Sydney. The annual loss of life attributable to 2010/11 levels of ship-related PM2.5 and the improvement in survival associated with use of low-sulfur fuel were estimated from the modelled concentrations. In 2010/11, approximately 1.9% of the region-wide annual average population weighted-mean concentration of all natural and human-made PM2.5 was attributable to ship exhaust, and up to 9.4% at suburbs close to ports. An estimated 220 years of life were lost by people who died in 2010/11 as a result of ship exhaust-related exposure (95% CIβ: 140-290, where CIβ is the uncertainty in the concentration-response coefficient only). Use of 0.1% sulfur fuel at berth would reduce the population weighted-mean concentration of PM2.5 related to ship exhaust by 25% and result in a gain of 390 life-years over a twenty year period (95% CIβ: 260-520). Use of 0.1% sulfur fuel within 300 km of Sydney would reduce the concentration by 56% and result in a gain of 920 life-years over twenty years (95% CIβ: 600-1200). Ship exhaust is an important source of human exposure to PM2.5 in the Sydney greater metropolitan region. This assessment supports intervention to reduce ship emissions in the GMR. Local strategies to limit the sulfur content of fuel would reduce exposure and will become increasingly beneficial as the shipping industry expands. A requirement for use of 0.1% sulfur fuel by ships within 300 km of Sydney would provide more than twice the mortality benefit of a requirement for ships to use 0.1% sulfur fuel at berth. Copyright © 2015 Elsevier

  20. Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany

    Directory of Open Access Journals (Sweden)

    G. Kraller

    2012-07-01

    Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model

  1. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment

    Science.gov (United States)

    Carey, S. K.

    2002-12-01

    Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This

  3. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  4. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  5. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  6. Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-10-01

    Full Text Available Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap, stomatal and mesophyll conductances (gs and gm, CO2 assimilation rate (An, and total electron flow through PSII (JPSII at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap, the diurnal values of gs, gm, An and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures.

  7. Site-specific landslide assessment in Alpine area using a reliable integrated monitoring system

    Science.gov (United States)

    Romeo, Saverio; Di Matteo, Lucio; Kieffer, Daniel Scott

    2016-04-01

    Rockfalls are one of major cause of landslide fatalities around the world. The present work discusses the reliability of integrated monitoring of displacements in a rockfall within the Alpine region (Salzburg Land - Austria), taking into account also the effect of the ongoing climate change. Due to the unpredictability of the frequency and magnitude, that threatens human lives and infrastructure, frequently it is necessary to implement an efficient monitoring system. For this reason, during the last decades, integrated monitoring systems of unstable slopes were widely developed and used (e.g., extensometers, cameras, remote sensing, etc.). In this framework, Remote Sensing techniques, such as GBInSAR technique (Groung-Based Interferometric Synthetic Aperture Radar), have emerged as efficient and powerful tools for deformation monitoring. GBInSAR measurements can be useful to achieve an early warning system using surface deformation parameters as ground displacement or inverse velocity (for semi-empirical forecasting methods). In order to check the reliability of GBInSAR and to monitor the evolution of landslide, it is very important to integrate different techniques. Indeed, a multi-instrumental approach is essential to investigate movements both in surface and in depth and the use of different monitoring techniques allows to perform a cross analysis of the data and to minimize errors, to check the data quality and to improve the monitoring system. During 2013, an intense and complete monitoring campaign has been conducted on the Ingelsberg landslide. By analyzing both historical temperature series (HISTALP) recorded during the last century and those from local weather stations, temperature values (Autumn-Winter, Winter and Spring) are clearly increased in Bad Hofgastein area as well as in Alpine region. As consequence, in the last decades the rockfall events have been shifted from spring to summer due to warmer winters. It is interesting to point out that

  8. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France)

    Science.gov (United States)

    Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto

    2013-01-01

    Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are

  9. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    Science.gov (United States)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  10. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov

    2015-07-01

    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  11. The assessment of selected factors influencing intent to get pregnant in the Greater Poland Region

    Directory of Open Access Journals (Sweden)

    Małgorzata Wojciechowska

    2014-06-01

    Full Text Available introduction and objective. Nowadays, people decide to have a baby by first analysing their financial situation. Tradition is no longer a factor which determines the decision whether or not to have a baby. A prognosis of the Polish Central Statistical Office (GUS shows that the population of Poland will fall from 38 to 36 million by 2035. The aim of this study is to assess the procreation behaviour of women in Greater Poland Region. materials and methods. For the research purpose, 3,120 women of reproductive age were examined by using an author designed questionnaire and a synthetic Family Financial Standard Index. results: 74.6% of the respondents lived in an urban area, 25.4% of women come from a rural area. 49% of examined women did not want to have a bigger family, 45% would like to have another child. Analysis of the reasons why women did not want to have another baby revealed that predominance of the financial factor – 67%, living conditions – 18.4% and health– 13.2%. Only 11.9% of the women declared their high financial status, 4.8% of families received family allowance from the government; 88.4% of the examined families did not receive any social benefits. Bad housing situation was declared by 5% of the respondents, 26.7% of the interviewees lived with family members, i.e. parents or grandparents. Analysis of the data concerning religious bonds showed that 67.6% of women declared their indifference to religion. conclusions. The economic factor was an important reason limiting procreation. The bad situation on the real estate market combined with an insufficient range of social welfare led to a decrease in the birth-rate in the Greater Poland region. The impact of religion on family planning was less important. The influence of the analysed socio-economic factors on family planning was similar in rural and urban areas.

  12. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Yi Shuhua; Zhou Zhaoye; Ren Shilong; Xu Ming; Qin Yu; Chen Shengyun; Ye Baisheng

    2011-01-01

    Permafrost on the Qinghai–Tibetan Plateau (QTP) has degraded over the last few decades. Its ecological effects have attracted great concern. Previous studies focused mostly at plot scale, and hypothesized that degradation of permafrost would cause lowering of the water table and drying of shallow soil and then degradation of alpine grassland. However, none has been done to test the hypothesis at basin scale. In this study, for the first time, we investigated the relationships between land surface temperature (LST) and fractional vegetation cover (FVC) in different types of permafrost zone to infer the limiting condition (water or energy) of grassland growth on the source region of Shule River Basin, which is located in the north-eastern edge of the QTP. LST was obtained from MODIS Aqua products at 1 km resolution, while FVC was upscaled from quadrat (50 cm) to the same resolution as LST, using 30 m resolution NDVI data of the Chinese HJ satellite. FVC at quadrat scale was estimated by analyzing pictures taken with a multi-spectral camera. Results showed that (1) retrieval of FVC at quadrat scale using a multi-spectral camera was both more accurate and more efficient than conventional methods and (2) the limiting factor of vegetation growth transitioned from energy in the extreme stable permafrost zone to water in the seasonal frost zone. Our study suggested that alpine grassland would respond differently to permafrost degradation in different types of permafrost zone. Future studies should consider overall effects of permafrost degradation, and avoid the shortcomings of existing studies, which focus too much on the adverse effects.

  13. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    Science.gov (United States)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress

  14. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    Science.gov (United States)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across

  15. Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Zhang, Yuguang; Lu, Zhenmei; Liu, Shanshan; Yang, Yunfeng; He, Zhili; Ren, Zuohua; Zhou, Jizhong; Li, Diqiang

    2013-03-29

    GeoChip 3.0, a microbial functional gene array, containing ~28,000 oligonucleotide probes and targeting ~57,000 sequences from 292 functional gene families, provided a powerful tool for researching microbial community structure in natural environments. The alpine meadow is a dominant plant community in the Qinghai-Tibetan plateau, hence it is important to profile the unique geographical flora and assess the response of the microbial communities to environmental variables. In this study, Geochip 3.0 was employed to understand the microbial functional gene diversity and structure, and metabolic potential and the major environmental factors in shaping microbial communities structure of alpine meadow soil in Qinghai-Tibetan Plateau. A total of 6143 microbial functional genes involved in carbon degradation, carbon fixation, methane oxidation and production, nitrogen cycling, phosphorus utilization, sulphur cycling, organic remediation, metal resistance, energy process and other category were detected in six soil samples and high diversity was observed. Interestingly, most of the detected genes associated with carbon degradation were derived from cultivated organisms. To identify major environmental factors in shaping microbial communities, Mantel test and CCA Statistical analyses were performed. The results indicated that altitude, C/N, pH and soil organic carbon were significantly (P the microbial functional structure and a total of 80.97% of the variation was significantly explained by altitude, C/N and pH. The C/N contributed 38.2% to microbial functional gene variation, which is in accordance with the hierarchical clustering of overall microbial functional genes. High overall functional genes and phylogenetic diversity of the alpine meadow soil microbial communities existed in the Qinghai-Tibetan Plateau. Most of the genes involved in carbon degradation were derived from characterized microbial groups. Microbial composition and structures variation were

  16. Flash Flood Risk Perception in an Italian Alpine Region. From Research into Adaptive Strategies.

    Science.gov (United States)

    Scolobig, A.; de Marchi, B.; Borga, M.

    2009-04-01

    Flash floods are characterised by short lead times and high levels of uncertainty. Adaptive strategies to face them need to take into account not only the physical characteristics of the hydro-geological phenomena, but also peoples' risk perceptions, attitudes and behaviours in case of an emergency. It is quite obvious that a precondition for an effective adaptation, e.g. in the case of a warning, is the awareness of being endangered. At the same time the perceptions of those at risk and their likely actions inform hazard warning strategies and recovery programmes following such events. Usually low risk awareness or "wrong perceptions" of the residents are considered among the causes of an inadequate preparedness or response to flash floods as well as a symptom of a scarce self-protection culture. In this paper we will focus on flood risk perception and on how research on this topic may contribute to design adaptive strategies and give inputs to flood policy decisions. We will report on a flood risk perception study of the population residing in four villages in an Italian Alpine Region (Trentino Alto-Adige), carried out between October 2005 and January 2006. A total of 400 standardised questionnaires were submitted to local residents by face to face interviews. The surveys were preceded by focus groups with officers from agencies in charge of flood risk management and semi-structured and in-depth interviews with policy, scientific and technical experts. Survey results indicated that people are not so worried about hydro-geological phenomena, and think that their community is more endangered than themselves. The knowledge of the territory and danger sources, the unpredictability of flash floods and the feeling of safety induced by structural devices are the main elements which make the difference in shaping residents' perceptions. The study also demonstrated a widespread lack of adoption of preparatory measures among residents, together with a general low

  17. Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-06-01

    Full Text Available We analyse the control of hydroclimatic factors on suspended sediment concentration (SSC in Alpine catchments by differentiating among the potential contributions of erosion and suspended sediment transport driven by erosive rainfall, defined as liquid precipitation over snow-free surfaces, ice melt from glacierized areas, and snowmelt on hillslopes. We account for the potential impact of hydropower by intercepting sediment fluxes originated in areas diverted to hydropower reservoirs, and by considering the contribution of hydropower releases to SSC. We obtain the hydroclimatic variables from daily gridded datasets of precipitation and temperature, implementing a degree-day model to simulate spatially distributed snow accumulation and snow–ice melt. We estimate hydropower releases by a conceptual approach with a unique virtual reservoir regulated on the basis of a target-volume function, representing normal reservoir operating conditions throughout a hydrological year. An Iterative Input Selection algorithm is used to identify the variables with the highest predictive power for SSC, their explained variance, and characteristic time lags. On this basis, we develop a hydroclimatic multivariate rating curve (HMRC which accounts for the contributions of the most relevant hydroclimatic input variables mentioned above. We calibrate the HMRC with a gradient-based nonlinear optimization method and we compare its performance with a traditional discharge-based rating curve. We apply the approach in the upper Rhône Basin, a large Swiss Alpine catchment heavily regulated by hydropower. Our results show that the three hydroclimatic processes – erosive rainfall, ice melt, and snowmelt – are significant predictors of mean daily SSC, while hydropower release does not have a significant explanatory power for SSC. The characteristic time lags of the hydroclimatic variables correspond to the typical flow concentration times of the basin. Despite not

  18. Burn related mortality in Greater Manchester: 11-year review of Regional Coronial Department Data.

    Science.gov (United States)

    Hussain, Amer; Dunn, Ken

    2015-03-01

    The Coroners Department (CD) records hold important demographic, injury and death details for victims of burn injuries derived from various sources yet this rich source of data has been infrequently utilised previously in describing the epidemiology of burn related mortality. The aim of this study was to use CD data to comprehensively investigate burn related mortality in the Greater Manchester region of United Kingdom. A retrospective study design was used to collect data for deceased demographics, injury details, site of death and cause of death from four CD offices in GM over an 11-year period (2000-2010 inclusive). Office of National Statistics (ONS) population metrics were used to calculate age- and gender-specific population denominators and mortality rates. Index of Multiple Deprivation (IMD) was used to correlate mortality with deprivation. Linear regression and Pearson's/Spearman's rank correlation were used to calculate trends and correlations. Poisson regression was used to calculate relative risk (IRR) between age- and gender groups. There were 314 recorded deaths in the region over the study period and thermal injury was 3-times less likely to result in death in 2010 compared to 2000. The largest proportion of these deaths (24.8%) was comprised of individuals ≥75 years in age. The relative risk of mortality in males was nearly 1.5-times higher and a significant majority of victims (77%) sustained their burn injury at their own home/residence. Inhalation injury without cutaneous burns was the most frequent type of injury (33%) and accidental house fires caused nearly half (49%) the injuries resulting in death. Sixty-five percent of deaths during this period were recorded to have occurred outside of regional burn service (RBS) hospitals and the commonest cause of immediate death on the death certificates was "inhalation of products of combustion" (32.1%). Within the >75 years age group the risk of death significantly increased with every quintile

  19. INTERACT Management planning for arctic and northern alpine stations - Examples of good practices

    DEFF Research Database (Denmark)

    of visitors, outreach, science plans, data management and education. The target audience for the book is mainly managers of research stations in arctic and alpine areas, but it is our hope that it will also be a useful tool for others being involved in science coordination and logistics....

  20. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...

  2. Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

    Science.gov (United States)

    Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus

    2018-05-01

    The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the

  3. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an Alpine Tibetan Herb.

    Science.gov (United States)

    Ni, Lianghong; Zhao, Zhili; Dorje, Gaawe; Ma, Mi

    2016-01-01

    Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae). The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

  4. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae, an Alpine Tibetan Herb.

    Directory of Open Access Journals (Sweden)

    Lianghong Ni

    Full Text Available Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM. However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae. The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs of 25,523 bp that separate a large single copy (LSC region of 84,058 bp and a small single copy (SSC region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs. The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

  5. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  6. A Functional Approach to Zooplankton Communities in Mountain Lakes Stocked With Non-Native Sportfish Under a Changing Climate

    Science.gov (United States)

    Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.

    2018-03-01

    Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.

  7. Energy sector integration for low carbon development in Greater Mekong sub-region: Towards a model of South-South cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yongping

    2010-09-15

    The Greater Mekong Sub-region (GMS) in Southeast Asia has embarked on a roadmap of power interconnection and expanded energy sector cooperation. An Asian development bank committed study using Model of Energy Supply Systems Alternatives and their General Environmental Impacts (MESSAGE) assessed the impacts of various scenarios, the results indicate that GMS integration will help these countries to achieve low carbon and sustainable development. The article suggests that the experience of GMS cooperation be made a model for South-South cooperation in the global effort to fight climate change.

  8. Estimation of Biomass Dynamics in Alpine Treeline Ecotone using Airborne Lidar and Repeat Photography

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2016-12-01

    Historic photographs provide visual records of landscapes which pre-date aerial and satellite observations, but analysis of these photographs has largely been qualitative due to varying spatial scale within an oblique image. Recent technological advances, such as the WSL monoplotting tool, provide the ability to georeference single oblique images, allowing for quantitative spatial analysis of land cover change between historic photographs and contemporary repeat photographs. The WSL monoplotting tool was used to compare alpine land cover change between 12 photographs from a 1914 survey of the West Castle valley (Alberta, Canada; 49.3° N, 114.4° W) and 12 repeat photographs, collected in 2006 by the Mountain Legacy Project. We tested for correlations between land cover shifts over the 92 year observation period and geomorphic controls (e.g. elevation, slope, aspect), with a focus on vegetative change in the alpine treeline ecotone (ATE). A model of above ground biomass was generated using an airborne lidar observation of the valley (2014) and ground validated measurements of tree height, diameter at breast height, and leaf area index from 25 plots (400 m2). By creating a high resolution map of ATE dynamics over a 92 year interval and incorporating a model of above ground biomass, the relative magnitude of anthropogenic, orographic, and climatic controls on ATE can be explored. This research provides a unique opportunity to understand the impact that continued atmospheric warming could have on vegetative boundaries in sensitive alpine systems, such as the eastern slopes of the Rocky Mountains.

  9. Interseasonal movements of greater sage-grouse, migratory behavior, and an assessment of the core regions concept in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Aldridge, Cameron L.; Doherty, Kevin E.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Swanson, Christopher C.; Walker, Brett L.

    2012-01-01

    Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was

  10. Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum

    Science.gov (United States)

    Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.

    2018-06-01

    Alpine ice varies from pure ice glaciers to partially debris-covered glaciers to rock glaciers, as defined by the degree of debris cover. In many low- to mid-latitude mountain ranges, the few bare ice glaciers that do exist in the present climate are small and are found where snow is focused by avalanches and where direct exposure to radiation is minimized. Instead, valley heads are more likely to be populated by rock glaciers, which can number in the hundreds. These rock-cloaked glaciers represent some of the most identifiable components of the cryosphere today in low- to mid-latitude settings, and the over-steepened snouts pose an often overlooked hazard to travel in alpine terrain. Geomorphically, rock glaciers serve as conveyor belts atop which rock is pulled away from the base of cliffs. In this work, we show how rock glaciers can be treated as an end-member case that is captured in numerical models of glaciers that include ice dynamics, debris dynamics, and the feedbacks between them. Specifically, we focus on the transition from debris-covered glaciers, where the modern equilibrium line altitude (ELA) intersects the topography, to rock glaciers, where the modern ELA lies above the topography. On debris-covered glaciers (i.e., glaciers with a partial rock mantle), rock delivered to the glacier from its headwall, or from sidewall debris swept into the glacier at tributary junctions, travels englacially to emerge below the ELA. There it accumulates on the surface and damps the rate of melt of underlying ice. This allows the termini of debris-covered glaciers to extend beyond debris-free counterparts, thereby decreasing the ratio of accumulation area to total area of the glacier (AAR). In contrast, rock glaciers (i.e., glaciers with a full rock mantle) occur where and when the environmental ELA rises above the topography. They require avalanches and rockfall from steep headwalls. The occurrence of rock glaciers reflects this dependence on avalanche sources

  11. Beta-alanine supplementation improves jumping power and affects severe-intensity performance in professional alpine skiers.

    Science.gov (United States)

    Gross, Micah; Bieri, Kathrin; Hoppeler, Hans; Norman, Barbara; Vogt, Michael

    2014-12-01

    Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.

  12. The superposed orogenesis of the alpine-mediterranean edifice; Las orogenesis superpuestas del edificio alpino-mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Argyriadis, I.

    2016-10-01

    The circum-Mediterranean chains must be considered as the result of two distinct orogenies. The apparent unity of the present structure is of formal order, due to the latest deformations. Since the Hercynian time there have been two periods of paroxysmal deformation; the younger fits the definition of the alpine orogeny; the older occured during the Cretaceous and may correspond to the first great convergent relative drift of the Eurasiatic and African blocks. The Cretaceous or Mesogean orogeny is independent from the Alpine orogeny stricto sensu (Oligo-Miocene) and cannot be considered as its prefiguration. Being independent in time, it is independent in space as well. Even if this Mesogean orogeny can appear locally restricted to the internal parts of the Alpine chains (Central Mediterranean area, Carpathes, Dinarides) this cannot be taken as a rule: towards the west, the Cretaceous deformations cross the axis of the western Alps and extend (new investigations) over Provence to the Betic chains and the Pyrenean area. Towards the east, the deformations of this period cross the Hellenides (new observations) and spread over the external area in a spectacular way, interesting areas which have never been tectonised again (Cyprus, south-eastern Anatolia, northern Syria, Oman). As a whole, this large Cretaceous orogenic zone is part of a wider domain which extends over central Iran towards the Himalayas and eastern Asia, and has its equivalent on the western side of the Atlantic Ocean, in the Caribbean islands, Mexico and the Americas. (Author)

  13. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils

    Czech Academy of Sciences Publication Activity Database

    Siles, J. A.; Cajthaml, Tomáš; Minerbi, S.; Margesin, R.

    2016-01-01

    Roč. 92, č. 3 (2016), fiw008 ISSN 0168-6496 Institutional support: RVO:61388971 Keywords : Alpine soil s * forest * altitude Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  14. Development and application of a spatial IBM to forecast greater prairie-chicken population responses to land use in the Flint Hills region of Kansas

    Science.gov (United States)

    Greater prairie-chicken (Tympanachus cupido) populations have been on the decline for decades. Recent efforts to reverse this trend are focusing on two specific disturbance regimes, cattle grazing and field burning, both prevalent in the Flint Hill region of Kansas -- an area of...

  15. Simulating Canopy-Level Solar Induced Fluorescence with CLM-SIF 4.5 at a Sub-Alpine Conifer Forest in the Colorado Rockies

    Science.gov (United States)

    Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.

    2017-12-01

    Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.

  16. Growth and Its Relationship to Individual Genetic Diversity of Mountain Hemlock (Tsuga mertensiana at Alpine Treeline in Alaska: Combining Dendrochronology and Genomics

    Directory of Open Access Journals (Sweden)

    Jeremy S. Johnson

    2017-11-01

    Full Text Available Globally, alpine treelines are characterized as temperature-limited environments with strong controls on tree growth. However, at local scales spatially heterogeneous environments generally have more variable impacts on individual patterns of tree growth. In addition to the landscape spatial heterogeneity there is local variability in individual tree genetic diversity (level of individual heterozygosity. It has been hypothesized that higher individual heterozygosity will result in more consistent patterns of growth. In this article, we combine genomics and dendrochronology to explore the relationship between individual genetic diversity and tree growth at a mountain hemlock (Tsuga mertensiana Bong. Carr alpine treeline on the Kenai Peninsula, Alaska, USA. We correlated average observed individual heterozygosity with average tree-ring width and variance in tree-ring width within individuals to test the hypothesis that trees with higher individual heterozygosity will also have more consistent growth patterns, suggesting that they may be more resilient to climate and environmental fluctuations at the alpine treeline. Our results showed that there was no significant relationship between tree growth and individual heterozygosity. However, there was a significant positive relationship between average tree-ring width and variance in tree-ring width implying that overall, fast growing trees in stressful environments, such as the alpine treeline, grow unstably regardless of the level of individual heterozygosity.

  17. Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Schleicher, A.M.; Sutherland, R.; Townend, J.; Toy, V.G.; Van der Pluijm, B.A.

    2015-01-01

    Clay minerals are increasingly recognised as important controls on the state and mechanical behaviour of fault systems in the upper crust. Samples retrieved by shallow drilling from two principal slip zones within the central Alpine Fault, South Island, New Zealand, offer an excellent opportunity to investigate clay formation and fluid-rock interaction in an active fault zone. Two shallow boreholes, DFDP-1A (100.6 m deep) and DFDP-1B (151.4 m) were drilled in Phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011. We provide a mineralogical and textural analysis of clays in fault gouge extracted from the Alpine Fault. Newly formed smectitic clays are observed solely in the narrow zones of fault gouge in drill core, indicating that localised mineral reactions are restricted to the fault zone. The weak preferred orientation of the clay minerals in the fault gouge indicates minimal strain-driven modification of rock fabrics. While limited in extent, our results support observations from surface outcrops and faults systems elsewhere regarding the key role of clays in fault zones and emphasise the need for future, deeper drilling into the Alpine Fault in order to understand correlative mineralogies and fabrics as a function of higher temperature and pressure conditions. (author).

  18. In-situ carbon and nitrogen turnover dynamics and the role of soil functional biodiversity therein; a climate warming simulation study in Alpine ecosystems

    Science.gov (United States)

    Djukic, Ika

    2010-05-01

    Climate change affects a variety of soil properties and processes. Alpine soils take an extraordinary position in this context because of the vulnerability of mountain regions to climatic changes. We used altitudinal soil translocation to simulate the combined effects of changing climatic conditions and shifting vegetation zones in order to study short- to medium-term soil changes in the Austrian Limestone Alps. We translocated 160 soil cores from an alpine grassland site (1900 m asl) down to a sub-alpine spruce forest (1300 m asl) and a montane beech forest site (900m asl), including reference soil cores at each site to estimate artifacts arising from the method. 15N-labeled maize straw was added (1 kg/m2) to translocated and control soil cores and sampled over a period of 2 years for the analysis of δ13C and δ15N in the bulk soil and extracted phospholipid fatty acids (PLFAs). Additionally, 20 litter bags (at each of the three climatic zones) containing Fagus sylvatica or Pinus nigra litter were inserted into the soil, and decomposition was studied over a two-year period. The basic soil parameters (organic C, total N and pH) were unaffected by translocation within the observation time. Overall, decomposition of Pinus nigra litter was significantly slower compared to Fagus sylvatica, and the decomposition rate of both litter types was inversely related to elevation. The decomposition of the maize straw carbon was significantly faster in the translocated soil cores (sites at 900 and 1300 m asl) than at the original site (1900 m asl). The labelled nitrogen contents in the translocated soil cores showed just marginal differences to the soil cores at the original site. The maize straw application promptly increased the amount of bacterial and fungal PLFAs at all studied sites. Downslope translocated soil cores showed an increase in total microbial biomass and sum of bacteria. The fungal PLFA biomarker 18:2ω6,9 was slightly lower at the new (host) sites compared to

  19. Vaccine Preventability of Meningococcal Clone, Greater Aachen Region, Germany

    NARCIS (Netherlands)

    Elias, Johannes; Schouls, Leo M.; van de Pol, Ingrid; Keijzers, Wendy C.; Martin, Diana R.; Glennie, Anne; Oster, Philipp; Frosch, Matthias; Vogel, Ulrich; van der Ende, Arie

    2010-01-01

    Emergence of serogroup B meningococci of clonal complex sequence type (ST) 41/44 can cause high levels of disease, as exemplified by a recent epidemic in New Zealand. Multiplication of annual incidence rates (3.1 cases/100,000 population) of meningococcal disease in a defined German region, the city

  20. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  1. Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.

    Science.gov (United States)

    Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian

    2005-03-03

    The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.

  2. Evaluation of the anaerobic ability of alpine skiing skiers through the slalom simulator

    Directory of Open Access Journals (Sweden)

    Vasilios Giovanis

    2017-10-01

    Full Text Available Purpose: The purpose of the research was the evaluation of efficiency of anaerobic ability (power, anaerobic endurance, anaerobic fatigue and the restitution of the pulse rate of alpine skiing students through the slalom simulator. In addition, the aim of the research was the correlation of the special tests of alpine skiing on dry ground (octagon test and in snow (triangle test and slalom test with the target of determining ability levels. Methods: The 20 people sample was composed by two teams of male and female who took the course for advanced (n = 7 aged 23±1.40 years and for beginners course (n = 13 aged 20±1.49 years. For the evaluation process two special tests were used, on the ground and in snow. The ground test was completed in the slalom simulator for 40 seconds. The second ground test was the octagon bouncing (40cm each side x 3. The snow test was the Haczkiewicz test (triangle test and the slalom (7 gates, where the time of a try was measured. Results: The best efficiency in anaerobic power was made by the advanced males and females, while in the anaerobic endurance by the beginners males and females. The best performance in the dexterity tests in snow on the triangle and slalom test was made by the advanced males and beginners females respectively. Conclusions: The significant correlation between the results of anaerobic performance in the slalom simulator and the triangle test in snow confirms the means of diagnosing skill and fitness on dry ground and snow respectively. There is a significant correlation between snow test results and there is no correlation with the octagon test. The aforementioned results can be used in the talent selection process of alpine skiing.

  3. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine

    Directory of Open Access Journals (Sweden)

    Csilla Hudek

    2017-03-01

    Full Text Available One fifth of the world's population is living in mountains or in their surrounding areas. This anthropogenic pressure continues to grow with the increasing number of settlements, especially in areas connected to touristic activities, such as the Italian Alps. The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation. In alpine regions, extreme meteorological events are increasingly frequent due to climate change, speeding up the process of soil degradation and increasing the number of severe erosion processes, shallow landslides and debris flows. Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas. Soil aggregate stability is one of the main soil properties that can be linked to soil loss processes. Soils developed on moraines in recently deglaciated areas typically have low levels of soil aggregation, and a limited or discontinuous vegetation cover making them more susceptible to degradation. However, soil structure can be influenced by the root system of the vegetation. Roots are actively involved in the formation of water-stable soil aggregation, increasing the stability of the soil and its nutrient content. In the present study, we aim to quantify the effect of the root system of alpine vegetation on the soil aggregate stability of the forefield of the Lys glacier, in the Aosta Valley (NW-Italy. This proglacial area provides the opportunity to study how the root system of ten pioneer alpine species from different successional stages can contribute to soil development and soil stabilization. To quantify the aggregate stability of root permeated soils, a modified wet sieving method was employed. The root length per soil volume of the different species was also determined and later correlated with the aggregate stability results. The results showed that soil aggregate

  4. Snowboarding injuries, a four-year study with comparison with alpine ski injuries.

    Science.gov (United States)

    Davidson, T M; Laliotis, A T

    1996-03-01

    Snowboarding is a rapidly growing winter sport. Its unorthodox maneuvers and young participants raise many safety concerns. We examined injury patterns in recreational snowboarders, comparing these patterns with those found in alpine skiers. Snowboarding and skiing injury patterns differed significantly (P knee (17% versus 39%) or thumb (2% versus 4%) injuries than skiers. For snowboarders, wrist injuries were most common in beginners (30%), knee injuries in low intermediates (28%), ankle injuries in intermediates (17%), and shoulder or clavicle injuries in advanced snowboarders (14%). Most snowboarders (90%) wore soft-shelled boots, 73% of lower extremity injuries occurred to the lead-foot side, and 73% of wrist injuries occurred during backward falls; 67% of knee injuries occurred during forward falls. Of all injuries, 8% occurred while loading onto or unloading from a ski lift. The sport of snowboarding brings with it a different set of injuries from those seen in alpine skiing. The data focus attention on improvements such as wrist guards or splints, releasable front-foot bindings, and better instruction for beginner snowboarders to improve the safety of this sport. Finally, the data confirm that snowboarders and skiers may be safely combined on the same slopes.

  5. Geothermal state of the deep Western Alpine Molasse Basin, France-Switzerland

    OpenAIRE

    Chelle-Michou, C; Do Couto, D; Moscariello, A; Renard, Philippe; Rusillon, E

    2018-01-01

    Over the last few years the Western Alpine Molasse Basin (WAMB) has been attracting large institutional, industrial and scientific interest to evaluate the feasibility of geothermal energy production. However, the thermal state of the basin, which is instrumental to the development of such geothermal projects, has remained to date poorly known. Here, we compile and correct temperature measurements (mostly bottom hole temperature) from 26 existing well data mostly acquired during former hydroc...

  6. Tracer-based identification of rock glacier thawing in a glacierized Alpine catchment

    Science.gov (United States)

    Engel, Michael; Penna, Daniele; Tirler, Werner; Comiti, Francesco

    2017-04-01

    Current warming in high mountains leads to increased melting of snow, glacier ice and permafrost. In particular rock glaciers, as a creeping form of mountain permafrost, may release contaminants such as heavy metals into the stream during intense melting periods in summer. This may have strong impacts on both water quantity and quality of fresh water resources but might also harm the aquatic fauna in mountain regions. In this context, the present study used stable isotopes of water and electrical conductivity (EC) combined with trace, major and minor elements to identify the influence of permafrost thawing on the water quality in the glacierized Solda catchment (130 km2) in South Tyrol (Italy). We carried out a monthly sampling of two springs fed by an active rock glacier at about 2600 m a.s.l. from July to October 2015. Furthermore, we took monthly water samples from different stream sections of the Solda River (1110 to m a.s.l.) from March to November 2015. Meteorological data were measured by an Automatic Weather Station at 2825 m a.s.l. of the Hydrographic Office (Autonomous Province of Bozen-Bolzano). First results show that water from the rock glacier springs and stream water fell along the global meteoric water line. Spring water was slightly more variable in isotopic ratio (δ2H: -91 to - 105 ) and less variable in dissolved solutes (EC: 380 to 611 μS/cm) than stream water (δ2H: -96 to - 107 ‰ and EC: 212 to 927 μS/cm). Both spring water and stream water showed a pronounced drop in EC during July and August, very likely induced by increased melt water dilution. In both water types, element concentrations of Ca and Mg were highest (up to 160 and 20 mg/l, respectively). In September, spring water showed higher concentrations in Cu, As, and Pb than stream water, indicating that these elements partly exceeded the concentration limit for drinking water. These observations highlight the important control, which rock glacier thawing may have on water quality

  7. In Transition towards Sustainability: Bridging the Business and Education Sectors of Regional Centre of Expertise Greater Sendai Using Education for Sustainable Development-Based Social Learning

    Directory of Open Access Journals (Sweden)

    Paul Ofei-Manu

    2012-07-01

    Full Text Available This article discusses a business-school collaborative learning partnership in the Regional Centre of Expertise (RCE on Education for Sustainable Development (ESD in Greater Sendai. This partnership is further linked to a broader context of multi-stakeholder public participation in the RCE that was set up to advance the ESD agenda in the region. The authors propose a conceptual framework for multi-stakeholder, ESD-based social learning within the RCE with the aim of enabling the creation of a sustainability-literate society. This proposal is based on the results of students’ prior experience in ESD activities, optimal age for ESD learning and future job choices presented in this paper, together with a reported article that the levels of sustainability of the two sectoral organizations were mixed and hence need improvement. The paper argues that it will be good to focus on bridging the business and education sectors by building ESD capacity of the children and youth in the formal education sector. It contends this could be done through collaborative learning using the government-mandated “Period of Integrated Studies” (PIS in the Japanese primary and secondary school curriculum. Additionally, it will be appropriate for the RCE Greater Sendai Steering Committee to facilitate and coordinate the learning processes and also promote networking and cooperative interactions among the actors and stakeholders in the region. Recommendations for improvement of the learning partnerships in RCE Greater Sendai are made for consideration at the local and national policy levels.

  8. Tree Height-Diameter Relationships in the Alpine Treeline Ecotone Compared with Those in Closed Forests on Changbai Mountain, Northeastern China

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    2017-04-01

    Full Text Available Height-diameter relationship is one of the most important stature characteristics of trees. It will change with climatic conditions because height and diameter growth displays different sensitivities to climatic factors such as temperature. Detecting and understanding changes in the stature of trees growing along altitudinal gradients up to their upper limits can help us to better understand the adaptation strategy of trees under global warming conditions. On Changbai Mountain in northeastern China, height-diameter datasets were collected for 2723 Erman’s birch (Betula ermanii Cham. in the alpine treeline ecotone in 2006 and 2013, and for 888 Erman’s birch, spruce (Picea jezoensis Siebold & Zucc. Carr., larch (Larix olgensis A. Henry, and fir (Abies nephrolepis Trautv. ex Maxim. along an altitudinal gradient below the alpine treeline in 2006. These datasets were utilized to explore both changes in the stature of birch at the alpine treeline over time and variations in tree stature of different tree species across altitudes at a given time point (2006. Results showed that birch saplings (<140 cm in height became stunted while birches with a height of >140 cm became more tapered in the alpine treeline ecotone. The stature of birch along the altitudinal gradient became more tapered from 1700 to 1900 m above see level (a.s.l. and then became more stunted from 1900 to 2050 m a.s.l., with 1900 m a.s.l. being the altitudinal inflection point in this pattern. The treeline birch, due to its great temperature magnitude of distribution, displayed higher stature-plasticity in terms of its height-diameter ratio than the lower elevation species studied. The stature of birch is strongly modulated by altitude-related temperature but also co-influenced by other environmental factors such as soil depth and available water, wind speed, and duration and depth of winter snow cover. The high stature-plasticity of birch makes it fare better than other species to

  9. Recent Relationships of Tree Establishment and Climate in Alpine Treelines of the Rocky Mountains

    Science.gov (United States)

    Germino, M. J.; Graumlich, L. J.; Maher, E. J.

    2007-12-01

    Changes in the forest structure of alpine-forest or treeline boundaries may be a significant climate response of mountainous regions in the near future. A particularly important point of climate sensitivity for treelines is the initial survival and establishment of tree seedlings - a demographic bottleneck that may be particularly suited to early detection of treeline responses to climate change. However, concise information on climate sensitivity of seedling establishment has come primarily from direct observations of seedlings over short time periods encompassing a few years. Dendrochronological approaches have revealed tree establishment patterns at more extensive time scales of decades to millenia, but at coarser temporal resolutions. Climate variations that most directly affect initial tree seedling establishment occur at annual or smaller time scales, and climate for seedlings is modulated by landscape factors such as neighboring plant cover. Our objective was to assess climate sensitivity of tree establishment at treeline at these finer temporal and spatial scales, with consideration of treeline features that alter the climate for seedlings. Our approach combined direct observations of seedling emergence and survival with dendrochronology of older seedlings and saplings that were still small and young enough (less than 25 years and 20 cm height) to allow detecting the year of establishment and associated factors. Surveys for subject seedlings and saplings were performed for 2 years across the gradient from forest into treeline alpine in the Beartooth, Teton, and Medicine Bow mountains of Wyoming USA. No seedlings or saplings were detected above the highest elevation adult trees or krummholz, but there were up to 0.3 seedlings per square meter in subalpine meadows close to forest (within the timberline zone) where changes in tree abundance appear possible in future decades. Correlations of establishment and summer temperature ranged from weak in whitebark

  10. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  11. Explaining plant-soil diversity in Alpine ecosystems: more than just time since ecosystem succession started

    Science.gov (United States)

    Lane, Stuart; Baetz, Nico; Borgeaud, Laure; Verrecchia, Eric; Vittoz, Pascal

    2014-05-01

    Ecosystem succession in Alpine environments has been a focus of research for many decades. Following from the classic ideas of Jenny (1941, 1961), following perturbation, an ecosystem (flora, fauna and soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co-evolution of geomorphic processes with ecosystems over very short through to very long (evolutionary) time-scales. Alpine environments have been a particular focus of models of co-evolution, as a means of understanding the rate of plant colonization of previously glaciated terrain. However, work in this field has tended to adopt an over simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co-evolves with the development of soil, flora and fauna. In this paper, we present and test conceptual models for such co-evolution for an Alpine alluvial fan and an Alpine piedmont braided river. We combine detailed floristic inventory with soil inventory, survey of edaphic variables above and below ground (e.g. vertical and lateral sedimentological structure, using electrical resistance tomography) and the analysis of historical aerial imagery. The floristic inventory shows the existence of a suite of distinct plant communities within each landform. Time since last perturbation is not a useful explanatory variable of the spatial distribution of these communities because: (1) perturbation impacts are spatially variable, as conditioned by the extent distribution of topographic, edaphic and ecological

  12. Linking sheep density and grazing frequency to persistence of herb species in an alpine environment

    Czech Academy of Sciences Publication Activity Database

    Lanta, V.; Austrheim, G.; Evju, M.; Klimešová, Jitka; Mysterud, A.

    2014-01-01

    Roč. 29, č. 3 (2014), s. 411-420 ISSN 0912-3814 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : sheep grazing * alpine pastures * Norway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.296, year: 2014

  13. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  14. Climate change and socio-economic scenarios, land use modelling implications on water resources in an inner alpine area, Switzerland

    Science.gov (United States)

    Rey, Emmanuel; Schneider, Flurina; Liniger, Hanspeter; Weingartner, Rolf; Herweg, Karl

    2014-05-01

    The MontanAqua project aims to study the water resources management in the region Sierre-Montana (Valais, Switzerland). Land use is known to have an influence on the water resources (soil moisture dynamic, soil sealing, surface runoff and deep percolation). Thus land use modelling is of importance for the water resources management. An actual land use map was produced using infrared imagery (Niklaus 2012, Fig.1). Land use changes are known to be mainly drived by socio-economic factors as well as climatic factors (Dolman et al. 2003). Potential future Land uses was separatly predicted according to 1-. socio-economic and 2-. climatic/abiotic drivers : 1. 4 socio-economic scenarios were developped with stakeholders (Schneider et al. 2013) between 2010 and 2012. We modeled those socio-economic scenarios into a GIS application using Python programming (ModelBuilder in ArcGIS 10) to get a cartographic transcription of the wishes of the stakeholders for their region in 2050. 2. Uncorrelated climatic and abiotic drivers were used in a BIOMOD2 (Georges et al. 2013) framework. 4 models were used: Maximum Entropy (MAXENT), Multiple Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA) and the Flexible Discriminant Analysis (FDA) to predict grassland, alpine pasture, vineyards and forest in our study region. Climatic scenarios were then introduced into the models to predict potential land use in 2050 driven only by climatic and abiotic factors The comparison of all the outputs demonstrates that the socio-economic drivers will have a more important impact in the region than the climatic drivers (e.g. -70% grassland surface for the worst socio-economic scenario vs. -40% of grassland surface for the worst climatic models). Further analysis also brings out the sensitivity of the grassland/alpine pasture system to the climate change and to socio-economic changes. Future work will be to cross the different land use maps obtained by the two model types and to use

  15. Is the alpine divide becoming more permeable to biological invasions? - Insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland.

    Science.gov (United States)

    Aluja, M; Guillén, L; Rull, J; Höhn, H; Frey, J; Graf, B; Samietz, J

    2011-08-01

    The Walnut Husk Fly, Rhagoletis completa Cresson (Diptera: Tephritidae), is native to North America (Midwestern US and north-eastern Mexico) and has invaded several European countries in the past decades by likely crossing the alpine divide separating most parts of Switzerland from Italy. Here, we determined its current distribution in Switzerland by sampling walnuts (Juglans regia L.) in ecologically and climatically distinct regions along potential invasion corridors. R. completa was found to be firmly established in most low altitude areas of Switzerland where walnuts thrive, but notably not a single parasitoid was recovered from any of the samples. Infested fruit was recovered in 42 of the 71 localities that were surveyed, with mean fruit infestation rate varying greatly among sites. The incidence of R. completa in Switzerland is closely related to meteorological mean spring temperature patterns influencing growing season length, but not to winter temperatures, reflecting survival potential during hibernation. Importantly, areas in which the fly is absent correspond with localities where the mean spring temperatures fall below 7°C. Historical data records show that the natural cold barrier around the Alpine divide in the central Swiss Alps corresponding to such minimal temperatures has shrunk significantly from a width of more than 40 km before 1990 to around 20 km after 2000. We hypothesize on possible invasion/expansion routes along alpine valleys, dwell on distribution patterns in relation to climate, and outline future research needs as the incursion of R. completa into Switzerland; and, more recently, other European countries, such as Germany, Austria, France and Slovenia, represent an example of alien species that settle first in the Mediterranean Basin and from there become invasive by crossing the Alps.

  16. Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model

    Science.gov (United States)

    Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael

    2017-12-01

    Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.

  17. Effect on milk production of F1 crossbreds resulted from Alpine breed (♂ x Albanian local goat breed (♀

    Directory of Open Access Journals (Sweden)

    Kristaq Kume

    2012-07-01

    Full Text Available About 950,000 goats, farmed mostly in hilly and mountainous areas of Albania, contribute about 8% of the country’s total milk production. In order to increase milk production, farmers are currently using crosses of the local goat breed with exotic breeds, mainly the Alpine breed from France. This study examines milk production data of first lactation from 45 goats of the local breed, 82 goats of the Alpine breed and 58 F1 crosses (♂Alpine breed x ♀local breed. The goats were kept on small-scale farms according to the traditional Albanian system. Milking was carried out in the morning and evening. Kids were weaned at 65 days of age after which milking started. Milk yield was recorded twice with a 15-day interval between the two readings. Total milk yield was calculated using the Fleischmann method. The F1 goats produced 37.8 kg more milk than local breed goats although the lactation length (P<0.05 of F1 goats was six days shorter compared to that of local breed goats (P<0.05. Analysis of variance showed a highly significant effect (P<0.01 of the genotype factor on milk production. The average Cappio-Borlino curves of three genotypes indicated that the lactation curves of local breed and F1 crosses were similar. Although the F1 cross goats had 50% of their genomes from a genetically improved breed they were still able to deal with the difficult conditions that characterize the traditional extensive farming systems in Albania. Breeding pure Alpine breed or its crosses with the local goat breed improved milk production in an extensive traditional system.

  18. Climate Risks - The Challenge for Alpine Regions. Final Scientific Report of the National Research Programme 'Climate Change and Natural Hazards', NRP 31

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Stephan [Swiss Meteorological Institute, Zurich (Switzerland); Kunz, Pierre [Department of Mineralogy, University of Geneva (Switzerland)

    2000-07-01

    The international scientific community has come to the conclusion that human activities are a non negligible factor influencing the global climate. The leading Swiss climate researchers are supporting this statement. What is the impact of climate change in Switzerland ? After six years of scientific research, the results of the National Research Programme 'Climate Change and Natural Hazards' (NRP 31) are available now. They contribute to a better understanding of the complex nature of the global climate and its specific alpine aspects. This book provides the newest estimations about the impact of temperature and precipitation changes on the environment, the economy and infrastructures. It also describes the possibilities of political and social actions regarding these changes. In the introductory chapter the essential processes necessary to understand the climate system are explained, such as the role of ocean, mechanism of the greenhouse effect, ENSO, NAO, younger Dryas climate, Dansgaard/Oeschger and Heinrich events, to mention just a few. This chapter provides a good foundation for the later chapters which are dedicated to the history of observed climate changes in Switzerland, regionally specific future climate simulations with a high resolution model, impacts of climate changes on earth's surface processes, such as river discharges, glaciers, permafrost, land slides, forestry, agriculture and human activities. With its concrete proposal of a methodology to investigate the impacts of climate changes on human activities, the present volume will offer valuable information for decision makers, concerned citizens as well as teachers and students in climate and environmental sciences. The volume is supplemented by the conclusions of the accompanying group of experts and by a list of all reports published within the NRP 31.

  19. Seasonal variation of VO 2 max and the VO2-work rate relationship in elite Alpine skiers.

    Science.gov (United States)

    Gross, Micah A; Breil, Fabio A; Lehmann, Andrea D; Hoppeler, Hans; Vogt, Michael

    2009-11-01

    Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.

  20. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  1. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  2. Seasonal Changes in the Character and Nitrogen Content of Dissolved Organic Matter in an Alpine/Subalpine Headwater Catchment

    Directory of Open Access Journals (Sweden)

    Eran W. Hood

    2001-01-01

    Full Text Available We are studying the chemical quality of dissolved organic nitrogen (DON in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55 during peak runoff in early summer and lower values (15 to 25 during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result

  3. A tale of two single mountain alpine endemics: Packera franciscana and Erigeron mancus

    Science.gov (United States)

    James F. Fowler; Carolyn H. Sieg; Brian M. Casavant; Addie E. Hite

    2012-01-01

    Both the San Francisco Peaks ragwort, Packera franciscana and the La Sal daisy, Erigeron mancus are endemic to treeline/alpine habitats of the single mountain they inhabit. There is little habitat available for these plant species to migrate upward in a warming climate scenario. For P. franciscana, 2008 estimates indicate over 18,000 ramets in a 4 m band along a...

  4. Assessing Climate Vulnerabilities of Food Distribution Center Sites in Greater Boston and Their Regional Implications: Climate Adaptation Planning in Practice

    Science.gov (United States)

    Teferra, A.; Watson, C.; Douglas, E. M.

    2016-12-01

    The Metro Boston region, an area whose civic leaders have been at the forefront of climate resilience initiatives in recent years, is finalizing a flood vulnerability assessment of food distribution center sites located north of Boston, with the support of the University of Massachusetts Boston and the American Geophysical Union's Thriving Earth Exchange program. The community-scientist collaboration emerged because of the need for more local analyses of the area to inform climate resiliency policy and planning actions for the region. A significant amount of the metro region's food supply passes through two major distribution centers in the cities of Everett and Chelsea, just north of the Mystic River. The Metropolitan Area Planning Council (MAPC), on behalf of the Metro Boston Climate Preparedness Taskforce, is working with Chris Watson and Ellen Douglas of UMass Boston to build on existing analyses of the region's food system and climate vulnerabilities and to develop a report identifying flood risk exposure to the sites. The analysis brings in dynamic modeling techniques that incorporate storm surge and sea level rise projections under different climate scenarios, and aims to align methodologies with those of other regional analyses, such as Climate Ready Boston and the City of Cambridge's Vulnerability Assessment. The study is helping to inform MAPC's and the Metro Boston Climate Preparedness Taskforce's understanding of this critical food distribution infrastructure, illustrate the larger regional implications of climate impacts on food distribution in the Greater Boston area, and guide the development of site-specific strategies for addressing identified vulnerabilities.

  5. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  6. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  7. Alpine ski and snowboarding traumatic injuries: incidence, injury patterns, and risk factors for 10 years.

    Science.gov (United States)

    McBeth, Paul B; Ball, Chad G; Mulloy, Robert H; Kirkpatrick, Andrew W

    2009-05-01

    Alpine skiing and snowboarding are popular winter sports in Canada. Every year participation in these activities results in traumatic injury. The purpose of this study was to identify the incidence and injury patterns, as well as risk factors associated with ski and snowboarding injuries. A comprehensive 10-year retrospective review of Alpine ski and snowboarding injuries from 1996 to 2006 was conducted. The Alberta Trauma Registry was used as the primary source of data. A total of 196 patients (56.6% skiers, 43.4% snowboarders) were identified as having major traumatic injuries (Injury Severity Score, >or=12). Forty-three patients required intensive care unit support. The majority of injuries were related to falls and collisions with natural objects. Head injuries were most common, followed by chest, spinal, and extremity trauma. Seventy-nine patients required emergency surgery. Skiing and snowboarding represent activities with high potential for traumatic injury. Safety initiatives should be developed to target this population.

  8. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO(2) enrichment.

    Science.gov (United States)

    Hättenschwiler, Stephan; Zumbrunn, Thomas

    2006-02-01

    Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO(2) enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO(2) compared to ambient CO(2). In response to elevated CO(2), the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO(2) may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO(2)-rich atmosphere.

  9. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    Science.gov (United States)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  10. Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, M., E-mail: kirchner@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Faus-Kessler, T.; Jakobi, G.; Levy, W.; Henkelmann, B.; Bernhoeft, S.; Kotalik, J.; Zsolnay, A. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, C. [Regional Agency for Environmental Protection of Lombardy (Italy); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, W. [Federal Environment Agency Ltd. (Austria); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Uhl, M.; Weiss, P. [Federal Environment Agency Ltd. (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2009-12-15

    In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain 'cold condensation effect'. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude. - Caused by temperature-dependent processes regarding deposition, re-volatilization and decomposition of POPs, the concentration of organochlorine pesticides varies in the Alpine region with altitude.

  11. An Inverse Relative Age Effect in Male Alpine Skiers at the Absolute Top Level.

    Science.gov (United States)

    Bjerke, Øyvind; Pedersen, Arve Vorland; Aune, Tore K; Lorås, Håvard

    2017-01-01

    The Relative Age Effect (RAE) can be described as the advantage of being born early after a certain cut-off date within a group of selection. The effect has been found across a wide range of sports and is particularly evident in pre-elite sports and team sports with a high selection pressure. At the absolute top level in team elite sports, the advantage of being relatively older has been reported to disappear, and even reverse, so that the relatively younger athletes are advantaged. In order to further examine such a reversal of the RAE, we investigated the performance of the overall top 50 skiers each year in the alpine World Cup, over a period of 20 years, among men ( N = 234) and women ( N = 235). The data indicated that the relatively younger male athletes at the absolute top level had accumulated, on average, more World Cup points compared to the relatively older skiers. No such effect was observed among the female skiers. This finding suggest the existence of a reversed relative age effect in male elite alpine skiing.

  12. An Inverse Relative Age Effect in Male Alpine Skiers at the Absolute Top Level

    Directory of Open Access Journals (Sweden)

    Øyvind Bjerke

    2017-07-01

    Full Text Available The Relative Age Effect (RAE can be described as the advantage of being born early after a certain cut-off date within a group of selection. The effect has been found across a wide range of sports and is particularly evident in pre-elite sports and team sports with a high selection pressure. At the absolute top level in team elite sports, the advantage of being relatively older has been reported to disappear, and even reverse, so that the relatively younger athletes are advantaged. In order to further examine such a reversal of the RAE, we investigated the performance of the overall top 50 skiers each year in the alpine World Cup, over a period of 20 years, among men (N = 234 and women (N = 235. The data indicated that the relatively younger male athletes at the absolute top level had accumulated, on average, more World Cup points compared to the relatively older skiers. No such effect was observed among the female skiers. This finding suggest the existence of a reversed relative age effect in male elite alpine skiing.

  13. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Narici, Marco; Conte, M; Salvioli, Stefano

    2015-01-01

    This study investigated features of skeletal muscle ageing in elderly individuals having previously undergone unilateral total knee arthroplasty (TKA) and whether markers of sarcopenia could be mitigated by a 12-week alpine skiing intervention. Novel biomarkers agrin, indicative of neuromuscular...... junction (NMJ) degeneration, tumor suppressor protein p53, associated with muscle atrophy, and a new ultrasound-based muscle architecture biomarker were used to characterize sarcopenia. Participant details and study design are presented by Kösters et al. (2015). The results of this study show that NMJ...... degeneration is widespread among active septuagenarians previously subjected to TKA: all participants showed elevated agrin levels upon recruitment. At least 50% of individuals were identified as sarcopenic based on their muscle architecture, supporting the hypothesis that NMJ alterations precede sarcopenia...

  14. Impact des changements climatiques sur les écosystèmes alpins : comment les mettre en évidence et les prévoir ?

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des écosystèmes alpins est la présence d’un manteau neigeux important et pourtant l’influence de la neige reste relativement mal connue, en particulier pour des raisons logistiques. Même si nous avons fait des progrès importants dans le développement de modèles prédictifs, surtout pour ce qui est de la répartition des plantes alpines, il reste à mettre en place des réseaux d’observations et d’expériences permettant de mieux tenir compte de la variabilité des écosystèmes alpins et des interactions avec le climat.Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species –snow cover for example

  15. Metalliferous deposits of the greater Helena mining region, Montana

    Science.gov (United States)

    Pardee, Joseph Thomas; Schrader, F.C.

    1933-01-01

    The ore deposits described in this bulletin are distributed through a region of about 3,000 square miles surrounding the city of Helena, Mont. In general the surface of this region is mountainous, but it includes several large intermontane valleys. Large areas in the northern and eastern parts of the region sire underlain by sedimentary rocks of the Algonkian Belt series, and on the northeast and southwest the Belt rocks are overlain without any noticeable angular unconformity by Paleozoic and Mesozoic beds. Oligocene, Miocene, and possibly Pliocene sediments, composed chiefly of volcanic ash and land waste of local origin, occupy large areas in the intermontane valleys and lie unconformably upon Cretaceous and older rocks. A thin veneer of Pleistocene and Recent alluvium generally overspreads the Tertiary. In the extreme northern part of the region are large deposits of glacial drift that represent two stages of the Pleistocene. The principal igneous body of the region is the northern part of the early Tertiary or late Cretaceous Boulder batholitb of quartz monzonite. The main exposure of this body occupies an area of nearly 1,200 square miles and extends southward beyond the limits of the particular region considered. Smaller areas of similar rocks are clustered around this exposure. Most of the exposures probably represent bodies that are connected in depth to form a single mass. The late Cretaceous and older sedimentary rocks are involved in a series of northwestward-trending folds. Along the east side of the region overthrust faults related to the great Lewis overthrust of Glacier National Park cause Belt rocks to overlie rocks of Paleozoic and Mesozoic ages. Large normal faults occur near Marysville and faults of moderate displacement near Helena. The Tertiary beds are slightly deformed by folds and faults that are unrelated to the structure of the older rock. The geologic history of the region includes two contrasting periods, the earlier of which was

  16. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    OpenAIRE

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    Matthew J Jordan,1 Per Aagaard,2 Walter Herzog1 1Human Performance Laboratory, The University of Calgary, Calgary, AB, Canada; 2Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense M, Denmark Abstract: The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ...

  17. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    Science.gov (United States)

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to

  18. Conserving the Greater Sage-grouse: A social-ecological systems case study from the California-Nevada region

    Science.gov (United States)

    Duvall, Alison L; Metcalf, Alexander L.; Coates, Peter S.

    2016-01-01

    The Endangered Species Act (ESA) continues to serve as one of the most powerful and contested federal legislative mandates for conservation. In the midst of heated debates, researchers, policy makers, and conservation practitioners champion the importance of cooperative conservation and social-ecological systems approaches, which forge partnerships at multiple levels and scales to address complex ecosystem challenges. However, few real-world examples exist to demonstrate how multifaceted collaborations among stakeholders who share a common goal of conserving at-risk species may be nested within a systems framework to achieve social and ecological goals. Here, we present a case study of Greater Sage-grouse (Centrocercus urophasianus) conservation efforts in the “Bi-State” region of California and Nevada, United States. Using key-informant interviews, we explored dimensions and drivers of this landscape-scale conservation effort. Three themes emerged from the interviews, including 1) ESA action was transformed into opportunity for system-wide conservation; 2) a diverse, locally based partnership anchored collaboration and engagement across multiple levels and scales; and 3) best-available science combined with local knowledge led to “certainty of effectiveness and implementation”—the criteria used by the US Fish and Wildlife Service to evaluate conservation efforts when making listing decisions. Ultimately, collaborative conservation through multistakeholder engagement at various levels and scales led to proactive planning and implementation of conservation measures and precluded the need for an ESA listing of the Bi-State population of Greater Sage-grouse. This article presents a potent example of how a systems approach integrating policy, management, and learning can be used to successfully overcome the conflict-laden and “wicked” challenges that surround at-risk species conservation.

  19. Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia)

    Science.gov (United States)

    Kaiser, August; Scheifinger, Helfried; Spangl, Wolfgang; Weiss, Andrea; Gilge, Stefan; Fricke, Wolfgang; Ries, Ludwig; Cemas, Danijel; Jesenovec, Brigita

    The Alpine stations Zugspitze, Hohenpeissenberg, Sonnblick, Jungfraujoch and Mt. Krvavec contribute to the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO). The aim of GAW is the surveillance of the large-scale chemical composition of the atmosphere. Thus, the detection of air pollutant transport from regional sources is of particular interest. In this paper, the origin of NO x (measured with a photo-converter), CO and O 3 at the four Alpine GAW stations is studied by trajectory residence time statistics. Although these methods originated during the early 1980s, no comprehensive study of different atmospheric trace gases measured simultaneously at several background observatories in the Alps was conducted up to present. The main NO x source regions detected by the trajectory statistics are the northwest of Europe and the region covering East Germany, Czech Republic and southeast Poland, whereas the main CO source areas are the central, north eastern and eastern parts of Europe with some gradient from low to high latitudes. Subsiding air masses from west and southwest are relatively poor in NO x and CO. The statistics for ozone show strong seasonal effects. Near ground air masses are poor in ozone in winter but rich in ozone in summer. The main source for high ozone concentration in winter is air masses that subside from higher elevations, often enhanced by foehn effects at Hohenpeissenberg. During summer, the Mediterranean constitutes an important additional source for high ozone concentrations. Especially during winter, large differences between Hohenpeissenberg and the higher elevated stations are found. Hohenpeissenberg is frequently within the inversion, whereas the higher elevated stations are above the inversion. Jungfraujoch is the only station where the statistics detect an influence of air rich in CO and NO x from the Po Basin.

  20. HEART RATE, MOOD STATES, AND RATING OF PERCEIVED EXERTION AMONG ELDERLY SUBJECTS DURING 3.5 HOURS OF RECREATIONAL ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Sabine Krautgasser

    2012-12-01

    Full Text Available A decline in physiological functioning and mental wellbeing is common with advancing age. However, these changes may vary among elderly individuals. Physical activity and the response of the elderly to exercise during recreational activities, i.e., recreational alpine skiing, may serve as a catalyst for the improvement of wellbeing and general health. Purpose: The aim of the study was to assess the heart rate (HR response modulations in a group of elderly recreational alpine skiers during 3.5h of skiing. In addition, each group's perceived responses of mood state (MS and rating of perceived exertion (RPE were collected to determine possible contributions to changes in wellbeing as a result of recreational skiing. Methods: Forty-nine healthy elderly participants (mean age: 63±6 yrs, weight: 75.4+13.1 kg, height: 170.5+9.1 cm, BMI: 26+3.2 with at least basic alpine skiing ability participated in a 3.5h ski test. GPS data (GPS Garmin Forerunner 301 were used to monitor altitude and HR and were recorded continuously during the 3.5h of skiing. During skiing, participants were asked at three different times to report RPE and MS. Results: The time spent on the lift during the 3.5h skiing ranged from 21-58% followed by recovery breaks of 17-53% and time spent in downhill skiing ranged from 12-40%. Participants completed 9-23 downhill runs in 3.5h. Average intensities during 3.5 h downhill runs for over 80% of the group were between 50-80% of maximal heart rate (HRmax (220-age. Peak heart rate (HRpeak values during downhill runs for 35% of the group were between 60-70% of HRmax. Statistical analysis revealed numerous significant differences between RPE and MS values for the three different sampling times. The MS in general remained positive and even increased in the categories of happiness and sociability despite an increase in fatigue. Conclusion: The results of this study suggest that the duration and intensity of skiing was appropriate and yielded