WorldWideScience

Sample records for great soil groups

  1. Surficial geology and soils of the Elmira-Williamsport region, New York and Pennsylvania, with a section on forest regions and great soil groups

    Science.gov (United States)

    Denny, Charles Storrow; Lyford, Walter Henry; Goodlett, J.C.

    1963-01-01

    soils form rapidly. Sols Bruns Acides are the most extensive great soil group occurring throughout the region. Podzols and Gray-Brown Podzolic soils are also widespread, and on long, smooth slopes Low Humic-Gley soils are common. Organic soils are of small extent. South of the Wisconsin drift border, the surficial mantle consists chiefly of alluvial, colluvial, or residual deposits of Wisconsin or of Recent age, but there are many small isolated patches of older, strongly weathered materials of pre-Wisconsin age. Although such older materials are commonly overlain or mixed with less weathered mantle, the yellowish-red color, characteristic of the strongly weathered material, is generally not masked. Some of the older material is drift, presumed to be of Illionian age, that was probably strongly weathered to a considerable depth in Sangamon time and has been greatly eroded since the last interglacial period. No clear-cut exposure of Wisconsin drift resting on older drift or other strongly weathered mantle has been found. The old drift and the other strongly weathered materials apparently acquired their present red color in pre-Wisconsin time. Where exposed at the surface, such strongly weathered mantle is the parent material of modern Red-Yellow Podzolic soils. Sols Bruns Acides and Gray-Brown Podzolic soils, developed on slightly weathered parent materials, are found adjacent to these red soils. This suggests that these Red-Yellow Podzolic soils probably developed from strongly weathered parent materials. No buried soils were found nor were any soils recognized as relics from pre-Wisconsin time. Comparison of a map of the great soil groups with a map of the vegetation of the region, prepared by John C. Goodlett, does not reveal a close relation. Laboratory analyses of samples collected furnish data on textural, mineralogical, and chemical changes caused by weathering and soil formation. The results indicate that the amount of chemical weathering which the Wisconsin

  2. Teaching Group Work with "The Great Debaters"

    Science.gov (United States)

    Moe, Jeffry; Autry, Linda; Olson, Joann S.; Johnson, Kaprea F.

    2014-01-01

    An experiential learning activity, based on the film "The Great Debaters" (Washington, D., 2007), was used during a group work class. Description and preliminary evaluation of the activity is provided, including analysis of participant scores on the group leader self-efficacy instrument at multiple points. Implications and future…

  3. Soil salinity study in Northern Great Plains sodium affected soil

    Science.gov (United States)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  4. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  5. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  6. Soil Erosion Research Based on USLE in Great Khinggan

    OpenAIRE

    Wei Li; Wenyi Fan; Xuegang Mao

    2014-01-01

    Based on the amended model of USLE universal soil loss equation and GIS technology, combined with the natural geographical features of Great Khinggan area, it has conducted quantitative analysis of the factor in Soil loss equation. Uses 2011 years TM/ETM images classification are land uses/cover type figure, combination Great Khinggan area Digital Elevation Model (DEM) and soil type distribution figure and research regional rainfall information, we gets all factors values of space distributio...

  7. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  8. Arbuscular mycorrhizal fungi assemblages in Chernozem great groups revealed by massively parallel pyrosequencing.

    Science.gov (United States)

    Dai, Mulan; Hamel, Chantal; St Arnaud, Marc; He, Yong; Grant, Cynthia; Lupwayi, Newton; Janzen, Henry; Malhi, Sukhdev S; Yang, Xiaohong; Zhou, Zhiqin

    2012-01-01

    The arbuscular mycorrhizal (AM) fungal resources present in wheat fields of the Canadian Prairie were explored using 454 pyrosequencing. Of the 33 dominant AM fungal operational taxonomic units (OTUs) found in the 76 wheat fields surveyed at anthesis in 2009, 14 clustered as Funneliformis - Rhizophagus, 16 as Claroideoglomus, and 3 as Diversisporales. An OTU of Funneliformis mosseae and one OTU of Diversisporales each accounted for approximately 16% of all AM fungal OTUs. The former was ubiquitous, and the latter was mainly restricted to the Black and Dark Brown Chernozems. AM fungal OTU community composition was better explained by the Chernozem great groups (P = 0.044) than by measured soil properties. Fifty-two percent of the AM fungal OTUs were unrelated to measured soil properties. Black Chernozems hosted the largest AM fungal OTU diversity and almost twice the number of AM fungal sequences seen in Dark Brown Chernozems, the great group ranking second for AM fungal sequence abundance. Brown Chernozems hosted the lowest AM fungal abundance and an AM fungal diversity as low as that seen in Gray soils. We concluded that Black Chernozems are most conducive to AM fungal proliferation. AM fungi are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.

  9. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Science.gov (United States)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  10. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  11. Bill Gates' Great-Great-Granddaughter's Honeymoon: An Astronomy Activity for Several Different Age Groups

    Science.gov (United States)

    Fraknoi, Andrew

    2009-01-01

    When students finish a unit or course on the planets these days, they are often overwhelmed with facts, comparisons, and images. A good culminating activity, to help them organize their thinking (and review), is to have them divide into small groups (travel agencies) and come up with their top ten solar system "tourist sights" for future space…

  12. The soil: Great absentee in the environmental calendar of Colombia

    International Nuclear Information System (INIS)

    Cortes Lombana, Abdon

    1998-01-01

    It was observed that in the elaboration of the document of work of the preparatory national commission of the world conference of the environment and development that it takes place in Brazil, in 1992, it didn't keep in mind, inside the analysis of the physical and biological, environment, the soil component. The exclusion of so important natural body deprived to the debate of the approaches that, on the environmental problem of the country the agricultural has and that they are the product of half century of permanent study of the resource, not alone from the point of view of geographical distribution, but of the knowledge of its physical chemical, mineralogical and biological characteristic, of its relationships with the socio-economic, political and institutional activities that take place to all the long and wide of the national territory. Who didn't consider important the participation of the agricultural in the work team is inconsistent with its preaches on the environmental dimension, and they ignore that the soil is the synthesis of the geologic material starting from which you forms, of the relief in that this located, of the time during which the genetic processes have acted, of the climate of the respective region and of the permanent action of the alive organisms, including the man that improves the formed floor with its intelligence and with its irrational behavior it deteriorates him. The profile of the soil is the x-ray that registers the history of the natural evolutionary process and the anthropic phenomena that varied its course in a given moment

  13. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  14. Measured and simulated soil water evaporation from four Great Plains soils

    Science.gov (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  15. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  16. Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah

    OpenAIRE

    Fonnesbeck, Brook B.

    2015-01-01

    Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models. Digital imagery from Landsat 5, a digital elevation model, and a digital geology map were used as environmental covariates in a 67,000-ha study area of the Great Basin west of Fillmore, UT. A “pre-map” was created for selecting sampling locatio...

  17. Soil organic matter stabilization in buried paleosols of the Great Plains

    Science.gov (United States)

    Chaopricha, N. T.; Marin-Spiotta, E.; Mason, J. A.; Mueller, C. W.

    2010-12-01

    Understanding the mechanisms that control soil organic matter (SOM) stabilization is important for understanding how soil carbon is sequestered over millennia, and for predicting how future disturbances may affect soil carbon stocks. We are studying the mechanisms controlling SOM stabilization in the Brady Soil, a buried paleosol in Holocene loess deposits spanning much of the central Great Plains of the United States. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying that resulted in a shift from C3 to C4 dominated plants. The Brady soil is unusual in that it has very dark coloring, although it contains less than separate particulate organic matter associated with minerals from that within and outside of soil aggregates. We found the largest and darkest amounts of organic C in aggregate-protected SOM greater than 20 µm in diameter. Density and textural fractionation revealed that much of the SOM is bound within aggregates, indicating that protection within aggregates is a major contributor to SOM- stabilization in the Brady Soil. We are conducting a long-term lab soil incubation with soils collected from the modern A horizon and the Brady Soil to determine if the buried SOM becomes microbially available when exposed to the modern atmosphere. We are measuring potential rates of respiration and production of CH4 and N2O. Results so far show respiration rates at field moisture for both modern and buried horizons are limited by water, suggesting dry environmental conditions may have helped to preserve SOM in the Brady Soil. We are investigating the potential for chemical stabilization of the dark SOM preserved in the buried paleosol by characterizing C chemistry using solid-state 13C-NMR spectroscopy. Furthermore, we plan to use lipid analyses and pyrolysis GC/MS to determine likely sources for the SOM: microbial vs plant. Combining information on the physical location of SOM in the soil, its chemical composition, decomposability

  18. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  19. [Effects of canopy density on the functional group of soil macro fauna in Pinus massoniana plantations].

    Science.gov (United States)

    Zhou, Hong Yang; Zhang, Dan Ju; Zhang, Jie; Zhao, Yan Bo; Zhao, Bo; Wei, Da Ping; Zhang, Jian

    2017-06-18

    In order to understand the effects of canopy density on the functional group characteristics of soil macrofauna in Pinus massoniana plantations, we divided the captured soil fauna into five types including xylophages, predators, saprophages, omnivores and fungal feeders. The results showed that 1) Saprozoic feeders had the highest percentage of total individuals, and the omnivores and xylophages occupied higher percentages of total taxa. 2) The individual and group number of the predators, and the group number of xylophages did not change significantly under 0.5-0.6 and then decreased significantly under 0.6-0.9 canopy density. 3) With the increasing canopy density, the individual an dgroup number of predators in litter layer decreased significantly, the saprozoic individual number in 5-10 cm soil layer represented irregular trends. The individual number of xylophage increased with the depth of soil, and the group number in litter layer, the individual and group number in 5-10 cm soil layer decreased significantly. 4) Pielou evenness of xylophage had no significant changes with the canopy density, all the other diversity index of xylophage and saprophage were various with the increasing canopy density. The predatory Simpson index was stable under 0.5-0.8, and then decreased significantly under 0.8-0.9 canopy density. 5) The CCA (canonical correlation analysis) indicated that soil bulk density and moisture content were the main environmental factors affecting functional groups of soil macro fauna. Moisture content greatly impacted on the number of saprophagous individuals. But xylophage and predators were mostly affected by soil bulk density, and the predatory Simpson index was mainly affected by soil pH value and total phosphorus. Our research indicated that the structure of soil macro faunal functional group under 0.7 canopy density was comparatively stable, which would facilitate the maintenance of soil fertility and ecological function in Pinus massoniana

  20. Contribution of soil sciences for recovering from damages by the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Miwa, Eitaro; Miyazaki, Tsuyoshi; Nanzyo, Masami

    2014-01-01

    This symposium was held in September 2013, under the joint hosting of Science Council of Japan, Agricultural Academy of Japan, and Japanese Society of Soil Science and Plant Nutrition, as one of the programs of the Nagoya convention of Japanese Society of Soil Science and Plant Nutrition. The theme was the contribution of soil science to the restoration from the Great East Japan Earthquake and the issues involved in this. As the restoration from the tsunami, the following two topics were presented: 'Situation of Miyagi Prefecture and challenge of soil science', and 'Technological measures for the resumption of farming in tsunami-hit areas in Soma City, Fukushima Prefecture.' As the restoration from the radiation damage caused by Fukushima Daiichi Nuclear Power Station Accident, the following four topics were presented: 'Cooperation between villagers and scholars at Iitate Village; efforts for survey and decontamination with the hands of villagers,' 'Cesium fixation related to on-site soil,' 'Concentration and separation of cesium,' and 'Volume reduction of contaminated soil.' This paper summarizes these six topics of lectures, keynote comments by other specialists and relevant persons, and the atmosphere of the convention on the day. (A.O)

  1. Impacts of Climate Change on Soil Erosion in the Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-06-01

    Full Text Available Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, as soil loss estimates will be helpful in identifying areas susceptible to erosion, targeting future erosion control efforts, and/or conservation funding. Therefore, the macro-scale Variable Infiltration Capacity—Water Erosion Prediction Project (VIC-WEPP soil erosion model was utilized to quantify soil losses under three climate change scenarios (A2, A1B, B1 using projections from three general circulation models (GFDL, PCM, HadCM3 for the Great Lakes region from 2000 to 2100. Soil loss was predicted to decrease throughout three future periods (2030s, 2060s, and 2090s by 0.4–0.7 ton ha−1 year−1 (4.99–23.2% relative to the historical period (2000s with predicted air temperature increases of 0.68–4.34 °C and precipitation increases of 1.74–63.7 mm year−1 (0.23–8.6%. In the forested northern study domain erosion kept increasing by 0.01–0.18 ton ha−1 year−1 over three future periods due to increased precipitation of 9.7–68.3 mm year−1. The southern study domain covered by cropland and grassland had predicted soil loss decreases of 0.01–1.43 ton ha−1 year−1 due to air temperature increases of 1.75–4.79 °C and reduced precipitation in the summer. Fall and winter had greater risks of increased soil loss based on predictions for these two seasons under the A2 scenario, with the greatest cropland soil loss increase due to increased fall precipitation, and combined effects of increases in both precipitation and air temperature in the winter. Fall was identified with higher risks under the A1B scenario, while spring and summer were identified with the greatest risk of increased soil losses under the B1 scenario due to the increases in both precipitation and air temperature.

  2. Post-Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Chaplow, J.S.; Beresford, N.A.; Barnett, C.L. [Lancaster Environment Centre, Lancaster (United Kingdom). Centre for Ecology and Hydrology,

    2015-07-01

    The data set ''Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain'' was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are presented. Additional data to radiocaesium concentrations are presented where available. The data have value in trying to assess the contribution of new sources of radiocaesium in the environment, providing baseline data for future planned releases and to aid the development and testing of models.

  3. Ecological investigations on plant associations in differently disturbed heavy-metal contaminated soils of Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W

    1968-01-01

    In different areas of Great Britain comparing ecological studies have been made on disturbed and undisturbed heavy metal contaminated soils. In Grizedale (Pennine), sampling of an undisturbed transect having high levels of major nutrients showed marked differentiation within a small area, only related to the plant available levels of zinc, copper, and lead. However, studies on disturbed heavy metal soils and spoil-heaps revealed a low water capacity and a low supply of major nutrients, particularly of N and P. These suggest that here both the enrichment of heavy metals and the considerable decrease of other nutrients are important in determining the heavy metal vegetation, and in maintaining it against other species. The quantity of zinc in plants is not related to the total or plant-available amount of zinc in soil, but confirmed physiological experiments on the influence of phosphorus and different zinc compounds (complexed or inorganic) on the uptake and distribution of zinc in Thlaspi alpestre and Minnartia rerum. Also an antagonism between lead and copper was revealed. 24 references.

  4. Carbon isotope ratios of great plains soils and in wheat-fallow systems

    International Nuclear Information System (INIS)

    Follett, R.F.; Paul, E.A.; Leavitt, S.W.; Halvorson, A.D.; Lyon, D.; Peterson, G.A.

    1997-01-01

    The purposes of this study were to improve knowledge of regional vegetation patterns of C3 and C4 plants in the North American Great Plains and to use delta 13C methodology and long-term research sites to determine contributions of small-grain crops to total soil organic carbon (SOC) now present. Archived and recent soil samples were used. Detailed soil sampling was in 1993 at long-term sites near Akron, CO, and Sidney, NE. After soil sieving, drying, and deliming, SOC and delta 13C were determined using an automated C/N analyzer interfaced to an isotope-ratio mass spectrometer. Yield records from long-term experimental sites were used to estimate the amount of C3 plant residue C returned to the soil. Results from delta 13C analyses of soils from near Waldheim, Saskatchewan, to Big Springs, TX, showed a strong north to south decrease in SOC derived from C3 plants and a corresponding increase from C4 plants. The delta 13C analyses gave evidence that C3 plant residue C (possibly from shrubs) is increasing at the Big Springs, TX, and Lawton, OK, sites. Also, delta 13C analyses of subsoil and topsoil layers shows evidence of a regional shift to more C3 species, possibly because of a cooler climate during the past few hundreds to thousands of years. Data from long-term research sites indicate that the efficiency of incorporation of small-grain crop residue C was about 5.4% during 84 yr at Akron, CO, and about 10.5% during 20 yr at Sidney, NE. The 14C age of the SOC at 0- to 10-cm depth was 193 yr and at 30 to 45 cm was 4000 yr; 14C age of nonhydrolyzable C was 2000 and 7000 yr for these same two respective depths. Natural partitioning of the 13C isotope by the photosynthetic pathways of C3 and C4 plants provides a potentially powerful tool to study SOC dynamics at both regional and local scales

  5. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use

    Science.gov (United States)

    Falco, Liliana B.; Sandler, Rosana V.; Coviella, Carlos E.

    2015-01-01

    Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna) were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields. During five months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro- and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity. PMID:25780777

  6. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use

    Directory of Open Access Journals (Sweden)

    Ricardo A. Castro-Huerta

    2015-03-01

    Full Text Available Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields. During five months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro- and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity.

  7. Natural radionuclides in rocks and soils of the high-mountain regions of the Great Caucasus

    Science.gov (United States)

    Asvarova, T. A.; Abdulaeva, A. S.; Magomedov, M. A.

    2012-06-01

    The results of the radioecological survey in the high-mountain regions of the Great Caucasus at the heights from 2200 to 3800 m a.s.l. are considered. This survey encompassed the territories of Dagestan, Azerbaijan, Georgia, Chechnya, Northern Ossetia-Alania, Kabardino-Balkaria, Karachay-Cherkessia, and the Stavropol and Krasnodar regions. The natural γ background radiation in the studied regions is subjected to considerable fluctuations and varies from 6 to 40 μR/h. The major regularities of the migration of natural radionuclides 238U, 232Th, 226Ra, and 40K in soils in dependence on the particular environmental conditions (the initial concentration of the radionuclides in the parent material; the intensity of pedogenesis; the intensity of the vertical and horizontal migration; and the geographic, climatic, and landscape-geochemical factors) are discussed.

  8. The Milky Way and the Local Group: playing with great circles.

    Science.gov (United States)

    Fusi Pecci, F.; Bellazzini, M.; Ferraro, F. R.

    The small group of recently discovered galactic globular clusters (Pal 12, Ter 7, Rup 106, Arp 2) significantly younger than the average cluster population of the Galaxy are shown to lie near great circles passing in the proximity of most satellite galaxies of the Milky Way. Assuming that these great circles are in some way preferential planes of interaction between the Galaxy and its companions, the authors identified along one of them another candidate "young" globular cluster, IC 4499. Within this observational framework, the possibility that the sample of young globulars found in the halo of the Galaxy could have been captured from a satellite galaxy or formed during a close interaction between the Milky Way and one of its companions is briefly discussed.

  9. Comparison of Dolphins' Body and Brain Measurements with Four Other Groups of Cetaceans Reveals Great Diversity.

    Science.gov (United States)

    Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J

    2016-01-01

    We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial

  10. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  11. The Great Cross-Border Bank Deleveraging: Supply Constraints and Intra-Group Frictions

    NARCIS (Netherlands)

    Cerutti, E.; Claessens, S.

    2014-01-01

    International banks greatly reduced their direct cross-border and local affiliates’ lending as the global financial crisis strained balance sheets, lowered borrower demand, and changed government policies. Using bilateral, lender-borrower countrydata and controlling for credit demand, we show that

  12. The Great Cross-Border Bank Deleveraging; Supply Constraints and Intra-Group Frictions

    OpenAIRE

    Eugenio M Cerutti; Stijn Claessens

    2014-01-01

    International banks greatly reduced their direct cross-border and local affiliates’ lending as the global financial crisis strained balance sheets, lowered borrower demand, and changed government policies. Using bilateral, lender-borrower countrydata and controlling for credit demand, we show that reductions largely varied in line with markets’ prior assessments of banks’ vulnerabilities, with banks’ financial statement variables and lender-borrower country characteristics playing minor roles...

  13. Plant Community and Soil Environment Response to Summer Fire in the Northern Great Plains

    Science.gov (United States)

    Fire is a keystone process in many ecosystems, especially grasslands. However, documentation of plant community and soil environment responses to fire is limited for semiarid grasslands relative to that for mesic grasslands. Replicated summer fire research is lacking, but much needed because summe...

  14. Prescribed fire, soil, and plants: burn effects and interactions in the central Great Basin

    Science.gov (United States)

    Benjamin M. Rau; Jeanne C. Chambers; Robert R. Blank; Dale W. Johnson

    2008-01-01

    Pinyon and juniper expansion into sagebrush ecosystems results in decreased cover and biomass of perennial grasses and forbs. We examine the effectiveness of spring prescribed fire on restoration of sagebrush ecosystems by documenting burn effects on soil nutrients, herbaceous aboveground biomass, and tissue nutrient concentrations. This study was conducted in a...

  15. Remediation/restoration of degraded soil in the Central Great plains

    Science.gov (United States)

    Soil degradation became a problem in the arid region in the late 18th and early 19th century, as a consequence of agriculture expansion and conversion of native land to cropland. The objectives of this study are to evaluate the impact of different tillage practices, nitrogen (N) sources, and N rates...

  16. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species

    OpenAIRE

    Mueller, KE; Eisenhauer, N; Reich, PB; Hobbie, SE; Chadwick, OA; Chorover, J; Dobies, T; Hale, CM; Jagodziński, AM; Kałucka, I; Kasprowicz, M; Kieliszewska-Rokicka, B; Modrzyński, J; Roz en, A; Skorupski, M

    2016-01-01

    © 2015. Management of biodiversity and ecosystem services requires a better understanding of the factors that influence soil biodiversity. We characterized the species (or genera) richness of 10 taxonomic groups of invertebrate soil animals in replicated monocultures of 14 temperate tree species. The focal invertebrate groups ranged from microfauna to macrofauna: Lumbricidae, Nematoda, Oribatida, Gamasida, Opilionida, Araneida, Collembola, Formicidae, Carabidae, and Staphylinidae. Measurement...

  17. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  18. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DEFF Research Database (Denmark)

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas Striegler

    2014-01-01

    Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide-β-peptoid chimeras. Langmuir...... of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras...

  19. soil groups relative susceptibility to erosion in parts of south-eastern

    African Journals Online (AJOL)

    Dr Obe

    erosion by water determined based on the amount of soil lost during the various runs. Based on ... knowledge of the many factors of soil erosion .... Table 4: Relative erodibility levels of soil groups in lmo and Abia States under 'wet' conditions. Moderately Erodible. Highly Erodible. Very Highly Erodible. 1. Type Dystropepts.

  20. Great Expectations: How Role Expectations and Role Experiences Relate to Perceptions of Group Cohesion.

    Science.gov (United States)

    Benson, Alex J; Eys, Mark A; Irving, P Gregory

    2016-04-01

    Many athletes experience a discrepancy between the roles they expect to fulfill and the roles they eventually occupy. Drawing from met expectations theory, we applied response surface methodology to examine how role expectations, in relation to role experiences, influence perceptions of group cohesion among Canadian Interuniversity Sport athletes (N = 153). On the basis of data from two time points, as athletes approached and exceeded their role contribution expectations, they reported higher perceptions of task cohesion. Furthermore, as athletes approached and exceeded their social involvement expectations, they reported higher perceptions of social cohesion. These response surface patterns-pertaining to task and social cohesion-were driven by the positive influence of role experiences. On the basis of the interplay between athletes' role experiences and their perception of the group environment, efforts to improve team dynamics may benefit from focusing on improving the quality of role experiences, in conjunction with developing realistic role expectations.

  1. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    Directory of Open Access Journals (Sweden)

    Daniel Sousa

    2018-02-01

    Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  2. The great environmental restoration cost estimating shootout: A blind test of three DOE cost estimating groups

    International Nuclear Information System (INIS)

    Klemen, Paul

    1992-01-01

    The cost of the Department of Energy's (DOE) Environmental Restoration (ER) Program has increased steadily over the last three years and, in the process, has drawn increasing scrutiny from Congress, the public, and government agencies such as the Office of Management and Budget and the General Accounting Office. Programmatic costs have been reviewed by many groups from within the DOE as well as from outside agencies. While cost may appear to be a universally applicable barometer of project conditions, it is actually a single dimensional manifestation of a complex set of conditions. As such, variations in cost estimates can be caused by a variety of underlying factors such as changes in scope, schedule, performing organization, economic conditions, or regulatory environment. This paper will examine the subject of cost estimates by evaluating three different cost estimates prepared for a single project including two estimates prepared by project proponents and another estimate prepared by a review team. The paper identifies the reasons for cost growth as measured by the different estimates and evaluates the ability of review estimates to measure the validity of costs. The comparative technique used to test the three cost estimates will identify the reasons for changes in the estimated cost, over time, and evaluate the ability of an independent review to correctly identify the reasons for cost growth and evaluate the reasonableness of the cost proposed by the project proponents. Recommendations are made for improved cost estimates and improved cost estimate reviews. Conclusions are reached regarding the differences in estimate results that can be attributed to differences in estimating techniques, the implications of these differences for decision makers, and circumstances that are unique to environmental cost estimating. (author)

  3. Impact of Altered Precipitation Patterns on Plant Productivity and Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Haase, L.; Flanagan, L. B.

    2017-12-01

    between the normal vs. reduced frequency treatments in both experiments for either the plant greenness or soil respiration measurements. The results of this study have implications for understanding the mechanisms underlying ecosystem responses to anticipated precipitation change in the Great Plains.

  4. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural so...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste.......From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...

  5. Engineering of Soil Biological Quality from Nickel Mining Stockpile Using Two Earthworm Ecological Groups

    Directory of Open Access Journals (Sweden)

    L M H Kilowasid

    2015-04-01

    Full Text Available Earthworms have the ability in modifying soil biological quality for plant growth. Their ability is mostly depending on its ecological groups. The objectives of the research were to study the influence of two ecological groups of earthworms on soil microbial activity and soil micro-fauna abundance, and to know the potential of soil modified by earthworms as plant growth medium. Eight combination of individual earthworm from epigeic and endogeic groups was applied into pot that was filled by soil from two years of nickel stockpile and each treatment was repeated by five times. The experiment was following complete randomize design procedure. After sixteen days of research, the soil sample from each pot was analyzed for soil FDA activity, number of flagellate and nematodes. Furthermore, one kg of the soil from each pot was taken and every pot was grown by Paraserianthes falcataria seedling with the age of five days and continued its growth for two months. The results indicated that the soil FDA activity, number of flagellate and nematodes among treatments were significantly differences. In addition, it indicated the significant differences in dry weight of shoot, root, total plant, and root to shoot ratio of P. falcataria seedlings. It concluded that the combination of an individual number of epigeic and endogeic earthworms improved soil biological quality of stock pile, amd most suitable for seedlings growth in nickel mining area.

  6. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  7. Mathematical Model and Analysis of Negative Skin Friction of Pile Group in Consolidating Soil

    Directory of Open Access Journals (Sweden)

    Gangqiang Kong

    2013-01-01

    Full Text Available In order to calculate negative skin friction (NSF of pile group embedded in a consolidating soil, the dragload calculating formulas of single pile were established by considering Davis one-dimensional nonlinear consolidation soils settlement and hyperbolic load-transfer of pile-soil interface. Based on effective influence area theory, a simple semiempirical mathematical model of analysis for predicting the group effect of pile group under dragload was described. The accuracy and reliability of mathematical models built in this paper were verified by practical engineering comparative analysis. Case studies were studied, and the prediction values were found to be in good agreement with those of measured values. Then, the influences factors, such as, soil consolidation degree, the initial volume compressibility coefficient, and the stiffness of bearing soil, were analyzed and discussed. The results show that the mathematical models considering nonlinear soil consolidation and group effect can reflect the practical NSF of pile group effectively and accurately. The results of this paper can provide reference for practical pile group embedded in consolidating soil under NSF design and calculation.

  8. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  9. Platinum-Group Elements in Soils and Street Dust of the Southeastern Administrative District of Moscow

    Science.gov (United States)

    Ladonin, D. V.

    2018-03-01

    The contents of five platinum-group metals (Ru, Rh, Pd, Ir, and Pt) in soils and street dust of the Southeastern administrative district (SEAD) of Moscow have been determined. The contents of these elements in soils may considerably exceed their natural abundances in the lithosphere and are characterized by considerable variability and asymmetric frequency distribution. A close correlation between Rh, Pd, and Pt contents in soils and street dust has been shown. The data on the contents of the elements and the ratios between them suggest that motor vehicles are the major source of pollution of soils and street dust in the studied district.

  10. Use of Flood Seasonality in Pooling-Group Formation and Quantile Estimation: An Application in Great Britain

    Science.gov (United States)

    Formetta, Giuseppe; Bell, Victoria; Stewart, Elizabeth

    2018-02-01

    Regional flood frequency analysis is one of the most commonly applied methods for estimating extreme flood events at ungauged sites or locations with short measurement records. It is based on: (i) the definition of a homogeneous group (pooling-group) of catchments, and on (ii) the use of the pooling-group data to estimate flood quantiles. Although many methods to define a pooling-group (pooling schemes, PS) are based on catchment physiographic similarity measures, in the last decade methods based on flood seasonality similarity have been contemplated. In this paper, two seasonality-based PS are proposed and tested both in terms of the homogeneity of the pooling-groups they generate and in terms of the accuracy in estimating extreme flood events. The method has been applied in 420 catchments in Great Britain (considered as both gauged and ungauged) and compared against the current Flood Estimation Handbook (FEH) PS. Results for gauged sites show that, compared to the current PS, the seasonality-based PS performs better both in terms of homogeneity of the pooling-group and in terms of the accuracy of flood quantile estimates. For ungauged locations, a national-scale hydrological model has been used for the first time to quantify flood seasonality. Results show that in 75% of the tested locations the seasonality-based PS provides an improvement in the accuracy of the flood quantile estimates. The remaining 25% were located in highly urbanized, groundwater-dependent catchments. The promising results support the aspiration that large-scale hydrological models complement traditional methods for estimating design floods.

  11. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    Science.gov (United States)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  12. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  13. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil's physics and biology where nuclear methods of analysis were utilized

  14. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil's fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  15. A revised catalog of CfA galaxy groups in the Virgo/Great Attractor flow field

    Science.gov (United States)

    Nolthenius, Richard

    1993-01-01

    A new identification of groups and clusters in the CfAl Catalog of Huchra, et al. (1983) is presented, using a percolation algorithm to identify density enhancements. The procedure differs from that of the original Geller and Huchra (1983; GH) catalog in several important respects; galaxy distances are calculated from the Virgo-Great Attractor flow model of Faber and Burnstein (1988), the adopted distance linkage criteria is only approx. 1/4 as large as in the Geller and Huchra catalog, the sky link relation is taken from Nolthenius and White (1987), correction for interstellar extinction is included, and 'by-hand' adjustments to group memberships are made in the complex regions of Virgo/Coma I/Ursa Major and Coma/A1367 (to allow for varying group velocity dispersions and to trim unphysical 'spider arms'). Since flow model distances are poorly determined in these same regions, available distances from the IR Tully-Fisher planetary nebula luminosity function and surface brightness resolution methods are adopted if possible.

  16. [Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.

    Science.gov (United States)

    Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang

    2017-10-01

    Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.

  17. Nitrous oxide emissions from a Northern Great Plains soil as influenced by nitrogen management and cropping systems.

    Science.gov (United States)

    Dusenbury, M P; Engel, R E; Miller, P R; Lemke, R L; Wallander, R

    2008-01-01

    Field measurements of N2O emissions from soils are limited for cropping systems in the semiarid northern Great Plains (NGP). The objectives were to develop N2O emission-time profiles for cropping systems in the semiarid NGP, define important periods of loss, determine the impact of best management practices on N2O losses, and estimate direct N fertilizer-induced emissions (FIE). No-till (NT) wheat (Triticum Aestivum L.)-fallow, wheat-wheat, and wheat-pea (Pisum sativum), and conventional till (CT) wheat-fallow, all with three N regimes (200 and 100 kg N ha(-1) available N, unfertilized control); plus a perennial grass-alfalfa (Medicago sativa L.) system were sampled over 2 yr using vented chambers. Cumulative 2-yr N2O emissions were modest in contrast to reports from more humid regions. Greatest N2O flux activity occurred following urea-N fertilization (10-wk) and during freeze-thaw cycles. Together these periods comprised up to 84% of the 2-yr total. Nitrification was probably the dominant process responsible for N2O emissions during the post-N fertilization period, while denitrification was more important during freeze-thaw cycles. Cumulative 2-yr N2O-N losses from fertilized regimes were greater for wheat-wheat (1.31 kg N ha(-1)) than wheat-fallow (CT and NT) (0.48 kg N ha(-1)), and wheat-pea (0.71 kg N ha(-1)) due to an additional N fertilization event. Cumulative losses from unfertilized cropping systems were not different from perennial grass-alfalfa (0.28 kg N ha(-1)). Tillage did not affect N2O losses for the wheat-fallow systems. Mean FIE level was equivalent to 0.26% of applied N, and considerably below the Intergovernmental Panel on Climate Change mean default value (1.25%).

  18. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  19. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  20. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  1. Concentration and measuring Platinum Group Elements (PGE) Transfer Factor in soil and vegetations

    International Nuclear Information System (INIS)

    Adibah Sakinah Oyub

    2012-01-01

    This study was conducted to determine the concentration and to measure platinum group elements (PGE) transfer factor in environmental samples of roadside soil and vegetation. The use of vehicle catalytic converter has released platinum group elements (PGE) and other gases into the environment. Thus, roadside soil and plants were exposed to this element and has become the medium for the movement of this elements. Samples of roadside soil and vegetation were taken at various locations in UKM Bangi Toll and the concentration of platinum group elements (PGE) is determined using mass spectrometry-inductively coupled plasma (ICP-MS). Overall, the concentrations of platinum group elements (PGE), which is the element platinum (Pt) in soil was 0.016 ± 0.036 μgg -1 . While the concentration of the elements palladium (Pd) was 0.079 ± 0.019 μgg -1 and element rhodium (Rh) is at a concentration of 0.013 ± 0.020 μgg -1 . Overall, the transfer factor for the element platinum (Pt) is 1. While the transfer factor of the element palladium (Pd) is 0.96 and the element rhodium (Rh) is 1.11. In conclusion, the concentration of platinum group elements (PGE) in soils have increased. (author)

  2. Migratory bird habitat in relation to tile drainage and poorly drained hydrologic soil groups

    Science.gov (United States)

    Kastner, Brandi; Christensen, Victoria G.; Williamson, Tanja N.; Sanocki, Chris A.

    2016-01-01

    The Prairie Pothole Region (PPR) is home to more than 50% of the migratory waterfowl in North America. Although the PPR provides an abundance of temporary and permanent wetlands for nesting and feeding, increases in commodity prices and agricultural drainage practices have led to a trend of wetland drainage. The Northern Shoveler is a migratory dabbling duck species that uses wetland habitats and cultivated croplands in the PPR. Richland County in North Dakota and Roberts County in South Dakota have an abundance of wetlands and croplands and were chosen as the study areas for this research to assess the wetland size and cultivated cropland in relation to hydrologic soil groups for the Northern Shoveler habitat. This study used geographic information system data to analyze Northern Shoveler habitats in association with Natural Resource Conservation Service soil data. Habitats, which are spatially associated with certain hydrologic soil groups, may be at risk of artificial drainage installations because of their proximity to cultivated croplands and soil lacking in natural drainage that may become wet or inundated. Findings indicate that most wetlands that are part of Northern Shoveler habitats were within or adjacent to cultivated croplands. The results also revealed soil hydrologic groups with high runoff potential and low water transmission rates account for most of the soil within the Northern Shoveler‘s wetland and cropland habitats. Habitats near agriculture with high runoff potential are likely to be drained and this has the potential of reducing Northern Shoveler habitat.

  3. Role of Various Extractants in Removing Group-IIB Elements of Soils Incubated with EDTA

    Directory of Open Access Journals (Sweden)

    Tanmoy Karak

    2004-01-01

    Full Text Available This paper presents the results of an experimental investigation undertaken to evaluate different extractant solutions viz. HCl, Mg(NO32, and DTPA with the range of concentration from 0.001 to 0.1N after incubation with group-IIB metals (Zn, Cd, and Hg and EDTA to understand the capability to remove Zn, Cd, and Hg from soils. Two noncontaminated soils, one acidic (GHL and the other alkaline (KAP, in reaction were taken from an agricultural field of West Bengal, India for this investigation. Experiments were conducted on these two soils spiked with ZnII, CdII, and HgII in concentrations of 612, 321, and 215 mg/kg for soil GHL and 778, 298, and 157 mg/kg for soil KAP, respectively, which simulate typical electroplating waste contamination. The removal of Zn, Cd, and Hg in soil GHL within the range of HCl concentrations was 8.2–16.5, 12.2–19.1, and 4.3–6.9 whereas these were 6.5–7.6, 8.5–14.1, and 3.2–5.2 in soil KAP. The removal of Zn, Cd, and Hg in soil GHL within the range of Mg(NO32 concentrations were 12.2–28.5, 19.1–24.6, and 18.2–19.1 whereas these were 9.1–12.1, 8.3–12.1, and 10.6–48.1 in soil KAP. For DTPA extractant, the percent removal of metal was found to be significantly higher than the other two extractants, which corroborates that DTPA is a better extractant for soil cleaning.

  4. The main tasks and obtained results within soil protection working group of the Danube countries

    International Nuclear Information System (INIS)

    Dzatko, M.

    1997-01-01

    In the frame of the Danube Countries Working Community activities was in 1993 constituted independent Soil Protection Working Group (SPWG). Its primary task is to elaborate principles and common soil protection concept in given countries accepted on the level of governments and related authorities, and also to the solution of the solution of the problems on regional levels. Final objective is to implement such concept of soil protection policy, which is able to maintain its quality and productivity potential for next generations also. Based on four years activities coordination could be significance and the SPWG relevance expressed in following topics: (1) Soil pollution and soil degradation, particularly in most pos-communistic countries has been attaining high degree, and in many locations also the threshold of ecological be arability. As reclamation and revitalization of the degraded and polluted soils require long time and considerable financial means, it is not only moral;, even also economically more effective to protect preventively than subsequent reclamation. (2) Main objective of the correct soil protection policy should be its high quality conservation also for the next generations. To this is joined also the protection not only productional, but also non-productional functions, particularly filtrational, transformational and buffering capacibility, including its role and significance, as land and environment. From, in this way considered relationships reality is resulting that the soil protection objectives are not only laws and prohibition approvement, but also active relationships harmonization between the man requirements and soil productivity potential, in order of the sustainable land resources use for the next generations. (3) Based on mentioned realities and relationships we consider the SPWG as an active gremium for elaboration of the the uniform soil protection concepts for governments and responsible organisations that in financial consequence

  5. Connectivity of the Longfin Grouper (Epinephelus Quoyanus) in a marine reserve in the Great Keppel Island Group

    KAUST Repository

    Al-Salamah, Manalle

    2014-12-01

    With a dramatic decrease of biodiversity as a result of the increase in exploitation of marine ecosystems, the establishment of marine protected areas (MPAs) serves as an important means of protecting those resources. Although there is support for the effectiveness of these MPAs and MPA networks, there is room for improvement in terms of MPA management and design. For example, a better understanding of the dispersal dynamics of targeted species across these MPAs will serve as a more accurate means of reserve as well as fisheries management. While there have been many methods used to determine the larval dispersal of a certain species, parentage analysis is becoming the most robust. In this thesis, I attempt to determine the patterns of self-recruitment and larval dispersal of the Longfin Grouper (Epinephelus quoyanus) in one focal marine reserve within the Great Keppel Island group through the method of parentage. For this, I developed 14 microsatellite markers and with those, genotyped 610 adults as well as 478 juveniles from the study site. These genotypes allowed me to assign offspring to their potential parents, which then allowed me to measure the self-recruitment, local retention as well as larval dispersal percentages of this species from and within the reserve. My results indicate that there is 32% local retention to the reserve while 68% of the assigned juveniles were dispersed to other areas (4% of which dispersed to another reserve). Previous studies conducted in the same area showed higher reserve self-recruitment rates for both Plectropomus maculatus (~30%) and Lutjanus carponotatus (64%) despite their similar life history traits. The results from this study add to the growing evidence that dispersal patterns cannot be generalized across marine systems or even between species within a single system.

  6. Soil erosion and degradation in Mediterranean Type Ecosystems. The Soil Erosion and Degradation Research Group (SEDER) approach and findings

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pulido, Manuel; Jordán, Antonio; Novara, Agata; Giménez-Morera, Antonio; Borja, Manuel Esteban Lucas; Francisco Martínez-Murillo, Juan; Rodrigo-Comino, Jesús; Pereira, Paulo; Nadal-Romero, Estela; Taguas, Tani; Úbeda, Xavier; Brevik, Eric C.; Tarolli, Paolo; Bagarello, Vicenzo; Parras Alcantara, Luis; Muñoz-Rojas, Miriam; Oliva, Marc; di Prima, Simone

    2017-04-01

    The Soil Erosion and Degradation Reseach Group (SEDER) is developing a research program since 2002 to assess the soil erosion and degradation processes at the Canyoles River watershed in Eastern Spain. The research study site was selected as representative of the environmental changes that take place in the Mediterranean: abandonment of the agriculture land in the mountains, forest fire expansion, intensification of the agriculture, impact of the infraesturctures such as rail and road embankments, and soil sealing due to the urban expansion. The research is based on the continuous measurements in the Montesa and El Teularet research stations and the sampling of the soils, topographical measurements and the use of rainfall simulators, minidisk infiltrometers, ring infiltrometers and Water Drop Penetration Time tests. The research is moving from a pure scientific approach to a more socio-economic view, and the stakeholders are being researched from a perception point of view. SEDER is also moving from pure to applied science, with the objective to design new managements that will satisfy the stakeholders and will achieve the sustainability. The research is being carried out in vineyards and orchards as they show extremely high erosion rates. But also we are interested in the impact of forest fires and the road embankments. In all three research topics, SEDER wish to find the sustainable managements. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., . . . Mataix-Solera, J. (2014). Corrigendum to "wildland fire ash: Production, composition and eco-hydro-geomorphic effects", earth sci. rev. 130 (2014) [103-127]. Earth-Science Reviews, 138, 503. doi:10

  7. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  8. The Cadmium Isotope Record of the Great Oxidation Event from the Turee Creek Group, Hamersley Basin, Australia

    Science.gov (United States)

    Abouchami, W.; Busigny, V.; Philippot, P.; Galer, S. J. G.; Cheng, C.; Pecoits, E.

    2016-12-01

    The evolution of the ocean, atmosphere and biosphere throughout Earth's history has impacted on the biogeochemistry of some key trace metals that are of particular importance in regulating the exchange between Earth's reservoirs. Several geochemical proxies exhibit isotopic shifts that have been linked to major changes in the oxygenation levels of the ancient oceans during the Great Oxygenation Event (GOE) between 2.45 and 2.2 Ga and the Neoproterozoic Oxygenation Event at ca. 0.6 Ga. Studies of the modern marine biogeochemical cycle of the transition metal Cadmium have shown that stable Cd isotope fractionation is mainly driven by biological uptake of light Cd into marine phytoplankton in surface waters leaving behind the seawater enriched in the heavy Cd isotopes. Here we use of the potential of this novel proxy to trace ancient biological productivity which remains an enigma, particularly during the early stages of Earth history. The Turee Creek Group in the Hamersley Basin, Australia, provides a continuous stratigraphic sedimentary section covering the GOE and at least two glacial events, offering a unique opportunity to examine the changes that took place during these periods and possibly constrain the evolution, timing and onset of oxygenic photosynthesis. Stable Cd isotope data were obtained on samples from the Boolgeeda Iron Fm. (BIFs), the siliciclastic and carbonate successions of Kungara (including the Meteorite Bore Member) and the Kazputt Fm., using a double spike technique by TIMS (ThermoFisher Triton) and Cd concentrations were determined by isotope dilution. The Boolgeeda BIFs have generally low Cd concentrations varying between 8 and 50ppb, with two major excursions marked by an increase in Cd content, reaching similar levels to those in the overlying Kungarra Fm. (≥150 ppb). These variations are associated with a large range in ɛ112/110Cd values (-2 to +2), with the most negative values typically found in the organic and Cd-rich shales and

  9. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.

    Science.gov (United States)

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P

    2018-05-15

    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  10. Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Ning, Zengping; Sun, Min; Peng, Jingquan; Xiao, Tangfu

    2012-12-15

    Thallium (Tl) contamination in soil exerts a significant threat to the ecosystem health due to its high toxicity. However, little is known about the effect of Tl on the microbial community in soil. The present study aimed at characterizing the culturable microbial groups in soils which experience for a long time high Tl contamination and elevated Hg and As. The contamination originates from As, Hg and Tl sulfide mineralization and the associated mining activities in the Guizhou Province, Southwest China. Our investigation showed the existence of culturable bacteria, filamentous fungi and actinomyces in long-term Tl-contaminated soils. Some fungal groups grow in the presence of high Tl level up to 1000 mg kg⁻¹. We have isolated and identified nine Tl-tolerant fungal strains based on the morphological traits and ITS analysis. The dominant genera identified were Trichoderma, Penicillium and Paecilomyces. Preliminary data obtained in this study suggested that certain microbes were able to face high Tl pollution in soil and maintain their metabolic activities and resistances. The highly Tl-tolerant fungi that we have isolated are potentially useful in the remediation of Tl-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  12. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground

    Science.gov (United States)

    Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng

    2010-03-01

    This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.

  13. Impacts of insect biological control on soil N transformations in Tamarix-invaded ecosystems in the Great Basin

    Science.gov (United States)

    Understanding the impacts of insect biological control of Tamarix spp. on soil nitrogen (N) transformations is important because changes to N supply could alter plant community succession. We investigated short-term and longer-term impacts of herbivory by the northern tamarisk beetle (Diorhabda cari...

  14. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  15. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil

    Science.gov (United States)

    Karlsson, Torbjörn; Elgh-Dalgren, Kristin; Björn, Erik; Skyllberg, Ulf

    2007-02-01

    Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g -1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd 2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g -1), the Cd 2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS -) was used to describe the complexation (Cd 2+ + RS - ⇆ CdSR +; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg -1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (p Ka for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g -1, a model consisting of one thiolate and one carboxylate (RCOO -) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd 2+ + RCOO - ⇆ CdOOCR +; log KCdOOCR; p Ka for RCOOH = 4.5) is in accordance with stability constants determined for the association between

  16. STUDIES ON SOIL LIQUEFACTION AND SETTLEMENT IN THE URAYASU DISTRICT USING EFFECTIVE STRESS ANALYSES FOR THE 2011 EAST JAPAN GREAT EARTHQUAKE

    Science.gov (United States)

    Fukutake, Kiyoshi; Jang, Jiho

    The 2011 East Japan Great Earthquake caused soil liquefaction over a wide area. In particular, severe soil liquefaction was reported in the northern parts of the reclaimed lands around Tokyo Bay, even though the seismic intensity in this area was only about 5 on the Japan scale with low acceleration. The authors surveyed the residual settlement in the Urayasu district and then conducted effective stress analyses of areas affected and not affected by liquefaction. The analyses compared with the acceleration waves monitored with K-NET Urayasu or ground settlements surveyed. It is based on the acceleration observed on the seismic bedrocks in earthquake engineering in some other districts adjacent to Urayasu. Much of the settlement was due to the long duration of the earthquake, with further settlement resulting from the aftershock. The study shows that the affects of aftershocks need to be monitored, as well as needs for improvement of simplified liquefaction prediction methods using the factor of safety, FL.

  17. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance

    Directory of Open Access Journals (Sweden)

    Wafaa MOKHTARI

    2017-09-01

    Full Text Available In this study, 17 Trichoderma strains were isolated from different soils (crop fields and Argan forests in Morocco. Purified monospore cultures were identified using molecular methods and tested for their potential antagonism against three phytopathogenic fungi (Fusarium oxyxporum, verticillium dahlia and rhizoctonia solani. After DNA extraction, translation elongation factor (tef1 was amplified in extracts of 17 strains, sequenced and compared with their ex-types. As a result, three species were identified among the strains, which clustered in two different subclades of Trichoderma: the species T. afroharzianum, and T. guizhouense belong to the Harzianum clade, while T. longibrachiatum belongs to the Longibrachiatum clade. Investigation of potential antagonistic effects of these strains against the soil-borne phytopathogens F. oxysporum, R. solani and V. dahliae was conducted in a dual culture plate assay, using 17 promising Trichoderma strains that have been selected based on a polymerase chain reaction (PCR screening approach. In vitro, Trichoderma isolates showed effective antagonistic performance by decreasing soil borne pathogens mycelium radial growth. Trichoderma afroharzianum showed the highest Percentage of Radial Inhibition Growth (PRIG %. The highest PRIG% = 98% was for 8A2.3 isolate against R. solani and the lowest PRIG%= 67% for T9i10 against F. oxysporum. On the other hand, T9i12, which is T. reesei species, led to a high radial inhibition of pathogens’ mycelium.

  18. Effects of a phosphinothricin based herbicide on selected groups of soil microorganisms.

    Science.gov (United States)

    Pampulha, M E; Ferreira, M A S S; Oliveira, A

    2007-08-01

    The effects of the herbicide glufosinate-ammonium on soil microbial populations and activity were observed in a laboratory microcosms over a 40 day period. Culturable aerobic bacteria, fungi and actinomycetes, the fundamental groups of heterotrophic microorganisms, were studied. Nitrifiers, considered a very sensitive group to these compounds were also evaluated. Since herbicides have been found to inhibit decomposition of cellulose in the soil, the effects of glufosinate on cellulolytic bacteria and fungi were determined. Dehydrogenase activity as a measure of microbial activity was another parameter considered. Both stimulating and inhibitory effects on microbial populations were observed, depending on concentration of the herbicide and the period of incubation. A severe inhibiting effect of glufosinate on dehydrogenase activity was found. We concluded that the widespread use of this herbicide may have possible injurious effects on soil microorganisms and their activities. The toxicity exerted by glufosinate may lead to a shift in microbial community structure tending toward a significant loss in functional diversity. Dehydrogenase activity was shown to be an important indicator of glufosinate side-effects.

  19. Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, J.H.; Roth, B.; Kihm, A.J.

    1997-08-11

    Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

  20. Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy

    Science.gov (United States)

    Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.

    1992-01-01

    In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.

  1. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  2. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity

    NARCIS (Netherlands)

    Dassen, S.; Cortois, R.; Martens, Henk; De Hollander, M.; Kowalchuk, G.A.; van der Putten, W.H.; De Deyn, G.B.

    2017-01-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil

  3. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  4. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China. We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.

  5. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  6. Chemically mediated group formation in soil-dwelling larvae and pupae of the beetle Trypoxylus dichotomus

    Science.gov (United States)

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2014-09-01

    Many insects form groups through interactions among individuals, and these are often mediated by chemical, acoustic, or visual cues and signals. In spite of the diversity of soil-dwelling insects, their aggregation behaviour has not been examined as extensively as that of aboveground species. We investigated the aggregation mechanisms of larvae of the Japanese rhinoceros beetle Trypoxylus dichotomus, which live in groups in humus soil. In two-choice laboratory tests, 2nd- and 3rd-instar larvae gathered at conspecific larvae irrespective of the kinship. The ablation of maxillae, which bear chemosensilla, abolished aggregation behaviour. Intact larvae also exhibited aggregation behaviour towards a larval homogenate. These results suggest that larval aggregation is mediated by chemical cues. We also demonstrated that the mature larvae of T. dichotomus built their pupal cells close to a mesh bag containing a conspecific pupal cell, which indicated that larvae utilize chemical cues emanating from these cells to select the pupation site. Thus, the larvae of T. dichotomus may use chemical cues from the conspecifics in two different contexts, i.e. larval aggregation and pupation site selection. Using conspecific cues, larvae may be able to choose suitable locations for foraging or building pupal cells. The results of the present study highlight the importance of chemical information in belowground ecology.

  7. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  8. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  9. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance.

  10. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  11. Current Evaluation Procedures for Fertilizers and Soil Conditioners Used in Organic Agriculture. Proceedings of a workshop held April 29–30, 2004 at Emerson College, Great Britain

    OpenAIRE

    Canali, Stefano; Stopes, Christopher; Schmid, Otto; Speiser, Bernhard

    2005-01-01

    Table of Contents Fertilizers and soil conditioners in organic farming in Austria Alexandra Hozzank and Wilfried Hartl Fertilizers and soil conditioners in organic farming in the Czech Republic Anamarija Slabe Fertilizers and soil conditioners in organic farming in Denmark Rasmus Ørnberg Eriksen and Erik Steen Kristensen Fertilizers and soil conditioners in organic farming in France Marie-Christine Monnier Fertilizers and soil conditioners in organic fa...

  12. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua

    2014-02-22

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  13. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua; Yang, Zong-Liang; Dickinson, Robert E.; Wei, Jiangfeng

    2014-01-01

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  14. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils

    International Nuclear Information System (INIS)

    Ernst, Gregor; Zimmermann, Stefan; Christie, Peter; Frey, Beat

    2008-01-01

    Bioaccumulation of Hg, Cd and Pb by eight ecophysiologically distinct earthworm species was studied in 27 polluted and uncontaminated forest soils. Lowest tissue concentrations of Hg and Cd occurred in epigeic Lumbricus rubellus and highest in endogeic Octolasion cyaneum. Soils dominated by Dendrodrilus rubidus possess a high potential of risk of Pb biomagnification for secondary predators. Bioconcentration factors (soil-earthworm) followed the sequence ranked Cd > Hg > Pb. Ordination plots of redundancy analysis were used to compare HM concentrations in earthworm tissues with soil, leaf litter and root concentrations and with soil pH and CEC. Different ecological categories of earthworms are exposed to Hg, Cd and Pb in the topsoil by atmospheric deposition and accumulate them in their bodies. Species differences in HM concentrations largely reflect differences in food selectivity and niche separation. - Accumulation of non-essential heavy metals by earthworms is species-dependent and is affected by soil characteristics in natural forest soils

  15. Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A; Kauri, T; Baeaeth, E; Soederstroem, B

    1986-01-01

    The biological effects of heavy metal contamination of coniferous forest soils were studied in the A/sub 01//A/sub 02/ layer around a primary smelter in Northern Sweden. Soil concentrations of 17 elements were determined. Smelter-emitted heavy metals were 5 to 75 times higher in the plot closest to the smelter compared with background levels. Despite emission of sulfur no decrease in pH was found. Bacteria producing acid from maltose, cellobiose, arabinose or xylose and bacteria hydrolyzing starch, pectin, xyland or cellulose decreased 8- to 11-fold due to the soil contamination. Chitin hydrolyzers were 5 times less abundant at the most polluted site compared with background levels. Soil respiration rate and urease activity decreased by about a factor of 4, but phosphatase activity and mycelial lengths were unaffected by the soil contamination. Soil bacteria showed a sigmoidal response to the log of metal concentration in the soil and were affected at a lower pollution level than the other biological variables in the study. A multivariate analysis (partial least squares) showed that soil metal contamination and soil pH were the two environmental factors influencing the soil microorganisms.

  16. Accumulation of germanium and rare earth elements in functional groups of selected energy crops cultivated on two different soils

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs

    2016-04-01

    A field experiment was conducted to investigate the uptake of Ge and selected REEs in functional groups of selected crop species. Five species belonging to the functional group of grasses (Hordeum vulgare, Zea mays, Avena sativa, Panicum miliaceum and Phalaris arundinacea) and four species from the group of herbs (Lupinus albus, Lupinus angustifolius, Fagopyrum esculentum and Brassica napus) were cultivated in parallel on two soils with slightly alkaline (soil A: pH = 7.8) and slightly acidic (soil B: pH = 6.8) conditions. After harvest, concentrations of Ge, La, Nd, Gd, Er, P, Fe, Mn and Si in shoot tissues were determined with ICP-MS. Concentrations of Ge were significantly higher in grasses than in herbs. Conversely, concentrations of La and Nd were significantly higher in herbs, than in grasses. Highest concentrations were measured in Brassica napus (REEs) and Zea mays (Ge). Concentrations of Ge significantly correlated with that of Si in the shoots showing low concentrations in herbs and high concentrations in grasses, indicating a common mechanism during the uptake in grasses. Concentrations of REEs correlated significantly with that of Fe, indicating increasing concentrations of REEs with increasing concentrations of Fe. Cultivation of species on the slightly acidic soil significantly increased the uptake Ge in Lupinus albus and Phalaris arundinacea and the uptake of La and Nd in all species except of Phalaris arundinacea. This study demonstrated that commonly used field crops could be regarded as suitable candidates for a phytomining of Ge and REEs, since these species develop high yields of shoots, high concentrations of elements and are widely used in agricultural practice. Under soil conditions where bioavailability of Ge and REEs is expected to be low (soil A) accumulation can be estimated at 1.8 g/ha Ge in Z. mays and 3.7 g/ha REEs (1.5 g/ha La, 1.4 g/ha Nd, 0.6 g/ha Gd, 0.3 g/ha Er), respectively, in B. napus, assuming a constant high efficiency of

  17. ERTS data user no. 119: Effective use of ERTS multisensor data in the Great Plains. ERTS-1 MSS imagery: A tool for identifying soil associations

    Science.gov (United States)

    Myers, V. I. (Principal Investigator); Westin, F. C.

    1973-01-01

    The author has identified the following significant results. Soil association maps show the spatial relationships of land units developed in unique climatic, geologic, and topographic environments, and having characteristic slopes, soil depths, textures, available water capacities, permeabilities, and the like. ERTS-1 imagery was found to be a useful tool in the identification of soil associations since it provides a synoptic view of an 8 million acre scene, which is large enough so that the effect can be seen on soils of climate, topography, and geology. A regional view also allows soil associations to be observed over most, if not all, of their extent. ERTS-1 MSS imagery also provides four spectral bands taken every 18 days which give data on relief, hydrology, and vegetation, all of which bear on the delineation and interpretation of soil associations. Enlarged prints derived from the individual spectral bands and shown in gray tones were useful for identifying soil associations.

  18. Effect of heavy metal on survival of certain groups of indigenous soil ...

    African Journals Online (AJOL)

    Heavy metal pollution of soil is known to adversely effect microbial activities at elevated concentration. However, response of indigenous soil bacterial population to added heavy metal and metal combinations is poorly understood. In the present study salts of heavy metals like Cu, Cd, Cr, Hg, Mn, Ni, Pb and Zn were added ...

  19. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  20. Effects of Plant Functional Group Loss on Soil Microbial Community and Litter Decomposition in a Steppe Vegetation.

    Science.gov (United States)

    Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan

    2017-01-01

    Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.

  1. Great Apes

    Science.gov (United States)

    Sleeman, Jonathan M.; Cerveny, Shannon

    2014-01-01

    Anesthesia of great apes is often necessary to conduct diagnostic analysis, provide therapeutics, facilitate surgical procedures, and enable transport and translocation for conservation purposes. Due to the stress of remote delivery injection of anesthetic agents, recent studies have focused on oral delivery and/or transmucosal absorption of preanesthetic and anesthetic agents. Maintenance of the airway and provision of oxygen is an important aspect of anesthesia in great ape species. The provision of analgesia is an important aspect of the anesthesia protocol for any procedure involving painful stimuli. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are often administered alone, or in combination to provide multi-modal analgesia. There is increasing conservation management of in situ great ape populations, which has resulted in the development of field anesthesia techniques for free-living great apes for the purposes of translocation, reintroduction into the wild, and clinical interventions.

  2. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  3. 20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

  4. Use of amazonian anthropogenic soils: Comparison between Caboclos communities and Tikunas indigenous group

    International Nuclear Information System (INIS)

    Torres Sanabria, Camilo; Cuartas Ricaurte, Jorge Armando

    2013-01-01

    In general terms, Amazonian soils are infertile and have several constraints for agricultural production. However, use by ancient human societies since pre-columbian times has driven landscape transformation of massive areas and development of anthropogenic soils called Terra Preta do Indio (TP) or Amazonian Dark Earths (ADE). ADE characterization, in terms of fertility and composition, has allowed the development of intensive agricultural activities over time. The current use of ADE for the Brazilian amazon peasants (Caboclos) is different from the indigenous communities in Colombia. The indigenous people in Colombia (Tikunas) no use this type of soils on behalf of cultural restrictions that avoid the use of ancient places. We are comparing the institutional conditions, migrations, social characterization and cultural factors that determine the use/no-use of these soils by the Amazonian societies.

  5. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  6. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Great Expectations

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    One of Dickens's most renowned and enjoyable novels, Great Expectations tells the story of Pip, an orphan boy who wishes to transcend his humble origins and finds himself unexpectedly given the opportunity to live a life of wealth and respectability. Over the course of the tale, in which Pip

  8. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    Science.gov (United States)

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  9. Stable isotope analysis (δ13C and δ15N of soil nematodes from four feeding groups

    Directory of Open Access Journals (Sweden)

    Carol Melody

    2016-09-01

    Full Text Available Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000 to achieve required minimum sample weights (typically >100 µg C and N. Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS of C and N using microgram samples (typically 20 µg dry weight, was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus, bacterial feeders (Plectus and Rhabditis, omnivores (Aporcelaimidae and Qudsianematidae and plant feeder (Rotylenchus. Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290 or δ13C (p = 0.706 between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr. Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2 and the predators (1.73 mUr2, but largest for omnivores (3.83 mUr2

  10. Soil macrofauna functional groups and their effects on soil structure, as related to agricultural management practices across agroecological zones of Sub-Saharan Africa

    NARCIS (Netherlands)

    Ayuke, F.O.

    2010-01-01

    This study aimed at understanding the effects of crop management practices on soil macrofauna and the links with soil aggregation and soil organic matter dynamics, which is key to the improvement of infertile or degrading soils in Sub-Sahara Africa. Soil macrofauna, especially earthworms and

  11. Soil to plant transfer factors for Cs-137 and Pu-239+240 determined by field and glasshouse measurements in Great Britain

    International Nuclear Information System (INIS)

    Cawse, P.A.; Baker, S.J.

    1984-01-01

    Further data on soil to plant transfer factors is provided for Cs-137 and Pu-239+240, as an extension of results presented at the previous IUR Workshop at Wageningen in December 1982. Field crops of grass, barley and oats produced in 1982 at 11 locations in Britain were analysed for radionuclides. Analysis of soils that produced these crops showed that they contained 'background' nuclear weapons fallout concentrations of Cs-137 and plutonium which were elevated in regions with high rainfall. Analysis of basic soil properties was also made. In separate experiments, transfer factors were derived for 10 crop plants grown in pot trials under glasshouse conditions. In one trial the soil used contained low concentrations of radionuclides derived from nuclear weapons fallout. In a second trial a brown earth was used, which contained additional radionuclides from long-term deposition by nuclear fuel reprocessing. (orig.)

  12. Utilizing Wetlands for Phosphorus Reduction in Great Lakes Watersheds: A Review of Available Literature Examining Soil Properties and Phosphorus Removal Efficiency

    Science.gov (United States)

    2017-10-01

    term application of P as organic and inorganic fertilizers has resulted in non-point source P pollution by runoff (Daniel et al. 1998). Best...sites fertilized at rates greater than recommended. Average annual concentrations of NO3-N in drainage water from organic soils ranged from 14.8 to...soil P concentrations from long-term over fertilization and/or excessive use of organic wastes). In this paper we review research on P leaching and

  13. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    Science.gov (United States)

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  14. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  15. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  16. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  17. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  18. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands

    NARCIS (Netherlands)

    Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brooks, A.J.; Igual, J.M.; Mortimer, S.R.; Putten, van der W.H.

    2006-01-01

    1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community

  19. Effect of Rigidity of Plinth Beam on Soil Interaction of Modeled Building Frame Supported on Pile Groups

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Reddy, C.

    2014-01-01

    Full Text Available This paper presents the effect of rigidity of plinth beam on a model building frame supported by pile groups embedded in cohesionless soil (sand through the results of static vertical load tests. The effect of rigidity of plinth beam on displacements and rotation at the column base and also shears and bending moments in the building frame were investigated. In the analytical model, soil nonlinearity in the axial direction is characterized by nonlinear vertical springs along the length of the pile (t-z curves and at the tip of the pile (Q-z curves while in the lateral direction by the p-y curves. Results revealed that, shear force and bending moment values which were back calculated from the experimental results, showed considerable reduction with the reduction of the rigidity of the plinth beam. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

  20. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fusheng [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Polizzotto, Matthew L. [Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Guan, Dongxing [Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026 (China); Wu, Jun [College of Environment, Zhejiang University of Technology, Hangzhou 310014 (China); Shen, Qirong; Ran, Wei [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Boren [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Yu, Guanghui, E-mail: yuguanghui@njau.edu.cn [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2017-03-15

    Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.

  1. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment

    NARCIS (Netherlands)

    Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Jackson, T.J.; Graham, S.T.; Rodell, M.; Oevelen, van P.J.

    1999-01-01

    Surface soil moisture content is highly variable in both space and time. While remote sensing provides an effective methodology for mapping surface moisture content over large areas, it averages within-pixel variability thereby masking the underlying heterogeneity observed at the land surface. This

  2. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Science.gov (United States)

    With the need to increase crop production to meet the needs of growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under project...

  3. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...

  4. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  5. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste

    International Nuclear Information System (INIS)

    Mikkonen, Anu; Hakala, Kati P.; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-01-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC–FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. - Highlights: ► Weathered hydrocarbon contamination and soil quality on landfarm site were studied. ► Silica fractionation of hydrocarbons separated aliphatics, aromatics and polars. ► Polar hydrocarbon metabolites had accumulated in the surface soil. ► Total hydrocarbons and TPH correlated with soil quality changes better than polars. ► Toxic response of soil microbial biomass and activity were seen at low TPH (<0.5%). - Polar metabolites constitute the largest fraction of crude oil-derived contaminants in a landfarming site, but TPH better explains soil microbial and ecotoxicological responses.

  6. Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region

    Science.gov (United States)

    Kurth, Valerie J.; Bradford, John B.; Slesak, Robert A.; D'Amato, Anthony W.

    2014-01-01

    Contemporary forest management practices are increasingly designed to optimize novel objectives, such as maximizing biomass feedstocks and/or maintaining ecological legacies, but many uncertainties exist regarding how these practices influence forest carbon (C) cycling. We examined the responses of soil respiration (Rs) to biomass harvesting and green-tree retention in an effort to empirically assess their impacts on C cycling. We measured Rs and soil microclimatic variables over four growing seasons following implementation of these management practices using a fully replicated, operational-scale experiment in aspen-dominated forests in northern Minnesota. Treatments included three levels of biomass removal within harvested areas: whole-tree harvest (no slash deliberately retained), 20% slash retained, and stem-only harvest (all slash retained), and two levels of green-tree retention: 0.1 ha aggregate or none. The relative amount of biomass removed had a negligible effect on Rs in harvested areas, but treatment effects were probably obscured by heterogeneous slash configurations and rapid post-harvest regeneration of aspen in all of the treatments. Discrete measurements of Rs and soil temperature within green-tree aggregates were not discernible from surrounding harvested areas or unharvested control stands until the fourth year following harvest, when Rs was higher in unharvested controls than in aggregates and harvested stands. Growing season estimates of Rs showed that unharvested control stands had higher Rs than both harvested stands and aggregates in the first and third years following harvest. Our results suggest that retention of larger forest aggregates may be necessary to maintain ecosystem-level responses similar to those in unharvested stands. Moreover, they highlight the innate complexity of operational-scale research and suggest that the initial impacts of biomass harvest on Rs may be indiscernible from traditional harvest in systems where incidental

  7. Load and resistance factor design of bridge foundations accounting for pile group-soil interaction.

    Science.gov (United States)

    2015-11-01

    Pile group foundations are used in most foundation solutions for transportation structures. Rigorous and reliable pile design methods are : required to produce designs whose level of safety (probability of failure) is known. By utilizing recently dev...

  8. Dynamic stiffness of pile groups in a multilayered soil. Part 1

    International Nuclear Information System (INIS)

    Ohta, Y.; Hijikata, K.; Kobayashi, Y.

    1989-01-01

    For evaluating the dynamic stiffness of the pile group foundations, forced vibration tests are executed on pile group foundation models. Two types of test models are used, one is a single pile model and the other a four-pile model. Dividing the tests into 4 steps, the forced vibration tests are performed. Step 1 is for the single pile model, and steps 2 to 4 are for the four-pile model. In step 2 and step 3, the gap effects between the foundation bottom and the ground surface are examined. In step 4, the backfill effects are obtained. Based on the test results, the pile group effects, the gap effects and the backfill effects on the dynamic characteristics of the pile group foundations are described in this paper

  9. Species identities, not functional groups, explain the effects of earthworms on litter carbon-derived soil respiration

    Science.gov (United States)

    Soil respiration is frequently measured as a surrogate for biological activities and is important in soil carbon cycling. The heterotrophic component of soil respiration is primarily driven by microbial decomposition of leaf litter and soil organic matter, and is partially controlled by resource ava...

  10. Determining Wind Erosion in the Great Plains

    OpenAIRE

    Elwin G. Smith; Burton C. English

    1982-01-01

    Wind erosion is defined as the movement of soil particles resulting from strong turbulent winds. The movement of soil particles can be categorized as suspension, saltation, or surface creep. Fine soil particles can be suspended in the atmosphere and carried for great distances. Particles too large to be suspended move in a jumping action along the soil surface, known as saltation. Heavier particles have a rolling movement along the surface and this type of erosion is surface creep.

  11. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. What makes great boards great.

    Science.gov (United States)

    Sonnenfeld, Jeffrey A

    2002-09-01

    In the wake of meltdowns at WorldCom, Tyco, and Enron, enormous attention has been focused on the companies' boards. It seems inconceivable that business disasters of such magnitude could happen without gross or even criminal negligence on the part of board members. And yet a close examination of those boards reveals no broad pattern of incompetence or corruption. In fact, they followed most of the accepted standards for board operations: Members showed up for meetings; they had money invested in the company; audit committees, compensation committees, and codes of ethics were in place; the boards weren't too small or too big, nor were they dominated by insiders. In other words, they passed the tests that would normally be applied to determine whether a board of directors was likely to do a good job. And that's precisely what's so scary, according to corporate governance expert Jeffrey Sonnenfeld, who suggests that it's time for some new thinking about how corporate boards operate and are evaluated. He proposes thinking not only about how to structure the board's work but also about how to manage it as a social system. Good boards are, very simply, high-functioning work groups. They're distinguished by a climate of respect, trust, and candor among board members and between the board and management. Information is shared openly and on time; emergent political factions are quickly eliminated. Members feel free to challenge one another's assumptions and conclusions, and management encourages lively discussion of strategic issues. Directors feel a responsibility to contribute meaningfully to the board's performance. In addition, good boards assess their own performance, both collectively and individually.

  13. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Science.gov (United States)

    Krasiński, Adam; Kusio, Tomasz

    2015-02-01

    The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA) piles and screw displacement piles (SDP). The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  14. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2015-02-01

    Full Text Available The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA piles and screw displacement piles (SDP. The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  15. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador.

    Science.gov (United States)

    Romero-Sandoval, Natalia; Ortiz-Rico, Claudia; Sánchez-Pérez, Héctor Javier; Valdivieso, Daniel; Sandoval, Carlos; Pástor, Jacob; Martín, Miguel

    2017-03-14

    Rural communities in the Amazonian southern border of Ecuador have benefited from governmental social programmes over the past 9 years, which have addressed, among other things, diseases associated with poverty, such as soil transmitted helminth infections. The aim of this study was to explore the prevalence of geohelminth infection and several factors associated with it in these communities. This was a cross sectional study in two indigenous communities of the Amazonian southern border of Ecuador. The data were analysed at both the household and individual levels. At the individual level, the prevalence of geohelminth infection reached 46.9% (95% CI 39.5% to 54.2%), with no differences in terms of gender, age, temporary migration movements or previous chemoprophylaxis. In 72.9% of households, one or more members were infected. Receiving subsidies and overcrowding were associated with the presence of helminths. The prevalence of geohelminth infection was high. Our study suggests that it is necessary to conduct studies focusing on communities, and not simply on captive groups, such as schoolchildren, with the object of proposing more suitable and effective strategies to control this problem. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. The Great Recession was not so Great

    NARCIS (Netherlands)

    van Ours, J.C.

    2015-01-01

    The Great Recession is characterized by a GDP-decline that was unprecedented in the past decades. This paper discusses the implications of the Great Recession analyzing labor market data from 20 OECD countries. Comparing the Great Recession with the 1980s recession it is concluded that there is a

  17. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador

    Science.gov (United States)

    Romero-Sandoval, Natalia; Ortiz-Rico, Claudia; Sánchez-Pérez, Héctor Javier; Valdivieso, Daniel; Sandoval, Carlos; Pástor, Jacob; Martín, Miguel

    2017-01-01

    Background Rural communities in the Amazonian southern border of Ecuador have benefited from governmental social programmes over the past 9 years, which have addressed, among other things, diseases associated with poverty, such as soil transmitted helminth infections. The aim of this study was to explore the prevalence of geohelminth infection and several factors associated with it in these communities. Methods This was a cross sectional study in two indigenous communities of the Amazonian southern border of Ecuador. The data were analysed at both the household and individual levels. Results At the individual level, the prevalence of geohelminth infection reached 46.9% (95% CI 39.5% to 54.2%), with no differences in terms of gender, age, temporary migration movements or previous chemoprophylaxis. In 72.9% of households, one or more members were infected. Receiving subsidies and overcrowding were associated with the presence of helminths. Conclusions The prevalence of geohelminth infection was high. Our study suggests that it is necessary to conduct studies focusing on communities, and not simply on captive groups, such as schoolchildren, with the object of proposing more suitable and effective strategies to control this problem. PMID:28292765

  18. Distribution of trophic groups of soil nematodes (Nematoda) and soil food web condition in inverse gorges in the České Švýcarsko National Park (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Háněl, Ladislav

    2013-01-01

    Roč. 77, č. 2 (2013), s. 87-101 ISSN 1211-376X Grant - others:EEA Financial Mechanism(NO) CZ0048 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : soil zoology * ecology * Nematoda * trophic group * Bohemian Switzerland National Park Subject RIV: EH - Ecology, Behaviour

  19. Development and application of a selective pcr-denaturing gradient gel electrophoresis approach to detect a recently cultivated Bacillus group predominant in soil

    NARCIS (Netherlands)

    Tzeneva, V.A.; Li, Y.; Felske, A.; Vos, de W.M.; Akkermans, A.D.L.; Vaughan, E.E.; Smidt, H.

    2004-01-01

    The worldwide presence of a hitherto-nondescribed group of predominant soil microorganisms related to Bacillus benzoevorans was analyzed after development of two sets of selective primers targeting 16S rRNA genes in combination with denaturing gradient gel electrophoresis (DGGE). The high abundance

  20. Influence of multi-year Bacillus thuringiensis subsp. israelensis on the abundance of B. cereus group populations in Swedish riparian wetland soils

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Schneider, Salome; Tajrin, Tania

    -term Bti application affects the structure of indigenous Bcg communities as well as the overall abundance of Bti. Based on new primers, group-specific quantitative PCR assays for Bcg and Bti in environmental samples were developed. On six occasions during the vegetation season, soil samples were collected...

  1. A brief review of the work of the IUR soil-plant transfer working group, with suggestions for the way forward with ESNA

    International Nuclear Information System (INIS)

    Mitchell, N. G.

    1994-01-01

    The past activities of the International Union of Radioecologists' soil-plant transfer working group are described in terms of the initial objectives, the data that were accumulated in the period 1982 to 1992 and the subsequent use of these data. An option for future collaboration of a joint IUR/ESNA working group on the transfer of radionuclides to crop plants is then presented. This is presented as a basis for further discussion and comments on this proposal are welcomed. (author)

  2. The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales

    Science.gov (United States)

    Soil respiration (Rsoil) is a dominant, but variable, contributor to ecosystem CO2 efflux. Understanding how variations in major environmental drivers, like temperature and available moisture, might regulate Rsoil has become extremely relevant. Plant functional-type diversity makes such assessments ...

  3. Use of nuclear techniques in studying soil erosion and siltation. Proceedings of an advisory group meeting held in Vienna, 26-29 April 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    It is well known that soil erosion and lake siltation frequently create serious problems, especially in arid and semi-arid zones. Important progress has been made during recent years in the utilization of environmental radionuclides for erosion and sedimentation studies. This advisory group meeting (AGM) was held to discuss the present status of these nuclear techniques and to define the needs for future development. This publication compiles papers presented by the invited experts during the meeting and an updated bibliography on the use of {sup 137}Cs in soil erosion, siltation and other related environmental studies. Refs, figs and tabs.

  4. Use of nuclear techniques in studying soil erosion and siltation. Proceedings of an advisory group meeting held in Vienna, 26-29 April 1993

    International Nuclear Information System (INIS)

    1995-10-01

    It is well known that soil erosion and lake siltation frequently create serious problems, especially in arid and semi-arid zones. Important progress has been made during recent years in the utilization of environmental radionuclides for erosion and sedimentation studies. This advisory group meeting (AGM) was held to discuss the present status of these nuclear techniques and to define the needs for future development. This publication compiles papers presented by the invited experts during the meeting and an updated bibliography on the use of 137 Cs in soil erosion, siltation and other related environmental studies. Refs, figs and tabs

  5. Analysis of the suitability of various soil groups and types of climate for avocado growing in the state of Michoacán, Mexico

    Science.gov (United States)

    Dubrovina, I. A.; Bautista, F.

    2014-05-01

    Avocado is the largest cash crop exported by Mexico, and the state of Michoacán is its largest producer. For the further development of avocado plantations, the optimal edaphic and bioclimatic conditions for this crop should be determined. We performed a review of the literature to find out the requirements of the avocado for soil and climatic conditions and analyzed the maps, soil databases, and data from local weather stations in the studied region for developing scales of suitability of soils and climates for avocado growing. To verify these scales, a method of data mining was applied; a decision tree developed by this method confirmed the high accuracy and adequacy of the suggested grouping.

  6. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  7. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  8. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    Science.gov (United States)

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  9. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  10. Making sense of soil ecotoxicology

    Science.gov (United States)

    Beyer, W. Nelson; Linder, Greg L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    The toxicity of pesticides and environmental contaminants to soil organisms has been measured in studies on earthworms,1 soil arthropods,3-6 soil microorganisms,7 and other soil organisms.8 Toxicity data on earthworms produced in the pesticide registration procedure required by the OECD (Organization for economic cooperation and Development) will provide data on many additional chemicals.9 Deciding how to use the data generated is troublesome. In 1965, Edwards10 suggested that the effects of soil insecticides on soils may remain long after the pesticides have disappeared, and that it was clear that pesticides could drastically change the populations of soil organisms; Edwards noted, however, that the effects did not seem to be serious when compared with the benefits to crop production of using pesticides. Since 1965, many studies have been conducted on changes in soil ecosystems caused by environmental contaminants, but we still know little about what the toxicity to particular groups of soil organisms means to the functioning of the soil ecosystem. the problem was illustrated in discussions at the International Conference on Earthworm Ecotoxicology in Sheffield, England, in 1991. there was general agreement that earthworms ahould be taken into account when evaluating pesticides. However, it was unclear what level of reduction in earthworm populations would reduce soil quality or crop yeild. Because populations of earthworms naturally fluctuate greatly even in the absence of pesticides, and because some soils are fertile without any earthworms, it is difficult to equate their population decreases with damage to the soil ecosystem. Broadbent and Tomlin found that the insecticide carbofuran caused fluctuations in the populations of some microarthropods in a cornfield but, in comparing the effects to those of cultivation or adding compost, they concluded that it was unlikely that litter decomposition was significantly affected.3

  11. Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils-comparison of two methods

    International Nuclear Information System (INIS)

    Matus, Peter; Kubova, Jana

    2006-01-01

    Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction with chelating resins Iontosorb Oxin and Iontosorb Salicyl containing both ligand groups was used previously. Second, the 8-hydroxyquinoline, salicylic acid and ammonium salicylate agents with different concentrations by a single extraction protocol were applied in this paper. The flame atomic absorption spectrometry (FAAS) and optical emission spectrometry with inductively coupled plasma were used for aluminium quantification. The comparison of results from both methods show the possibility to supersede the first laborious method for the second simpler one in Al environmental risk assessment. The use of 1% 8-hydroxyquinoline in 2% acetic acid and 0.2% salicylic acid by a single extraction protocol without a need of sample filtration can supersede the SPE procedure in the Al pollution soil monitoring. Finally, the new scheme usable in a laboratory and moreover, directly in a field was proposed for Al fractionation in solid and liquid environmental samples. The labile Al species in soils and sediments are separated after their single leaching by 8-hydroxyquinoline or salicylic acid without a need of sample filtration. The labile Al species in soil solutions and natural waters are separated after their ultrafiltration followed by the SPE procedure with Iontosorb Oxin or Iontosorb Salicyl

  12. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil`s science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil`s fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  13. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil`s science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil`s physics and biology where nuclear methods of analysis were utilized

  14. The health risk levels of different age groups of residents living in the vicinity of municipal solid waste incinerator posed by PCDD/Fs in atmosphere and soil.

    Science.gov (United States)

    Li, Jiafu; Zhang, Ying; Sun, Tingting; Hao, Huawei; Wu, Hao; Wang, Lili; Chen, Yuxing; Xing, Limin; Niu, Zhiguang

    2018-08-01

    In our study, health risk levels of different age groups of residents living in the vicinity of a municipal solid waste incinerator (MSWI) posed by polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in atmosphere and soil were evaluated. The toxic equivalent concentrations of PCDD/Fs (TEQ) in surrounding atmosphere and soil of studied MSWI were 0.05-0.12 pg I-TEQ Nm -3 and 7.622-15.450 ng I-TEQ kg -1 , respectively. The PCDFs/PCDDs (F/D) values of PCDD/Fs in surrounding atmosphere of studied MSWI ranged from 0.40 to 5.90 with a mean of 1.80, suggesting that the PCDD/Fs mainly came from combustion sources and studied MSWI could be a key source of PCDD/Fs in surrounding atmosphere. The F/D ratios of PCDD/Fs in surrounding soil ranged from 0.18 to 1.81 with a mean of 0.90, suggesting combustion is not the mainly sources of PCDD/Fs in surrounding soil, and studied MSWI may have limited influence on PCDD/Fs in surrounding soil. O8CDD and 2,3,4,7,8-P5CDF could be the total PCDD/Fs and TEQ indicators in surrounding atmosphere of studied MSWI, respectively. The carcinogenic risk (CR) values of PCDD/Fs in surrounding atmosphere and soil for children, teens and adults were 1.24E-06, 9.06E-07 and 4.41E-06, respectively, suggesting that the potential cancer risk occurred but the risk was at acceptable levels for both children and adults (risk for teens was negligible (risk (non-CR) values of three age groups were lower than 1, indicating that no obvious non-carcinogenic effects occurred. Inhalation of air was the largest contributor of health risk (both CR and non-CR) for three age groups. In addition, a comparison of the health risk between PCDD/Fs and other emerging contaminants and traditional pollutants in soil and atmosphere was performed, which will help us have a good view of the health risk levels of PCDD/Fs in surrounding environment of MWSI. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Seismological analysis of group pile foundation for reactor

    International Nuclear Information System (INIS)

    Wang Demin.

    1984-01-01

    In the seismic analysis for reactor foundation of nuclear power plant, the local raise of base mat is of great significance. Base on the study of static and dynamic stability as well as soil-structure interaction of group piles on stratified soil, this paper presents a method of seismic analysis for group piles of reactor foundation at abroad, and a case history is enclosed. (Author)

  16. The use of straw to reduce the soil and water losses in agriculture and forest ecosystems in the Mediterranean Type-Ecosystem. The Soil Erosion and Degradation Research Group contribution

    Science.gov (United States)

    Cerda, Artemi; Burguet, Maria; Keesstra, Saskia; Borja, Manuel Esteban Lucas; Hedo, Javier; Brevik, Eric; Pereira, Paulo; Novara, Agata; Jordan, Antonio; Prosdocimi, Massimo; Taguas, Encarnacion

    2016-04-01

    Soil Erosion is a worldwide environmental issue (Keesstra et al., 2007; Dai et al., 2015; Erkossa et al., 2015; Ochoa-Cueva et al., 2015; Taguas et al., 2015). The high erosion rates are affecting mainly the non-developed countries due to the lack of vegetation cover, deforestation and the intense ploughing (Lieskovsky and Kenderessy, 2014; Biwas et al., 2015, Colazo and Buschiazzo, 2015; Ligonja and Shrestha, 2015); and the developing countries due to the herbicides abuse and heavy machinery (Cerdà et al., 2009; Novara et al., 2011). Non-sustainable erosion rates result in the loss of soil and also changes in the hydrological, erosional, biological, and geochemical cycles, which produce the lack of the services, goods and resources the soil offers to the humankind (Keesstra et al., 2012; Berendse et al., 2015; Decock et al., 2015; Brevik et al., 2015; Smith et al., 2015). This is why there is a need to reduce the soil losses, and to achieve a sustainable situation with lower and renewable soil erosion rates and to improve the infiltration rates (Cerdà et al., 2015; Nanko et al., 2015; Mwango et al., 2016). Vegetation cover is the most efficient strategy to control soil and water losses (Cerdà, 1999; Keesstra, 2007; Zhao et al., 2014), however there is the need to use other covers once the vegetation is not recovered such as after the forest fires or when the crops do not allow to have weeds and the soil should be bare. This is sometimes a cultural and aesthetic need (farmers from the Cànyoles river watershed personal comm). Under the above-mentioned circumstances, a straw cover can reduce the soil losses and increase infiltration. This is the main research topic that is being carried out by the Soil Erosion and Degradation Research Group from the University of Valencia during more than one decade: to find solutions to the non-sustainable soil erosion rates under forest and agriculture land under Mediterranean climatic conditions. The research was developed

  17. Report of the Association of Coloproctology of Great Britain and Ireland/British Society of Gastroenterology Colorectal Polyp Working Group: the development of a complex colorectal polyp minimum dataset.

    Science.gov (United States)

    Chattree, A; Barbour, J A; Thomas-Gibson, S; Bhandari, P; Saunders, B P; Veitch, A M; Anderson, J; Rembacken, B J; Loughrey, M B; Pullan, R; Garrett, W V; Lewis, G; Dolwani, S; Rutter, M D

    2017-01-01

    The management of large non-pedunculated colorectal polyps (LNPCPs) is complex, with widespread variation in management and outcome, even amongst experienced clinicians. Variations in the assessment and decision-making processes are likely to be a major factor in this variability. The creation of a standardized minimum dataset to aid decision-making may therefore result in improved clinical management. An official working group of 13 multidisciplinary specialists was appointed by the Association of Coloproctology of Great Britain and Ireland (ACPGBI) and the British Society of Gastroenterology (BSG) to develop a minimum dataset on LNPCPs. The literature review used to structure the ACPGBI/BSG guidelines for the management of LNPCPs was used by a steering subcommittee to identify various parameters pertaining to the decision-making processes in the assessment and management of LNPCPs. A modified Delphi consensus process was then used for voting on proposed parameters over multiple voting rounds with at least 80% agreement defined as consensus. The minimum dataset was used in a pilot process to ensure rigidity and usability. A 23-parameter minimum dataset with parameters relating to patient and lesion factors, including six parameters relating to image retrieval, was formulated over four rounds of voting with two pilot processes to test rigidity and usability. This paper describes the development of the first reported evidence-based and expert consensus minimum dataset for the management of LNPCPs. It is anticipated that this dataset will allow comprehensive and standardized lesion assessment to improve decision-making in the assessment and management of LNPCPs. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  18. Enumeration and characterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil

    OpenAIRE

    Oliveira, A.; Pampulha, M.E.; Neto, M.M.; Almeida, A.C.

    2009-01-01

    The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the great sensitivity of this group of soil bacteria to metals. However, quantitat...

  19. Aggregating available soil water holding capacity data for crop yield models

    Science.gov (United States)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  20. Soil quality, theory and applications. a critical analysis

    Directory of Open Access Journals (Sweden)

    Elio Coppola

    2009-04-01

    Full Text Available In its common meaning, the concept of “soil quality” is based on evaluating criteria that are subjective and “anthropocentric” rather than objective and “pedocentric”. Several “desirable” or “undesirable” soil conditions and characteristics are considered from the human point of view, disregarding the pedogenetic features. Such an approach perilously leads to support the idea of a “pedogenetic discrimination”, which a priori privileges “superior” vs. “inferior” soils, thus discrediting a large part of soil Subgroups, Great Groups, Suborders, and even whole taxonomic Orders. So, a number of soil functions, such as genic reserve guarantee of space-temporal bio-diversity, environmental good cradle of civilization, foundation of the landscape, as well as upholder of man heritage, are neglected at all. If “quality” only concerned rich and fertile soils, there would be the great and looming risk to definitively take “poor” soils away from agriculture, landscape and global pedological reserve. It is necessary to reconsider the concept of “soil quality” as “soil functionality”, that is to say “aptitude of soil to express its own potential”, bringing out the essential environmental, socio-economic and cultural soil roles on the basis of the inherent conditions and characteristics arising from its peculiar pedogenetic history.

  1. Proceedings of the 25. Brazilian congress on soil science: The soil in the great morpho climatic dominion in Brazil and the sustained development. v. 3; Anais do 25 congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation, fertilizers, pollution and environmental quality were discussed. In the third volume of the abstracts are presented papers related to physics and chemical characteristics of building soils in coal mines areas

  2. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.

  3. Management of the post accidental situation applied to Nogent-Sur-Seine nuclear power plant environment. First results of the decontamination of soil and food chain working group

    International Nuclear Information System (INIS)

    Allain, E.; Mignon, F.; Cessac, B.; Gallay, F.; Metivier, J.M.; Reales, N.; Gofette, R.; Mahot, M.

    2004-01-01

    From the beginning of 2002, Troyes prefecture has initiated a reflection about the management of a nuclear crisis caused by an accident at the Nogent-sur-Seine nuclear power plant. Five workshops have been created, dealing with the following themes: 'Administrative and economic organization', 'Health risk assessment and the epidemiology', 'Monitoring of environment', 'Movement in the contaminated area' and 'Decontamination of soil and Food chain'. The first results of the 'Decontamination of soil and Food chain' working group, which involves the District Agricultural and Forestry Department, the Farmer's Association, the Institute for Radiological Protection and Nuclear Safety and the Veterinary Division are presented in the poster. The scenario that had been developed for the accident considers the release of 3 radionuclides ( 131 I, 134 Cs and 137 Cs) in the environment. The scale of the crisis didn't require the evacuation and the sheltering of the population during the emergency phase. The consequences on the local agricultural products (cereal, beetroot, vine, milk, cow meat...) have been assessed up to 50 km and different strategies of agricultural countermeasures have been studied regarding to the local constraints (soil types, surfaces and quantities concerned) and to the consequences of their implementation (waste types and quantities, costs). Then, decision-making diagrams summed up the technical results and allowed to deepen the global thought. (author)

  4. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  5. 28th annual meeting of the European Society for New Methods in Agricultural Research and International Union of Radioecology (IUR) Working Group Soil-to-Plant Transfer annual meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Forty-three contributions presented at the Meeting were input to INIS; these fall largely in the working groups Radiation Technology, Advanced Methods in Animal Sciences, and Soil-Plant Relationships. (P.A.)

  6. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  7. The Next Great Generation?

    Science.gov (United States)

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  8. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  9. Great Indoors Awards 2007

    Index Scriptorium Estoniae

    2007-01-01

    Hollandis Maastrichtis jagati 17. XI esimest korda rahvusvahelist auhinda The Great Indoors Award. Aasta sisekujundusfirmaks valiti Masamichi Katayama asutatud Wonderwall. Auhinna said veel Zaha Hadid, Heatherwick Studio, Ryui Nakamura Architects ja Item Idem

  10. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  11. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  12. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  13. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  14. Comparing the Ability of Conventional and Digital Soil Maps to Explain Soil Variability using Diversity Indices

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-06-01

    Chaharmahal-Va- Bakhtiari province. Materials and Methods: The soils in the study area have been formed on Quaternary shale and foliated clayey limestone deposits. Irrigated crops such as wheat, barley and alfalfa are the main land uses in the area. According to the semi-detailed soil survey, 120 pedons with approximate distance of 750 m were excavated and described according to the “field book for describing and sampling soils”. Soil samples were taken from different genetic horizons and soil physicochemical properties were determined. Based on the pedons description and soil analytical data, pedons were classified according to the Soil Taxonomy (ST up to subgroup level. Using aerial photo interpretation, geology map, google earth image and field observations primary soil map was created. With considering the taxonomic level, the representative pedons were determined and soil map was prepared. Multinomial logistic regression was used to predict soil classes at great group and subgroup levels. The map units that have the highest frequency were selected as indicator to calculate diversity indices in the conventional soil map at each taxonomic level. The selected map units were overlay to digital soil map and further diversity indices were calculated. Diversity indices including the Shannon’s diversity, evenness and richness index. In order to know whether the means of Shannon’s diversity for two approaches are significantly different, means comparison was done. Results and Discussion: The results confirmed that the Shannon's diversity index was higher in the digital soil map than the conventional soil map for most soil map units. At great group and subgroup levels, a significant difference was observed for the Shannon's diversity index at 0.05 and 0.001 probability levels, respectively. Comparing the conventional and the digital soil maps showed the numbers of soil map units with significant difference regarding the Shannon's diversity index decreased from great group

  15. [Soil anti-erodibility of abandoned lands during different succession stages of plant community in hilly-gullied region of the Loess Plateau: Take Fangta small watershed as an example].

    Science.gov (United States)

    Yan, Fang-chen; Jiao, Ju-ying; Cao, Bin-ting; Yu, Wei-jie; Wei, Yan-hong; Kou, Meng; Hu, Shu

    2016-01-01

    Field survey and laboratory experiment were conducted to study the soil anti-erodibility of abandoned croplands during different vegetation succession stages in hilly-gullied region of the Loess Plateau, based on the analysis of soil particle composition, size distribution and group characteristics, soil aggregate fractal dimensions and stability. The results showed that in the earlier stages of succession from annual to perennial herbs in abandoned croplands, soil size distribution changed a little bit, the fractal dimension of soil particle increased, soil structure improved, fractal dimension and damage percent of soil aggregate structure decreased, soil stability increased, thus soil anti-erodibility increased. Therefore, natural restoration of vegetation is of great significance to improve the soil structure, increase soil erosion resistance, reduce soil erosion and promote sustainable development of regional ecological environment.

  16. Profile characterization of soil developed on pelitic rocks from the Bambui Group through chemical analysis, X-ray diffraction and Moessbaur spectroscopy

    International Nuclear Information System (INIS)

    Almeida Barbosa, L.C. de.

    1986-07-01

    Five sample from a Red-yellow latosol developed on pelitic rocks from the Bambui Group, located close to Paraopeba, state of Minas Gerais, Brazil, were collected and studied. The sample with color patterns varying from yellowish (sample SL11; 0.3m depth), in superficial horizons, to reddish (SL12; 1.0m) in intermediate profile positions, and various shades (SL14A and SL14V; 3.0m), in deeper horizons, were studied through Moessbauer spectroscopy in order to characterize, in detail, the ferruginous species present. The total iron content within the soil is practically constant in relation to the depth. Yet, the hematite/goethite content ratio varies within the expected sequence according to the color. A linear relationship was observed between the reddish intensity and the hematite content of the argillaceous fraction. The hematite contents are proportionally less in the SL14A sample, apparently due to deficient drainage in the past, and in the SL11 sample, due to organic matter effects. This latter sample is also characterized by at least two goethite populations: one with 20% mol replacing aluminum and another with certainly more than 30% mol. In to explan this difference, three hypothesis were elaborated. The most suitable one suggests that the goethite is destroyed and formed again through the soil column, in response to pedo environmental changes closer to the surface. (D.J.M.) [pt

  17. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  18. The GREAT3 challenge

    International Nuclear Information System (INIS)

    Miyatake, H; Mandelbaum, R; Rowe, B

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is an image analysis competition that aims to test algorithms to measure weak gravitational lensing from astronomical images. The challenge started in October 2013 and ends 30 April 2014. The challenge focuses on testing the impact on weak lensing measurements of realistically complex galaxy morphologies, realistic point spread function, and combination of multiple different exposures. It includes simulated ground- and space-based data. The details of the challenge are described in [1], and the challenge website and its leader board can be found at http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/, respectively

  19. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  20. Nothing Great Is Easy

    OpenAIRE

    Stansbie, Lisa

    2014-01-01

    A solo exhibition of 13 pieces of art work.\\ud \\ud Nothing Great is Easy is an exhibition of sculpture, film, drawing and photography that proposes reconstructed narratives using the sport of swimming and in particular the collective interaction and identity of the channel swimmer. The work utilises the processes, rituals/rules, language and the apparatus of sport.\\ud \\ud “Nothing great is easy” are the words on the memorial to Captain Matthew Webb who was the first man to swim the English ch...

  1. Geoarchaeology of water management at Great Zimbabwe

    DEFF Research Database (Denmark)

    Sulas, Federica; Pikirayi, Innocent; Sagiya, Munyaradzi Elton

    In Africa, research on water management in urban contexts has often focussed rainfall, and the occurrence floods and droughts, whereas small-scale catchment systems and soil moisture regimes have received far less attention. This paper sets out to re-address the issue by examining the occurrence......, distribution and use of multiple water resources at the ancient urban landscape of Great Zimbabwe. Here, the rise and demise of the urban site have been linked to changing rainfall in the 1st mill. AD. Accordingly, rainfall shortages and consequent droughts eventually leading to the decline and abandonment...... of Great Zimbabwe at around 1550 AD. However, new research findings suggest a different scenario. Combining geoarchaeolological investigations, soil micromorphology and geochemistry with the study of historical sources and ethnographic records, new datasets indicate prolonged availability and diversified...

  2. The Great Mathematician Project

    Science.gov (United States)

    Goldberg, Sabrina R.

    2013-01-01

    The Great Mathematician Project (GMP) introduces both mathematically sophisticated and struggling students to the history of mathematics. The rationale for the GMP is twofold: first, mathematics is a uniquely people-centered discipline that is used to make sense of the world; and second, students often express curiosity about the history of…

  3. What great managers do.

    Science.gov (United States)

    Buckingham, Marcus

    2005-03-01

    Much has been written about the qualities that make a great manager, but most of the literature overlooks a fundamental question: What does a great manager actually do? While there are countless management styles, one thing underpins the behavior of all great managers. Above all, an exceptional manager comes to know and value the particular quirks and abilities of her employees. She figures out how to capitalize on her staffers' strengths and tweaks her environment to meet her larger goals. Such a specialized approach may seem like a lot of work. But in fact, capitalizing on each person's uniqueness can save time. Rather than encourage employees to conform to strict job descriptions that may include tasks they don't enjoy and aren't good at, a manager who develops positions for his staff members based on their unique abilities will be rewarded with behaviors that are far more efficient and effective than they would be otherwise. This focus on individuals also makes employees more accountable. Because staffers are evaluated on their particular strengths and weaknesses, they are challenged to take responsibility for their abilities and to hone them. Capitalizing on a person's uniqueness also builds a stronger sense of team. By taking the time to understand what makes each employee tick, a great manager shows that he sees his people for who they are. This personal investment not only motivates individuals but also galvanizes the entire team. Finally, this approach shakes up existing hierarchies, which leads to more creative thinking. To take great managing from theory to practice, the author says, you must know three things about a person: her strengths, the triggers that activate those strengths, and how she learns. By asking the right questions, squeezing the right triggers, and becoming aware of your employees' learning styles, you will discover what motivates each person to excel.

  4. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian Grassland

    Science.gov (United States)

    Barger, N.N.; Ojima, D.S.; Belnap, J.; Shiping, W.; Yanfen, W.; Chen, Z.

    2004-01-01

    This study reports on changes in plant functional group composition, litter quality, and soil C and N mineralization dynamics from a 9-year sheep grazing study in Inner Mongolia. Addressed are these questions: 1) How does increasing grazing intensity affect plant community composition? 2) How does increasing grazing intensity alter soil C and N mineralization dynamics? 3) Do changes in soil C and N mineralization dynamics relate to changes in plant community composition via inputs of the quality or quantity of litter? Grazing plots were set up near the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) with 5 grazing intensities: 1.3, 2.7, 4.0, 5.3, and 6.7 sheep ha -1??yr-1. Plant cover was lower with increasing grazing intensity, which was primarily due to a dramatic decline in grasses, Carex duriuscula, and Artemisia frigida. Changes in litter mass and percentage organic C resulted in lower total C in the litter layer at 4.0 and 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Total litter N was lower at 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Litter C:N ratios, an index of litter quality, were significantly lower at 4.0 sheep ha-1??yr -1 relative to 1.3 and 5.3 sheep ha-1??yr -1. Cumulative C mineralized after 16 days decreased with increasing grazing intensity. In contrast, net N mineralization (NH4+ + NO3-) after a 12-day incubation increased with increasing grazing intensity. Changes in C and N mineralization resulted in a narrowing of CO2-C:net Nminratios with increasing grazing intensity. Grazing explained 31% of the variability in the ratio of CO 2-C:net Nmin. The ratio of CO2-C:net N min was positively correlated with litter mass. Furthermore, there was a positive correlation between litter mass and A. frigida cover. Results suggest that as grazing intensity increases, microbes become more C limited resulting in decreased microbial growth and demand for N.

  5. 9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    9 April 2013 - Minister for Universities and Science United Kingdom of Great Britain and Northern Ireland D. Willetts in the ATLAS experimental cavern with ATLAS Collaboration Spokesperson D. Charlton and in the LHC tunnel at Point 1 with Beams Department Head P. Collier. Director for Accelerators and Technology S. Myers, Editor at the Communication Group K. Kahle and Beams Department Engineer R. Veness present.

  6. The international INTRAVAL project. Phase 2, working group 1 report. Flow and tracer experiments in unsaturated tuff and soil. Las Cruces trench and Apache Leap tuff studies

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Guzman-Guzman, A.; Hills, R.; Rasmussen, T.C.

    1997-01-01

    The Working Group 1 final report summaries two test case studies, the Las Cruces Trench (LCT), and Apache Leap Tuff Site (ALTS) experiments. The objectives of these two field studies were to evaluate models for water flow and contaminant transport in unsaturated, heterogeneous soils and fractured tuff. The LCT experiments were specifically designed to test various deterministic and stochastic models of water flow and solute transport in heterogeneous, unsaturated soils. Experimental data from the first tow LCT experiments, and detailed field characterisation studies provided information for developing and calibrating the models. Experimental results from the third experiment were held confidential from the modellers, and were used for model comparison. Comparative analyses included: point comparisons of water content; predicted mean behavior for water flow; point comparisons of solute concentrations; and predicted mean behavior for tritium transport. These analyses indicated that no model, whether uniform or heterogeneous, proved superior. Since the INTRAVAL study, however, a new method has been developed for conditioning the hydraulic properties used for flow and transport modelling based on the initial field-measured water content distributions and a set of scale-mean hydraulic parameters. Very good matches between the observed and simulated flow and transport behavior were obtained using the conditioning procedure, without model calibration. The ALTS experiments were designed to evaluate characterisation methods and their associated conceptual models for coupled matrix-fracture continua over a range of scales (i.e., 2.5 centimeter rock samples; 10 centimeter cores; 1 meter block; and 30 meter boreholes). Within these spatial scales, laboratory and field tests were conducted for estimating pneumatic, thermal, hydraulic, and transport property values for different conceptual models. The analyses included testing of current conceptual, mathematical and physical

  7. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  8. The great intimidators.

    Science.gov (United States)

    Kramer, Roderick M

    2006-02-01

    After Disney's Michael Eisner, Miramax's Harvey Weinstein, and Hewlett-Packard's Carly Fiorina fell from their heights of power, the business media quickly proclaimed thatthe reign of abrasive, intimidating leaders was over. However, it's premature to proclaim their extinction. Many great intimidators have done fine for a long time and continue to thrive. Their modus operandi runs counter to a lot of preconceptions about what it takes to be a good leader. They're rough, loud, and in your face. Their tactics include invading others' personal space, staging tantrums, keeping people guessing, and possessing an indisputable command of facts. But make no mistake--great intimidators are not your typical bullies. They're driven by vision, not by sheer ego or malice. Beneath their tough exteriors and sharp edges are some genuine, deep insights into human motivation and organizational behavior. Indeed, these leaders possess political intelligence, which can make the difference between paralysis and successful--if sometimes wrenching--organizational change. Like socially intelligent leaders, politically intelligent leaders are adept at sizing up others, but they notice different things. Those with social intelligence assess people's strengths and figure out how to leverage them; those with political intelligence exploit people's weaknesses and insecurities. Despite all the obvious drawbacks of working under them, great intimidators often attract the best and brightest. And their appeal goes beyond their ability to inspire high performance. Many accomplished professionals who gravitate toward these leaders want to cultivate a little "inner intimidator" of their own. In the author's research, quite a few individuals reported having positive relationships with intimidating leaders. In fact, some described these relationships as profoundly educational and even transformational. So before we throw out all the great intimidators, the author argues, we should stop to consider what

  9. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  10. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  11. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  12. Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil.

    Science.gov (United States)

    Frasson, David; Opoku, Michael; Picozzi, Tara; Torossi, Tanja; Balada, Stefanie; Smits, Theo H M; Hilber, Urs

    2017-08-01

    Within the frame of a biotechnological screening, we isolated two Pseudomonas strains from forest soil. 16S rRNA gene sequence analysis indicated that strain CCOS 864T shared 99.8 % similarity with Pseudomonas donghuensis HYST, while strain CCOS 865T shared 99.0 % similarity with Pseudomonas putida DSM 291T and lower similarity with other P. putida group type strains. Based on multilocus sequence analysis, the two strains were genotypically distinct from each other, each forming a separate clade. Strains CCOS 864T and CCOS 865T were Gram-stain-negative, motile and rod-shaped, growing at a temperature range of 4-37 °C. Strain CCOS 864T could be phenotypically distinguished from P. putida group species by the combination of gelatinase-positive reaction and positive growth on N-acetyl-d-glucosamine, p-hydroxyphenylacetic acid and inosine but lack of fluorescein production on King's B medium, while strain CCOS 865T could be distinguished from P. putida group species by the combination of positive growth with saccharic acid and negative growth with p-hydroxyphenylacetic acid and l-pyroglutamic acid. The major polar lipid for both strains was phosphatidylethanolamine; the major quinone was ubiquinone Q-9. DNA-DNA hybridization and average nucleotide identities confirmed the novel species status for the two strains. The DNA G+C contents of CCOS 864T and CCOS 865T were 62.1 and 63.8 mol%, respectively. The phenotypic, phylogenetic and DNA-DNA relatedness data support the suggestion that CCOS 864T and CCOS 865T represent two novel Pseudomonas species. The names Pseudomonas wadenswilerensis sp. nov. (type strain CCOS 864T=LMG 29327T) and Pseudomonas reidholzensis sp. nov. (type strain CCOS 865T=LMG 29328T) are proposed.

  13. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  14. Idiopathic great saphenous phlebosclerosis.

    Directory of Open Access Journals (Sweden)

    Ahmadreza Jodati

    2013-06-01

    Full Text Available Arterial sclerosis has been extensively described but reports on venous sclerosis are very sparse. Phlebosclerosis refers to the thickening and hardening of the venous wall. Despite its morphological similarities with arteriosclerosis and potential morbid consequences, phlebosclerosis has gained only little attention. We report a 72 year old male with paralysis and atrophy of the right leg due to childhood poliomyelitis who was referred for coronary artery bypass surgery. The great saphenous vein, harvested from the left leg, showed a hardened cord-like obliterated vein. Surprisingly, harvested veins from the atrophic limb were normal and successfully used for grafting.

  15. Great software debates

    CERN Document Server

    Davis, A

    2004-01-01

    The industry’s most outspoken and insightful critic explains how the software industry REALLY works. In Great Software Debates, Al Davis, shares what he has learned about the difference between the theory and the realities of business and encourages you to question and think about software engineering in ways that will help you succeed where others fail. In short, provocative essays, Davis fearlessly reveals the truth about process improvement, productivity, software quality, metrics, agile development, requirements documentation, modeling, software marketing and sales, empiricism, start-up financing, software research, requirements triage, software estimation, and entrepreneurship.

  16. Making Psychotherapy Great Again?

    Science.gov (United States)

    Plakun, Eric M

    2017-05-01

    Psychotherapy never stopped being as "great" as other treatments. This column explores the evidence base for both psychotherapy and medications, using depression as a specific example. The limitations are comparable for psychotherapy and medication, with much of the evidence based on small degrees of "statistically significant" rather than "clinically meaningful" change. Our field's biomedical emphasis leads to a false assumption that most patients present with single disorders, when comorbidity is the rule rather than the exception. This false assumption contributes to limitations in the evidence base and in our ability to treat patients optimally.

  17. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Directory of Open Access Journals (Sweden)

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  18. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Science.gov (United States)

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  19. Soil ecological investigations into the effect and distribution of organic groups of compounds (PAHs, PCBs) in ecosystems typical of agglomerations.. Joint final report; Bodenoekologische Untersuchungen zur Wirkung und Verteilung von organischen Stoffgruppen (PAK, PCB) in ballungsraumtypischen Oekosystemen. Gemeinsamer Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Frost, M.; Klementz, D.; Reese-Staehler, G.; Luedersdorf, M. [Biologische Bundesanstalt fuer Land- und Forstwirtschaft, Berlin (Germany); Achazi, R.; Kratz, W.; Heck, M.; Beylich, A.; Neumeister, H.; Hesse, M.; Quader, S. [Freie Univ. Berlin (Germany); Metz, R.; Dorn, J. [Humboldt-Universitaet, Berlin (Germany); Schuphan, I.; Maier-Gaipl, S.; Herlitz, E. [Technische Hochschule Aachen (Germany); Wilke, B.M.; Koch, C.; Marschner, B.; Brose, A.; Doering, U.; Peters, M.; Pieper, S.; Baschien, C. [Technische Univ. Berlin (Germany)

    1998-11-01

    In this interdisciplinary complex of matched field and laboratory experiments, the effects of defined pollutant loads were analysed by means of suitable representatives of different groups of soil organisms (soil fauna and soil micro-organisms) and by means of soil processes depending on them (for instance, enzyme activities, degradation of litter, nitrification, feeding damage). Similarly, the influence of selected organic pollutants, part of them in combination with heavy metals, on the soil-plant system was studied in selected herbaceous and ligneous types of plants in different development stages. Further, the possibility of developing a test battery was investigated which would indicate the toxicity of soil by means of watery and organic extracts. (orig.) [Deutsch] In diesem interdisziplinaeren Verbund von abgestimmten Freiland- und Laborversuchen wurde anhand repraesentativer Vertreter verschiedener Bodenorganismengruppen (Bodenfauna und Bodenmikroorganismen) und von durch sie bestimmten Bodenprozessen (z.B. Enzymaktivitaeten, Streuabbau, Nitrifikation, Frass) die Wirkungen von definierten Schadstoffbelastungen analysiert. In der gleichen Weise wurde der Einfluss von ausgewaehlten organischen Schadstoffen, z.T. in Kombination mit Schwermetallen auf das System Boden-Pflanze an ausgewaehlten krautigen und holzigen Pflanzenarten in unterschiedlichen Entwicklungsstadien untersucht. Darueberhinaus wurde ueberprueft ob sich eine Testbatterie entwickeln laesst, die die Toxizitaet von Boeden aufgrund von waessrigen und organischen Extrakten anzeigt. (orig.)

  20. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Almat...

  1. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Alma...

  2. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with LMW RNA group II Sinorhizobium meliloti of Medicago, Melilotus and Trigonella from soils of mainland Spain

    Science.gov (United States)

    Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...

  3. 3rd February 2011-Science Museum Patrons-Kingdom of Great Britain and Northern Ireland-visiting CMS cavern and LHC Tunnel with A. De Roeck,CMS Collaboration Deputy Spokesperson and M. Lamont,Beams Department, Operation Group Leader

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    The delegation: Mr Ian Blatchford,Director of the Science Museum and NMSI Mrs Susan Fisher,Director of Development, National Museum of Science and Industry (NMSI) Dr Douglas Gurr,Chairman of the Board of Trustees, NMSI Mr Martin Smith,Previous NMSI trustee Mrs Elise Smith,Spouse Mr Michael Wilson,NMSI trustee Mrs Jane Wilson,Spouse Mr Gregg Wilson,Son Dr Ann Coxon,UK Friends of the Science Museum Trustee Mr Nicholas Lewis,Contact of Martin Smith accompanied by P. Wells,Physics Department, ATLAS Inner Detector Group Leader and A. Koek,Communication group (International Arts Development, CERN Cultural Policy and Strategy with the Arts, The Collide Programme)

  4. Studying The Great Russian Revolution

    Directory of Open Access Journals (Sweden)

    A. V. Torkunov

    2017-01-01

    Full Text Available The article revises an established view of Russian Revolution as two separate events - February Revolution and October Revolution. The author supports the concept of the «Great Russian Revolution», which unites these two events in a single process of revolutionary development. The author draws attention to the following advantages of the concept under consideration. First, it conceptualizes the revolution as a process contingent of a local and global historical context. In this sense, the revolution is presented as the transition of society to the modern stage of development, meaning the transition to modernity. Second, revolutionary events in Russia are considered from the point of view of the evolution of the spatial and socioeconomic distribution and rearrangement of key social groups: peasantry, elites, national and ethnic minorities. Third, it takes into account the personal factor in the revolutionary events, the influence of individual personalities on escalation or the reduction of socio-political tensions. Fourth, it draws attention to the fact that revolutions imply the use of various forms of political violence. Each revolution is characterized by a unique correlation of forms and intensity of political violence. Finally, it gives a normative assessment of the Revolution, encouraging a national discussion on the results and consequences of this great event.

  5. The Great Divide

    Science.gov (United States)

    Robelen, Erik W.

    2005-01-01

    Steps away from where a concrete wall once divided this city east from west, a group of Muslim 1st graders at E.O. Plauen Elementary School sing a phrase that is unfamiliar to most German ears. Though the Roman Catholic and Protestant churches have long provided voluntary religion classes in Berlin schools, only recently have the courts allowed an…

  6. Review: The Great Gatsby

    Directory of Open Access Journals (Sweden)

    Antonia de Jesus Sales

    2016-08-01

    Full Text Available A presente resenha busca discutir a tradução de The Great Gatsby para o contexto brasileiro. Diversas traduções foram feitas, em diversas épocas e com repercussão positiva no contexto brasileiro. Para o presente estudo, foi observada a tradução de Vanessa Bárbara, de 2011. Nesse sentido, o aspecto biográficos do autor e a forma como se apresentam os personagens na obra são fatores de cotejamento na obra original e na tradução brasileira. Francis Scott Key Fitzgerald (1896 – 1940 é famoso por ter em suas obras traços biográficos, algo que certamente influencia o leitor que adentra a sua obra. Quanto à recepção de O Grande Gatsby no contexto brasileiro, há que se considerar que O Grande Gatsby teve diversas traduções no Brasil. Depois dessa tradução de Vanessa Bárbara, em 2011, outras três vieram em 2013, juntamente com o filme. Há que considerar os aspectos comerciais embutidos nessas traduções e que muito corroboram para o resultado final. Prova disso são as capas, que são sempre diferenciadas em cada edição lançada. O tradutor nem sempre pode opinar sobre questões como estas. A tradução, a meu ver, é uma obra de qualidade, visto que a tradutora buscou ser fiel, sem dificultar a interpretação da obra para o leitor.

  7. Review: The Great Gatsby

    Directory of Open Access Journals (Sweden)

    Antonia de Jesus Sales

    2016-05-01

    Full Text Available A presente resenha busca discutir a tradução de The Great Gatsby para o contexto brasileiro. Diversas traduções foram feitas, em diversas épocas e com repercussão positiva no contexto brasileiro. Para o presente estudo, foi observada a tradução de Vanessa Bárbara, de 2011. Nesse sentido, o aspecto biográficos do autor e a forma como se apresentam os personagens na obra são fatores de cotejamento na obra original e na tradução brasileira. Francis Scott Key Fitzgerald (1896 – 1940 é famoso por ter em suas obras traços biográficos, algo que certamente influencia o leitor que adentra a sua obra. Quanto à recepção de O Grande Gatsby no contexto brasileiro, há que se considerar que O Grande Gatsby teve diversas traduções no Brasil. Depois dessa tradução de Vanessa Bárbara, em 2011, outras três vieram em 2013, juntamente com o filme. Há que considerar os aspectos comerciais embutidos nessas traduções e que muito corroboram para o resultado final. Prova disso são as capas, que são sempre diferenciadas em cada edição lançada. O tradutor nem sempre pode opinar sobre questões como estas. A tradução, a meu ver, é uma obra de qualidade, visto que a tradutora buscou ser fiel, sem dificultar a interpretação da obra para o leitor.

  8. EVALUACIÓN DE LA AUTOESTIMA EN UN GRUPO DE ESCOLARES DE LA GRAN CARACAS/ EVALUATION OF THE SELF-ESTEEM IN A GROUP OF STUDENTS OF THE GREAT CARACAS

    Directory of Open Access Journals (Sweden)

    Miren De Tejada Lagonell*

    2010-06-01

    Full Text Available RESUMENEsta investigación se considera importante la autoestima para el desarrollo socio afectivo de los escolares; por ello seconsidera su evaluación. Tuvo como objetivo analizar las respuestas emitidas por niños de Educación Básica, ante unaprueba de autoestima; indagar la composición del puntaje; determinar desde cual dimensión de la prueba, se aporta más ala composición del mismo; establecer comparaciones posibles según niveles de escolaridad y género.Los resultadosindican que el puntaje global de autoestima está conformado a expensas de los ítemes referidos al componente socioafectivo;asimismo se encontraron diferencias entre los grupos, con correlaciones significativas entre edad y autoestima. Se concluyeque la autoestima de este grupo de escolares está basada en la dimensión socio afectiva; se apoya la idea de la existencia deun cambio evolutivo en la variable, lo cual obedece a aspectos de tipo madurativo y experiencial. Se recomienda conformarun clima emocional favorable en la escuela para facilitar el desarrollo socio afectivo de los escolares.ABSTRACTThis investigation considers the self-esteem for the affective development of the students important; for that reason itsevaluation is considered. It had like objective to analyze the answers emitted by children of Basic Education, before a testof self-esteem; to investigate the composition of the punctuation; to determine from what dimension of the test, more to thecomposition of the same is contributed; to establish possible comparisons according to schooling levels and sort.The results indicate that the global punctuation of self-esteem is conformed at the expense of items referred the affectivecomponent; also were differences between the groups, with significant correlations between age and self-esteem. Oneconcludes that the self-esteem of this group of students is based on the affective dimension; the idea of the existence of anevolutionary change in the variable leans

  9. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  10. Spatial Distribution of Soil Fauna In Long Term No Tillage

    Science.gov (United States)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  11. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway

  12. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  13. 76 FR 32857 - Great Outdoors Month, 2011

    Science.gov (United States)

    2011-06-07

    ... protecting an iconic vast public land, or by creating a community garden or an urban park. Last year, I was... leaders, students, and community groups led to a report unveiled in February, America's Great Outdoors: A Promise to Future Generations, which lays the foundation for smarter, more community-driven action to...

  14. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.

    2004-01-01

    Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period. (author)

  15. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period

  16. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Science.gov (United States)

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  17. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  18. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Science.gov (United States)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  19. The heart and great vessels

    International Nuclear Information System (INIS)

    Condon, V.

    1985-01-01

    Heart disease is the fifth most common cause of death in infants and children (preceded by anoxic and hypoxic conditions, gross congenital malformations, accidental death, and immaturity). Of all the cardiac lesions, congenital heart disease (CHD) makes up the gross majority, accounting for approximately 90% of all cardiac deaths. Approximately two-thirds of all infants who die from CHD do so within the first year of life; of these, approximately one-third die within the first month. The most common cause of death in the first month is hypoplastic left heart syndrome and lesions associated with it, i.e., aortic atresia/critical aortic stenosis and mitral atresia/critical mitral stenosis. Severe coarctation of the aorta (coarctation syndrome) and transposition of the great arteries are the other most important causes of death in this age group. CHD occurs as a familial condition in approximately 1-4% of cases; ventricular septal defects, patent ductus arteriosus, and atrial septal defect are particularly common forms. Parental age plays an important role, with a significantly increased risk of CHD in infants of mothers over 39 years of age. Patent ductus arteriosus is more prevalent in firstborn children, particularly those born prematurely to young mothers. Environmental factors, such as exposure to teratogenic agents, have also been shown to increase the incidence of CHD. Children with various syndromes also have increased incidence of CHD. Down syndrome is a classic example, as are other trisomies

  20. Chernobyl fallout in Great Britain

    International Nuclear Information System (INIS)

    Horrill, A.D.; Lowe, V.P.W.; Howson, G.

    1988-09-01

    Chernobyl deposition in the UK was sampled in May and October 1986 and in June of 1987. The sampling concentrated on grassy vegetation but in October 1986 other vegetation, soils and wildlife were included. Deposition patterns have been established and a greater degree of retention and recycling indicated for the organic soils of upland Britain. For wild animals concentration factors varied not only between species but with sex and age. Highest tissue concentrations were recorded in species feeding on heather (Blue hares and Grouse) and the lowest in rabbits feeding on grass over mineral soils. Radiocaesium was found in a carnivore (the fox) at the top of the food chain. (author)

  1. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China].

    Science.gov (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing

    2013-03-01

    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  2. Climate Change, Soils, and Human Health

    Science.gov (United States)

    Brevik, Eric C.

    2013-04-01

    need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  3. What Caused the Great Depression?

    Science.gov (United States)

    Caldwell, Jean; O'Driscoll, Timothy G.

    2007-01-01

    Economists and historians have struggled for almost 80 years to account for the American Great Depression, which began in 1929 and lasted until the early years of World War II. In this article, the authors discuss three major schools of thought on the causes of the Great Depression and the long failure of the American economy to return to full…

  4. Cultural Patterns of Soil Understanding

    Science.gov (United States)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  5. Short-chain chlorinated paraffins in soil, paddy seeds (Oryza sativa) and snails (Ampullariidae) in an e-waste dismantling area in China: Homologue group pattern, spatial distribution and risk assessment.

    Science.gov (United States)

    Yuan, Bo; Fu, Jianjie; Wang, Yawei; Jiang, Guibin

    2017-01-01

    Short-chain chlorinated paraffins (SCCPs) in multi-environmental matrices are studied in Taizhou, Zhejiang Province, China, which is a notorious e-waste dismantling area. The investigated matrices consist of paddy field soil, paddy seeds (Oryza sativa, separated into hulls and rice unpolished) and apple snails (Ampullariidae, inhabiting the paddy fields). The sampling area covered a 65-km radius around the contamination center. C 10 and C 11 are the two predominant homologue groups in the area, accounting for about 35.7% and 33.0% of total SCCPs, respectively. SCCPs in snails and hulls are generally higher than in soil samples (30.4-530 ng/g dw), and SCCPs in hulls are approximate five times higher than in corresponding rice samples (4.90-55.1 ng/g dw). Homologue pattern analysis indicates that paddy seeds (both hull and rice) tend to accumulate relatively high volatile SCCP homologues, especially the ones with shorter carbon chain length, while snails tend to accumulate relatively high lipophilic homologues, especially the ones with more substituted chlorines. SCCPs in both paddy seeds and snails are linearly related to those in the soil. The e-waste dismantling area, which covers a radius of approximate 20 km, shows higher pollution levels for SCCPs according to their spatial distribution in four matrices. The preliminary assessment indicates that SCCP levels in local soils pose no significant ecological risk for soil dwelling organisms, but higher risks from dietary exposure of SCCPs are suspected for people living in e-waste dismantling area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Probabilistic soil moisture projections to assess Great Britain

    OpenAIRE

    Pritchard, Oliver; Hallett, Stephen; Farewell, Timothy

    2015-01-01

    This research was presented at the Lloyds Science of Risk Prize 2015 as a shortlisted entry into the category 'Big Data Analytics and Machine Learning'. It is a research paper now published in Climatic Change: http://link.springer.com/article/10.1007/s10584-015-1486-z 

  7. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  8. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  9. Comparison of Capability of Digitizing Methods to Predict Soil classification According to the Soil Taxonomy and World Reference Base for Soil Resources

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-02-01

    Full Text Available Introduction: Soil classification generally aims to establish a taxonomy based on breaking the soil continuum into homogeneous groups that can highlight the essential differences in soil properties and functions between classes.The two most widely used modern soil classification schemes are Soil Taxonomy (ST and World Reference Base for Soil Resources (WRB.With the development of computers and technology, digital and quantitative approaches have been developed. These new techniques that include the spatial prediction of soil properties or classes, relies on finding the relationships between soil and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. These approaches are commonly referred to as digital soil mapping (DSM (14. A key component of any DSM mapping activity is the method used to define the relationship between soil observation and auxiliary information (4. Several types of machine learning approaches have been applied for digital soil mapping of soil classes, such as logistic and multinomial logistic regressions (10,12, random forests (15, neural networks (3,13 and classification trees (22,4. Many decisions about the soil use and management are based on the soil differences that cannot be captured by higher taxonomic levels (i.e., order, suborder and great group (4. In low relief areas such as plains, it is expected that the soil forming factors are more homogenous and auxiliary information explaining soil forming factors may have low variation and cannot show the soil variability. Materials and Methods: The study area is located in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province. According tothe semi-detailed soil survey (16, 120 pedons with approximate distance of 750 m were excavated and described according to the “field book for describing and sampling soils” (19. Soil samples were taken from different genetic horizons, air dried and

  10. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  11. What Caused the Great Recession?

    OpenAIRE

    Homburg, Stefan

    2014-01-01

    This paper examines five possible explanations for the Great Recession of 2008 and 2009, using data for the United States and the eurozone. Of these five hypotheses, four are not supported by the data, while the fifth appears reasonable.

  12. Arthroscopy of the great toe

    NARCIS (Netherlands)

    Frey, C.; van Dijk, C. N.

    1999-01-01

    The few available reports of arthroscopic treatment of the first MTP joint in the literature indicate favorable outcome. However, arthroscopy of the great toe is an advanced technique and should only be undertaken by experienced surgeons

  13. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors.

    Science.gov (United States)

    Charzyński, Przemysław; Plak, Andrzej; Hanaka, Agnieszka

    2017-02-01

    Soil sealing belongs to the most destructive and damaging processes to the soil environment. Soil sealing interrupts or greatly restricts the exchange of matter and energy between the biosphere, hydrosphere, and atmosphere and the soil environment. The aim of this study was to compare the content of heavy metals (Cd, Cr, Cu, Hg, Fe, Ni, Pb, Zn) of Ekranic Technosols by applying indicators such as geoaccumulation index (I geo ), enrichment factor (EF), and pollution load index (PLI), which allowed to determine quantitatively the impact of the soil sealing degree on the content of heavy metals and to distinguish natural from anthropogenic sources of origin of heavy metals. In general, 42 soils from different parts of the city of Toruń (NW Poland) were sampled and divided into three groups according to the degree of soil sealing: completely sealed with asphalt or concrete (A), semi-permeable (partially sealed with cobblestones and concrete paving slabs (B)), and reference (non-sealed) (C). The results indicate that the artificial sealing in urban areas slightly affects the content of heavy metals in soils. However, based on PLI, I geo , and EF, it was found that the sealing has influence on soil properties and unsealed soil is the most exposed to the accumulation of pollutants.

  14. The Sixth Great Mass Extinction

    Science.gov (United States)

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  15. Applications of visual soil evaluation

    DEFF Research Database (Denmark)

    Ball, Bruce C; Munkholm, Lars Juhl; Batey, Tom

    2013-01-01

    Working Group F “Visual Soil Examination and Evaluation” (VSEE) was formed over 30 years ago within the International Soil & Tillage Research Organisation (ISTRO) on the initiative of Tom Batey. The objectives of the Working Group are to stimulate interest in field methods of visual-tactile soil...... assessment, to encourage their wider use and to foster international cooperation. The previous main meeting of the group in 2005 at Peronne, France, brought together, for the first time, a group of soil scientists who had each developed a method to evaluate soil structure directly in the field (Boizard et al...... to the re-development of the Peerlkamp numeric method of assessment of soil structure into the Visual Evaluation of Soil Structure (VESS) spade test (Ball et al., 2007 and Guimarães et al., 2011). The meeting also recommended further cooperation between members of the Working Group. The evaluation...

  16. Characterization and Classification of Soils along the ...

    African Journals Online (AJOL)

    In developing countries, where research funds are limited, the availability of pedogenic information and proper classification of soils will be of great importance. The soils of Kindo Koye watershed were fully characterized along east and west facing toposequences that formed a catena and classified according to the Soil ...

  17. "Dirt Cheap" Project Teaches Soils Engineering

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a soil-testing activity that enables students to learn some interesting and useful things about how soil behaves under varied conditions. It offers a great way to give them a practical pre-engineering experience and will show them how engineers think about construction and how local soils influence building design. The…

  18. Humus and soil fertility

    Science.gov (United States)

    Kevin T. Smith

    2010-01-01

    Humus is a Latin word, meaning on or in the ground, but what is humus in the context of tree and landscape care? Is humus the same as soil organic matter? With the increased emphasis on biologically-based products for sustainable landscapes and tree care, the sources and quality of humus products have greatly increased in recent years.

  19. Moral reasoning about great apes in research

    Science.gov (United States)

    Okamoto, Carol Midori

    2006-04-01

    This study explored how individuals (biomedical scientists, Great Ape Project activists, lay adults, undergraduate biology and environmental studies students, and Grade 12 and 9 biology students) morally judge and reason about using great apes in biomedical and language research. How these groups perceived great apes' mental capacities (e.g., pain, logical thinking) and how these perceptions related to their judgments were investigated through two scenarios. In addition, the kinds of informational statements (e.g., biology, economics) that may affect individuals' scenario judgments were investigated. A negative correlation was found between mental attributions and scenario judgments while no clear pattern occurred for the informational statements. For the biomedical scenario, all groups significantly differed in mean judgment ratings except for the biomedical scientists, GAP activists and Grade 9 students. For the language scenario, all groups differed except for the GAP activists, and undergraduate environmental studies and Grade 9 students. An in-depth qualitative analysis showed that although the biomedical scientists, GAP activists and Grade 9 students had similar judgments, they produced different mean percentages of justifications under four moral frameworks (virtue, utilitarianism, deontology, and welfare). The GAP activists used more virtue reasoning while the biomedical scientists and Grade 9 students used more utilitarian and welfare reasoning, respectively. The results are discussed in terms of developing environmental/humane education curricula.

  20. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  1. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  2. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  3. Influence Of Crop Management And Soil On Plantain [Musa spp. z AAB Group Response To Black Sigatoka Infection In Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Mobambo, KN.

    1994-01-01

    Full Text Available An on-farm survey was carried out to assess the severity of black sigatoka caused by Mycosphaerella fijiensis Morelet on plantain in southeastern Nigeria. Two different geomor-phological zones (Meander belts and Coastal plain sands were surveyed. Four locations were selected for each zone and two traditional farming systems (backyard and field were studied in each location. Based on geomorphological zones, less black sigatoka infection was observed in the Meander belts than in the Coastal plain sands. On farming systems basis, plantain grown in the backyard gardens had lower disease severity than that planted in the field plots. This difference in black sigatoka severity is attributable to the higher soil fertility in the Meander belts than in the Coastal plain sands and in the backyards than in the fields.

  4. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (Parthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  5. Famous puzzles of great mathematicians

    CERN Document Server

    Petković, Miodrag S

    2009-01-01

    This entertaining book presents a collection of 180 famous mathematical puzzles and intriguing elementary problems that great mathematicians have posed, discussed, and/or solved. The selected problems do not require advanced mathematics, making this book accessible to a variety of readers. Mathematical recreations offer a rich playground for both amateur and professional mathematicians. Believing that creative stimuli and aesthetic considerations are closely related, great mathematicians from ancient times to the present have always taken an interest in puzzles and diversions. The goal of this

  6. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  7. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  8. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  9. Some geomedical problems in relation to soil science

    International Nuclear Information System (INIS)

    Laag, J.

    1988-01-01

    Geomedicine may be defined as the science dealing with the influence of ordinary environmental factors on geographical distribution of health problems in man and animals. An important group of geomedical problems is connected to nutrition. These problems may either be caused by deficiency or surplus of certain matters. Many questions concerning the pollution of nature are classified under the latter group Radioactive pollutants are regarded as important special occurrences under this group. In order to be able to solve complicated geomedical problems, knowledge is needed on the circulation processes rocks-soils-water-plants-animals-man, and waste products back to the soils. The registration of locations of different radioactive elements can give basic material for special geomedical conclusions. Many chemical reactions in which radioactive matter are involved, depend on properties of the soils. Humus and clay minerals have, generally speaking, a high capacity for the absorbtion of soluble matter, but great variations occur. The reactions of radioactive isotopes supplied from the atmosphere, depend on properties of the soil. Radioactive substances are leached relatively rapidly from a soil with low absorption capacity, and may thus be taken away from the circulation in which terrestrial plants, animals and man take part. If the substances is strongly absorbed (fixed), they can also to some extent be withdrawn from the circulation processes

  10. Making a Great First Impression

    Science.gov (United States)

    Evenson, Renee

    2007-01-01

    Managers and business owners often base hiring decisions on first impressions. That is why it is so important to teach students to make a great first impression--before they go on that first job interview. Managers do not have unrealistic expectations, they just want to hire people who they believe can develop into valuable employees. A nice…

  11. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  12. The Great Books and Economics.

    Science.gov (United States)

    Hartley, James E.

    2001-01-01

    Describes an introductory economics course in which all of the reading material is drawn from the Great Books of Western Civilization. Explains the rationale and mechanics of the course. Includes an annotated course syllabus that details how the reading material relates to the lecture material. (RLH)

  13. Great tit hatchling sex ratios

    NARCIS (Netherlands)

    Lessells, C.M.; Mateman, A.C.; Visser, J.

    1996-01-01

    The sex of Great Tit Parus major nestlings was determined using PCR RAPDs. Because this technique requires minute amounts of DNA, chicks could be sampled soon (0-2d) after hatching, before any nestling mortality occurred. The proportion of males among 752 chicks hatching in 102 broods (98.9% of

  14. The Great Gatsby. [Lesson Plan].

    Science.gov (United States)

    Zelasko, Ken

    Based on F. Scott Fitzgerald's novel "The Great Gatsby," this lesson plan presents activities designed to help students understand that adapting part of a novel into a dramatic reading makes students more intimate with the author's intentions and craft; and that a part of a novel may lend itself to various oral interpretations. The main activity…

  15. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  16. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  17. The Great Recession, unemployment and suicide.

    Science.gov (United States)

    Norström, Thor; Grönqvist, Hans

    2015-02-01

    How have suicide rates responded to the marked increase in unemployment spurred by the Great Recession? Our paper puts this issue into a wider perspective by assessing (1) whether the unemployment-suicide link is modified by the degree of unemployment protection, and (2) whether the effect on suicide of the present crisis differs from the effects of previous economic downturns. We analysed the unemployment-suicide link using time-series data for 30 countries spanning the period 1960-2012. Separate fixed-effects models were estimated for each of five welfare state regimes with different levels of unemployment protection (Eastern, Southern, Anglo-Saxon, Bismarckian and Scandinavian). We included an interaction term to capture the possible excess effect of unemployment during the Great Recession. The largest unemployment increases occurred in the welfare state regimes with the least generous unemployment protection. The unemployment effect on male suicides was statistically significant in all welfare regimes, except the Scandinavian one. The effect on female suicides was significant only in the eastern European country group. There was a significant gradient in the effects, being stronger the less generous the unemployment protection. The interaction term capturing the possible excess effect of unemployment during the financial crisis was not significant. Our findings suggest that the more generous the unemployment protection the weaker the detrimental impact on suicide of the increasing unemployment during the Great Recession. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Comparison between detailed digital and conventional soil maps of an area with complex geology

    Directory of Open Access Journals (Sweden)

    Osmar Bazaglia Filho

    2013-10-01

    Full Text Available Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000 of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs. For the Digital Soil Map (DSM, spectral data were extracted from Landsat 5 Thematic Mapper (TM imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS. To compare the conventional and digital (DSM soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

  19. Biochar contribution to soil pH buffer capacity

    Science.gov (United States)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  20. Comparing organic versus conventional soil management on soil respiration [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bence Mátyás

    2018-03-01

    Full Text Available Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  1. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  2. New developments in soil classification World Reference Base for Soil Resources

    NARCIS (Netherlands)

    Nachtergaele, F.O.; Spaargaren, O.; Deckers, J.A.; Ahrens, B.

    2000-01-01

    It has been a matter of great concern that after hundred years of modern soil science a generally accepted system of soil classification has not yet been universally adopted [Dudal, R., 1990. Progress in IRB preparation. In: Rozanov, B.G. (Ed.), Soil Classification. Reports of the International

  3. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  4. Soil compaction: Evaluation of stress transmission and resulting soil structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous......, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied...... and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate...

  5. Southern Great Plains Safety Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  6. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    Full Text Available Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H' and Pielou evenness index (J and the increase in Simpson dominance index (λ after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  7. Learning and the Great Moderation

    OpenAIRE

    Bullard, James B.; Singh, Aarti

    2009-01-01

    We study a stylized theory of the volatility reduction in the U.S. after 1984 - the Great Moderation - which attributes part of the stabilization to less volatile shocks and another part to more difficult inference on the part of Bayesian households attempting to learn the latent state of the economy. We use a standard equilibrium business cycle model with technology following an unobserved regime-switching process. After 1984, according to Kim and Nelson (1999a), the variance of U.S. macroec...

  8. Pricing regulations in Great Britain

    International Nuclear Information System (INIS)

    Cicoletti, G.

    1993-01-01

    This paper briefly describes the structure and functions of Great Britain's essential electric power regulatory authority institutionalized by the 1989 British Electricity Act, i.e., the Office of Electricity Regulation, OFFER, and the responsibilities and tasks of the head of OFFER -the Director General of Electricity Supply (DGES). In particular, with regard to the latter, the paper describes how the DGES works together with regional electricity commissions to ensure the respect, by the various utilities, of consumer price caps and compliance with overall quality of service standards, as well as, to oversee 'pooling' activities by producers and distributors

  9. Pricing regulations in Great Britain

    International Nuclear Information System (INIS)

    Cicoletti, G.

    1993-01-01

    This paper briefly describes the structure and functions of Great Britain's essential electric power regulatory authority institutionalized by the 1989 British Electricity Act, i.e., the Office of Electricity Regulation, OFFER, and the responsibilities and tasks of the head of OFFER - the Director General of Electricity Supply (DGES). In particular, with regard to the latter, the paper describes how the DGES works together with regional electricity commissions to ensure the respect, by the various utilities, of consumer price caps and compliance with overall quality of service standards, as well as, to oversee 'pooling' activities by producers and distributors

  10. What killed Alexander the Great?

    Science.gov (United States)

    Battersby, Cameron

    2007-01-01

    The cause of the death of the Macedonian King, Alexander the Great, at Babylon in 323 BC has excited interest and conjecture throughout the ages. The information available in the surviving ancient sources, none of which is contemporaneous, has been reviewed and compared with modern knowledge as set out in several well-known recent surgical texts. The ancient sources record epic drinking by the Macedonian nobility since at least the time of Phillip II, Alexander's father. Alexander's sudden illness and death is likely to have resulted from a surgical complication of acute alcoholic excess.

  11. Commanders of the Great Victory

    Directory of Open Access Journals (Sweden)

    Anatoly Dmitriyevich Borshchov

    2015-01-01

    Full Text Available The honorary title of «commander» as well as the «admiral» is granted to a military or naval figure on the basis of public recognition of his personal contribution to the success of actions. Generals are usually individuals with creative thinking, the ability to foresee the development of military events. Generals usually have such personality traits as a strong will and determination, rich combat experience, credibility and high organizational skills. In an article dedicated to the 70th anniversary of the Soviet victory in the Great War examines the experience of formation and practice of the most talent-ed Soviet military leaders.

  12. Methodology to assess the radiological sensitivity of soils: Application to Spanish soils

    International Nuclear Information System (INIS)

    Trueba Alonso, C.

    2005-01-01

    A methodology, based on standard physical and chemical soil properties, has been developed to estimate the radiological sensitivity of soils to a 137 C s and 90 S r contamination. In this framework, the soil radiological sensitivity is defined as the soil capability to mobilise or to retain these radionuclides. The purpose of this methodology is to assess, in terms of radiological sensitivity indexes, the behaviour of 137 C s and 90 S r in soils and their fluxes to man, considering two exposure pathways, the external irradiation exposure and the internal exposure from ingestion. The methodology is applied to the great variety of soil types found in Spain, where the soil profile is the reference unit for the assessment. The results for these soil types show, that their basic soil properties are the key to categorise the radiological sensitivity according to the risks considered. The final categorisation allows to identify soils specially sensible and improves the radiological impact assessment predictions. (Author)

  13. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    Science.gov (United States)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  14. Faecal soiling: pathophysiology of postdefaecatory incontinence.

    Science.gov (United States)

    Pucciani, F

    2013-08-01

    Passive postdefaecatory incontinence is poorly understood and yet is an important clinical problem. The aim of this study was to characterize the pathophysiology of postdefaecatory incontinence in patients affected by faecal soiling. Seventy-two patients (30 women, age range 49-79 years; 42 men, age range, 53-75 years) affected by faecal passive incontinence with faecal soiling were included in the study. Two patient groups were identified: Group 1 comprised 42 patients with postdefaecatory incontinence and Group 2 had 30 patients without incontinence after bowel movements. After a preliminary clinical evaluation, including the Faecal Incontinence Severity Index (FISI) score and the obstructed defaecation syndrome (ODS) score, all patients of Groups 1 and 2 were studied by means of endoanal ultrasound and anorectal manometry. The results were compared with those from 20 healthy control subjects. A significantly higher ODS score was found in Group 1 (P IAS) in Group 2 (P IAS atrophy and the FISI score (ρs 0.78; P < 0.03). Anal resting pressure (Pmax and Pm ) was significantly lower in Group 2 (P < 0.04). The straining test was considered positive in 30 (71.4%) patients in Group 1, significantly greater than in Group 2 (P < 0.01). A significantly higher conscious rectal sensitivity threshold (CRST) was found in Group 1 patients (P < 0.01). The ODS score, a positive straining test and high CRST values suggest that postdefaecatory incontinence is secondary to impaired defaecation. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  15. Soil survey - a basis for european soil protection

    International Nuclear Information System (INIS)

    Hodgson, J.M.

    1991-01-01

    The information available on soils varies greatly from country to country. In view of the fact that, together with water, soils represent the most important natural resource in the EC, it is recommended that steps should be taken to ensure a reasonable level of information for all countries and that emphasis be placed on assembling an adequate database. Such information is fundamental to future land use and environmental protection

  16. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  17. Great apes prefer cooked food.

    Science.gov (United States)

    Wobber, Victoria; Hare, Brian; Wrangham, Richard

    2008-08-01

    The cooking hypothesis proposes that a diet of cooked food was responsible for diverse morphological and behavioral changes in human evolution. However, it does not predict whether a preference for cooked food evolved before or after the control of fire. This question is important because the greater the preference shown by a raw-food-eating hominid for the properties present in cooked food, the more easily cooking should have been adopted following the control of fire. Here we use great apes to model food preferences by Paleolithic hominids. We conducted preference tests with various plant and animal foods to determine whether great apes prefer food items raw or cooked. We found that several populations of captive apes tended to prefer their food cooked, though with important exceptions. These results suggest that Paleolithic hominids would likewise have spontaneously preferred cooked food to raw, exapting a pre-existing preference for high-quality, easily chewed foods onto these cooked items. The results, therefore, challenge the hypothesis that the control of fire preceded cooking by a significant period.

  18. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  19. Soils, time, and primate paleoenvironments

    Science.gov (United States)

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  20. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Song Saisai [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)], E-mail: zlz@zju.edu.cn; Zhou Wenjun [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2008-12-15

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils.

  1. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Song Saisai; Zhu Lizhong; Zhou Wenjun

    2008-01-01

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils

  2. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  3. The Great Hedge of India

    International Nuclear Information System (INIS)

    Moxham, Roy

    2015-01-01

    The 'Great Hedge of India', a 3 700 kilometre-long hedge installed by the British customs to safeguard the colonial salt tax system and avoid salt smuggling totally faded from both memory and records (e.g. maps) in less than a century. Roy Moxham found traces of the hedge in a book footnote and searched it for several years until he found its meagre remains. The speaker wrote a book about this quest. He said that this story reveals how things disappear when they are no longer useful and, especially, when they are linked to parts of history that are not deemed particularly positive (the hedge was a means of colonial power)

  4. Gypsum karst in Great Britain

    Directory of Open Access Journals (Sweden)

    Cooper A.H.

    1996-01-01

    Full Text Available In Great Britain the most spectacular gypsum karst development is in the Zechstein gypsum (late Permian mainly in north-eastern England. The Midlands of England also has some karst developed in the Triassic gypsum in the vicinity of Nottingham. Along the north-east coast, south of Sunderland, well-developed palaeokarst, with magnificent breccia pipes, was produced by dissolution of Permian gypsum. In north-west England a small gypsum cave system of phreatic origin has been surveyed and recorded. A large actively evolving phreatic gypsum cave system has been postulated beneath the Ripon area on the basis of studies of subsidence and boreholes. The rate of gypsum dissolution here, and the associated collapse lead to difficult civil engineering and construction conditions, which can also be aggravated by water abstraction.

  5. Great-Britain at CERN

    CERN Multimedia

    C. Laignel

    2004-01-01

    From 23 to 25 November 2004 Administration Building Bldg 60/61 - ground and 1st floor 09.30 - 17.30 Twenty five companies will present their latest technology at the "Great-Britain at CERN" exhibition. British industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: electrical engineering, electronics, mechanical engineering, vacuum & low temperatures technologies, particles detectors and telecommunications. The exhibition is organised by BEAMA Exhibitions, The British Electrotechnical and Allied Manufacturer's Association There follows : the list of exhibitors. A detailed programme will be available in due course at : your Departemental secretariat, the reception information desk, Building 33, the exhibition. A detailed list of firms is available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm 1 Accles & Pollock 2 A S Scientific Products Ltd 3 C...

  6. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  7. The origin of 'Great Walls'

    International Nuclear Information System (INIS)

    Shandarin, Sergei F.

    2009-01-01

    A new semi-analytical model that explains the formation and sizes of the 'great walls' - the largest structures observed in the universe is suggested. Although the basis of the model is the Zel'dovich approximation it has been used in a new way very different from the previous studies. Instead of traditional approach that evaluates the nonlinear density field it has been utilized for identification of the regions in Lagrangian space that after the mapping to real or redshift space (depending on the kind of structure is studied) end up in the regions where shell-crossing occurs. The set of these regions in Lagrangian space form the progenitor of the structure and after the mapping it determines the pattern of the structure in real or redshift space. The particle trajectories have crossed in such regions and the mapping is no longer unique there. The progenitor after mapping makes only one stream in the multi-stream flow regions therefore it does not comprise all the mass. Nevertheless, it approximately retains the shape of the structure. The progenitor of the structure in real space is determined by the linear density field along with two non-Gaussian fields derived from the initial potential. Its shape in Eulerian space is also affected by the displacement field. The progenitor of the structure in redshift space also depends on these fields but in addition it is strongly affected by two anisotropic fields that determine the pattern of great walls as well as their huge sizes. All the fields used in the mappings are derived from the linear potential smoothed at the current scale of nonlinearity which is R nl = 2.7 h −1 Mpc for the adopted parameters of the ΛCDM universe normalized to σ 8 = 0.8. The model predicts the existence of walls with sizes significantly greater than 500 h −1 Mpc that may be found in sufficiently large redshift surveys

  8. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  9. Revised Soil Classification System for Coarse-Fine Mixtures

    KAUST Repository

    Park, Junghee; Santamarina, Carlos

    2017-01-01

    Soil classification systems worldwide capture great physical insight and enable geotechnical engineers to anticipate the properties and behavior of soils by grouping them into similar response categories based on their index properties. Yet gravimetric analysis and data trends summarized from published papers reveal critical limitations in soil group boundaries adopted in current systems. In particular, current classification systems fail to capture the dominant role of fines on the mechanical and hydraulic properties of soils. A revised soil classification system (RSCS) for coarse-fine mixtures is proposed herein. Definitions of classification boundaries use low and high void ratios that gravel, sand, and fines may attain. This research adopts emax and emin for gravels and sands, and three distinctive void ratio values for fines: soft eF|10  kPa and stiff eF|1  MPa for mechanical response (at effective stress 10 kPa and 1 MPa, respectively), and viscous λ⋅eF|LL for fluid flow control, where λ=2log(LL−25) and eF|LL is the void ratio at the liquid limit. For classification purposes, these void ratios can be estimated from index properties such as particle shape, the coefficient of uniformity, and the liquid limit. Analytically computed and data-adjusted boundaries are soil-specific, in contrast with the Unified Soil Classification System (USCS). Threshold fractions for mechanical control and for flow control are quite distinct in the proposed system. Therefore, the RSCS uses a two-name nomenclature whereby the first letters identify the component(s) that controls mechanical properties, followed by a letter (shown in parenthesis) that identifies the component that controls fluid flow. Sample charts in this paper and a Microsoft Excel facilitate the implementation of this revised classification system.

  10. Revised Soil Classification System for Coarse-Fine Mixtures

    KAUST Repository

    Park, Junghee

    2017-04-17

    Soil classification systems worldwide capture great physical insight and enable geotechnical engineers to anticipate the properties and behavior of soils by grouping them into similar response categories based on their index properties. Yet gravimetric analysis and data trends summarized from published papers reveal critical limitations in soil group boundaries adopted in current systems. In particular, current classification systems fail to capture the dominant role of fines on the mechanical and hydraulic properties of soils. A revised soil classification system (RSCS) for coarse-fine mixtures is proposed herein. Definitions of classification boundaries use low and high void ratios that gravel, sand, and fines may attain. This research adopts emax and emin for gravels and sands, and three distinctive void ratio values for fines: soft eF|10  kPa and stiff eF|1  MPa for mechanical response (at effective stress 10 kPa and 1 MPa, respectively), and viscous λ⋅eF|LL for fluid flow control, where λ=2log(LL−25) and eF|LL is the void ratio at the liquid limit. For classification purposes, these void ratios can be estimated from index properties such as particle shape, the coefficient of uniformity, and the liquid limit. Analytically computed and data-adjusted boundaries are soil-specific, in contrast with the Unified Soil Classification System (USCS). Threshold fractions for mechanical control and for flow control are quite distinct in the proposed system. Therefore, the RSCS uses a two-name nomenclature whereby the first letters identify the component(s) that controls mechanical properties, followed by a letter (shown in parenthesis) that identifies the component that controls fluid flow. Sample charts in this paper and a Microsoft Excel facilitate the implementation of this revised classification system.

  11. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  12. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  13. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  14. Long-term oil contamination causes similar changes in microbial communities of two distinct soils.

    Science.gov (United States)

    Liao, Jingqiu; Wang, Jie; Jiang, Dalin; Wang, Michael Cai; Huang, Yi

    2015-12-01

    Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of

  15. Soils in art as a teaching tool in soil science

    Science.gov (United States)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  16. The survival of the great financial journalism

    Directory of Open Access Journals (Sweden)

    Elvira CALVO GUTIÉRREZ

    2014-07-01

    Full Text Available Traditionally, the economic international journalism has had in the Anglo-Saxon groups Dow Jones (USA and Pearson (Great Britain, publishers of The Wall Street and Financial Times respectively, his big world models. Nevertheless, the new century has brought enormous convulsions to the sector, to the newspapaers of elite and big agencies specialized in economic information as Reuters, Thomson or Bloomberg. To the battle in Internet, there add the expansion of the informative economic power and the changes of mentality of the companies and of the audiences. All this has derived in a fierce war led by the big leaders who, with more than one century of tradition someones, have been object of sales or mergers, financial indispensable operations to be able to adapt to the new times. The aim of this article is to analyze the path of the great economic journalism, with special dedication to two fronts: one, to know how these neswspapers of elite are positioned in the network; other one, the dilemma between continuing being a journalism of quality, rigorous, cosmopolitan and expensive of supporting, or to change towards an ideological, gruesome journalism or amarillista that, since in other specialities, also has spread between the financial journalism

  17. A Conceptual Framework for Soil management and its effect on Soil Biodiversity in Organic and Low Input Farming

    OpenAIRE

    Koopmans, Dr. C.J.; Smeding, Dr. F.W.

    2008-01-01

    Learning how to manage beneficial soil biological processes may be a key step towards developing sustainable agricultural systems. We designed a conceptual framework linking soil management practices to important soil-life groups and soil fertility services like nutrient cycling, soil structure and disease suppression. We selected a necessary parameter set to gain insight between management, soil life and soil support services. The findings help to develop management practices that optimise y...

  18. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2017-01-01

    Soils host the most complex communities of organisms, which are still largely considered as an unknown 'black box'. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in soils.

  19. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  20. Tipping Points, Great and Small

    Science.gov (United States)

    Morrison, Foster

    2010-12-01

    The Forum by Jordan et al. [2010] addressed environmental problems of various scales in great detail, but getting the critical message through to the formulators of public policies requires going back to basics, namely, that exponential growth (of a population, an economy, or most anything else) is not sustainable. When have you heard any politician or economist from anywhere across the ideological spectrum say anything other than that more growth is essential? There is no need for computer models to demonstrate “limits to growth,” as was done in the 1960s. Of course, as one seeks more details, the complexity of modeling will rapidly outstrip the capabilities of both observation and computing. This is common with nonlinear systems, even simple ones. Thus, identifying all possible “tipping points,” as suggested by Jordan et al. [2010], and then stopping just short of them, is impractical if not impossible. The main thing needed to avoid environmental disasters is a bit of common sense.

  1. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  2. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  3. Thematic issue on soil water infiltration

    Science.gov (United States)

    Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...

  4. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Microbial degradation is known to be an efficient process in the in ..... exhibited a great impact on the ecology of the soil by causing drastic ... city of the soil (Dibble and Bartha, 1979). Hydrocarbon .... Atlas RM (1991). Microbial ...

  5. Sampling depth confounds soil acidification outcomes

    Science.gov (United States)

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  6. Soil compaction: Evaluation of stress transmission and resulting soil structure

    Science.gov (United States)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu

    2016-04-01

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.

  7. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  8. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.

    Science.gov (United States)

    Boteva, Silvena; Radeva, Galina; Traykov, Ivan; Kenarova, Anelia

    2016-03-01

    Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.

  9. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    Science.gov (United States)

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of

  10. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  11. Transposition of the great arteries

    Directory of Open Access Journals (Sweden)

    Castela Eduardo

    2008-10-01

    Full Text Available Abstract Transposition of the great arteries (TGA, also referred to as complete transposition, is a congenital cardiac malformation characterised by atrioventricular concordance and ventriculoarterial (VA discordance. The incidence is estimated at 1 in 3,500–5,000 live births, with a male-to-female ratio 1.5 to 3.2:1. In 50% of cases, the VA discordance is an isolated finding. In 10% of cases, TGA is associated with noncardiac malformations. The association with other cardiac malformations such as ventricular septal defect (VSD and left ventricular outflow tract obstruction is frequent and dictates timing and clinical presentation, which consists of cyanosis with or without congestive heart failure. The onset and severity depend on anatomical and functional variants that influence the degree of mixing between the two circulations. If no obstructive lesions are present and there is a large VSD, cyanosis may go undetected and only be perceived during episodes of crying or agitation. In these cases, signs of congestive heart failure prevail. The exact aetiology remains unknown. Some associated risk factors (gestational diabetes mellitus, maternal exposure to rodenticides and herbicides, maternal use of antiepileptic drugs have been postulated. Mutations in growth differentiation factor-1 gene, the thyroid hormone receptor-associated protein-2 gene and the gene encoding the cryptic protein have been shown implicated in discordant VA connections, but they explain only a small minority of TGA cases. The diagnosis is confirmed by echocardiography, which also provides the morphological details required for future surgical management. Prenatal diagnosis by foetal echocardiography is possible and desirable, as it may improve the early neonatal management and reduce morbidity and mortality. Differential diagnosis includes other causes of central neonatal cyanosis. Palliative treatment with prostaglandin E1 and balloon atrial septostomy are usually

  12. Main principles of agroecological grouping of Cs 137 polluted farmlands

    International Nuclear Information System (INIS)

    Tsybul'ko, N.N.; Misyuchik, A.A.; Shapsheeva, T.P.

    2010-01-01

    On the basis of data of radiological and soil-agrochemical inspection of soils the agroecological grouping of farmlands is conducted . Five agroecological groups of the farmlands are allocated. (authors)

  13. A Case Study on Soil Antibiotic Resistome in an Urban Community Garden.

    Science.gov (United States)

    Mafiz, Abdullah Ibn; Perera, Liyanage Nirasha; He, Yingshu; Zhang, Wei; Xiao, Shujie; Hao, Weilong; Sun, Shi; Zhou, Kequan; Zhang, Yifan

    2018-05-29

    Urban agricultural soils can be an important reservoir of antibiotic resistance and have great food safety and public health indications. This study was to investigate antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. A total of 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, USA. The most prevalent antibiotic resistance phenotypes demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment. Copyright © 2018. Published by Elsevier B.V.

  14. Cosmic Reason of Great Glaciation

    Science.gov (United States)

    Bagrov, Alexander; Murtazov, Andrey

    The origin of long-time and global glaciations in the past of our planet, which have been named «great», is still not clear. Both the advance of glaciers and their subsequent melting must be connected with some energy consuming processes. There is a powerful energy source permanently functioning throughout the Earth’s history - the solar radiation. The equality of the incoming shortwave solar energy and the transformed long-wave energy emitted by the Earth provides for the whole ecosphere’s sustainable evolution. Great glaciations might be caused by space body falls into the world oceans. If the body is large enough, it can stir waters down to the bottom. The world waters are part of the global heat transfer from the planet’s equator to its poles (nowadays, mostly to the North Pole). The mixing of the bottom and surface waters breaks the circulation of flows and they stop. The termination of heat transfer to the poles will result in an icecap at high latitudes which in its turn will decrease the total solar heat inflow to the planet and shift the pole ice boarder to the equator. This positive feedback may last long and result in long-time glaciations. The oceanic currents will remain only near the equator. The factor obstructing the global cooling is the greenhouse effect. Volcanic eruptions supply a lot of carbon dioxide into the atmosphere. When due to the increased albedo the planet receives less solar heat, plants bind less carbon oxide into biomass and more of it retains in the atmosphere. Therefore, the outflow of heat from the planet decreases and glaciations does not involve the whole planet. The balance established between the heat inflow and heat losses is unstable. Any imbalance acts as a positive feed-back factor. If the volcanic activity grows, the inflow of the carbon dioxide into the atmosphere will cause its heating-up (plants will fail to reproduce themselves quickly enough to utilize the carbonic acid). The temperature growth will lead to

  15. SoilInfo App: global soil information on your palm

    Science.gov (United States)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  16. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    Science.gov (United States)

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    Science.gov (United States)

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  18. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  19. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    Science.gov (United States)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  20. Soil Mechanics

    OpenAIRE

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  1. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  2. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  3. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  4. Alert!!! Beware of mobile phones!!! Has a great role in disease transmission, Clean them up!!!! Safe to handle…

    Directory of Open Access Journals (Sweden)

    Sue Elizabeth Shajan, Mohammed Faisal Hashim, Michael A

    2013-07-01

    Full Text Available Socially and professionally mobile phones are indispensable and are used in an environment of high microbial flora. This study is alerting to “Beware of Mobile Phones!!! has a great role in disease transmission”. Aims and Objectives: This study deals with the spread of both hospital and community associated microbial infections from the unavoidable mobile phones.Materials and Methods: Sterile samples were obtained from 255 mobile phones and divided into 5 categories of people as follows: Group I – Market vendors, Group II – Public workers, Group III – Teachers, Group IV – Office Staffs, Group V– Healthcare workers. Samples were cultured aerobically, anaerobically and for fungus. The resulting isolates were biochemically identified and subjected to antimicrobial sensitivity tests by Standard procedures. Results and Discussions: The result revealed a very high percentage (83% of microbial contamination with 15 bacterial and 5 fungal isolates. Mobile phones in Group I had the highest rate of colonization (54, 25.5%, Followed by Group II (52, 24.6%, Group III (48, 22.7%, Group IV (42, 19.9%, and Group V (15, 7.1%. Acinetobacter baumanii was the most prevalent bacterial agent from mobile phones in Group V (33.3% and least from Group IV (9.5%.There was no statistical significance difference (P<0.05 in the occurrence of Acinetobacter baumanii a soil opportunistic pathogenic bacterial agent most frequently isolated from the mobile phones of all the study groups. Conclusion: The colonization rate of mobile phones may serve as a reservoir, immediate source and spread of both hospital and community associated microbial infections. Hence mobile phone users are strict adherence of infection control, such as hand washing and good hygienic practices is advocated. To prevent the health care associated infections (HCAI in hospitals, the use of mobile phones during working hours should be strictly prohibited.

  5. The History of Electromagnetic Induction Techniques in Soil Survey

    Science.gov (United States)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  6. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development

    International Nuclear Information System (INIS)

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2014-01-01

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%–42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G − ) bacteria were significantly correlated with PCB degradation rates (R 2 = 0.719, p − bacteria were correlated with dissipation of the penta homologue group (R 2 = 0.590, p − bacteria contributed significantly to soil PCB dissipation. • Fungi have a great potential in the dissipation of high chlorinated biphenyls. -- Cucurbita associated fungi and G − bacteria have important influence on soil PCB dissipation rate and congener profile

  7. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  8. Galaxies Gather at Great Distances

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang. A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots. Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes. These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0.4 microns and 0.8 microns

  9. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  10. How to grow great leaders.

    Science.gov (United States)

    Ready, Douglas A

    2004-12-01

    Few leaders excel at both the unit and enterprise levels. More than ever, though, corporations need people capable of running business units, functions, or regions and focusing on broader company goals. It's up to organizations to develop leaders who can manage the inherent tensions between unit and enterprise priorities. Take the example of RBC Financial Group, one of the largest, most profitable companies in Canada. In the mid-1990's, RBC revamped its competitive strategy in a couple of ways. After the government announced that the Big Six banks in Canada could neither merge with nor acquire one another, RBC decided to grow through cross-border acquisitions. Additionally, because customers were starting to seek bundled products and services, RBC reached across its traditional stand-alone businesses to offer integrated solutions. These changes in strategy didn't elicit immediate companywide support. Instinctively, employees reacted against what would amount to a delicate balancing act: They would have to lift their focus out of their silos while continuing to meet unit goals. However, by communicating extensively with staff members, cross-fertilizing talent across unit boundaries, and targeting rewards to shape performance, RBC was able to cultivate rising leaders with the unit expertise and the enterprise vision to help the company fulfill its new aims. Growing such well-rounded leaders takes sustained effort because unit-enterprise tensions are quite real. Three common conditions reinforce these tensions. First, most organizational structures foster silo thinking and unimaginative career paths. Second, most companies lack venues for airing and resolving conflicts that arise when there are competing priorities. Third, many have misguided reward systems that pit unit performance against enterprise considerations. Such long-established patterns of organizational behavior are tough to break. Fortunately, as RBC discovered, people can be trained to think and work

  11. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  12. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  13. At the heart of soil health

    Science.gov (United States)

    Soil health is receiving resurgent attention with a number of recent national soil health initiatives which are sponsored by cooperators from diverse sectors including agribusiness, commodity groups, governmental organizations, and non-profits. The health of the soil is dependent on its biology. A...

  14. Measurement of soil moisture using gypsum blocks

    DEFF Research Database (Denmark)

    Friis Dela, B.

    the building. Consequently, measuring the moisture of the surrounding soil is of great importance for detecting the source of moisture in a building. Up till now, information has been needed to carry out individual calibrations for the different types of gypsum blocks available on the market and to account......For the past 50 years, gypsum blocks have been used to determine soil moisture content. This report describes a method for calibrating gypsum blocks for soil moisture measurements. Moisture conditions inside a building are strongly influenced by the moisture conditions in the soil surrounding...

  15. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  16. Great River Environmental Action Team II. (GREAT II). Upper Mississippi River (Guttenberg, Iowa to Saverton, Missouri). Recreation Work Group. Appendix.

    Science.gov (United States)

    1980-12-01

    4 1-40 0*r - 04 mr. A-4 A.) 0 00 co 0) r. 4-40 W 1 𔃺Q)0 cc 0 0 .0 0 u 0 U .0 0 0 0 04 0HD 01. 40 A0 1H U) . td p- wu 0c W~ to 0 0.E $U -i 0.4 0w 0...w0 4 0 4) 44 44 0) -4 C: w w . Or,-% 4) ..4 0 ri4 4 w 0 04 1 0-4 " -4 go Q4 v0 0000P 51~N S. C 40 J 0 0 0n v 0 v 0 C -4 )k4 WW0-4 4),- 4bd oo. 4J1 (fl 0

  17. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dynamic Study of Soil Erosion in Greater Khingan Forest

    OpenAIRE

    Wei Li; Wenyi Fan; Xuegang Mao; Xiaojie Wang

    2015-01-01

    Based on the amended model of RUSLE universal soil loss equation and GIS technology, combined with the natural geographical features of Great Khingan, it has conducted quantitative analysis of the factor in Soil loss equation. Uses 2000 and 2010 years TM images classification are land uses/cover type figure, we gets all factors values of space distribution in the RUSLE model, gets soil erosion volume estimates data and soil erosion strength distribution figure based on grid cell data and obta...

  19. Potential ecological risk assessment and predicting zinc accumulation in soils

    OpenAIRE

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2017-01-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and...

  20. Renormalization Group Theory

    International Nuclear Information System (INIS)

    Stephens, C. R.

    2006-01-01

    In this article I give a brief account of the development of research in the Renormalization Group in Mexico, paying particular attention to novel conceptual and technical developments associated with the tool itself, rather than applications of standard Renormalization Group techniques. Some highlights include the development of new methods for understanding and analysing two extreme regimes of great interest in quantum field theory -- the ''high temperature'' regime and the Regge regime

  1. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  2. Policy processes and decision making of environmental policy in Great Britain and France. Vol. 1

    International Nuclear Information System (INIS)

    Schreiber, H.

    1991-01-01

    Research of central aspects of British environmental policy. This report concentrates on the role of the constitutional system of environmental policy, on the evaluation of a growing of 'Green Policy' in Great Britain, on the central problems of environmental policy and finally on the role of international environmental policy for Great Britain and Great Britain's role in international environmental activities. Beyond that this report contains a presentation of the state of the British environment (Pollution: Air, Water, Waste, Soil; Radioactivity and Noise). (orig.) With 205 refs., 18 tabs., 14 figs [de

  3. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  4. Evaluation of the potential expansiveness of soils in the Hermanos Cruz neighbourhood, Pinar del Rio, Cuba: a contribution to urban planning

    International Nuclear Information System (INIS)

    Chinthaka-Ganepola, G.A.; Mohammed, A. S.; Ordaz Hernandez, A.; Estevez Cruz, E.; Hernandez Santana, J.R.

    2016-01-01

    Expansive soils can be categorized as one of the geohazards observed in the urban environment, representing a silent hazard to buildings and infrastructure. To evaluate this problematic soil it is necessary to know some of its geotechnical properties. Generally, the average values of soil properties are used in the methods which characterize the geological formation and the lithological group, which causes a great degree of uncertainty. To overcome this problem, this study proposes a procedure for estimating and modelling the principle soil properties that have an impact on expansive soils. The selected case study is located in the Hermanos Cruz neighbourhood in the city of Pinar del Rio in Cuba. The investigation was organized into the following stages: primary assessment of the potential expansiveness of the soils, modelling of the soil properties utilizing 3D geostatistical methods and finally the cartographic representation of the potential Expansiveness of soils on a Geographic Information System (GIS) platform at different depth zones which are of importance in the construction of shallow foundations of engineering works. The application of this methodology in the Hermanos Cruz neighbourhood revealed that its soils possess a potential expansiveness of low to medium, apart from some isolated zones which show a potential expansiveness of medium to high. (Author)

  5. Evaluation of the potential expansiveness of soils in the Hermanos Cruz neighbourhood, Pinar del Rio, Cuba: a contribution to urban planning

    Energy Technology Data Exchange (ETDEWEB)

    Chinthaka-Ganepola, G.A.; Mohammed, A. S.; Ordaz Hernandez, A.; Estevez Cruz, E.; Hernandez Santana, J.R.

    2016-07-01

    Expansive soils can be categorized as one of the geohazards observed in the urban environment, representing a silent hazard to buildings and infrastructure. To evaluate this problematic soil it is necessary to know some of its geotechnical properties. Generally, the average values of soil properties are used in the methods which characterize the geological formation and the lithological group, which causes a great degree of uncertainty. To overcome this problem, this study proposes a procedure for estimating and modelling the principle soil properties that have an impact on expansive soils. The selected case study is located in the Hermanos Cruz neighbourhood in the city of Pinar del Rio in Cuba. The investigation was organized into the following stages: primary assessment of the potential expansiveness of the soils, modelling of the soil properties utilizing 3D geostatistical methods and finally the cartographic representation of the potential Expansiveness of soils on a Geographic Information System (GIS) platform at different depth zones which are of importance in the construction of shallow foundations of engineering works. The application of this methodology in the Hermanos Cruz neighbourhood revealed that its soils possess a potential expansiveness of low to medium, apart from some isolated zones which show a potential expansiveness of medium to high. (Author)

  6. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  7. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  8. Inactivation of Escherichia coli in soil by solarization

    International Nuclear Information System (INIS)

    Wu, S.; Nishihara, M.; Kawasaki, Y.; Yokoyama, A.; Matsuura, K.; Koga, T.; Ueno, D.; Inoue, K.; Someya, T.

    2009-01-01

    Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g −1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces. (author)

  9. A regional soil and sediment geochemical study in northern California

    International Nuclear Information System (INIS)

    Goldhaber, Martin B.; Morrison, Jean M.; Holloway, JoAnn M.; Wanty, Richard B.; Helsel, Dennis R.; Smith, David B.

    2009-01-01

    concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.

  10. A regional soil and sediment geochemical study in northern California

    Science.gov (United States)

    Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B.

    2009-01-01

    concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.

  11. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  12. 'Great Power Style' in China's Economic Policy

    DEFF Research Database (Denmark)

    Jiang, Yang

    2011-01-01

    China’s ascendance attracts concern, even though Beijing claims to be a responsible great power and tries to demonstrate its ‘great power style’ in economic diplomacy. This article therefore discusses the following questions: to what extent does the current notion and practice of Chinese ‘great...... power style’ in economic diplomacy comply with, or differ from, the criteria of benign hegemony; and what are the major constraining factors? Conceptually, China’s ‘great power style’ is rooted in ancient Chinese political philosophy and institution, but it highly resembles the Western notion of benign...

  13. From the study of fire effects on individual soil properties to the development of soil quality indices. 1. The pioneer research

    Science.gov (United States)

    Mataix-Solera, Jorge; Zornoza, Raúl

    2013-04-01

    Although forest fires must be considered as a natural factor in Mediterranean ecosystems, the modification of its natural regime during last five decades has thansformed them in an environmental problem. In the Valencia region (E Spain) 1994 was the worst year in the history affecting more than 120,000 hectares. I started my Ph.D that year by studying the effects of fires in soil properties. The availability to be able to analyse a great set of different types of soil properties in the laboratories of University of Alicante allowed me to explore how fires could affect physical, chemical and micobiological soil properties. After years studying different soil properties, finding that several factors are involved, including: fire intensity and severity, vegetation, soil type, climate conditions, etc. (Mataix-Solera and Doerr, 2004; Mataix-Solera et al., 2008, 2011) my research as Ph-D supervisor has been focussed to investigate more in depth some selected properties, such as aggregate stability and water repellency (Arcenegui et al., 2007, 2008). But one of the main problems in the studies conducted with samples affected by wildfires is that for the evaluation of the fire impact in the soil it is necessary to have control (unburned) soil samples from a similar non-affected near area. The existing spatial variability under field conditions does not allow having comparable samples in some acses to develop a correct assessment. With this idea in mind one of my Ph.D researcher (R. Zornoza) dedicated his thesis to develope soil quality indices capable to assess the impact of soil perturbations without comparing groups of samples, but evaluating the equilibrium among different soil properties within each soil sample (Zornoza et al., 2007, 2008). Key words: wildfire, Mediterranean soils, soil degradation, wàter repellency, aggregate stability References: Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the

  14. Psychosocial stressors in the lives of great jazz musicians.

    Science.gov (United States)

    Patalano, F

    1997-02-01

    Brief biographical information on four great jazz tenor saxophone players of the past is presented to illustrate the similar psychosocial stressors these men seemed to experience, namely, severe substance abuse, haphazard working conditions, lack of acceptance of their art form in the United States, marital and family discord, and a vagabond life style. Ages at death of 80 great jazz musicians may indicate that the stressful life style of jazz musicians may be reflected in a shortened life span, but a control group is needed.

  15. Effects of soil stripping and dressing for decontamination of radioactive materials on soil fertility of agricultural land

    International Nuclear Information System (INIS)

    Yoshino, Namiko; Takahashi, Yoshihiko; Kobayashi, Hiroyuki; Saitou, Kunihito

    2015-01-01

    Farms that were highly contaminated with radioactive materials following the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident were decontaminated by removing topsoil and subsequently dressing with fresh soil. We investigated the chemical properties of soils following such decontamination on farms in Iitate village, Fukushima. The nitrogen content of dressed soil was considerably lower than that of the subsoil that was not stripped for decontamination, as a result of which the amount of dressed soil greatly affected the soil fertility of decontaminated farms. The potassium (K) content of soil differs markedly depending on the type of soil dressing material used; accordingly, the type of soil dressing material affected the soil K content on decontaminated farms. On most of the decontaminated farms where sandy soils were used as the soil dressing material, soil exchangeable K contents were less than 25 mg K_2O/100 g, which is the criterion value for inhibiting cesium absorption in rice and soybean cultivation. However, even in the soil dressing material from agricultural land, soil K content after soil dressing was generally lower than that before soil dressing. During fallow management and at the restart of cultivation on decontaminated farms, it is important to know in advance the chemical properties of soil and take the necessary measures based on this information. (author)

  16. Diversity of Archaea in Brazilian savanna soils.

    Science.gov (United States)

    Catão, E; Castro, A P; Barreto, C C; Krüger, R H; Kyaw, C M

    2013-07-01

    Although the richness of Bacteria and Fungi in Cerrado' soils has been reported, here we report, for the first time, the archaeal community in Cerrado's soils. DNA extracted from soil of two distinct vegetation types, a dense subtype of sensu strict (cerrado denso) and riverbank forest (mata de galeria), was used to amplify Archaea-specific 16S rRNA gene. All of the fragments sequenced were classified as Archaea into the phylum Thaumarchaeota, predominantly affiliated to groups I.1b and I.1c. Sequences affiliated to the group I.1a were found only in the soil from riverbank forest. Soils from 'cerrado denso' had greater Archaea richness than those from 'mata de galeria' based on the richness indexes and on the rarefaction curve. β-Diversity analysis showed significant differences between the sequences from the two soil areas studied because of their different thaumarchaeal group composition. These results provide information about the third domain of life from Cerrado soils.

  17. Lectures on Chevalley groups

    CERN Document Server

    Steinberg, Robert

    2016-01-01

    Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967-1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added. This is a great unsurpassed introduction to the subject of Chevalley groups that influenced generations of mathematicians. I would recommend it to anybody whose interests include group theory. -Efim Zelmanov, University of California, San Diego Robert Steinberg's lectures on Chevalley groups were given at Yale University in 1967. The notes for the lectures contain a wonderful exposition of ...

  18. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  20. Impacts of soil moisture content on visual soil evaluation

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  1. Great Expectations for Middle School Counselors

    Science.gov (United States)

    Wright, Robert J.

    2012-01-01

    During the Great Recession, 2008 to 2010, school systems scrambled to balance budgets, and the ratio of counselors to students became even larger. To make matters worse, the Great Recession had a major impact on cuts in educational funding. Budget cutbacks tend to occur where the public will be least likely to notice. The loss of teachers and the…

  2. Great Books. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2011

    2011-01-01

    "Great Books" is a program that aims to improve the reading, writing, and critical thinking skills of students in kindergarten through high school. The program is implemented as a core or complementary curriculum and is based on the Shared Inquiry[TM] method of learning. The purpose of "Great Books" is to engage students in…

  3. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H; Kidd, Jeffrey M

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...

  4. Libraries Achieving Greatness: Technology at the Helm

    Science.gov (United States)

    Muir, Scott P.

    2009-01-01

    Libraries have been around for thousands of years. Many of them are considered great because of their magnificent architecture or because of the size of their collections. This paper offers ten case studies of libraries that have used technology to achieve greatness. Because almost any library can implement technology, a library does not have to…

  5. Recensie "The Great Reset" : Richard Florida

    NARCIS (Netherlands)

    Roy van Dalm

    2010-01-01

    Like the Great Depression and the Long Depression before it, experts have viewed prolonged economic downturns as crises. In The Great Reset , bestselling author Richard Florida argues that we should instead see the recent recession as an opportunity to create entirely new ways of working and living

  6. On the role of soil fauna in providing soil functions - a meta study

    Science.gov (United States)

    Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute

    2017-04-01

    Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.

  7. Reaching Regional and Local Learners via a Great Lakes MOOC

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  8. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    Science.gov (United States)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    the three different temperatures. Amino acid concentrations and at% 15N of amino acids were measured in soil extracts at two time points by a novel approach based on the conversion of α-amino groups to N2O and purge-and-trap isotope ratio mass spectrometry. Protein availability was measured by extraction in solvents of increasing extraction efficiency (water, salt, metaphosphate, hydroxide), followed by acid hydrolysis to free amino acids and reaction with orthophthaldialdehyde. Peptidase activity was also measured at 5, 15 and 25˚ C using fluorescence probes. We expect that soil texture (clay content) and pH will affect protein sorption and availability and thereby affect depolymerization rates. Soil C:N ratios may control the N demand of microorganisms and thus affect enzyme production and amino acid immobilization rates. Moreover, soil pH is a major control on microbial community structure and may thereby affect the production of extracellular enzymes involved in protein and peptide decomposition. Due to the differences in temperature sensitivity of diffusion and enzymatic processes we expect higher temperature sensitivities given that protein decomposition is enzyme- rather than substrate-limited. This study will therefore greatly advance our understanding of major controls of the soil N cycle and provide highly important data for refining soil N cycle models.

  9. Isotopes in soil-plant nutrition studies

    International Nuclear Information System (INIS)

    1962-01-01

    Radioisotopes have greatly facilitated investigating the characteristics of plant nutrients in the soil, in measuring soil moisture, in studying the uptake of nutrients by plants and in devising efficient methods of fertilizer application, and are now being widely used in soil-plant nutrition research. A recent international symposium on the use of radioisotopes in soil-plant nutrition studies showed the varied ways in which isotopes can contribute to agricultural production by helping to investigate soil characteristics and soil-plant relationships. The symposium, jointly sponsored by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations, was held in Bombay from 26 February to 2 March 1962, at the invitation of the Government of India

  10. Technetium Behavior and Recovery in Soil

    Energy Technology Data Exchange (ETDEWEB)

    Meinken,G.E.

    1995-12-01

    Technetium-99 in soils is of great concern because of its long half-life and because it can not be detected readily. This work reviews the behavior of technetium in various types of soils. A method for extracting technetium from soil was developed with the use of technetium-95m and 99m to determine recoveries at each step. Technetium chemistry is very complicated and problem areas in the behavior and recovery have been highlighted. Technetium is widely used in nuclear medicine and a review of its chemistry pertaining to radiopharmaceuticals is relevant and helpful in environmental studies. The technetium behavior in the patented citric acid method for the removal of toxic metals in contaminated soils was studied. An innovative method using solid phase extraction media for the concentration of technetium extracted from soils, with water and hydrogen peroxide, was developed. This technique may have a useful environmental application for this type of remediation of technetium from contaminated soils.

  11. Anthropogenic effects on soil micromycetes

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2007-01-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  12. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  13. Carcinogenicity of soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbak, N P

    1970-01-01

    A total of 270 3-mo-old mice, hybrids of the C57BL and CBA strains which are highly susceptible to carcinogens, were painted on the skin (2-3 admin./week) with 3-4 drops of (1) a concentrated benzene extract of soil taken near a petroleum refinery with a 3,4 benzpyrene (BP) content of 0.22%; (2) a 0.22% soln of pure BP in benzene; (3) a concentrated benzene extract of soil taken from an old residential area of Moscow (BP content 0.0004%); (4) a 0.0004% BP soln in benzene; and (5) pure benzene. Only mice in the first 2 groups developed tumors. In group (1), 8 mice had papillomas, 46 had skin cancer, 1 had a sarcoma and 2 had plasmocytomas. In group (2) all 60 animals had skin cancer. Lung metastases were present at autopsy in 5 mice in group (1) and in 10 mice in group (2); in some cases, these tumors were multiple. Lymph node metastases were found in 6 mice in group (1) and in 10 mice in group (2). Tumors developed more slowly in group (1) than in group (2).

  14. Agriculture: Soils

    Science.gov (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  15. Sources of plutonium to the great Miami River

    International Nuclear Information System (INIS)

    Bartelt, G.E.; Kennedy, C.W.; Bobula, C.M. III.

    1978-01-01

    Progress is reported in the study of 238 Pu, in the Great Miami River watershed the contribution of various sources to the total 238 Pu transported by the river. Periodic discharges of industrial wastewater from Mound Laboratory from 1973 to 1975 have released approximately 20 mCi of 238 Pu each year to the Great Miami River. Changes in the wastewater treatment system in 1976 have reduced the annual discharge to less than 3 mCi/year. However, despite this sevenfold reduction of plutonium in the wastewater discharge, the annual flux of 238 Pu down the river has remained relatively constant and is approximately 10 times greater than can be accounted for by the reported effluent discharges. Therefore, other sources of the 238 Pu in the Great Miami River exist. A second possible source of plutonium is the resuspension of sediments enriched by earlier waste water releases and deposited in the river. However, since there appear to be few areas where large accumulations of sediment could occur, it seems improbable that resuspension of earlier sediment deposits would continue to be a significant contributor to the annual flux of plutonium. A much more likely source is the continuing erosion of soil from a canal and stream system contaminated with approx. 5 Ci of 238 Pu, 7 which connects directly to the river 6.9 km upstream from Franklin. Results from samples analyzed in 1978 show the average concentration of 238 Pu in suspended sediments from the canal to be approximately 10 3 times greater than suspended sediment concentrations in the river and waste water effluent.Thus the main contributor to the total amount of plutonium transported by the Great Miami River appears to be highly enriched sediment from the canal, which is eroded into the river where it is then diluted by uncontaminated sediments

  16. Mapping specific soil functions based on digital soil property maps

    Science.gov (United States)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  17. Intensive agriculture reduces soil biodiversity across Europe.

    Science.gov (United States)

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley

  18. soil fertility management practices by smallholder farmers in vhembe ...

    African Journals Online (AJOL)

    p2333147

    constraints associated with soil fertility management practices used by the farmers. ... nutrients. In addition, these drier areas often have highly degradable soils that are susceptible to soil erosion and eventual decline in soil fertility, especially under ... cases where the selected farm was a “community garden” (a group of.

  19. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  20. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  1. American undergraduate students' value development during the Great Recession.

    Science.gov (United States)

    Park, Heejung; Twenge, Jean M; Greenfield, Patricia M

    2017-02-01

    The Great Recession's influence on American undergraduate students' values was examined, testing Greenfield's and Kasser's theories concerning value development during economic downturns. Study 1 utilised aggregate-level data to investigate (a) population-level value changes between the pre-recession (2004-2006: n = 824,603) and recession freshman cohort (2008-2010: n = 662,262) and (b) overall associations of population-level values with national economic climates over long-term periods by correlating unemployment rates and concurrent aggregate-level values across 1966-2015 (n = 10 million). Study 2 examined individual-level longitudinal value development from freshman to senior year, and whether the developmental trajectories differed between those who completed undergraduate education before the Great Recession (freshmen in 2002, n = 12,792) versus those who encountered the Great Recession during undergraduate years (freshmen in 2006, n = 13,358). Results suggest American undergraduate students' increased communitarianism (supporting Greenfield) and materialism (supporting Kasser) during the Great Recession. The recession also appears to have slowed university students' development of positive self-views. Results contribute to the limited literature on the Great Recession's influence on young people's values. They also offer theoretical and practical implications, as values of this privileged group of young adults are important shapers of societal values, decisions, and policies. © 2016 International Union of Psychological Science.

  2. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  3. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  4. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    Science.gov (United States)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  5. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  6. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  7. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  8. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2018-01-01

    Abstract Soils host the most complex communities of organisms, which are still largely considered as an unknown ‘black box’. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in

  9. Remediation of a radioactively contaminated soil using a mobile soil-washing system

    International Nuclear Information System (INIS)

    Grant, D.C.; Lahoda, E.J.; Dietrich, A.J.; Weigle, D.H.; Keegan, C.P.; Sachse, J.D.

    1993-01-01

    In order to obtain free-release of a former uranium mining site in Texas, it was required that the surface soil meet specific radiological guidelines. The soil has been contaminated with uranium and radium as a result of the spillage of well-drilling material, process solutions, and ion exchange resins during mining. To meet the required guidelines, the contaminated soil had to be either removed and disposed of off-site or remediated. For economic and long-term liability reasons, remediation of the soil by soil washing was performed. The remediation of this site utilizing the Scientific Ecology Group's soil washing system is discussed in this paper

  10. Influence of organic components on plutonium and americium speciation in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2003-01-01

    Group composition of humic substances of organic and mineral soils sampled in the 30-km zone of the Chernobyl accident was analyzed for studying influence of organic components on migration properties of plutonium and americium in soils and soil solutions by the method of gel-chromatography and chemical fractionation. It was ascertained that humus of organic soils binds plutonium and americium stronger than humus of mineral soils. Elevated mobility of americium compared to plutonium one stems from lower ability of the latter to from hard to solve organic and organomineral complexes, as well as from its ability to form anionic complexes in soil solutions [ru

  11. Credit spread variability in U.S. business cycles: the Great Moderation versus the Great Recession

    OpenAIRE

    Hylton Hollander; Guangling Liu

    2014-01-01

    This paper establishes the prevailing financial factors that influence credit spread variability, and its impact on the U.S. business cycle over the Great Moderation and Great Recession periods. To do so, we develop a dynamic general equilibrium framework with a central role of financial intermediation and equity assets. Over the Great Moderation and Great Recession periods, we find an important role for bank market power (sticky rate adjustments and loan rate markups) on credit spread variab...

  12. Credit spread variability in U.S. business cycles: The Great Moderation versus the Great Recession

    OpenAIRE

    Hylton Hollander and Guangling Liu

    2014-01-01

    This paper establishes the prevailing financial factors that influence credit spread variability, and its impact on the U.S. business cycle over the Great Moderation and Great Recession periods. To do so, we develop a dynamic general equilibrium framework with a central role of financial intermediation and equity assets. Over the Great Moderation and Great Recession periods, we find an important role for bank market power (sticky rate adjustments and loan rate markups) on credit spread variab...

  13. Effect of Azospirillum brasilense inoculation on urease activity in soil and gamma-sterilized soil

    International Nuclear Information System (INIS)

    Perotti, E.B.R.; Pidello, A.

    1999-01-01

    Azospirillum spp. is considered a PGPR (plant growth promoting rhyzobacteria) bacterium, besides this interest, there is little information about its effects on other functional microbial groups or on soil enzymes. In this paper, the impact that Azospirillum brasilense 7001 inoculation has on urease activity expression in a Typic Argiudoll was studied. Evolution of urease activity of soil and of gamma irradiation (25 KGy) sterilized soil, and the inoculated strain survival were tested. The relation between soil urease activity and soil NH 4 +-N was also determined. In γ-sterilized soil, urease activity of inoculated soil increased with time, showing significant differences with regard to the control soil without inoculum at day 15. In non-sterile soil, urease activity decreased during the studied period in all treatments; in inoculated soil, it showed higher or lower values than the control depending on sampling time. Azospirillum survival was important and different according to soil condition conditions. The negative relation between NH 4 +-N concentration and soil urease activity (r 2 = 0.62) was observed in inoculated soil. The role of the addition of autoclaved inoculum in the urease activity expression is discussed. The research proves that in both studied situations Azospirillum modified soil urease activity, and that the competition with native microorganisms and soil NH 4 +-N may affect this bacterium capacity. (author)

  14. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  15. The Great Recession and confidence in homeownership

    OpenAIRE

    Anat Bracha; Julian Jamison

    2013-01-01

    Confidence in homeownership shifts for those who personally experienced real estate loss during the Great Recession. Older Americans are confident in the value of homeownership. Younger Americans are less confident.

  16. Great Lakes CoastWatch Node

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CoastWatch is a nationwide National Oceanic and Atmospheric Administration (NOAA) program within which the Great Lakes Environmental Research Laboratory (GLERL)...

  17. The Making of a Great Captain

    National Research Council Canada - National Science Library

    Weibel, Theodore G

    2006-01-01

    ... judgement. This paper examines the hypothesis that Great Captains are a product of their families, are highly educated from an early age, possess the qualities of a genius, encounter grand life experiences...

  18. Thirty years of great ape gestures.

    Science.gov (United States)

    Tomasello, Michael; Call, Josep

    2018-02-21

    We and our colleagues have been doing studies of great ape gestural communication for more than 30 years. Here we attempt to spell out what we have learned. Some aspects of the process have been reliably established by multiple researchers, for example, its intentional structure and its sensitivity to the attentional state of the recipient. Other aspects are more controversial. We argue here that it is a mistake to assimilate great ape gestures to the species-typical displays of other mammals by claiming that they are fixed action patterns, as there are many differences, including the use of attention-getters. It is also a mistake, we argue, to assimilate great ape gestures to human gestures by claiming that they are used referentially and declaratively in a human-like manner, as apes' "pointing" gesture has many limitations and they do not gesture iconically. Great ape gestures constitute a unique form of primate communication with their own unique qualities.

  19. Southern Great Plains Atmospheric Radiation Measurement Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  20. Theodosius Dohzhansky: A Great Inspirer 1

    Indian Academy of Sciences (India)

    the direct personal influence of some of these great scientists on their peers and successors is re~atively small. A very small number of scientists ... studying the evolutionary genetics of speciation in Drosophila. --------~--------43. RESONANCE I ...

  1. Visual soil evaluation - future research requirements

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B

  2. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  3. Understanding Great Earthquakes in Japan's Kanto Region

    Science.gov (United States)

    Kobayashi, Reiji; Curewitz, Daniel

    2008-10-01

    Third International Workshop on the Kanto Asperity Project; Chiba, Japan, 16-19 February 2008; The 1703 (Genroku) and 1923 (Taisho) earthquakes in Japan's Kanto region (M 8.2 and M 7.9, respectively) caused severe damage in the Tokyo metropolitan area. These great earthquakes occurred along the Sagami Trough, where the Philippine Sea slab is subducting beneath Japan. Historical records, paleoseismological research, and geophysical/geodetic monitoring in the region indicate that such great earthquakes will repeat in the future.

  4. The diverse impacts of the great recession

    OpenAIRE

    Makoto Nakajima

    2013-01-01

    The Great Recession had a large negative impact on the U.S. economy. Asset prices, most notably stock and house prices, declined substantially, resulting in a loss in wealth for many American households. In this article, Makoto Nakajima documents how diverse households were affected in a variety of dimensions during the Great Recession, in particular between 2007 and 2009, using newly available data from the 2007-2009 Survey of Consumer Finances. He discusses why it is important to look at th...

  5. The Great War and German Memory

    DEFF Research Database (Denmark)

    Leese, Peter

    2012-01-01

    Review essay on Jason Crouthamel, The Great War and German Memory. Society, Politics and Psychological Trauma, 1914-18 (2009) and Anton Kaes, Shell Shock Cinema: Weimar Culture and the Wounds of War (2009)......Review essay on Jason Crouthamel, The Great War and German Memory. Society, Politics and Psychological Trauma, 1914-18 (2009) and Anton Kaes, Shell Shock Cinema: Weimar Culture and the Wounds of War (2009)...

  6. Neutron activation and radiometric investigation of Kazakhstan soils

    International Nuclear Information System (INIS)

    Gwozdz, R.; Popov, J.V.; Shishkov, I.A.; Poznyak, V.; Solodukhin, V.P.

    2001-01-01

    Full text: Great diversity of radio-ecological problems requires measurement of materials with vastly differing chemical composition and density, and varying volume. In case of gamma spectrometry such variation in composition, density and volume changes the response of a measuring system quite drastically. A necessary correction is usually achieved by applying one of the four correction methods. The first one is applying a standard with composition as close to the measured sample as possible. The second method needs some previous knowledge about the chemical composition of the sample and a subsequent calculation of the mass absorption coefficient. The third method, an intensity ratio of two gamma lines, can only be applied when an isotope in the investigated sample has two measurable gamma lines. The fourth method consists in an additional gamma transmission measurement, using an isotopic source. Application of the first two methods to samples collected in Kazakhstan is evaluated and the results achieved are described. Instrumental neutron activation analysis by either long, or short irradiation was applied to three groups of samples. The first 15 samples were from the Semipalatinsk area, the next 15 from the area north for the Kara-Tau range. The third group of 5 samples was from the Syr-Darya valley. The Kara-Tau and Syr-Darya samples originate from the area adjacent to an uranium mining site. Only two samples are collected at cultivated soil, all the other are collected at the steppe or semi-desert areas, In the additional group measured there were ten sub-samples of the environmental soil standard, prepared at the Institute of Nuclear Physics. Activation analysis was applied as well to Soil-6 and Soil IAEA-375, two reference materials distributed by IAEA. Determination of concentration of about 40 elements in very sample enabled computation of mass absorption coefficients for all the investigated samples. Results of calculation and experimental testing prove

  7. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    Science.gov (United States)

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  8. Group X

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  9. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  10. Navigating the Great Recession: what role for monetary policy?

    OpenAIRE

    Bank for International Settlements

    2013-01-01

    The 12th BIS Annual Conference took place in Lucerne, Switzerland on 20-21 June 2013. The event brought together a distinguished group of central bank governors, leading academics and former public officials to exchange views on the conference theme of "Navigating the Great Recession: what role for monetary policy?". This volume contains the opening address by Stephen Cecchetti (former Economic Adviser, BIS), a keynote address by Finn Kydland (University of California, Santa Barbara) and the ...

  11. Group Flow and Group Genius

    Science.gov (United States)

    Sawyer, Keith

    2015-01-01

    Keith Sawyer views the spontaneous collaboration of group creativity and improvisation actions as "group flow," which organizations can use to function at optimum levels. Sawyer establishes ideal conditions for group flow: group goals, close listening, complete concentration, being in control, blending egos, equal participation, knowing…

  12. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  13. EVALUATION OF SOIL EROSION IN REGHIN HILLS USING THE USLE METHOD

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Soil erosion is one of the main causes of degradation of large areas of agricultural land, causing great economic loss by removing fertile soil. The Universal Soil Loss Equation (USLE predicts the long term average annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, crop system and management practices but does not however predict the soil loss resulting from gully erosion.

  14. Searching for plant root traits to improve soil cohesion and resist soil erosion

    Science.gov (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  15. The Time Scale of Recombination Rate Evolution in Great Apes

    Science.gov (United States)

    Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.

    2016-01-01

    Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  16. Speckled eggs: water-loss and incubation behaviour in the great tit Parus major.

    Science.gov (United States)

    Higham, James P; Gosler, Andrew G

    2006-10-01

    Many small passerine birds worldwide lay white eggs speckled with red, brown and black protoporphyrin pigment spots (maculation). Unlike some patterns of avian eggshell pigmentation which clearly serve a crypsis or signalling function, the ubiquity of maculation among passerines suggests that its origins lie in another function, not specific to any particular ecological or behavioural group. Elsewhere, we have presented evidence that protoporphyrin pigments serve a structural function related to eggshell thickness and calcium availability: eggshell maculation in the great tit Parus major increases with decreasing soil calcium levels, pigments demarcate thinner areas of shell, and both the pigment intensity and distribution are related to shell thickness. Here we show that maculation also affects the rate of water loss from the egg during incubation (approximately Mass Loss per Day or MLD, which is critical to egg viability), but not that of unincubated eggs. We also demonstrate, both by observation and experiment, that the effect of female incubation behaviour on MLD compensates in some way for variation in egg characteristics, and that differences between females in the degree of such compensation are related to differences in clutch maculation. Our results suggest that, while a principal function of maculation in this species may be to strengthen the eggshell, it may also reduce eggshell permeability when large amounts of pigment are used, and that this necessitates a behavioural adjustment from the female during incubation. We discuss these findings and make further testable predictions from our model.

  17. Framing a future for soil science education.

    Science.gov (United States)

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  18. Long-term Agroecosystem Research in the Northern Great Plains.

    Science.gov (United States)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  19. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  20. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  1. An evaluation of species richness estimators for tardigrades of the Great Smoky Mountains National Park, Tennessee and North Carolina, USA

    Directory of Open Access Journals (Sweden)

    Diane R. NELSON

    2007-09-01

    Full Text Available For the past 5 years we have been conducting a large-scale, multi-habitat inventory of the tardigrades in the Great Smoky Mountains National Park (U.S.A. as part of the All Taxa Biodiversity Inventory (ATBI (see www.dlia.org. In terrestrial habitats, we collected moss, lichen, and soil samples from 19 permanent ATBI plots, representing all major land cover types within the park. Each ATBI plot is 100 × 100 m. In each plot, when available, 16 moss samples, 16 lichen samples, and 4 soil samples were collected in paper bags and air dried in the laboratory. Specimens were isolated with LudoxAM centrifugation, and for each sample up to 50 adults plus eggs were individually mounted on microscope slides in Hoyer's medium and identified using phase contrast and DIC microscopy. Additional collections were made in the limestone caves of the Cades Cove region of the park, bird nests, and 13 different streams. To date (1-Jun-06, 589 samples have been collected, and of these 401 have been analyzed, yielding a total of 8133 identifiable tardigrades or, in some cases, species groups. A total of 73 species have been found in the park, 14 of which we believe are new to science. Seven species richness estimators have been developed to predict total species richness (see EstimateS 7.5 software, viceroy.eeb.uconn.edu/estimates, and these were evaluated by comparing predictions from half of our data to the actual numbers from the total database. The results of this comparison indicate that different estimators work best in different habitats. Using the best estimators in each habitat, EstimateS 7.5 indicates that a total of 96 species are likely to occur throughout the park. Thus, Great Smoky Mountains National Park tardigrade diversity represents 10% of the world's known tardigrade fauna.

  2. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  3. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    1994-01-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction 2 O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils

  4. Permutation groups

    CERN Document Server

    Passman, Donald S

    2012-01-01

    This volume by a prominent authority on permutation groups consists of lecture notes that provide a self-contained account of distinct classification theorems. A ready source of frequently quoted but usually inaccessible theorems, it is ideally suited for professional group theorists as well as students with a solid background in modern algebra.The three-part treatment begins with an introductory chapter and advances to an economical development of the tools of basic group theory, including group extensions, transfer theorems, and group representations and characters. The final chapter feature

  5. Studying the effects of wildfires on soils (or how to get smudged with ash)

    Science.gov (United States)

    Jordán, Antonio

    2015-04-01

    I work in the Department of Crystallography, Mineralogy and Agricultural Chemistry at the University of Seville, where I coordinate the MED_Soil Research Group since 2008, which is affiliated to the department of Crystallography, Mineralogy and Agricultural Chemistry (University of Sevilla). The group is formed by a multidisciplinary stable team of researchers (biologists, chemists, geomorphologists, geographers, physicists and agricultural engineers), collaborators, auxiliary staff, students and staff associated to research projects. Other involved researchers belong to the University of Córdoba, University Miguel Hernández, the University of Valencia and the Institute for Natural Resources and Agrobiology of Sevilla (IRNAS/CSIC), in Spain, the University of Western Australia (Australia), University of Algarve (Portugal), Mykolas Romeris University (Lithuania), Michoacan University San Nicolás de Hidalgo (México), University of Naples (Italy) and the National Research Centre of Cairo (Egypt). In general, my research lines include the study of rainfall-induced soil erosion processes, the effects of wildfires on soil properties and soil degradation in Mediterranean areas. Fires are frequent and recurrent phenomena in Mediterranean ecosystems, with several ecological and environmental impacts caused in part by short and medium-term effects on soil physical, chemical and biological characteristics as well as on organic matter composition, properties and dynamics. Altered fire regimes negatively affect soil health and quality favouring the occurrence of erosive processes and the loose of a non renewable natural resource. Also, due to the large carbon pool present in soils, small variations in soil organic matter content may have a significant effect in the biogeochemical cycles and on the global climate change. As a consequence of fire, new forms and thermal modifications of organic molecules lead to the formation of substances with weak colloidal properties and

  6. The future of soil protection strategy at the level of European Union at the filed of soil monitoring

    Directory of Open Access Journals (Sweden)

    Ladislav Kubík

    2005-01-01

    Full Text Available European Union deals long with problems of the two components of environment the air and the water. So far soil wasnęt in the main scope of the European Union. The European Union deal now with problems of soil, where we can find question of the soil monitoring. This issue was solve in the framework of the Working group on soil monitoring (WG. The recommendations from the WG are base for deciding of the European Commission, which will have interest to formulate new soil directive. The main tasks of the WG were to review of existing soil monitoring systems, to specify basic soil parameters, indicators, to define soil parameters for each soil threats and to harmonize future soil monitoring activity and soil data.

  7. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    Science.gov (United States)

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  8. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  9. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    Science.gov (United States)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  10. Soil Pore Network Visualisation and Quantification using ImageJ

    DEFF Research Database (Denmark)

    Garbout, Amin; Pajor, Radoslaw; Otten, Wilfred

    Abstract Soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A much more detailed knowledge of the soil system is required to improve our ability to develop soil management...... strategies to preserve this limited resource. Many of those processes occur at micro scales. For long our ability to study soils non-destructively at microscopic scales has been limited, but recent developments in the use of X-ray Computed Tomography has offered great opportunities to quantify the 3-D...... geometry of soil pores. In this study we look at how networks that summarize the geometry of pores in soil are affected by soil structure. One of the objectives is to develop a robust and reproducible image analysis technique to produce quantitative knowledge on soil architecture from high resolution 3D...

  11. Soil moisture

    Science.gov (United States)

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  12. Soil microbiology

    International Nuclear Information System (INIS)

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  13. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  14. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  15. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  16. Basic Soils. Revision.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  17. The Great London Smog of 1952.

    Science.gov (United States)

    Polivka, Barbara J

    2018-04-01

    : The Great London Smog of December 1952 lasted five days and killed up to 12,000 people. The smog developed primarily because of extensive burning of high-sulfur coal. The health effects were both immediate and long lasting, with a recent study revealing an increased likelihood of childhood asthma development in those exposed to the Great Smog while in utero or during their first year of life. Subsequent pollution legislation-including the U.S. Clean Air Act and its amendments-have demonstrably reduced air pollution and positively impacted health outcomes. With poor air quality events like the Great Smog continuing to occur today, nurses need to be aware of the impact such environmental disasters can have on human health.

  18. ["Great jobs"-also in psychiatry?].

    Science.gov (United States)

    Spiessl, H; Hübner-Liebermann, B

    2003-09-01

    Against the background of a beginning shortage of psychiatrists, results from interviews with 112 employees of an automotive company with the topic "Great Job" are presented to discuss their relevance to psychiatry. The interviews were analysed by means of a qualitative content analysis. Most employees assigned importance to great pay, constructive collaboration with colleagues, and work appealing to personal interests. Further statements particularly relevant to psychiatry were: successful career, flexible working hours, manageable job, work-life balance, well-founded training, no bureaucracy within the company, and personal status in society. The well-known economic restrictions in health care and the still negative attitude towards psychiatry currently reduce the attraction of psychiatry as a profession. From the viewpoint of personnel management, the attractors of a great job revealed in this study are proposed as important clues for the recruitment of medical students for psychiatry and the development of psychiatric staff.

  19. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  20. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  1. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    Science.gov (United States)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  2. Technetium behavior and recovery in soil

    International Nuclear Information System (INIS)

    Meinken, G.E.

    1995-12-01

    Technetium-99 in soils is of great concern because of its long half-life and because it can not be detected readily. This work reviews the behavior of technetium in various types of soils. A method for extracting technetium from soil was developed with the use of technetium-95m and 99m to determine recoveries at each step. Technetium chemistry is very complicated and problem areas in the behavior and recovery have been highlighted. Technetium is widely used in nuclear medicine and a review of its chemistry pertaining to radiopharmaceuticals is relevant and helpful in environmental studies. The technetium behavior in the patented citric acid method for the removal of toxic metals in contaminated soils was studied. An innovative method using solid phase extraction media for the concentration of technetium extracted from soils, with water and hydrogen peroxide, was developed. This technique may have a useful environmental application for this type of remediation of technetium from contaminated

  3. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  4. Group devaluation and group identification

    NARCIS (Netherlands)

    Leach, C.W.; Rodriguez Mosquera, P.M.; Vliek, M.L.W.; Hirt, E.

    2010-01-01

    In three studies, we showed that increased in-group identification after (perceived or actual) group devaluation is an assertion of a (preexisting) positive social identity that counters the negative social identity implied in societal devaluation. Two studies with real-world groups used order

  5. Lie groups and algebraic groups

    Indian Academy of Sciences (India)

    We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...

  6. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  7. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  8. Microzonation Analysis of Cohesionless and Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Tan Choy Soon

    2017-01-01

    Full Text Available Urban seismic risk is a continuous worldwide issue, numerous researchers are putting great effort in dealing with how to minimise the level of the threat. The only way to minimise the social and economic consequences caused but the seismic risk is through comprehensive earthquake scenario analysis such as ground response analysis. This paper intends to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil. In order to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil, ground response analysis was performed using Nonlinear Earthquake Site Response Analysis (NERA and Equivalent-linear Earthquake Site Response Analysis (EERA. The value of ground acceleration was initially high at bedrock and vanishes during the propagation process. It is thus, the measured acceleration at surface is therefore much lower as compare to at bedrock. Result shows that seismic waves can travel faster in harder soil as compared to softer soil. Cohesive soil contributes more to the shaking amplification than cohesionless soil such as sand and harder soil. This is known as local site effect. The typical example is the Mexico Earthquake that happened in 1985. As conclusion, peak ground acceleration for cohesive soil is higher than in cohesionless soil.

  9. Great Lakes Research Review, 1982. Appendices.

    Science.gov (United States)

    1982-11-01

    7D-i53 28 GREAT LAKES RESEARCH REVIEW 1982 PPENDICES (U) / PETROLEUM REFINERY PO INT SOURCE TASK FORCE WINDSOR (ONTARIO) NOV 82UNCLASSIFIED F/G 8...C7 U. 3 X 7 45 1 2 0. ODm C of. C.’ WC.’ L. LI 7 R-Ri53 62B GREAT LKES RESEARCH REVIEW 1982 PPENDICES (U) 2/3 PETROLEUM REFINERY POINT SOURCE TASK...NUMBER ORGANIZATION* TITLE OF PROJECT 001 A** 0300 ERL-D Acute and Early Life Stage Toxicity Testing of Priority Pollutant Chemicals 002 A 0302 ERL-D

  10. Great Importance Attached to Intangible Cultural Heritage

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Intangible Cultural Heritage on Verge of Extinction? With the acceleration of globalization and modernization, dramatic changes have taken place in China's cultural ecology: intangible cultural heritage is confronted with great challenges and a lot of orally and behaviorally transmitted cultural heritage disappear one after another; a great deal of traditional craftsmanship is on the verge of extinction; a large number of precious objects and materials of historical and cultural values are destroyed,deserted or lost in foreign countries; arbitrary misuse and excessive exploitation of intangible cultural heritage occur from time to time. Therefore, the protection of intangible cultural heritage brooks no delay.

  11. Ernst Chain: a great man of science.

    Science.gov (United States)

    Kardos, Nelson; Demain, Arnold L

    2013-08-01

    This paper is a tribute to the scientific accomplishments of Ernst Chain and the influence he exerted over the fields of industrial microbiology and biotechnology. Chain is the father of the modern antibiotic era and all the benefits that these therapeutic agents have brought, i.e., longer life spans, greater levels of public health, widespread modern surgery, and control of debilitating infectious diseases, including tuberculosis, gonorrhea, syphilis, etc. Penicillin was the first antibiotic to become commercially available, and its use ushered in the age of antibiotics. The discovery of penicillin's bactericidal action had been made by Alexander Fleming in London in 1928. After publishing his observations in 1929, no further progress was made until the work was picked up in 1939 by scientists at Oxford University. The group was headed by Howard Florey, and Chain was the group's lead scientist. Chain was born and educated in Germany, and he fled in 1933 as a Jewish refugee from Nazism to England. Other important members of the Oxford research team were Norman Heatley and Edward Abraham. The team was able to produce and isolate penicillin under conditions of scarce resources and many technical challenges. Sufficient material was collected and tested on mice to successfully demonstrate penicillin's bactericidal action on pathogens, while being nontoxic to mammals. Chain directed the microbiological methods for producing penicillin and the chemical engineering methods to extract the material. This technology was transferred to US government facilities in 1941 for commercial production of penicillin, becoming an important element in the Allied war effort. In 1945, the Nobel Prize for medicine was shared by Fleming, Florey, and Chain in recognition of their work in developing penicillin as a therapeutic agent. After World War II, Chain tried to persuade the British government to fund a new national antibiotic industry with both research and production facilities. As

  12. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    Science.gov (United States)

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  14. Development of soil quality metrics using mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.

    2010-07-01

    Based on the Treaty on Biological Diversity of Rio de Janeiro in 1992 for maintaining and increasing biodiversity, several countries have started programmes monitoring soil quality and the above- and below ground biodiversity. Within the European Union, policy makers are working on legislation for soil protection and management. Therefore, indicators are needed to monitor the status of the soils and these indicators reflecting the soil quality, can be integrated in working standards or soil quality metrics. Soil micro-organisms, particularly arbuscular mycorrhizal fungi (AMF), are indicative of soil changes. These soil fungi live in symbiosis with the great majority of plants and are sensitive to changes in the physico-chemical conditions of the soil. The aim of this study was to investigate whether AMF are reliable and sensitive indicators for disturbances in the soils and can be used for the development of soil quality metrics. Also, it was studied whether soil quality metrics based on AMF meet requirements to applicability by users and policy makers. Ecological criterions were set for the development of soil quality metrics for different soils. Multiple root samples containing AMF from various locations in The Netherlands were analyzed. The results of the analyses were related to the defined criterions. This resulted in two soil quality metrics, one for sandy soils and a second one for clay soils, with six different categories ranging from very bad to very good. These soil quality metrics meet the majority of requirements for applicability and are potentially useful for the development of legislations for the protection of soil quality. (Author) 23 refs.

  15. Could the 2012 Drought in Central U.S. Have Been Anticipated? A Review of NASA Working Group Research

    Science.gov (United States)

    Wang, S.-Y. Simon; Barandiaran, Danny; Hilburn, Kyle; Houser, Paul; Oglesby, Bob; Pan, Ming; Pinker, Rachel; Santanello, Joe; Schubert, Siegfried; Wang, Hailan; hide

    2015-01-01

    This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.

  16. Group Work

    Science.gov (United States)

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  17. Reflection groups

    International Nuclear Information System (INIS)

    Eggermont, G.

    2006-01-01

    In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward

  18. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  19. Alfanet Worked Example: What is Greatness?

    NARCIS (Netherlands)

    dr. Pierre Gorissen

    2004-01-01

    This document consists of an example of a Learning Design based on the What is Greatness example originally created by James Dalziel from WebMCQ using LAMS. Note: The example has been created in parallel with the actual development of the Alfanet system. So no claims can be made that the example

  20. Nevada, the Great Recession, and Education

    Science.gov (United States)

    Verstegen, Deborah A.

    2013-01-01

    The impact of the Great Recession and its aftermath has been devastating in Nevada, especially for public education. This article discusses the budget shortfalls and the impact of the economic crisis in Nevada using case study methodology. It provides a review of documents, including Governor Gibbon's proposals for the public K-12 education system…

  1. Professor Witold Nowicki - a greatly spirited pathologist.

    Science.gov (United States)

    Wincewicz, A; Szepietowska, A; Sulkowski, S

    2016-06-01

    This paper presents a complete overview of the scientific, professional and social activity of a great Polish pathologist, Witold Nowicki (1878-1941), from mainly Polish-written, original sources with a major impact on mostly his own publications. The biographical commemoration of this eminent professor is not only due to the fact that he provided a profound microscopic characterization of pneumatosis cystoides in 1909 and 1924. Nowicki greatly influenced the development of anatomical pathology in Poland, having authored over 82 publications, with special reference to tuberculosis, lung cancer, sarcomatous carcinomas, scleroma and others. However, the first of all his merits for the readership of Polish pathologists was his textbook titled Anatomical Pathology, which was a basic pathology manual in pre-war Poland. Witold Nowicki - as the head of the academic pathological anatomy department and former dean of the medical faculty - was shot with other professors by Nazi Germans in the Wuleckie hills in Lvov during World War Two. Professor Nowicki was described as being "small in size but great in spirit" by one of his associates, and remains an outstanding example of a meticulous pathologist, a patient tutor and a great social activist to follow.

  2. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  3. Financial fragility in the Great Moderation

    NARCIS (Netherlands)

    Bezemer, Dirk; Grydaki, Maria

    2014-01-01

    A nascent literature explores the measurement of financial fragility. This paper considers evidence for rising financial fragility during the 1984-2007 Great Moderation in the U.S. The literature suggests that macroeconomic stability combined with strong growth of credit to asset markets, in asset

  4. The Great Work of the New Millennium

    Science.gov (United States)

    Berry, Thomas

    2013-01-01

    Thomas Berry explores the meaning of work from the standpoint of human civilization responding to the call of the universe, replacing use and exploitation of nature with the wonder, rapport, and intimacy so important to the psychic balance of the developing human and natural harmony of life on Earth. The Great Work is defined as the work of…

  5. A great potential for market power

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2003-01-01

    In a report the competition authorities of Norway, Sweden and Denmark conclude that there is a great potential for exerting market power in the Nordic countries. Bottlenecks in the transmission grid divide the Nordic market in shifting constellations of geographic markets and the market concentration in each market may therefore become very high

  6. The great neurosis of Dr. Joseph Gerard.

    Science.gov (United States)

    Lefrère, Jean-Jacques; Rouillon, Frédéric

    2013-01-01

    The Great Neurosis, of Dr. Joseph Gerard, was published in 1889 in Paris. The book, intended for the general public, shows the different varieties of neuroses through picturesque and instructive examples. Its scientific and medical value is poor, but provides us with the various meanings of the word 'neurosis' in the late nineteenth century. Copyright © 2013 S. Karger AG, Basel.

  7. The Technological Diegesis in "The Great Gatsby"

    Science.gov (United States)

    Zhang, Mingquan

    2008-01-01

    This paper explores the technological diegesis in "The Great Gatsby." In the novel, Fitzgerald cleverly integrates the technological forces into his writing. He particularly relies on the two main props of automobile and telephone to arrange his fragmented plots into a whole. By the deliberate juxtaposition of men and women and machines…

  8. The Classical Plotline of "The Great Gatsby"

    Science.gov (United States)

    Slattery, Dennis P.

    1975-01-01

    Argues that an understanding of the craft of fiction is furthered by a return to the original creation, concluding that "The Great Gatsby" is one of the best examples of Aristotle's description of tragedy as set forth in "The Poetics." (RB)

  9. History of Great Ideas: An Honors Seminar.

    Science.gov (United States)

    Terrill, Marty; And Others

    The History of Great Ideas is an interdisciplinary seminar course for sophomore honor students at North Arkansas Community Technical College that teaches the intellectual history of western civilization. Each semester, students study 14 ideas from science, philosophy, history, religion, sociology, and economics to discover how philosophical…

  10. 77 FR 33597 - Great Outdoors Month, 2012

    Science.gov (United States)

    2012-06-07

    ... Outdoors Month, 2012 By the President of the United States of America A Proclamation America's natural... launch the America's Great Outdoors Initiative. Building on input from tens of thousands of people across... engine of growth. As part of our National Travel and Tourism Strategy, my Administration is working to...

  11. GreatSchools.org Finds Its Niche

    Science.gov (United States)

    Samuels, Christina A.

    2012-01-01

    GreatSchools.org neatly ranks more than 136,000 traditional public, private, and charter schools nationwide on a scale of 1 to 10, based on state test scores. But what often draws readers are the gossipy insider comments posted by parents, students, and teachers, and the star ratings those commenters contribute. The growth of online school rating…

  12. Great plains regional climate assessment technical report

    Science.gov (United States)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  13. The Last Great American Picture Show

    NARCIS (Netherlands)

    Elsaesser, Thomas; King, Noel; Horwath, Alexander

    2004-01-01

    The Last Great American Picture Show brings together essays by scholars and writers who chart the changing evaluations of the American cinema of the 1970s, sometimes referred to as the decade of the lost generation, but now more and more recognized as the first New Hollywood, without which the

  14. How To Become a Great Public Space.

    Science.gov (United States)

    Block, Marylaine

    2003-01-01

    Presents interviews with Fred Kent, founder of the Project for Public Spaces (PPS) and Phil Myrick, PPS's assistant vice president, about transforming libraries into desirable public spaces. Discusses qualities people value in public spaces; great library buildings and what they are doing right; the first thing library directors should do when…

  15. Chapter 17. Information needs: Great gray owls

    Science.gov (United States)

    Gregory D. Hayward

    1994-01-01

    Current understanding of great gray owl biology and ecology is based on studies of less than five populations. In an ideal world, a strong conservation strategy would require significant new information. However, current knowledge suggests that conservation of this forest owl should involve fewer conflicts than either the boreal or flammulated owl. The mix of forest...

  16. Great Depression a Timely Class Topic

    Science.gov (United States)

    Zehr, Mary Ann

    2009-01-01

    This article reports that a number of history and social studies teachers have found that because of the parallels they're able to draw between the current economic crisis and the Great Depression, their students are seeing that history is relevant. They're engaging more deeply in history lessons than they have in previous years. The teachers say…

  17. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  18. Effect of Crop-Straw Derived Biochars on Pb(II) Adsorption in Two Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    JIANG Tian-yu; XU Ren-kou; GU Tian-xia; JIANG Jun

    2014-01-01

    Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH signiifcantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.

  19. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism.

    Science.gov (United States)

    Bao, Yun-Juan; Xu, Zixiang; Li, Yang; Yao, Zhi; Sun, Jibin; Song, Hui

    2017-06-01

    The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation. Copyright © 2016. Published by Elsevier B.V.

  20. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  1. Alkyloxycarbonyl group migration in furanosides

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Přibylová, Marie; Pohl, Radek; Migaud, M. E.; Vaněk, Tomáš

    2012-01-01

    Roč. 68, č. 33 (2012), s. 6701-6711 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) LH11048 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : Alkyloxycarbonyl group * Carbonate * Desilylation Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 2.803, year: 2012

  2. Gardening guide for high-desert urban landscapes of Great Basin regions in Nevada and Utah

    Science.gov (United States)

    Heidi Kratsch; Rick Heflebower

    2013-01-01

    Some Great Basin urban areas in Utah and Nevada exhibit climatic conditions that make it difficult for all but the toughest landscape plants to thrive without providing supplemental water. These areas are found at elevations from 4,000 feet to 6,000 feet in USDA cold-hardiness zones 6 and 7. Soils are often poor and gravelly, containing less than 1 percent organic...

  3. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  4. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  5. Soil sampling

    International Nuclear Information System (INIS)

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  6. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  7. What Makes a Great Journal Great in Economics? The Singer Not the Song.

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); L. Oxley (Les)

    2010-01-01

    textabstractThe paper is concerned with analysing what makes a great journal great in economics, based on quantifiable measures. Alternative Research Assessment Measures (RAM) are discussed, with an emphasis on the Thomson Reuters ISI Web of Science database (hereafter ISI). The various ISI RAM that

  8. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  9. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  10. Soil architecture and distribution of organic matter

    NARCIS (Netherlands)

    Kooistra, M.J.; Noordwijk, van M.

    1996-01-01

    The biological component of soil structure varies greatly in quality and quantity, occurs on different scales, and varies throughout the year. It is far less predictable than the physical part and human impact. The occurrence and distribution of organic matter depends on several processes, related

  11. Group theory

    CERN Document Server

    Scott, W R

    2010-01-01

    Here is a clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.

  12. Group Grammar

    Science.gov (United States)

    Adams, Karen

    2015-01-01

    In this article Karen Adams demonstrates how to incorporate group grammar techniques into a classroom activity. In the activity, students practice using the target grammar to do something they naturally enjoy: learning about each other.

  13. Computer group

    International Nuclear Information System (INIS)

    Bauer, H.; Black, I.; Heusler, A.; Hoeptner, G.; Krafft, F.; Lang, R.; Moellenkamp, R.; Mueller, W.; Mueller, W.F.; Schati, C.; Schmidt, A.; Schwind, D.; Weber, G.

    1983-01-01

    The computer groups has been reorganized to take charge for the general purpose computers DEC10 and VAX and the computer network (Dataswitch, DECnet, IBM - connections to GSI and IPP, preparation for Datex-P). (orig.)

  14. Group learning

    DEFF Research Database (Denmark)

    Pimentel, Ricardo; Noguira, Eloy Eros da Silva; Elkjær, Bente

    The article presents a study that aims at the apprehension of the group learning in a top management team composed by teachers in a Brazilian Waldorf school whose management is collective. After deciding to extend the school, they had problems recruiting teachers who were already trained based...... on the Steiner´s ideas, which created practical problems for conducting management activities. The research seeks to understand how that group of teachers collectively manage the school, facing the lack of resources, a significant heterogeneity in the relationships, and the conflicts and contradictions......, and they are interrelated to the group learning as the construction, maintenance and reconstruction of the intelligibility of practices. From this perspective, it can be said that learning is a practice and not an exceptional phenomenon. Building, maintaining and rebuilding the intelligibility is the group learning...

  15. Accuracy of quantitative visual soil assessment

    Science.gov (United States)

    van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne

    2016-04-01

    Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7

  16. Bioremediation of Soil Contaminated with Some Heavy Metals using Nuclear Techniques

    International Nuclear Information System (INIS)

    Abdel-Aziz, O.A.

    2004-01-01

    The present study dealt with different isolates of bacteria, fungi,yeasts and actinomycetes (BFYA) group that can detoxify the harmful effect of heavy metals in polluted soils. laboratory experiments were carried out with fungal cells isolated from al-gabal al-asfar farm to obtain the main tolerant group against heavy metals toxicity. identified as fusarium oxysporum and aspergillus parasiticus and are able to grow at high concentrations of cadmium 8000 ppm and nickel 10000 ppm, respectively. also, reduction of metals by different inoculums was occurred in soil solution . a great reduction was noticed by inoculation with fusarium oxysporum + aspergillus parasiticus + group of different isolates from nile down stream of delta barrage and pure water el-rhaway drain water especially in case of cobalt (80.8%). Pot experiments were carried out with faba bean and wheat plants cultivated in sandy loam soil collected from al-gabal al-asfar farm and irrigated with effluent for several years. the plant was inoculated with BFYA group (remediator tool), as well as different bio fertilizers including symbiotic, asymbiotic bacteria and arbuscular mycorrhizal fungi as enhancer or promoters for plant growth

  17. Lessons learned from a great master!

    Directory of Open Access Journals (Sweden)

    Wagner Seixas da Silva

    2015-06-01

    Full Text Available Teaching Biochemistry is a huge challenge in the basic cycle of many undergraduate courses. How to convince students that this discipline is important for their academic degree so early in their college journeys? It may be hard to define in words a good teaching strategy for this purpose, but during the 70s'/80's a group of professors accepted this tough task! Professor Leopoldo de Meis paid particular attention to the way of teaching biochemistry. As a very sensitive person, he realized that the secret to a good teaching would be to keep the students motivated with doses of challenge.With this in mind, Prof. de Meis joined a small group of professors and graduate students from the former Department of Medical Biochemistry, now named Institute of Medical Biochemistry Leopoldo de Meis, at the Federal University of Rio de Janeiro, and proposed to use the Discovery learning method in classroom. The idea was to present the contents of the biochemistry course while challenging students to interpret the original data of the major biochemical findings. For this purpose, each biochemistry theme was shown through the experiments that led to the originally obtained conclusions currently present in the textbooks. Thus, students were motivated to ask questions and propose experiments that allow the interpretation of the scientists’ historical results. At first the methodology seemed very novel and difficult, but over the first few minutes the environment became a place for broad scientific discussion, where students enthusiastically participated and developed the ability to draw up the necessary questions to decipher the functioning of metabolic pathways. The parallel between the observed experimental facts and the physiological state of the experimental model used in classic experiments permitted the development of a broad and critical knowledge in the learning of biochemistry.To imagine that the students were motivated to develop the autonomy of

  18. Group technology

    International Nuclear Information System (INIS)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs

  19. Analysis of Soil Degradation Causes in Phyllostachys edulis Forests with Different Mulching Years

    Directory of Open Access Journals (Sweden)

    Jiancheng Zhao

    2018-03-01

    Full Text Available Moso bamboo (Phyllostachys edulis (Carrière J.Houz. is famous for its fast growth and biomass accumulation, as well as high annual output for timber and bamboo shoots. Organic mulches are widely used to improve shoots’ production in moso bamboo forests. However, continuous mulching management may cause bamboo forest degradation and affect sustainable development. The objective of this study was to identify the degradation mechanism and to provide a theoretical basis for recovery. A complete randomized block design with four treatments was conducted, including mulching for one year (M1, two years (M2, three years (M3 and no-mulching management (NM. Soil nutrient contents, enzyme activities and microbial biomass were determined. With the increase of mulching years, the soil pH value gradually reduced, causing soil acidification, but the content of soil organic matter was inclined to ascend. Soil total nitrogen (TN, total phosphorus (TP and total potassium (TK contents showed an increasing trend, and they were significantly higher in mulching stands than those in NM (p < 0.05. Contents of soil available nutrients (AN, AP and AK increased, then decreased with the increase of mulching years and peaked in M1. With the increase of mulching years, the soil stoichiometry ratio (C/N, C/P and N/P gradually increased. Soil invertase, urease and acid phosphatase activities presented a single-peak curve and reached the maximum within one year after mulching. Total microbial biomass and that of individual groups changed greatly after mulching. Soil microbial biomass increased first and then decreased, and it was the largest in M1. The fungi:bacteria ratio decreased in the first year and then began to rise, while the aerobic:anaerobic ratio showed the opposite trend. According to the overall results, M3 leads to soil acidification, imbalance of the nutrients’ proportion, abnormal enzyme activity and change of soil microbial flora, and rotated mulching

  20. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Science.gov (United States)

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel

    2017-07-01

    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment