WorldWideScience

Sample records for great plains winter

  1. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  2. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    Science.gov (United States)

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  3. Climatic change in the Great Plains region of Canada

    International Nuclear Information System (INIS)

    Rizzo, B.

    1991-01-01

    Implications of global warming to Canada's Great Plains region are discussed, with reference to the climate predictions of the Goddard Institute for Space Studies (GISS) general circulation model under a two times atmospheric carbon dioxide concentration scenario. Two sets of climate variables for a geographic area located in the Great Plains are tabulated, for the current (1951-1980) climate normals and under the doubled carbon dioxide scenario. Simple univariate statistics were calculated for the two areas, for the variables of mean annual temperature, mean summer temperature, mean winter temperature, mean July temperature, mean growing season temperature, total annual precipitation, total summer precipitation, total winter precipitation, and total growing season precipitation. Under the GISS scenario, temperature values are on average 4 degree C higher than 1951-1980 normals, while precipitation remains about the same. Locations of ecoclimatic regions are graphed for the whole of Canada. 1 fig., 1 tab

  4. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  5. The Great Plains IDEA Gerontology Program: An Online, Interinstitutional Graduate Degree

    Science.gov (United States)

    Sanders, Gregory F.

    2011-01-01

    The Great-Plains IDEA Gerontology Program is a graduate program developed and implemented by the Great Plains Interactive Distance Education Alliance (Great Plains IDEA). The Great Plains IDEA (Alliance) originated as a consortium of Colleges of Human Sciences ranging across the central United States. This Alliance's accomplishments have included…

  6. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    Science.gov (United States)

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  7. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Directory of Open Access Journals (Sweden)

    John F Grider

    Full Text Available Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis and tricolored bat (Perimyotis subflavus, were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus

  8. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Science.gov (United States)

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  9. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  10. Range Cattle Winter Water Consumption in Northern Great Plains

    Science.gov (United States)

    Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...

  11. Southern Great Plains Atmospheric Radiation Measurement Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  12. Precipitation Dynamical Downscaling Over the Great Plains

    Science.gov (United States)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  13. Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl

    Science.gov (United States)

    Cowan, T.; Hegerl, G. C.

    2016-12-01

    Record-breaking summer heat waves that plagued contiguous United States in the 1930s emerged during the decade-long "Dust Bowl" drought. Using high-quality daily temperature observations, the Dust Bowl heat wave characteristics for the Great Plains are assessed using metrics that describe variations in heat wave activity and intensity. We also quantify record-breaking heat waves over the pre-industrial period for 22 CMIP5 model multi-century realisations. The most extreme Great Plains heat wave summers in the Dust Bowl decade (e.g. 1931, 1934, 1936) were pre-conditioned by anomalously dry springs, as measured by proxy drought indices. In general, summer heat waves over the Great Plains develop 15-20 days earlier after anomalously dry springs, and are also significantly longer and hotter, indicative of the importance of land surface feedbacks in heat wave intensification. The majority of pre-industrial climate model experiments capture regionally clustered summer heat waves across North America, although the North Pacific and Atlantic sea surface temperature patterns associated with the heat waves vary considerably between models. Sea surface temperature patterns may be more important for influencing winter and spring precipitation, thus amplifying summer heat waves during drought periods. The synoptic pattern that commonly appeared during the exceptional Dust Bowl heat waves featured an anomalous broad surface pressure ridge straddling an upper level blocking anticyclone over the western United States. This forced significant subsidence and adiabatic warming over the Great Plains, and triggered anomalous southward warm advection over southern regions, prolonging and amplifying the heat waves over central United States. Importantly, the results show that despite the sparsity of stations in the 1930s, homogeneous observations are crucial in accurately quantifying the Dust Bowl decade heat waves, as opposed to solely relying on atmospheric reanalysis.

  14. Using Land Surface Phenology to Detect Land Use Change in the Northern Great Plains

    Science.gov (United States)

    Nguyen, L. H.; Henebry, G. M.

    2017-12-01

    The Northern Great Plains of the US have been undergoing many types of land cover / land use change over the past two decades, including expansion of irrigation, conversion of grassland to cropland, biofuels production, urbanization, and fossil fuel mining. Much of the literature on these changes has relied on post-classification change detection based on a limited number of observations per year. Here we demonstrate an approach to characterize land dynamics through land surface phenology (LSP) by synergistic use of image time series at two scales. Our study areas include regions of interest (ROIs) across the Northern Great Plains located within Landsat path overlap zones to boost the number of valid observations (free of clouds or snow) each year. We first compute accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperature (MOD11A2 and MYD11A2). Using Landsat Collection 1 surface reflectance-derived vegetation indices (NDVI, EVI), we then fit at each pixel a downward convex quadratic model linking the vegetation index to each year's progression of AGDD. This quadratic equation exhibits linearity in a mathematical sense; thus, the fitted models can be linearly mixed and unmixed using a set of LSP endmembers (defined by the fitted parameter coefficients of the quadratic model) that represent "pure" land cover types with distinct seasonal patterns found within the region, such as winter wheat, spring wheat, maize, soybean, sunflower, hay/pasture/grassland, developed/built-up, among others. Information about land cover corresponding to each endmember are provided by the NLCD (National Land Cover Dataset) and CDL (Cropland Data Layer). We use linear unmixing to estimate the likely proportion of each LSP endmember within particular areas stratified by latitude. By tracking the proportions over the 2001-2011 period, we can quantify various types of land transitions in the Northern Great Plains.

  15. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    Science.gov (United States)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results

  16. Southern Great Plains Safety Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  17. Diversity, Seasonality, and Context of Mammalian Roadkills in the Southern Great Plains

    Science.gov (United States)

    Smith-Patten, Brenda D.; Patten, Michael A.

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum ( Didelphis virginiana), nine-banded armadillo ( Dasypus novemcinctus), striped skunk ( Mephitis mephitis), and northern raccoon ( Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should

  18. Great plains regional climate assessment technical report

    Science.gov (United States)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  19. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  20. Long-term Agroecosystem Research in the Northern Great Plains.

    Science.gov (United States)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  1. Impacts of climate change on freshwater fisheries of the Great Plains

    International Nuclear Information System (INIS)

    Regier, H.A.; Holmes, J.A.

    1991-01-01

    The diversity and habitats of fish in Great Plains hydrologic systems are described. Fisheries on the Great Plains consist of commercial, subsistence, and recreational. Direct effects of climate change on Great Plains fisheries will involve temperature and hydrology. Increased temperature could expand suitable habitat for fish with preferred temperatures between 10 and 27.5 degree C by 2.5 times base conditions. Reductions in precipitation will reduce river flows and lake levels, and an overall reduction in habitat for the most preferred species is expected. Indirect effects stem from human responses to climate change, and streams, wetlands and coastal zones will likely bear the brunt of such activity. More river systems may be damned or channelized, which could lead to increases in eutrophication or pollution, most severely affecting the preferred white fishes. Geographical shifts of species in response to climate change will likely favour black fish over grey fish over white fish, and when longitudinal or lateral movement is blocked, local extinctions may occur. 22 refs., 1 tab

  2. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    Science.gov (United States)

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  3. Numerical Modeling of Persistent Winter Fog over the Indo-Gangetic Plains

    Science.gov (United States)

    Ghimire, S.; Adhikary, B.; Praveen, P. S.; Panday, A. K.

    2017-12-01

    Every winter the Indo-Gangetic Plains (IGP) in northern South Asia; bounded by the great Himalayas in the north, are periodically covered by dense and persistent fog that severely impacts day-to-day activities of several hundred million people. The fog can stretch over several hundred kilometers and last several days in many locations. Despite the fog's high impact, there are very limited in-situ observations available to characterize persistent fog episodes. Also, there has been very little success to date in accurately predicting the fog occurrence and extent over a larger area such as IGP. This study will present insights into the performance of the Weather Research and Forecasting (WRF) model simulating persistent winter fog prediction in the IGP region, compared to satellite observations and in-situ measurements. Since fog is not a prognostic variable in WRF, the study presents results based on multi-rule diagnostic algorithms published in peer reviewed journals. In addition, fog episodes were analyzed using the Air Force Weather Agency (AFWA) diagnostics package available for WRF. On a regional scale, MODIS data onboard the TERRA and AQUA satellites are used to evaluate model performance skills. At a local scale, the model is evaluated at two sites in the southern Nepal, Lumbini and Chitwan, located in the IGP. Lumbini and Chitwan observatories have Luftt and Biral weather sensors which allow monitoring presence of fog, visibility range and surface meteorology. In addition, for Chitwan, data from DMT Fog Monitor (FM 120) and Luftt CHM 15K Ceilometer were used to compare model performance for liquid-water content and planetary boundary layer during foggy and non-foggy days.

  4. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  5. Groundwater declines are linked to changes in Great Plains stream fish assemblages.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John

    2017-07-11

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.

  6. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Science.gov (United States)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  7. Influence of latitude on the US great plains East-West precipitation gradient

    Science.gov (United States)

    Precipitation varies greatly from east to west across the US Great Plains as a result of a combination of the rain shadow of the Rocky Mountains and the moisture flow from the Gulf of Mexico. Because of this precipitation gradient, application of research results obtained in one location to other lo...

  8. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Science.gov (United States)

    2013-03-22

    ... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654

  9. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Science.gov (United States)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  10. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    Science.gov (United States)

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  11. Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster

    Science.gov (United States)

    Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...

  12. Potential future impacts of climatic change on the Great Plains

    International Nuclear Information System (INIS)

    Smit, B.

    1991-01-01

    A synopsis is provided of approaches to impact studies in the Great Plains, findings from studies of future impacts are summarized, and opportunities for enhancing understanding of future impacts are discussed. Potential impacts of climate change on agriculture, water resources, forestry, recreation/tourism, and energy are summarized. Impact analyses need to look more rigorously at variability in climate, the probabilities of various climatic conditions, and the sensitivity of social and economic activities to climatic variability. Most economic impact studies have assumed no adaptive behavior on the part of economic decision makers. Credible impact assessments require an improved understanding of the sensitivity and adaptability of sectors to climatic conditions, particularly variability. The energy sector in the Great Plains region is likely to be more sensitive to political developments in the Middle East than to climatic variability and change. Speculation and analysis of climate impacts have focused on supply conditions and demands, yet the sector is more keenly sensitive to policy implications of climatic change, such as the potential for fossil fuel taxes or other legislative or pricing constraints. 28 refs

  13. Southern Great Plains Rapid Ecoregional assessment—Volume I. Ecological communities

    Science.gov (United States)

    Reese, Gordon C.; Burris, Lucy; Carr, Natasha B.; Leinwand, Ian I.F.; Melcher, Cynthia P.

    2017-10-19

    The Southern Great Plains Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM) and the Great Plains Landscape Conservation Cooperative. The overall goal of the Rapid Ecoregional Assessments (REAs) is to compile and synthesize regional datasets to facilitate evaluation of the cumulative effects of change agents on priority ecological communities and species. In particular, the REAs identify and map the distribution of communities and wildlife habitats at broad spatial extents and provide assessments of ecological conditions. The REAs also identify where and to what degree ecological resources are currently at risk from change agents, such as development, fire, invasive species, and climate change. The REAs can help managers identify and prioritize potential areas for conservation or restoration, assess cumulative effects as required by the National Environmental Policy Act, and inform landscape-level planning and management decisions for multiple uses of public lands.Management questions form the basis for the REA framework and were developed in conjunction with the BLM and other stakeholders. Conservation elements are communities and species that are of regional management concern. Core management questions relate to the key ecological attributes and change agents associated with each conservation element. Integrated management questions synthesize the results of the primary core management questions into overall landscape-level ranks for each conservation element.The ecological communities evaluated as conservation elements are shortgrass, mixed-grass, and sand prairies; all grasslands; riparian and nonplaya wetlands; playa wetlands and saline lakes; and prairie streams and rivers. Species and species assemblages evaluated are the freshwater mussel assemblage, Arkansas River shiner (Notropis girardi), ferruginous hawk (Buteo regalis), lesser prairie chicken (Tympanuchus pallidicinctus), snowy plover (Charadrius

  14. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  15. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.

    2017-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  16. Understanding Great Plains Urbanization through the Lens of South Dakota Townscapes

    Science.gov (United States)

    Conzen, Michael P.

    2010-01-01

    Most towns were crucial to the initial colonization and economic development of the Great Plains. Many were, directly or indirectly, creatures of railroad corporate planning, owing their location as well as their physical layout to the townsite companies controlled by railroad officials. This article examines how these facts shaped the fundamental…

  17. Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat

    Directory of Open Access Journals (Sweden)

    Caiyun Lu

    2017-01-01

    Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.

  18. An analysis, sensitivity and prediction of winter fog events using FASP model over Indo-Gangetic plains, India

    Science.gov (United States)

    Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.

    2017-12-01

    Indo-Gangetic plains of India experience severe fog conditions during the peak winter months of December and January every year. In this paper an attempt has been to analyze the spatial and temporal variability of winter fog over Indo-Gangetic plains. Further, an attempt has also been made to configure an efficient meso-scale numerical weather prediction model using different parameterization schemes and develop a forecasting tool for prediction of fog during winter months over Indo-Gangetic plains. The study revealed that an alarming increasing positive trend of fog frequency prevails over many locations of IGP. Hot spot and cluster analysis were conducted to identify the high fog prone zones using GIS and inferential statistical tools respectively. Hot spots on an average experiences fog on 68.27% days, it is followed by moderate and cold spots with 48.03% and 21.79% respectively. The study proposes a new FASP (Fog Analysis, sensitivity and prediction) Model for overall analysis and prediction of fog at a particular location and period over IGP. In the first phase of this model long term climatological fog data of a location is analyzed to determine its characteristics and prevailing trend using various advanced statistical techniques. During a second phase a sensitivity test is conducted with different combination of parameterization schemes to determine the most suitable combination for fog simulation over a particular location and period and in the third and final phase, first ARIMA model is used to predict the number of fog days in future . Thereafter, Numerical model is used to predict the various meteorological parameters favourable for fog forecast. Finally, Hybrid model is used for fog forecast over the study location. The results of the FASP model are validated with actual ground based fog data using statistical tools. Forecast Fog-gram generated using hybrid model during Jan 2017 shows highly encouraging results for fog occurrence/Non occurrence between

  19. Small mammals in successional prairie woodlands of the northern Great Plains

    Science.gov (United States)

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  20. Ecology of fire in shortgrass prairie of the southern Great Plains

    Science.gov (United States)

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  1. Coronado and Aesop: Fable and Violence on the Sixteenth-Century Plains

    Science.gov (United States)

    Palmer, Daryl W.

    2009-01-01

    In the spring of 1540, Francisco Vazquez de Coronado led an "entrada" from present-day Mexico into the region we call New Mexico, where the expedition spent a violent winter among pueblo peoples. The following year, after a long march across the Great Plains, Coronado led an elite group of his men north into present-day Kansas where,…

  2. A network model framework for prioritizing wetland conservation in the Great Plains

    Science.gov (United States)

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  3. Late Pleistocene dune activity in the central Great Plains, USA

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  4. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Science.gov (United States)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  5. Energy Profiles of an Agricultural Frontier: The American Great Plains, 1860-2000.

    Science.gov (United States)

    Cunfer, Geoff; Watson, Andrew; MacFadyen, Joshua

    2018-04-01

    Agro-ecosystem energy profiles reveal energy flows into, within, and out of U.S. Great Plains farm communities across 140 years. This study evaluates external energy inputs such as human labor, machinery, fuel, and fertilizers. It tracks the energy content of land produce, including crops, grazed pasture, and firewood, and also accounts unharvested energy that remains available for wildlife. It estimates energy redirected through livestock feed into draft power, meat, and milk, and estimates the energy content of final produce available for local consumption or market sale. The article presents energy profiles for three case studies in Kansas in 1880, 1930, 1954, and 1997. Two energy transformations occurred during that time. The first, agricultural colonization , saw farm communities remake the landscape, turning native grassland into a mosaic of cropland and pasture, a process that reduced overall landscape energy productivity. A second energy transition occurred in the mid-twentieth century, characterized by fossil fuel energy imports. That outside energy raised harvested and unharvested energy flows, reused biomass energy, and also final produce. This socio-ecological transition increased landscape energy productivity by 33 to 45 percent above pre-settlement conditions in grain-growing regions. These energy developments were not uniform across the plains. Variations in rainfall and soil quality constrained or favored energy productivity in different places. The case studies reveal the spatial variation of energy profiles in Great Plains agro-ecosystems, while the longitudinal approach tracks temporal change.

  6. Effects of winter marsh burning on abundance and nesting activity of Louisiana seaside sparrows in the Gulf Coast Chenier Plain

    Science.gov (United States)

    Gabrey, S.W.; Afton, A.D.

    2000-01-01

    Louisiana Seaside Sparrows (Ammodramus maritimus fisheri) breed and winter exclusively in brackish and saline marshes along the northern Gulf of Mexico. Many Gulf Coast marshes, particularly in the Chenier Plain of southwestern Louisiana and southeastern Texas, are burned intentionally in fall or winter as part of waterfowl management programs. Fire reportedly has negatively affected two Seaside Sparrow subspecies (A. m. nigrescens and A. m. mirabilis) in Florida, but there is no published information regarding effects of fire on A. m. fisheri. We compared abundance of territorial male Louisiana Seaside Sparrows, number of nesting activity indicators, and vegetation structure in paired burned and unburned plots in Chenier Plain marshes in southwestern Louisiana during the 1996 breeding season (April-July) before experimental winter burns (January 1997) and again during two breeding seasons post-burn (1997-1998). We found that abundance of male sparrows decreased in burned plots during the first breeding season post-burn, but was higher than that of unburned plots during the second breeding season post-burn. Indicators of nesting activity showed a similar but non-significant pattern in response to burning. Sparrow abundance and nesting activity seemingly are linked to dead vegetation cover, which was lower in burned plots during the first breeding season post-burn, but did not differ from that in unburned plots during the second breeding season post-burn. We recommend that marsh management plans in the Gulf Coast Chenier Plain integrate waterfowl and Seaside Sparrow management by maintaining a mosaic of burned and unburned marshes and allowing vegetation to recover for at least two growing seasons before reburning a marsh.

  7. [Soil respiration characteristics in winter wheat field in North China Plain].

    Science.gov (United States)

    Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang

    2004-09-01

    Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship

  8. Summertime Low-Level Jets over the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Stensrud, D.J. [NOAA/ERL/National Severe Storms Lab., Norman, OK (United States); Pfeifer, S. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  9. Summary of findings from the Great Plains Tree and Forest Invasives Initiative

    Science.gov (United States)

    Dacia M. Meneguzzo; Andrew J. Lister; Cody. Sullivan

    2018-01-01

    The Great Plains Tree and Forest Invasives Initiative (GPI) was a cooperative effort of the U.S. Forest Service and state forestry agencies in Kansas, Nebraska, North Dakota, and South Dakota, with a primary goal of evaluating the tree resources throughout the four-state region as a preparedness measure for the arrival of invasive pests, such as the emerald ash borer...

  10. Whooping crane stopover site use intensity within the Great Plains

    Science.gov (United States)

    Pearse, Aaron T.; Brandt, David A.; Harrell, Wade C.; Metzger, Kristine L.; Baasch, David M.; Hefley, Trevor J.

    2015-09-23

    Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10 migrations and 5 years (2010–14). Using a grid-based approach, we identified 1,095 20-square-kilometer grid cells that contained stopover sites. We categorized occupied grid cells based on density of stopover sites and the amount of time cranes spent in the area. This assessment resulted in four categories of stopover site use: unoccupied, low intensity, core intensity, and extended-use core intensity. Although provisional, this evaluation of stopover site use intensity offers the U.S. Fish and Wildlife Service and partners a tool to identify landscapes that may be of greater conservation significance to migrating whooping cranes. Initially, the tool will be used by the U.S. Fish and Wildlife Service and other interested parties in evaluating the Great Plains Wind Energy Habitat Conservation Plan.

  11. The Development of Tourist Relations during the Economic Crisis through the Example of the Southern Great Plain Region and Serbia

    Directory of Open Access Journals (Sweden)

    PÉTER GULYÁS

    2016-06-01

    Full Text Available Since the beginning of the economic crisis, nearby feeder markets have become increasingly important for Hungary’s tourism sector with cross-border cooperation schemes playing an ever increasing role. This also holds true for Hungary’s Southern Great Plain Region when viewed in its relationship with neighbouring Serbia. This paper examines tourism flow changes in the Southern Hungarian Great Plain Region during the period of the economic crisis especially as far as tourism flows from Serbia are concerned. The analysis is based on official statistical data available in respect of commercial accommodation facilities, analyses on tourism trends carried out at the European level, and regional development documents drawn up for the Hungarian–Serbian cross border region. The economic crisis caused a significant downturn in tourism flows in the Southern Great Plain Region. However, the number of tourists arriving from Serbia to the Southern Great Plain and the number of nights they spent there increased even during the crisis partly because of the favourable geographical location of the region, partly because of the intensive cooperation schemes implemented in the tourism sector, and partly because of organised marketing campaigns.

  12. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G. [North Dakota State Univ., Fargo, ND (United States)

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  13. Building Indigenous Community Resilience in the Great Plains

    Science.gov (United States)

    Gough, B.

    2014-12-01

    Indigenous community resilience is rooted in the seasoned lifeways, developed over generations, incorporated into systems of knowledge, and realized in artifacts of infrastructure through keen observations of the truth and consequences of their interactions with the environment found in place over time. Their value lies, not in their nature as artifacts, but in the underlying patterns and processes of culture: how previous adaptations were derived and evolved, and how the principles and processes of detailed observation may inform future adaptations. This presentation examines how such holistic community approaches, reflected in design and practice, can be applied to contemporary issues of energy and housing in a rapidly changing climate. The Indigenous Peoples of the Great Plains seek to utilize the latest scientific climate modeling to support the development of large, utility scale distributed renewable energy projects and to re-invigorate an indigenous housing concept of straw bale construction, originating in this region. In the energy context, we explore the potential for the development of an intertribal wind energy dynamo on the Great Plains, utilizing elements of existing federal policies for Indian energy development and existing federal infrastructure initially created to serve hydropower resources, which may be significantly altered under current and prospective drought scenarios. For housing, we consider the opportunity to address the built environment in Indian Country, where Tribes have greater control as it consists largely of residences needed for their growing populations. Straw bale construction allows for greater use of local natural and renewable materials in a strategy for preparedness for the weather extremes and insurance perils already common to the region, provides solutions to chronic unemployment and increasing energy costs, while offering greater affordable comfort in both low and high temperature extremes. The development of large

  14. Price, Weather, and `Acreage Abandonment' in Western Great Plains Wheat Culture.

    Science.gov (United States)

    Michaels, Patrick J.

    1983-07-01

    Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with lowest average yields. This is one of the more agroclimatically marginal environments in the United States, with wide interannual fluctuations in both climate and profitability.We developed a multiple regression model to determine the relative roles of weather and expected price in the decision not to harvest. The overall model explained 77% of the spatial and temporal variation in abandonment. The 36.5% of the non-spatial variation was explained by two simple transformations of climatic data from three monthly aggregates-September-October, November-February and March-April. Price factors, expressed as indexed future delivery quotations,were barely significant, with only between 3 and 5% of the non-spatial variation explained, depending upon the model.The model was based upon weather, climate and price data from 1932 through 1975. It was tested by sequentially withholding three-year blocks of data, and using the respecified regression coefficients, along with observed weather and price, to estimate abandonment in the withheld years. Error analyses indicate no loss of model fidelity in the test mode. Also, prediction errors in the 1970-75 period, characterized by widely fluctuating prices, were not different from those in the rest of the model.The overall results suggest that the perceived quality of the crop, as influenced by weather, is a much more important determinant of the abandonment decision than are expected returns based upon price considerations.

  15. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  16. Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains

    Science.gov (United States)

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...

  17. Immigration to the Great Plains, 1865-1914: War, Politics, Technology, and Economic Development

    Science.gov (United States)

    Garver, Bruce

    2011-01-01

    The advent and vast extent of immigration to the Great Plains states during the years 1865 to 1914 is perhaps best understood in light of the new international context that emerged during the 1860s in the aftermath of six large wars whose consequences included the enlargement of civil liberties, an acceleration of economic growth and technological…

  18. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Science.gov (United States)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  19. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    Science.gov (United States)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  20. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  1. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  2. Child Labor in the Early Sugar Beet Industry in the Great Plains, 1890-1920

    Science.gov (United States)

    Lyons-Barrett, Mary

    2005-01-01

    Children working in agriculture have always been a part of the rural culture and work ethos of the United States, especially on the Great Plains. Many teenagers still detassel corn or walk the beans in the summer months to earn spending money or money for college. But what about the children who work as migrant laborers in commercialized…

  3. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, PJ [Colorado State University; Suski, KJ [Colorado State University; Hill, TCJ [Colorado State University; Levin, EJT [Colorado State University

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  4. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B. [Department of Energy, New York, NY (United States)

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  5. Woody encroachment in northern Great Plains grasslands: Perceptions, actions, and needs

    Science.gov (United States)

    Symstad, Amy J.; Leis, Sherry A.

    2017-01-01

    The United States Northern Great Plains (NGP) has a high potential for landscape-scale conservation, but this grassland landscape is threatened by encroachment of woody species. We surveyed NGP land managers to identify patterns in, and illustrate a broad range of, individual managers' perceptions on (1) the threat of woody encroachment to grasslands they manage, and (2) what management practices they use that may influence woody encroachment in this region. In the 34 surveys returned, which came from predominantly public lands in the study area, 79% of responses reported moderate or substantial woody encroachment. Eastern redcedar (Juniperus virginiana) and Rocky Mountain juniper (Juniperus scopulorum) were the most problematic encroachers. Thirty-one survey respondents said that prescribed fire was used on the lands they manage, and 64% of these responses reported that controlling woody encroachment was a fire management objective. However, only 18% of survey respondents using prescribed fire were achieving their desired fire return interval. Most respondents reported using mechanical and/or chemical methods to control woody species. In contrast to evidence from the central and southern Great Plains, few survey respondents viewed grazing as affecting encroachment. Although the NGP public land managers we surveyed clearly recognize woody encroachment as a problem and are taking steps to address it, many feel that the rate of their management is not keeping pace with the rate of encroachment. Developing strategies for effective woody plant control in a variety of NGP management contexts requires filling ecological science gaps and overcoming societal barriers to using prescribed fire.

  6. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States

    Science.gov (United States)

    Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu. Gao

    2014-01-01

    Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...

  7. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  8. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  9. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    Science.gov (United States)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  10. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    Science.gov (United States)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  11. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  12. Greenhouse Gas Emissions of Beef Cattle Production in the Southern Great Plains

    Science.gov (United States)

    Kannan, N.; Niraula, R.; Saleh, A.; Osei, E.; Cole, A.; Todd, R.; Waldrip, H.; Aljoe, H.

    2017-12-01

    A five-year USDA-funded study titled "Resilience and vulnerability of beef cattle production in the Southern Great Plains under changing climate, land use, and markets" was initiated as a multi-institutional collaboration involving Texas Institute for Applied Environmental Research (TIAER)—Tarleton State University, United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) in El Reno, Oklahoma, USDA—ARS in Bushland, Texas, Kansas State University, Oklahoma State University, University of Oklahoma, and the Noble Research Institute in Ardmore, Oklahoma. The project goal is to safeguard and promote regional beef production while mitigating its environmental footprint. Conducting a full Life Cycle Analysis (LCA) is one of the major objectives of the study, in addition to field experiments, extension, outreach, and education. Estimation of all the resource use and greenhouse gas emissions are parts of the LCA. A computer model titled Animal Production Life Cycle Analysis Tool (APLCAT) is developed and applied to conduct the LCA on beef cattle production in the study region. The model estimates water use, energy requirements, and emissions of enteric methane, manure methane, nitrous oxide, and carbon dioxide. Also included in the LCA analysis are land-atmospheric exchanges of methane, nitrous oxide, carbon dioxide and the global warming potential. Our study is focused on the cow-calf and stocker phases of beef cattle production. The animal production system in the study region is predominantly forage based with protein and energy supplements when needed. Spring calving typical to the study region. In the cow-calf phase animals typically graze native prairie although introduced pasture grazing is also prevalent. Stockers use winter pasture as the major feed. The results of greenhouse gas emissions summarized per kg of hot carcass weight or animal fed will be presented.

  13. Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices

    Directory of Open Access Journals (Sweden)

    Shufeng Chen

    2017-02-01

    Full Text Available Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the effects of different nitrogen (N fertilization and irrigation management practices on water leakage and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP. Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing and two irrigation (IR1, the traditional one; IR2, irrigation based on real-time soil water content monitoring management practices were designed in the experiments. Water and nitrate amounts leaving the soil layer at a depth of 2.0 m below the soil surface were calculated and compared. Results showed that the IR2 effectively reduced water leakage and nitrate leaching amounts in the two-year period, especially in the winter wheat season. Less than 10 percent irrigation water could be saved in a dry winter wheat season, but about 60 percent could be saved in a wet winter wheat season. Besides, 58.8 percent nitrate under single NF2IR1 and 85.2 percent under NF2IR2 could be prevented from leaching. The IR2 should be considered as the best management practice to save groundwater resources and prevent nitrate from leaching. The amounts of N input play a great role in affecting nitrate concentrations in the soil solutions in the winter wheat–summer maize rotation system. The NF2 significantly reduced N inputs and should be encouraged in ordinary agricultural production. Thus, nitrate leaching and groundwater contamination could be alleviated, but timely N supplement might be needed under high precipitation condition.

  14. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  15. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  16. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  17. Why Different Drought Indexes Show Distinct Future Drought Risk Outcomes in the U.S. Great Plains?

    Science.gov (United States)

    Feng, S.; Hayes, M. J.; Trnka, M.

    2015-12-01

    Vigorous discussions and disagreements about the future changes in drought intensity in the US Great Plains have been taking place recently within the literature. These discussions have involved widely varying estimates based on drought indices and model-based projections of the future. To investigate and understand the causes for such a disparity between these previous estimates, we analyzed 10 commonly-used drought indexes using the output from 26 state-of-the-art climate models. These drought indices were computed using potential evapotranspiration estimated by the physically-based Penman-Monteith method (PE_pm) and the empirically-based Thornthwaite method (PE_th). The results showed that the short-term drought indicators are similar to modeled surface soil moisture and show a small but consistent drying trend in the future. The long-term drought indicators and the total column soil moisture, however, are consistent in projecting more intense future drought. When normalized, the drought indices with PE_th all show unprecedented and possibly unrealistic future drying, while the drought indices with PE_pm show comparable dryness with the modeled soil moisture. Additionally, the drought indices with PE_pm are closely related to soil moisture during both the 20th and 21st Centuries. Overall, the drought indices with PE_pm, as well as the modeled total column soil moisture, suggest a widespread and very significant drying of the Great Plains region toward the end of the Century. Our results suggested that the sharp contracts about future drought risk in the Great Plains discussed in previous studies are caused by 1) comparing the projected changes in short-term droughts with that of the long-term droughts, and/or 2) computing the atmospheric evaporative demand using the empirically-based method (e.g., PE_th). Our analysis may be applied for drought projections in other regions across the globe.

  18. Dynamic cropping systems: Holistic approach for dryland agricultural systems in the northern Great Plains of North America

    Science.gov (United States)

    Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...

  19. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  20. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  1. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  2. Assessing urban forest effects and values of the Great Plains: Kansas, Nebraska, North Dakota, South Dakota

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Allison R. Bodine

    2012-01-01

    This report details the evaluation of the urban tree resources of the north-central Great Plains region of the United States. Specifically this report provides a more comprehensive understanding of the species composition and structural and functional benefits of the urban forests in the states of Kansas (33.1 million urban trees), Nebraska (13.3 million urban trees),...

  3. Migration and winter distribution of the Chestnutcollared Longspur

    Directory of Open Access Journals (Sweden)

    Ellison Kevin

    2017-12-01

    Full Text Available The Chestnut-collared Longspur (Calcarius ornatus is one of five grassland songbirds, endemic within North America, with populations that have declined >65% since the 1960s. These species breed and winter in the northern and southern Great Plains, respectively. Identifying migration routes, wintering sites, and the timing of their habitat use is key for understanding the relative magnitude of threats across the annual cycle and effectively targeting habitats for conservation. We tracked migratory movements of seven Chestnut-collared Longspurs with light-level geolocators deployed in Canada. Individuals wintered up to 112-1,200km apart. All followed the Central Flyway, circumvented high-elevation terrain, and traveled east of the breeding location. Unlike most songbirds, the durations of spring and fall migrations were similar; on average 42 ± 7d and 41 ± 5d during fall and spring migrations, respectively, for an approximately 2,000km migration; this highlights the need to better understand habitat requirements during migration for grassland songbirds. Using geospatial habitat data, we assessed winter distribution overlap with four other endemic grassland songbirds; wintering range overlapped 63-99%. Future studies should use more precise devices (e.g., archival GPS units, programmed for data collection dates from this study, to identify specific migratory sites for better conserving this and associated grassland species.

  4. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    Science.gov (United States)

    Collison, Jake

    2016-04-07

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  5. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    Science.gov (United States)

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  6. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    Science.gov (United States)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  7. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains.

    Science.gov (United States)

    Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T

    2015-09-01

    Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management.

  8. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    Science.gov (United States)

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  9. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities

    Science.gov (United States)

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.

  10. Using natural range of variation to set decision thresholds: a case study for great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.

    2014-01-01

    Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which

  11. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Science.gov (United States)

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  12. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    Science.gov (United States)

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  14. Utopia Plain

    Science.gov (United States)

    2006-01-01

    5 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark-toned, cratered plain in southwest Utopia Planitia. Large, light-toned, windblown ripples reside on the floors of many of the depressions in the scene, including a long, linear, trough. Location near: 30.3oN, 255.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  15. Monitoring water phase dynamics in winter clouds

    Science.gov (United States)

    Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David

    2014-10-01

    This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.

  16. Simulating the Evolution of Fluid Underpressures in the Great Plains, by Incorporation of Tectonic Uplift and Tilting, with a Groundwater Flow Model

    Directory of Open Access Journals (Sweden)

    Amjad M. J. Umari

    2018-01-01

    Full Text Available Underpressures (subhydrostatic heads in the Paleozoic units underlying the Great Plains of North America are a consequence of Cenozoic uplift of the area. Based on tectonostratigraphic data, we have developed a cumulative uplift history with superimposed periods of deposition and erosion for the Great Plains for the period from 40 Ma to the present. Uplift, deposition, and erosion on an 800 km geologic cross-section extending from northeast Colorado to eastern Kansas is represented in nine time-stepped geohydrologic models. Sequential solution of the two-dimensional diffusion equation reveals the evolution of hydraulic head and underpressure in a changing structural environment after 40 Ma, culminating in an approximate match with the measured present-day values. The modeled and measured hydraulic head values indicate that underpressures increase to the west. The 2 to 0 Ma model indicates that the present-day hydraulic head values of the Paleozoic units have not reached steady state. This result is significant because it indicates that present-day hydraulic heads are not at equilibrium, and underpressures will increase in the future. The pattern uncovered by the series of nine MODFLOW models is of increased underpressures with time. Overall, the models indicate that tectonic uplift explains the development of underpressures in the Great Plains.

  17. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  18. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    Science.gov (United States)

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  19. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late- 21st century climate

    Science.gov (United States)

    The Northern Great Plains (NGP) region – Montana, Wyoming, Colorado, North Dakota, South Dakota and Nebraska – is a largely rural area that provides important agricultural and ecological services, including biological diversity. The NGP is projected to experience rising atmospheric CO2, warming and ...

  20. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate

    Science.gov (United States)

    The Northern Great Plains (NGP) region of the United States – which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota and Nebraska – is a largely rural area that provides important agricultural and ecological services, including biological diversity. The region contains 25% of the Nat...

  1. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  2. Changes occurring in plain, straining and winter yoghurt during the ...

    African Journals Online (AJOL)

    In this study, winter yoghurt, straining yoghurt and yoghurt samples produced from homogenized and non-homogenized sheep and a mixture of sheep and cows milks were evaluated during the storage periods. Winter yoghurt, straining yoghurt and yoghurt samples were stored in sterile jars in the refrigerator (4°C).

  3. [Differences in root developmenly of winter wheat cultivars in Huang-Huai Plain, China].

    Science.gov (United States)

    Qiu, Xin-Qiang; Gao, Yang; Li, Xin-Qiang; Huang, Ling; Duan, Ai-Wang

    2012-07-01

    Selecting one presently popularized winter wheat cultivar (Zhengmai 9023) and two cultivars (Abo and Fengchan 3) introduced in the 1950s and 1960s in Huang-Huai Plain as test materials, and by using minirhizotron technique, this paper studied the live root length, root diameter distribution, and net root growth rate of the cultivars. Fine roots with a diameter from 0.05 mm to 0.25 mm occupied the majority of the whole root system, and the fine roots with a diameter less than 0.5 mm accounted for 98% of the live root length. The average root diameter varied with plant growth, the variation range being 0.15 - 0.22 mm, and no significant difference was observe among the cultivars. The live root length was significantly positively correlated root number, suggesting that root number was the main factor for the increase of live root length. The most vigorous growth period of the roots was from reviving to jointing stage, and Abo and Fengchan 3 had a longer period increased root vitality, as compared with Zhengmai 9023. For Zhengmai 9023, its fine roots with a diameter more than 0.1 mm had an increasing proportion after jointing stage, which was helpful for improving plant resistance, root activity, and grain-filling at late growth stages.

  4. Assessing drought risk under climate change in the US Great Plains via evaporative demand from downscaled GCM projections

    Science.gov (United States)

    Dewes, C.; Rangwala, I.; Hobbins, M.; Barsugli, J. J.

    2016-12-01

    Drought conditions in the US Great Plains occur primarily in response to periods of low precipitation, but they can be exacerbated by enhanced evaporative demand (E0) during periods of elevated temperatures, radiation, advection, and/or decreased humidity. A number of studies project severe to unprecedented drought conditions for this region later in the 21st century. Yet, we have found that methodological choices in the estimation of E0 and the selection of global climate model (GCM) output account for large uncertainties in projections of drought risk. Furthermore, the coarse resolution of GCMs offers little usability for drought risk assessments applied to socio-ecological systems, and users of climate data for that purpose tend to prefer existing downscaled products. Here we derive a physically based estimation of E0 - the FAO56 Penman-Monteith reference evapotranspiration - using driving variables from the Multivariate Adaptive Constructed Analogs (MACA) dataset, which have a spatial resolution of approximately 4 km. We select downscaled outputs from five CMIP5 GCMs, whereby we aim to represent different scenarios for the future of the Great Plains region (e.g. warm/wet, hot/dry, etc.). While this downscaling methodology removes GCM bias relative to a gridded product for historical data (METDATA), we first examine the remaining bias relative to ground (point) estimates of E0. Next we assess whether the downscaled products preserve the variability of their parent GCMs, in both historical and future (RCP8.5) projections. We then use the E0 estimates to compute multi-scale time series of drought indices such as the Evaporative Demand Drought Index (EDDI) and the Standardized Precipitation-Evaporation Index (SPEI) over the Great Plains region. We also attribute variability and drought anomalies to each of the driving parameters, to tease out the influence of specific model biases and evaluate geographical nuances of E0 drivers. Aside from improved understanding of

  5. Haematological status of wintering great tits (Parus major) along a metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geens, Ann, E-mail: ann.geens@ua.ac.be [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium); Dauwe, Tom [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium); VITO, Boeretang 200, B-2400 Mol (Belgium); Bervoets, Lieven; Blust, Ronny [Department of Biology, University of Antwerp, Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Eens, Marcel [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium)

    2010-02-01

    In the long-term biomonitoring of wild populations inhabiting polluted areas, the use of non-destructive biomarkers as markers of condition is very important. We examined the possible effects of metal pollution on the haematological status of adult great tits (Parus major) along a well-established pollution gradient near a non-ferrous smelter in Belgium. We measured blood and feather metal concentrations and assessed the haematological status (amount of red blood cells, haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin) of adult great tits during winter at four study sites. Metal concentrations in blood and feathers indicated that cadmium and lead were the most important metals in the pollution gradient under study. Measurements of haematological parameters revealed that haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin were lower in great tits from the more polluted sites. These parameters were significantly negatively correlated with blood lead concentration. The amount of red blood cells, however, did not significantly differ among study sites. Our results indicate that the haematological status of great tits is negatively affected by metal pollution and may therefore be used as a successful biomarker for monitoring the negative impact of metal exposure in the wild.

  6. Terra Data Confirm Warm, Dry U.S. Winter

    Science.gov (United States)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  7. Stratigraphic evidence of desertification in the west-central Great Plains within the past 1000 yr

    Science.gov (United States)

    Madole, R.F.

    1994-01-01

    Stratigraphic and geomorphic relations, archaeological data, and eight radiocarbon ages at five widely scattered localities in northeastern Colorado indicate that eolian sand was mobilized over broad areas within the past 1000 yr. The mobilization began after 1 ka, was episodic, and ended at some as yet undetermined time prior to the latter part of the 19th century. Given that climate-model simulations suggest only slight variation in average surface temperature and annual precipitation in this region during the past 1000 yr, this part of the Great Plains evidently is near the threshold of widespread eolian sand transport under the present climate. -Author

  8. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  9. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    Science.gov (United States)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer

  10. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    Science.gov (United States)

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  11. The impact of climate change on agriculture and related resources in the Great Plains

    International Nuclear Information System (INIS)

    Easterling, W.E.

    1991-01-01

    The impacts of climate change on water resources and agriculture in the four Great Plains states Missouri, Iowa, Nebraska and Kansas (MINK), using the anomalously hot and dry weather of the 1930s as a model for climate in the year 2030 and a mechanistic crop simulation model known as the Erosion Productivity Impact Calculator (EPIC), are described. EPIC was modified for climate impact analysis by compiling data sets providing detailed descriptions of farms representative of the MINK region, representing the effect of increased carbon dioxide on crop water use and photosynthetic efficiency, and incorporating daily temperature and precipitation data, monthly solar radiation and humidity levels. Technologies assumed to become available include advances in breeding and biotechnology to increase harvest index, boosting of photosynthetic efficiency, and advances in pest management. If no technological adjustment was incorporated, corn yielded 20% less than baseline, soybeans 15% less and sorghum 8% less. Wheat and alfalfa yielded slightly higher. Incorporation of technological advances greatly reduced negative effects of climate change, with yields raised above baseline for every crop but corn

  12. Response strategies for the Great Plains: Canadian and U.S. perspectives

    International Nuclear Information System (INIS)

    Jackson, C.I.

    1991-01-01

    From a policy point of view, the sharpest contrast between the five Great Plains states and the three Canadian provinces is the much greater significance of the Prairie provinces in Canadian life and national policymaking. The population of the Prairie provinces is substantial, and continues to grow steadily, with most growth concentrated in urban areas. A significant climate change issue in the boreal forest will be the impact of fire, as the forest is fire and insect dominated. The American solution to low precipitation, irrigation, is currently of relatively small importance on the Canadian Prairies. The main indication of general circulation models is that summer evapotranspiration will be more substantial than modest increases in precipitation, and while irrigation development is possible, there is no Canadian equivalent to the Ogallala aquifer. Adjustment or adaptation is as likely to mean adaptation to social and economic stress as much as to climate stress. Nebraska may provide a model for changes required to deal with climate warming, with a substantial problem area, substantial urban centers, and an aquifer recharge rate comparable with extraction rates. 13 refs

  13. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs.

  14. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs

  15. Coal Development in the Northern Great Plains. The Impact on Revenues of State and Local Governments. Agricultural Economic Report No. 394.

    Science.gov (United States)

    Stinson, Thomas F.; Voelker, Stanley W.

    Development of Northern Great Plains coal resources will create new demands for state and local government services. Development will also produce increased government revenues. Special taxes on coal production have been enacted in Montana, North Dakota, and Wyoming in order to ensure that state and local governments receive sufficient revenues to…

  16. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    Science.gov (United States)

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  17. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Wilson, Marcia H.; Rowe, Barbara L.; Gitzen, Robert A.; Wilson, Stephen K.; Paintner-Green, Kara J.

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  18. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    Science.gov (United States)

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  19. Heat flow measurements in Great Meteor East, Madeira Abyssal Plain, during Discovery Cruise 144

    International Nuclear Information System (INIS)

    Noel, M.

    1984-01-01

    This report describes 21 closely spaced heat flow measurements which were made along two survey lines in an area of faulted sediments east of Great Meteor Seamount in the Madeira Abyssal Plain. The heat flow was found to be correlated with basement topography as mapped by seismic reflection profiling. Data modelling suggests that this is due both to the thermal conductivity contrast between sediments and basement rocks and to the presence of hydrothermal circulation within basement highs. The existence of non-linear temperature profiles in sediments covering basement highs suggests that the underlying circulation is causing an upward movement of porewater. There is no firm evidence to show that the sediment faults act as preferred pathways for porewater advection. (author)

  20. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff S.; Euliss, Ned H. Jr.; Spivak, Marla S.

    2016-01-01

    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country.

  1. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    Science.gov (United States)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  2. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2016-01-01

    Full Text Available We examined the relationship between satellite measurements of solar-induced chlorophyll fluorescence (SIF and several meteorological drought indices, including the multi-time-scale standard precipitation index (SPI and the Palmer drought severity index (PDSI, to evaluate the potential of using SIF to monitor and assess drought. We found significant positive relationships between SIF and drought indices during the growing season (from June to September. SIF was found to be more sensitive to short-term SPIs (one or two months and less sensitive to long-term SPI (three months than were the normalized difference vegetation index (NDVI or the normalized difference water index (NDWI. Significant correlations were found between SIF and PDSI during the growing season for the Great Plains. We found good consistency between SIF and flux-estimated gross primary production (GPP for the years studied, and synchronous declines of SIF and GPP in an extreme drought year (2012. We used SIF to monitor and assess the drought that occurred in the Great Plains during the summer of 2012, and found that although a meteorological drought was experienced throughout the Great Plains from June to September, the western area experienced more agricultural drought than the eastern area. Meanwhile, SIF declined more significantly than NDVI during the peak growing season. Yet for senescence, during which time the reduction of NDVI still went on, the reduction of SIF was eased. Our work provides an alternative to traditional reflectance-based vegetation or drought indices for monitoring and assessing agricultural drought.

  3. Penultimate Glacial-Interglacial Climate Variability in the Southern Great Plains of North America

    Science.gov (United States)

    Bartow-Gillies, E.; Maupin, C. R.; Roark, E. B.; Chou, Y. C.; White, K.; Kampen-Lewis, S. V.; Shen, C. C.

    2017-12-01

    Projections of changes in rainfall under future warming scenarios vary in their sign and intensity over the Southern Great Plains (SGP). A scarcity of local paleoclimate information before the Last Glacial Maximum (LGM) limits our understanding of regional climate responses to changes in mean state and forcing. Here, we present absolutely U/Th-dated oxygen and carbon isotope records from a calcite stalagmite near Georgetown, Texas (30°N, 98°W), spanning 98 to 209 kyr before present (kyr BP). SGP moisture is primarily sourced from the Gulf of Mexico, and precipitation exhibits clear seasonality, with a biannual rainy season divided into late boreal spring and fall. We interpret the oxygen isotopic composition of the stalagmite to reflect changes in rainwater δ18O composition, as well as cave temperature, through time. There are no clear kinetic isotope effects observed within the stalagmite. More negative (positive) δ18O values are a reflection of warmer and wetter (cooler and drier) conditions based on modern observations of rainwater δ18O at the study site. Variations in stalagmite δ13C may be driven by shifts in overlying vegetation type and changes in the rates of karst flow and prior calcite precipitation. The stalagmite records include Marine Isotope Stage (MIS) 5e, an interval where global temperatures may have been as much as 2°C warmer and sea level 4-6 m higher than present. Thus, our δ18O record provides context of unique importance for how SGP hydroclimate may respond to future warming. Prominent features in the δ18O record, including a warm and wet MIS 5e appear to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that of maxima (minima) in monthly insolation at 30°N. The δ13C record exhibits a striking similarity to canonical, sawtooth records of glacial-interglacial variability, which suggests Great Plains vegetation communities may be sensitive to the status of Northern Hemisphere glaciation. Our SGP

  4. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations.

    Science.gov (United States)

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.

  5. Southern Great Plains Rapid Ecoregional Assessment: pre-assessment report

    Science.gov (United States)

    Assal, Timothy J.; Melcher, Cynthia P.; Carr, Natasha B.

    2015-01-01

    The purpose of the Pre-Assessment Report for the Southern Great Plains Rapid Ecoregional Assessment (REA) is to document the selection process for and final list of Conservation Elements, Change Agents, and Management Questions developed during Phase I. The overall goal of the REAs being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant terrestrial and aquatic species and communities that are to be conserved and (or) restored. For each Conservation Element, key ecological attributes will be evaluated to determine the status of each species and community. The REA also will evaluate major drivers of ecosystem change, or Change Agents, currently affecting or likely to affect the status of Conservation Elements in the future. The relationships between Change Agents and key ecological attributes will be summarized using conceptual models. The REA process is a two-phase process. Phase I (pre-assessment) includes developing and finalizing the lists of priority Management Questions, Conservation Elements, and Change Agents, culminating in the REA Pre-Assessment Report.

  6. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  7. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  8. Ground level measurement of nuclei from coal development in the northern Great Plains: baseline measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B. L.; Johnson, L. R.; Sengupta, S.; Yue, P. C.

    1978-11-01

    The Institute of Atmospheric Sciences of the South Dakota School of Mines and Technology has completed 20 months of ambient air sampling at rural and remote sites in a five-state region of the northern Great Plains. Sampling was accomplished by use of a 27-ft motor home laboratory containing living accommodations for a field crew of two. The laboratory was outfitted with a number of instruments for measurement of pollutant parameters: cloud condensation nuclei, ice nuclei, Aitken nuclei, size distribution information for Aitken size particulate, sulfur dioxide, ozone, raindrop size distributions, and pH of precipitation. In addition, an instrumented meteorological tower provided wind speed, wind direction, ambient air temperature, and dew-point temperature. Instruments varied as to durability and success of operation, but better than 90% data retrieval was possible for the entire 20-month sampling study. Analyses of the large quantities of data obtained were not possible under the initial baseline measurement program, but examination of most parameters indicate that the air masses in the northern Great Plains are still relatively clean and are influenced primarily by local sources of contamination rather than large regional sources. Particulate concentrations in these remote areas are representative of mountain stations or clean rural conditions, and sulfur dioxide concentrations are at the threshold of detectability of the instrument. Precipitation is only very slightly acidic, and no significant quantity of amorphous particles (such as coal dust or combustion products) is found in the quantitative analyses of the high-volume filter collections. A summary of ''average'' conditions observed over the study area is tabulated.

  9. Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP: Findings from a Case Study in Cangxian County of Hebei Province

    Directory of Open Access Journals (Sweden)

    Xue Wang

    2018-01-01

    Full Text Available The North China Plain (NCP is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence drawn from a case study in Cangxian County, Hebei Province. First-hand data were collected for this study from 350 households in 35 villages, using semistructured one-on-one questionnaires. Five types of irrigation water sources were defined and identified at the level of individual land plots: “ground and surface water”, “just groundwater”, “just rivers”, “just reservoirs”, and “no irrigation”. These levels correspond to a decreasing trend in the overall frequency of irrigation and thus provide a clear proxy indicator for IWA. The results from a series of multilevel multinomial models show that the higher the IWA, the less likely it is for a land plot to abandon winter wheat. Specifically, using “no irrigation” cases as a control group, the results show that land plots with more sources of irrigation water also tend to be characterized by greater IWA, including “ground and surface water” and “just groundwater”, and also have lower probabilities of abandoning winter wheat. In contrast, land plots with less IWA (less irrigation water sources, including “just reservoirs” and “just rivers”, are more likely to abandon winter wheat. The results also show that, in addition to IWA, soil quality and plot size at the plot level, as well as demographic characteristics, farm equipment, and land fragmentation at the household level and irrigation prices at the village level, all play additional significant roles in the cropping

  10. Long-term changes in winter distribution of Danish ringed Great Cormorants

    DEFF Research Database (Denmark)

    Bregnballe, Thomas; Herrmann, Christof; Wendt, Juliane

    2017-01-01

    in the geographical origin of cormorants recovered in Croatia confirmed the suspicion that declines in numbers of recoveries of Danish-ringed cormorants in the south-eastern wintering area reflected a true westward shift in winter distribution. The composition of recoveries in Croatia revealed that the south...

  11. Nitrogen uptake in the northeastern Arabian Sea during winter cooling

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Dwivedi, R.M.; Raman, M.; Sheshshayee, M.S.; DeSouza, W.

    /plain; charset=UTF-8 Hindawi Publishing Corporation International Journal of Oceanography Volume 2010, Article ID 819029, 11 pages doi:10.1155/2010/819029 Research Article Nitrogen Uptake in the Northeastern Arabian Sea during Winter Cooling S. Kumar, 1...

  12. A cloud climatology of the Southern Great Plains ARM CART

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, S.M.; Krueger, S.K.; Mace, G.G.

    2000-05-15

    Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports that have been edited to facilitate cloud analysis. Two stations near the Southern Great Plains (SGP) Cloud and Radiation Test Bed (CART) in north-central Oklahoma (Oklahoma City, Oklahoma and Wichita, Kansas) were selected. The ECR data span a 10-yr period from December 1981 to November 1991. The International Satellite Cloud Climatology Project (ISCCP) provided cloud amounts over the SGP CART for an 8-yr period (1983--91). Cloud amounts were also obtained from Micro Pulse Lidar (MPL) and Belfort Ceilometer (BLC) cloud-base height measurements made at the SGP CART over a 1-yr period. The annual and diurnal cycles of cloud amount as a function of cloud height and type were analyzed. The three datasets closely agree for total cloud amount. Good agreement was found in the ECR and MPL-BLC monthly low cloud amounts. With the exception of summer and midday in other seasons, the ISCCP low cloud amount estimates are generally 5%--10% less than the others. The ECR high cloud amount estimates are typically 10%--15% greater than those obtained from either the ISCCP or MPL-BLC datasets. The observed diurnal variations of altocumulus support the authors' model results of radiatively induced circulations.

  13. Near-real time Monitoring of the widespread winter Fog over the Indo-Gangetic Plains using satellite data

    Science.gov (United States)

    Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.

    2016-12-01

    The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  14. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  15. OMI NO2 in the Central US Great Plains: How Well Do We Interpret NO2 Trends?

    Science.gov (United States)

    Kollonige, D. E.; Duncan, B. N.; Thompson, A. M.; Lamsal, L. N.

    2017-12-01

    Several areas over the Central US show statistically significant increases in OMI NO2 levels of 10-30% in the last 10 years versus the generally decreasing trends over most of CONUS. Are these changes in OMI NO2 a result of human activity, meteorology, or a combination of both? To answer this, we examine regions in the Central US Great Plains that have multiple plausible sources for the observed trends, considering impacts of land surface changes, agriculture growth, oil and gas operations, and drought conditions. We find that changes to the land surface appear to contribute to some of the observed anomalies due to tree removal in the Black Hills National Forest, South Dakota, and additional livestock farming in the Sandhills of Nebraska. However, increasing OMI NO2 also corresponds to several areas with growing agriculture business (ex. South Dakota and Nebraska) and oil and gas activity (ex. Williston Basin in North Dakota and Permian Basin in TX). To understand the relationship between the observed NO2 variability and the regional meteorological conditions over the last decade, we analyze the time series and correlations between OMI NO2, NH3 (an agriculture tracer), surface temperature, normalized difference vegetation index (NDVI) from Landsat, and the Palmer Drought Severity Index (PDSI). In 2012, drought conditions affect NO2, NH3 and NDVI observations across the Central US. Areas where dryland farming and livestock grazing are predominant (Central SD, ND, KS, and NE) are less sensitive to drought and changes in temperature. This suggests positive OMI NO2 trends are caused by increased production in wheats and livestock in the Northern Great Plains. These study regions in the Central US, impacted by local emissions and meteorology, are valuable for evaluating future trend analyses including the continuation of OMI-type NO2 retrievals from the TROPOMI and TEMPO satellite instruments.

  16. 46 CFR 45.73 - Winter freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Winter freeboard. 45.73 Section 45.73 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.73 Winter freeboard. The minimum winter freeboard (fw) in inches is obtained by the formula: fw=f(s)+T s...

  17. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    Science.gov (United States)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  18. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    Science.gov (United States)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  19. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  20. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  1. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity

    Science.gov (United States)

    David D. Briske; Linda A. Joyce; H. Wayne Polley; Joel R. Brown; Klaus Wolter; Jack A. Morgan; Bruce A. McCarl; Derek W. Bailey

    2015-01-01

    The ecological consequences of climate change are predicted to vary greatly throughout US rangelands. Projections show warming and drying in the southern Great Plains and the Southwest, warmer and drier summers with reduced winter snowpack in the Northwest, and warmer and wetter conditions in the northern Great Plains. Primarily through their combined effects on soil...

  2. Determinants of fish assemblage structure in Northwestern Great Plains streams

    Science.gov (United States)

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  3. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  4. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    Science.gov (United States)

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P. [Penn State Univ., University Park, PA (United States); Spinhirne, J.; Scott, S. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  6. Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Robert

    2016-04-01

    The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC and EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.

  7. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    Science.gov (United States)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  8. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

    NARCIS (Netherlands)

    Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.

    2010-01-01

    In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter

  9. Land Surface Phenologies of the Northern Great Plains: Possible Futures Arising From Land and Climate Change

    Science.gov (United States)

    Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.

    2008-12-01

    Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated

  10. Wind measurement on the Linth plain; Windmessung in der Linthebene

    Energy Technology Data Exchange (ETDEWEB)

    Langraf, B.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of wind measurements made on the Linth plain, a flat alluvial plain in eastern Switzerland located between mountain ranges. The data, which were collected using temporary measurement masts at two locations are presented in the form of tables, diagrams and maps showing the wind-energy potential of various areas of the plain. The actual measurements are compared with prognoses from a geo-information system. The wind measurement equipment and installations are described, as are the software models for the calculation of wind direction, wind intensity and of a prognosis for energy production. Particular attention was also paid to the question of wind turbulence. Further factors investigated included the possibility of icing-up in winter and the choice of a meteorological station in the neighbourhood with similar characteristics that could be used as a reference station. The report also presents the results of the evaluation of various possible locations for wind turbines on the Linth plain. Visual, noise and shadow-casing factors are considered.

  11. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - An econometric approach

    International Nuclear Information System (INIS)

    Kaliakatsou, Evridiki; Bell, J. Nigel B.; Thirtle, Colin; Rose, Daniel; Power, Sally A.

    2010-01-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O 3 , with losses of up to 25%. However, the only British econometric study on O 3 impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O 3 tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. - Econometric study of British winter wheat trial plot data suggests lower economic loss than predicted from experiments.

  12. Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.

    Science.gov (United States)

    Chang, Fong-Chiau; Smith, Eric A.

    2001-05-01

    A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the

  13. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  14. The role of the US Great Plains low-level jet in nocturnal migrant behavior

    Science.gov (United States)

    Wainwright, Charlotte E.; Stepanian, Phillip M.; Horton, Kyle G.

    2016-10-01

    The movements of aerial animals are under the constant influence of atmospheric flows spanning a range of spatiotemporal scales. The Great Plains nocturnal low-level jet is a large-scale atmospheric phenomenon that provides frequent strong southerly winds through a shallow layer of the airspace. The jet can provide substantial tailwind assistance to spring migrants moving northward, while hindering southward migration during autumn. This atmospheric feature has been suspected to play a prominent role in defining migratory routes, but the flight strategies used with respect to these winds are yet to be examined. Using collocated vertically pointing radar and lidar, we investigate the altitudinal selection behavior of migrants over Oklahoma during two spring and two autumn migration seasons. In general, migrants choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. Autumn migrants typically fly below the jet, although some will rapidly climb to reach altitudes above the inhibiting winds. The intensity of migration was relatively constant throughout the spring due to the predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.

  15. I Got Them Dust Bowl Blues: Wind Erosion in the Music of the Southern Great Plains

    Science.gov (United States)

    Lee, J. A.

    2017-12-01

    This paper deals with the role of wind erosion and blowing dust on the music of the Dust Bowl region, a portion of the southern Great Plains of the United States. A defining characteristic of the region is dust storms, and in the 1930s, severe dust storms created dramatic images that came to symbolize all of the economic, social and environmental hardships suffered by the people during the 1930s. The music of the time, by Woody Guthrie and others, suggested that the region was being destroyed, never to recover. The region was resilient, however, and in recent decades, dust has been depicted in songs either as an adversity to be endured or simply as a normal part of life in the area. It may be that blowing dust has become a defining characteristic of the region because of a somewhat warped sense of pride in living in an often-difficult environment.

  16. Potential uranium host rocks and structures in the central Great Plains

    International Nuclear Information System (INIS)

    Zeller, E.J.; Dreschhoff, G.; Angino, E.; Holdoway, K.; Hakes, W.; Jayaprakash, G.; Crisler, K.; Saunders, D.F.

    1975-01-01

    A preliminary study was completed of the uranium potential of the Central Great Plains. The study area extends from longitude 99 to 104 0 W and is bounded by the North Platte River on the north and the Canadian River on the south. This region has no known commercial uranium accumulations, but is an area which contains formations with similar facies that are known to have deposits in other areas. A new method of utilizing petroleum exploration gamma-ray well log data was tested in the western Kansas portion of the survey area. Gamma activities in the Dakota and Morrison formations were computer-processed by trend surface analysis, statistically analyzed, and the anomalies were compared with regional geomorphic lineaments derived from satellite imagery as well as regional geology, to draw conclusions as to their origin and significance. Conclusions are: (1) possible uraniferous provinces have been outlined in the subsurface of western Kansas; (2) the new well log data approach can be used to define potential uraniferous provinces in any well-explored petroleum region; (3) the close spatial correlation between anomalies and regional geomorphic lineaments provides strong support for the concept that the lineaments represent vertical fracture zones which can act as preferred pathways for vertical fluid migration; and (4) the location of the strongest anomalies over impervious salt bodies indicates that any uranium bearing mineralizers must have moved down through the geologic section rather than upward. Recommendations are made to extend the application of the well-log approach, to do drilling and sampling to prove whether the anomalies are really due to uranium, and to add geobotanical and emanometric measurements during future studies

  17. The Plains of Venus

    Science.gov (United States)

    Sharpton, V. L.

    2013-12-01

    extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.

  18. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    Science.gov (United States)

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  19. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiuwei Liu

    Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  20. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Science.gov (United States)

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  1. Understanding long-term (1982-2013) patterns and trends in winter wheat spring green-up date over the North China Plain

    Science.gov (United States)

    Wang, Sisi; Mo, Xingguo; Liu, Zhengjia; Baig, Muhammad Hasan Ali; Chi, Wenfeng

    2017-05-01

    Monitoring the spring green-up date (GUD) has grown in importance for crop management and food security. However, most satellite-based GUD models are associated with a high degree of uncertainty when applied to croplands. In this study, we introduced an improved GUD algorithm to extract GUD data for 32 years (1982-2013) for the winter wheat croplands on the North China Plain (NCP), using the third-generation normalized difference vegetation index form Global Inventory Modeling and Mapping Studies (GIMMS3g NDVI). The spatial and temporal variations in GUD with the effects of the pre-season climate and soil moisture conditions on GUD were comprehensively investigated. Our results showed that a higher correlation coefficient (r = 0.44, p the improved algorithm relative to GUD from the MCD12Q2 phenology product. In spatial terms, GUD increased from the southwest (less than day of year (DOY) 60) to the northeast (more than DOY 90) of the NCP, which corresponded to spatial reductions in temperature and precipitation. GUD advanced in most (78%) of the winter wheat area on the NCP, with significant advances in 37.8% of the area (p the interannual scale, the average GUD advanced from DOY 76.9 in the 1980s (average 1982-1989) to DOY 73.2 in the 1990s (average 1991-1999), and to DOY 70.3 after 2000 (average 2000-2013), indicating an average advance of 1.8 days/decade (r = 0.35, p the pre-season temperature, our findings underline that the effect of the pre-season soil moisture on GUD should also be considered. The improved GUD algorithm and satellite-based long-term GUD data are helpful for improving the representation of GUD in terrestrial ecosystem models and enhancing crop management efficiency.

  2. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    Science.gov (United States)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  3. Drought effect on selection of conservation reserve program grasslands by white-tailed deer on the Northern Great Plains

    Science.gov (United States)

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2011-01-01

    Limited information exists regarding summer resource selection of white-tailed deer (Odocoileus virginianus) in grassland regions of the Northern Great Plains. During summers 2005-2006, we analyzed habitat selection of adult female white-tailed deer in north-central South Dakota. We collected 1905 summer locations and used 21 and 30 home ranges during 2005 and 2006, respectively, to estimate habitat selection. Results indicated that selection occurred at the population (P rural development areas containing permanent water sources during extreme drought conditions during 2006. Deer likely selected for fields of CRP grasslands during early summer for cover and natural forages, such as clover (Trifolium sp.), prior to the period when agricultural crops become available. Drought conditions occurring in semiarid prairie grassland regions may reduce food and water availability and contribute to subsequent changes in deer habitat selection across the range of the species.

  4. The Whole-Genome Sequence of Bacillus velezensis Strain SB1216 Isolated from the Great Salt Plains of Oklahoma Reveals the Presence of a Novel Extracellular RNase with Antitumor Activity

    OpenAIRE

    Marasini, Daya; Cornell, Carolyn R.; Oyewole, Opeoluwa; Sheaff, Robert J.; Fakhr, Mohamed K.

    2017-01-01

    ABSTRACT The whole-genome sequence of Bacillus velezensis strain SB1216, isolated from the Great Salt Plains of Oklahoma, showed the presence of a 3,814,720-bp circular chromosome and no plasmids. The presence of a novel 870-bp extracellular RNase gene is predicted to be responsible for this strain’s antitumor activity.

  5. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  6. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    Science.gov (United States)

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  7. DEVELOPMENTS FUNDED BY THE EUROPEAN UNION IN THE SERVICE OF URBAN DESIGN IN THE NORTH GREAT PLAIN REGION (HUNGARY

    Directory of Open Access Journals (Sweden)

    Bence MONYÓK

    2017-05-01

    Full Text Available One of the most important elements of place marketing is the creation of an attractive urban landscape which require significant financial resources. For this reason local authorities of Central Europe use regional policy grants from European Union for this purpose. In the light of the above, the aim of this paper is to examine the role of European Union grants in the improvement of the built environment in North Great Plain Region (Hungary, one of the least developed regions of Hungary. In the course of the above, on the one hand, we intend to provide a general overview of the situation in Hajdú-Bihar County, also located in this region, and on the other hand, through the example of a specific settlement, we will also present the processes in detail.

  8. The Whole-Genome Sequence of Bacillus velezensis Strain SB1216 Isolated from the Great Salt Plains of Oklahoma Reveals the Presence of a Novel Extracellular RNase with Antitumor Activity.

    Science.gov (United States)

    Marasini, Daya; Cornell, Carolyn R; Oyewole, Opeoluwa; Sheaff, Robert J; Fakhr, Mohamed K

    2017-11-22

    The whole-genome sequence of Bacillus velezensis strain SB1216, isolated from the Great Salt Plains of Oklahoma, showed the presence of a 3,814,720-bp circular chromosome and no plasmids. The presence of a novel 870-bp extracellular RNase gene is predicted to be responsible for this strain's antitumor activity. Copyright © 2017 Marasini et al.

  9. Crop Sequence Influences on Sustainable Spring Wheat Production in the Northern Great Plains

    Directory of Open Access Journals (Sweden)

    Joseph M. Krupinsky

    2010-11-01

    Full Text Available Cropping systems in American agriculture are highly successful since World War II, but have become highly specialized, standardized, and simplified to meet the demands of an industrialized food system. Minimal attention has been given to the efficient exploitation of crop diversity and the synergistic and/or antagonistic relationships of crops in crop sequences. Objectives of our research were to determine if previous crop sequences have long-term benefits and/or drawbacks on spring wheat seed yield, seed N concentration, and seed precipitation-use efficiency in the semiarid northern Great Plains, USA. Research was conducted 6 km southwest of Mandan, ND using a 10 × 10 crop matrix technique as a research tool to evaluate multiple crop sequence effects on spring wheat (triticum aestivum L. production in 2004 and 2005. Spring wheat production risks can be mitigated when second year crop residue was dry pea (Pisium sativum L. averaged over all first year crop residues. When compared to spring wheat as second year crop residue in the dry year of 2004, dry pea as the second year residue crop resulted in a 30% spring wheat seed yield increase. Sustainable cropping systems need to use precipitation efficiently for crop production, especially during below average precipitation years like 2004. Precipitation use efficiency average over all treatments, during the below average precipitation year was 23% greater than the above average precipitation year of 2005. Diversifying crops in cropping systems improves production efficiencies and resilience of agricultural systems.

  10. Microscopic composition measurements of organic individual particles collected in the Southern Great Plains

    Science.gov (United States)

    Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2016-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.

  11. Groundwater uptake by forest and herbaceous vegetation in the context of salt accumulation in the Hungarian Great Plain

    Science.gov (United States)

    Gribovszki, Zoltán; Kalicz, Péter; Balog, Kitti; Szabó, András; Fodor, Nándor; Tóth, Tibor

    2013-04-01

    In Hungarian Great Plain forested areas has significantly increased during the last century. Hydrological effects of trees differ from that of crops or grasses in that, due to their deep roots, they extract water from much deeper soil layers. It has been demonstrated that forest cover causes water table depression and subsurface salt accumulation above shallow saline water table in areas with a negative water balance. The above mentioned situation caused by the afforestation in the Hungarian Great Plain is examined in the frame of a systematic study, which analyzed all affecting factors, like climatic water balance, water table depth and salinity, three species, subsoil layering and stand age. At the regional scale altogether 108 forested and neighbouring non forested plots are sampled. At the stand scale 18 representative forested and accompanying non forested plots (from the 108) are monitored intensively. In this paper dataset of two neighbouring plots (common oak forest and herbaceous vegetation) was compared (as first results of this complex investigation). On the basis of the analysis it could be summarized that under forest the water table was lower, and the amplitude of diel fluctuation of water table was significantly larger as under the herbaceous vegetation. Both results demonstrate greater groundwater use of forest vegetation. Groundwater uptake of the forest (which was calculated by diel based method) was almost same as potential reference evapotranspiration (calculated by Penman-Monteith equation with locally measured meteorological dataset) along the very dry summer of 2012. Larger amount of forest groundwater use is not parallel with salt uptake, therefore salt accumulates in soil and also in groundwater as can be measured of the representative monitoring sites as well. In the long run this process can result in the decline of biological production or even the dry out of some part of the forest. Greater groundwater uptake and salt accumulation

  12. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Science.gov (United States)

    Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang

    2018-01-01

    The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840

  13. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2018-05-01

    Full Text Available The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems, Fusarium pseudograminearum (14.9% from roots; 27.8% from stems, Rhizoctonia cerealis (1.7% from roots; 4.4% from stems, and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems. We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01 in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01 were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum. In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4% or in individual plants (11.6% was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing

  14. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  15. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  16. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  17. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  18. Subtask 7.3 - The Socioeconomic Impact of Climate Shifts in the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav Solc; Tera Buckley; Troy Simonsen

    2007-12-31

    The Energy & Environmental Research Center (EERC) evaluated the water demand response/vulnerability to climate change factors of regional economic sectors in the northern Great Plains. Regardless of the cause of climatic trends currently observed, the research focused on practical evaluation of climate change impact, using water availability as a primary factor controlling long-term regional economic sustainability. Project results suggest that the Upper Missouri, Red River, and Upper Mississippi Watersheds exhibit analogous response to climate change, i.e., extended drought influences water availability in the entire region. The modified trend suggests that the next period for which the Red River Basin can expect a high probability of below normal precipitation will occur before 2050. Agriculture is the most sensitive economic sector in the region; however, analyses confirmed relative adaptability to changing conditions. The price of agricultural commodities is not a good indicator of the economic impact of climate change because production and price do not correlate and are subject to frequent and irregular government intervention. Project results confirm that high water demand in the primary economic sectors makes the regional economy extremely vulnerable to climatic extremes, with a similar response over the entire region. Without conservation-based water management policies, long-term periods of drought will limit socioeconomic development in the region and may threaten even the sustainability of current conditions.

  19. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  1. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  2. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  3. Simulated soil organic carbon response to tillage, yield, and climate change in the southeastern Coastal Plains

    Science.gov (United States)

    Intensive tillage, low-residue crops, and a warm, humid climate have contributed to soil organic carbon (SOC) loss in the southeastern Coastal Plains region. Conservation (CnT) tillage and winter cover cropping are current management practices to rebuild SOC; however, there is sparse long-term field...

  4. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    Science.gov (United States)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  5. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  6. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    Science.gov (United States)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  7. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    Science.gov (United States)

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  8. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    Directory of Open Access Journals (Sweden)

    Joseph Fargione

    Full Text Available Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  9. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  10. EXAMINATION OF THE SOLVENCY OF ENTERPRISES DEALING WITH ACCOMMODATION SERVICE PROVIDING IN THE NORTHERN GREAT PLAIN REGION

    Directory of Open Access Journals (Sweden)

    Veronika FENYVES

    2016-07-01

    Full Text Available One of the most important characteristics of tourism, as an economic and social phenomenon is that it has become a leading sector of the Hungarian economy. The importance of this sector is faithfully reflected by the fact that tourism gives nearly 9% of the GDP. Of course, aim of the enterprises of this type is the liquidity as well i.e. to maintain the short-term solvency that is essential for the long-term successful and smooth operation. The other aim of enterprises is to be solvent for the long-term as well, furthermore, to increase the corporate value and to maximize the ownership value. In our treatise, we have carried out the financial analysis and bankruptcy prediction of those enterprises providing accommodation service which are the biggest from the point of view of employment in the Northern Great Plain region. We think that, due to seasonality, even greater emphasis shall be placed on this area where useful information can be obtained from and the results of bankruptcy model can also provide further useful information and ”problem alerts”.

  11. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  12. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  13. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.M.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  14. Mapping marginal croplands suitable for cellulosic feedstock crops in the Great Plains, United States

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2016-01-01

    Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.

  15. Determining Wind Erosion in the Great Plains

    OpenAIRE

    Elwin G. Smith; Burton C. English

    1982-01-01

    Wind erosion is defined as the movement of soil particles resulting from strong turbulent winds. The movement of soil particles can be categorized as suspension, saltation, or surface creep. Fine soil particles can be suspended in the atmosphere and carried for great distances. Particles too large to be suspended move in a jumping action along the soil surface, known as saltation. Heavier particles have a rolling movement along the surface and this type of erosion is surface creep.

  16. Soil salinity study in Northern Great Plains sodium affected soil

    Science.gov (United States)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  17. Living with climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Beltzner, K [ed.

    1976-03-01

    The effects of global warming on economies and societies are discussed. The history of past climate changes in North America is summarized, ranging from short period variations to changes over centuries and millenia. To aid in forecasting the effects of future climatic variation, historical episodes that have had well documented socio-economic effects are examined. These episodes include: the variability period of 1895-1905 characterized by cool climate, wet periods in the northwestern great plains, sustained drought in the Pacific northwest, extreme cold in the gulf states, and the Galveston flood; the midwestern drought of 1933-1937, characterized by drought on the great plains, very cold snowy winters, hot summers, and massive soil erosion; 1935-36, characterized by a very cold winter and a very hot summer; the Mexican drought of 1937-45, characterized by recurrent drought in Mexico; the variable period of 1950-1958, characterized by Pacific coast drought, drought and flood on the great plains, cold and warm winters and summers, wheat rust, coastal storms and forest fires; the Eastern urban drought of 1961-66 characterized by sustained cold drought in eastern North America; the sea ice period of 1964-65 and 1971-72, characterized by heavy sea ice; snowfall period of 1970-74 characterized by heavy winter snowfalls and a late, wet spring; and the global interdependence period of 1972 characterized by cold winters in Canada and USSR, drought in Asia, the Sahel, Australia, central America, floods in North Africa, high ocean surface temperatures off Peru, and unusually cold weather in the corn belt. 33 refs., 15 figs., 7 tabs.

  18. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  19. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    Science.gov (United States)

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds.

  20. Perception of the drought hazard on the Great Plains and its sociological impacts

    Science.gov (United States)

    Woudenberg, Donna Louise

    Drought, a defining characteristic of the Great Plains, continues to be one of the most expensive natural disasters in the United States, with the lion's share of financial losses shouldered by crop and livestock producers. These producer's perceptions of and responses to drought were studied in the mid-1960s, the mid-1980s, and were examined again in this study, providing valuable longitudinal data. A number of direct and indirect impacts are experienced by non-farm businesses, communities, and individuals, as well. Some of those impacts have not been well researched and were integral to this project. Interviews with crop producers, livestock producers, and community members were conducted in Frontier County, Nebraska in late summer 2006. It was found that producers are very perceptive of the drought hazard, a result found in the two previous studies; recollections and estimates were well supported with 100 years of SPI and PDSI values. Adoption of drought mitigation practices has increased over the past 40 years. Producers were concerned about the myriad of factors they must consider when planning their farm/ranch operations, particularly as they are trying to adjust to water restrictions imposed as an outcome of the Kansas-Nebraska lawsuit on the Republican River (a task exacerbated by the long-term drought in recent years), but overall they are basically optimistic. Community members were very concerned about the future of farming and the quality of rural life. They expressed fears that changes in farming practices may lower the value of land, affect the tax base, and ultimately impact the school system and other county services.

  1. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Institute for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States)

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  2. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    Science.gov (United States)

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  3. Comparison of Agricultural Production and Fertilizer Consumption in the North China Plain (NCP) and the U.S. High Plains (HP)

    Science.gov (United States)

    Pei, H.; Shen, Y.; Scanlon, B. R.; Long, D.; Reedy, R. C.; Strassberg, G.

    2013-12-01

    The North China Plain (NCP) and US High Plains (USHP) are considered bread baskets of China and the US. The objective of this study was to compare agricultural production during the past 30 yr in both regions to assess impacts of different management options. The NCP and USHP are similar in terms of climate (mean annual precipitation: NCP, 570 mm; USHP, 520 mm) with mostly summer precipitation, and wheat and corn (maize) as the dominant crops. While single cropping is dominant in the USHP with summer crops coincident with seasonal precipitation, double cropping is prevalent in the NCP with summer corn coinciding with precipitation and winter wheat relying on irrigation. During the past 30 yr (1980 - 2008) in the NCP, crop yield has increased by a factor of 2.8 (2,200 - 6,200 kg/ha), grain production by a factor of 2.6 (23 - 59 million tons), chemical fertilizer application by a factor of 5.1 (68 - 350 kg/ha). During the same time period in the USHP, grain yield increased by a factor of 1.8 (2,800 - 5,000 kg/ha), crop production by a factor of 1.4 (48 - 68 million tons), chemical N fertilizer application by a factor of 1.2 (64 - 74 kg/ha). The spatial averages mask large scale local variability with grain yield in Luancheng county in the NCP for double cropped wheat and corn rising from 8,000 kg/ha in 1980 to ~16,000 kg/ha in 2008. The comparison between the two regions leads to the question of whether agricultural production in the NCP would be more sustainable with a single corn crop with a longer growing season more aligned with precipitation distribution. Increases in fertilizer application in the NCP greatly exceed crop yield increases, suggesting that much of this fertilizer may be leached to the environment, resulting in contamination. The comparisons between these two regions provide valuable insights that should be considered to move toward more sustainable management in terms of crop productivity and environmental impacts.

  4. Heat flow measurements in the vicinity of Great Meteor East, Madeira Abyssal Plain, during Darwin Cruise CD9B

    International Nuclear Information System (INIS)

    Noel, M.; Hounslow, M.W.

    1986-12-01

    This report describes 37 new measurements of heat flow in the Madeira Abyssal Plain. These have comprised 22 values in the Great Meteor East Study Area and 15 measurements in the newly defined ''10 km Box'' to the southeast of this region. The aim of the project has been to examine in more detail than hitherto the thermal and fluid processes operating in the oceanic crust. For this purpose, a new thermistor string, with 1/2 m sensor spacing was used. Also, the heat flux data have been compared to the output from a finite element model for heat conduction. No non-linear sediment temperature profiles were discovered indicating that vertical advection of water through the sediment is absent or slow. The results of numerical modelling imply that the variability of measured heat flow cannot be explained entirely on the basis of basement topography. It is necessary to invoke either vertical basement intrusions of differing conductivity or basement hydrothermal circulation. (author)

  5. Bringing the "social" into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA

    Science.gov (United States)

    Sanderson, Matthew R.; Bergtold, Jason S.; Heier Stamm, Jessica L.; Caldas, Marcellus M.; Ramsey, Steven M.

    2017-08-01

    Identifying means of empirically modeling the human component of a coupled, human-water system becomes critically important to further advances in sociohydrology. We develop a social-psychological model of environmental decision making that addresses four key challenges of incorporating social science into integrated models. We use the model to explain preferences for three conservation policies designed to conserve and protect water resources and aquatic ecosystems in the Smoky Hill River Basin, a semiarid agricultural region in the Central U.S. Great Plains. Further, we compare the model's capacity to explain policy preferences among members of two groups in the River Basin: agricultural producers and members of nonfarming communities. We find that financial obligation is the strongest and most consistent explanation of support for conservation policies among members of both groups. We also find that policy support is grounded in cultural values—deeply held ideas about right and wrong. Environmental values are particularly important explanations of policy support. The constellations of values invoked to make decisions about policies, and the social-psychological pathways linking values to policy support, can vary across policies and types of agents (farmers and nonfarmers). We discuss the implications of the results for future research in sociohydrology.

  6. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  7. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  8. Indicative properties on snow cover based on the results of experimental studies in the winter 2011/12 in the central part of the East European Plain

    Directory of Open Access Journals (Sweden)

    L. M. Kitaev

    2013-01-01

    Full Text Available Local and regional differences in the snow formation were studied in different landscapes of the central part of the East European Plain – within reserves in the Moscow and Tver’ regions (south-north direction; the study period is the winter 2011/12. The observed increase of snow storage in 1.3–1.5 times in the direction south-north is connected, apparently. The difference in the five-day appearance of snow cover maximum is related to differences in regional winter air temperature. Throughout the snow depth and snow storage in spruce are smaller than in deciduous forest – in the ratio of 0.81 in south area and 0.93 in north area; in spruce the large part of solid precipitation is intercepted by the crowns pine trees. Snow stratigraphy at south areas has four layers, six layers at the north area are more variable in snow density and snow storage. Perhaps, gravitational conversion is more noticeable due to larger snow depth. Snow density and snow storage at the open areas are more heterogeneous than in the forest. This is due to sharp fluctuations in air temperature, wind transport and compaction of snow, evaporation from the snow surface. The stratigraphy of snow also reflects the history of winter changes of air temperature and snow accumulation. Common feature for reserves at south and north is the availability of layers with maximum snow storage in the middle of the snow thickness, which were formed during the air temperature drops to the lowest seasonal values in period with increase of snow depth to maximum. Formation of depth hoar in snow thickness are touched everywhere the bottom and middle layers, respectively, it was formed both before and during the period with minimal air temperature. Thus, the results of experimental studies confirm the significance of the differences of individual components of the landscape setting. Analytical conclusions are largely qualitative in nature due to the lack to date of initial information, and

  9. [Characteristics of wintering in ground beetles (Coleoptera, Carabidae) in forest ecosystems of the East European Plain].

    Science.gov (United States)

    Griuntal', S Iu

    2000-01-01

    Specific features of wintering of the ground beetles in three habitats (litter, soil, and bark of fallen trees and stumps) were comparatively studied in the forests of forest-steppe (Voronezh District) and subzone of broad-leaved-spruce forests (Moscow District). The main mass of ground beetles is concentrated in the upper 10-cm soil layer, irrespective of the type of watering (automorphous or hydromorphous soils). Wintering under the bark is a facultative feature of the most species occurring in these biocoenoses.

  10. Exploration for petroleum and natural gas in Sonai Plain

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, K

    1965-09-01

    Exploration in the Sonai Plain by Sekyu Shigen Kaihatsu Kabushiki Kaisha (Oil Resources Development Corporation) since 1955 is described. The development tasks are made difficult due to the presence of permeability traps. However, 41 out of 65 wells drilled up to late March of 1965 have been successful. Quantities of crude oil and natural gas produced in 1963 were, respectively, 5 and 6 times those of 1958. The Sonai Plain is a relatively new area, and there are still many unknown factors, yet the rate of development has increased greatly. More and deeper wells are expected to be drilled with even better results.

  11. Myxomatosis on the Western Plains of Victoria.

    Science.gov (United States)

    Tighe, F G; Edmonds, J W; Nolan, I F; Shepherd, R C; Gocs, A

    1977-10-01

    Myxomatosis on the Western Plains is an enzootic disease in contrast with the epizootic pattern which is general in eastern Australia. The most unusual aspects are the presence of significant numbers of diseased rabbits throughout the winter and the continuously low percentage of rabbits with antibodies to myxoma virus. Climatic and topographic conditions are unsuited to the production of the high densities of mosquitoes necessary for widespread epizootics. Under these conditions the effects of less efficient methods of myxomatosis transmission are apparent. The unusual epidemiology of myxomatosis has resulted in selection for virulence of the virus similar to that which has occurred under summer epizootic conditions. All field strains are now in the mid range of virulence.

  12. Carbon isotope ratios of great plains soils and in wheat-fallow systems

    International Nuclear Information System (INIS)

    Follett, R.F.; Paul, E.A.; Leavitt, S.W.; Halvorson, A.D.; Lyon, D.; Peterson, G.A.

    1997-01-01

    The purposes of this study were to improve knowledge of regional vegetation patterns of C3 and C4 plants in the North American Great Plains and to use delta 13C methodology and long-term research sites to determine contributions of small-grain crops to total soil organic carbon (SOC) now present. Archived and recent soil samples were used. Detailed soil sampling was in 1993 at long-term sites near Akron, CO, and Sidney, NE. After soil sieving, drying, and deliming, SOC and delta 13C were determined using an automated C/N analyzer interfaced to an isotope-ratio mass spectrometer. Yield records from long-term experimental sites were used to estimate the amount of C3 plant residue C returned to the soil. Results from delta 13C analyses of soils from near Waldheim, Saskatchewan, to Big Springs, TX, showed a strong north to south decrease in SOC derived from C3 plants and a corresponding increase from C4 plants. The delta 13C analyses gave evidence that C3 plant residue C (possibly from shrubs) is increasing at the Big Springs, TX, and Lawton, OK, sites. Also, delta 13C analyses of subsoil and topsoil layers shows evidence of a regional shift to more C3 species, possibly because of a cooler climate during the past few hundreds to thousands of years. Data from long-term research sites indicate that the efficiency of incorporation of small-grain crop residue C was about 5.4% during 84 yr at Akron, CO, and about 10.5% during 20 yr at Sidney, NE. The 14C age of the SOC at 0- to 10-cm depth was 193 yr and at 30 to 45 cm was 4000 yr; 14C age of nonhydrolyzable C was 2000 and 7000 yr for these same two respective depths. Natural partitioning of the 13C isotope by the photosynthetic pathways of C3 and C4 plants provides a potentially powerful tool to study SOC dynamics at both regional and local scales

  13. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    Science.gov (United States)

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  14. Second chance for the plains bison

    Science.gov (United States)

    Freese, Curtis H.; Aune, K.; Boyd, D.; Derr, James N.; Forrest, Steven C.; Gates, C. Cormack; Gogan, Peter J.; Grassel, Shaun M.; Halbert, Natalie D.; Kunkel, Kyran; Redford, Kent

    2007-01-01

    Before European settlement the plains bison (Bison bison bison) numbered in the tens of millions across most of the temperate region of North America. Within the span of a few decades during the mid- to late-1800s its numbers were reduced by hunting and other factors to a few hundred. The plight of the plains bison led to one of the first major movements in North America to save an endangered species. A few individuals and the American Bison Society rescued the remaining animals. Attempts to hybridize cattle and bison when bison numbers were low resulted in extensive cattle gene introgression in bison. Today, though approximately 500,000 plains bison exist in North America, few are free of cattle gene introgression, 96% are subject to anthropogenic selection for commodity production, and only 4% are in herds managed primarily for conservation purposes. Small herd size, artificial selection, cattle-gene introgression, and other factors threaten the diversity and integrity of the bison genome. In addition, the bison is for all practical purposes ecologically extinct across its former range, with multiple consequences for grassland biodiversity. Urgent measures are needed to conserve the wild bison genome and to restore the ecological role of bison in grassland ecosystems. Socioeconomic trends in the Great Plains, combined with new information about bison conservation needs and new conservation initiatives by both the public and public sectors, have set the stage for significant progress in bison conservation over the next few years.

  15. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  16. Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    Science.gov (United States)

    Inselman, Will M.; Datta, Shubham; Jenks, Jonathan A.; Jensen, Kent C.; Grovenburg, Troy W.

    2015-01-01

    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, S Dist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds. PMID:26327440

  17. Adaptation of C4 Bioenergy Crop Species to Various Environments within the Southern Great Plains of USA

    Directory of Open Access Journals (Sweden)

    Sumin Kim

    2017-01-01

    Full Text Available As highly productive perennial grasses are evaluated as bioenergy feedstocks, a major consideration is biomass yield stability. Two experiments were conducted to examine some aspects of yield stability for two biofuel species: switchgrass (Panicum vigratum L. and Miscanthus x giganteus (Mxg. Biomass yields of these species were evaluated under various environmental conditions across the Southern Great Plains (SGP, including some sites with low soil fertility. In the first experiment, measured yields of four switchgrass ecotypes and Mxg varied among locations. Overall, plants showed optimal growth performance in study sites close to their geographical origins. Lowland switchgrass ecotypes and Mxg yields simulated by the ALMANAC model showed reasonable agreement with the measured yields across all study locations, while the simulated yields of upland switchgrass ecotypes were overestimated in northern locations. In the second experiment, examination of different N fertilizer rates revealed switchgrass yield increases over the range of 0, 80, or 160 kg N ha−1 year−1, while Mxg only showed yield increases between the low and medium N rates. This provides useful insights to crop management of two biofuel species and to enhance the predictive accuracy of process-based models, which are critical for developing bioenergy market systems in the SGP.

  18. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - an econometric approach.

    Science.gov (United States)

    Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A

    2010-05-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Soil organic matter stabilization in buried paleosols of the Great Plains

    Science.gov (United States)

    Chaopricha, N. T.; Marin-Spiotta, E.; Mason, J. A.; Mueller, C. W.

    2010-12-01

    Understanding the mechanisms that control soil organic matter (SOM) stabilization is important for understanding how soil carbon is sequestered over millennia, and for predicting how future disturbances may affect soil carbon stocks. We are studying the mechanisms controlling SOM stabilization in the Brady Soil, a buried paleosol in Holocene loess deposits spanning much of the central Great Plains of the United States. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying that resulted in a shift from C3 to C4 dominated plants. The Brady soil is unusual in that it has very dark coloring, although it contains less than separate particulate organic matter associated with minerals from that within and outside of soil aggregates. We found the largest and darkest amounts of organic C in aggregate-protected SOM greater than 20 µm in diameter. Density and textural fractionation revealed that much of the SOM is bound within aggregates, indicating that protection within aggregates is a major contributor to SOM- stabilization in the Brady Soil. We are conducting a long-term lab soil incubation with soils collected from the modern A horizon and the Brady Soil to determine if the buried SOM becomes microbially available when exposed to the modern atmosphere. We are measuring potential rates of respiration and production of CH4 and N2O. Results so far show respiration rates at field moisture for both modern and buried horizons are limited by water, suggesting dry environmental conditions may have helped to preserve SOM in the Brady Soil. We are investigating the potential for chemical stabilization of the dark SOM preserved in the buried paleosol by characterizing C chemistry using solid-state 13C-NMR spectroscopy. Furthermore, we plan to use lipid analyses and pyrolysis GC/MS to determine likely sources for the SOM: microbial vs plant. Combining information on the physical location of SOM in the soil, its chemical composition, decomposability

  20. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    Directory of Open Access Journals (Sweden)

    H. Chen

    2018-01-01

    Full Text Available Most prior field studies of new particle formation (NPF have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11–16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11–16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1 ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2 nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3 increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  1. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    Science.gov (United States)

    Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.

    2018-01-01

    Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  2. Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA.

    Science.gov (United States)

    Dinehart, Simon K; Smith, Loren M; McMurry, Scott T; Anderson, Todd A; Smith, Philip N; Haukos, David A

    2009-01-15

    Pesticide toxicity is often proposed as a contributing factor to the world-wide decline of amphibian populations. We assessed acute toxicity (48 h) of a glufosinate-based herbicide (Ignite 280 SL) and several glyphosate-based herbicide formulations (Roundup WeatherMAX, Roundup Weed and Grass Killer Super Concentrate, Roundup Weed and Grass Killer Ready-To-Use Plus on two species of amphibians housed on soil or moist paper towels. Survival of juvenile Great Plains toads (Bufo cognatus) and New Mexico spadefoots (Spea multiplicata) was reduced by exposure to Roundup Weed and Grass Killer Ready-To-Use Plus on both substrates. Great Plains toad survival was also reduced by exposure to Roundup Weed and Grass Killer Super Concentrate on paper towels. New Mexico spadefoot and Great Plains toad survival was not affected by exposure to the two agricultural herbicides (Roundup WeatherMAX and Ignite 280 SL) on either substrate, suggesting that these herbicides likely do not pose an immediate risk to these species under field conditions.

  3. Resistance of Select Winter Wheat (Triticum aestivum) Cultivars to Rhopalosiphum padi (Hemiptera: Aphididae).

    Science.gov (United States)

    Girvin, John; Whitworth, R Jeff; Rojas, Lina Maria Aguirre; Smith, C Michael

    2017-08-01

    The bird cherry-oat aphid (Rhopalosiphum padi L.) is a global pest of wheat and vectors some of the most damaging strains of barley yellow dwarf virus (BYDV). In years of heavy R. padi infestation, R. padi and BYDV together reduce wheat yields by 30-40% in Kansas and other states of the U.S. Great Plains wheat production area. Cultivation of wheat cultivars resistant to R. padi can greatly reduce production costs and mitigate R. padi-BYDV yield losses, and increase producer profits. This study identified cultivars of hard red and soft white winter wheat with R. padi resistance that suppress R. padi populations or tolerate the effects of R. padi feeding damage. 'Pioneer (S) 25R40,' 'MFA (S) 2248,' 'Pioneer (S) 25R77,' and 'Limagrain LCS Mint' significantly reduced R. padi populations. MFA (S) 2248, Pioneer (S) 25R40, and 'Limagrain LS Wizard' exhibited tolerance expressed as significantly greater aboveground biomass. These findings are significant in that they have identified wheat cultivars currently available to producers, enabling the immediate improvement of tactics to manage R. padi and BYDV in heavily infested areas. Secondarily, these results identify cultivars that are good candidates for use in breeding and genetic analyses of arthropod resistance genes in wheat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  5. Ball Games of Native American Women of the Plains.

    Science.gov (United States)

    Pesavento, Wilma J.

    The problem under investigation concerned (1) determining the ball games of Native American girls and women of the Great Plains, (2) determining the geographical spread of the games within the culture area, and (3) determining the characteristics of the various games. Data for this investigation were obtained from the 48 "Annual Reports of the…

  6. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.

  7. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    International Nuclear Information System (INIS)

    Gosselin, David C.; Edwin Harvey, F.; Frost, Carol; Stotler, Randy; Allen Macfarlane, P.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist

  8. Southern Plains assessment of vulnerability and preliminary adaptation and mitigation strategies for farmers, ranchers, and forest land owners

    Science.gov (United States)

    Jean L. Steiner; Jeanne M. Schneider; Clay Pope; Sarah Pope; Paulette Ford; Rachel F. Steele; Terry Anderson

    2015-01-01

    The Southern Plains region contributes significantly to the Nation’s wheat and beef production. Winter wheat is the principal annual crop, with much of it serving dual-use as a cool-season annual forage in addition to grain production. Cattle are raised on extensive pasture and rangelands across the region. Agricultural production and farm income in the...

  9. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  10. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat

    OpenAIRE

    Pitta, D. W.; Pinchak, W. E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J. D.

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bl...

  11. Spatial variation in seed bank dynamics of two annual brome species in the northern Great Plains

    Science.gov (United States)

    Annual bromes decrease forage production in northern central plains rangelands of North America. Early life history stages are when plants are most failure-prone, yet studying death post-germination and prior to emergence is difficult. In seed bank collections conducted over the course of two growin...

  12. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua

    2014-02-22

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  13. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua; Yang, Zong-Liang; Dickinson, Robert E.; Wei, Jiangfeng

    2014-01-01

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  14. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  15. Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season

    Science.gov (United States)

    Robock, Alan; Luo, Lifeng; Wood, Eric F.; Wen, Fenghua; Mitchell, Kenneth E.; Houser, Paul R.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan; Basara, Jeffery B.; Crawford, Kenneth C.

    2003-11-01

    North American Land Data Assimilation System (NLDAS) land surface models have been run for a retrospective period forced by atmospheric observations from the Eta analysis and actual precipitation and downward solar radiation to calculate land hydrology. We evaluated these simulations using in situ observations over the southern Great Plains for the periods of May-September of 1998 and 1999 by comparing the model outputs with surface latent, sensible, and ground heat fluxes at 24 Atmospheric Radiation Measurement/Cloud and Radiation Testbed stations and with soil temperature and soil moisture observations at 72 Oklahoma Mesonet stations. The standard NLDAS models do a fairly good job but with differences in the surface energy partition and in soil moisture between models and observations and among models during the summer, while they agree quite well on the soil temperature simulations. To investigate why, we performed a series of experiments accounting for differences between model-specified soil types and vegetation and those observed at the stations, and differences in model treatment of different soil types, vegetation properties, canopy resistance, soil column depth, rooting depth, root density, snow-free albedo, infiltration, aerodynamic resistance, and soil thermal diffusivity. The diagnosis and model enhancements demonstrate how the models can be improved so that they can be used in actual data assimilation mode.

  16. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    Directory of Open Access Journals (Sweden)

    Albert Kertho

    Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  17. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Tong

    Full Text Available To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE, CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max was 46.6 ± 4.0 µmol CO2 m(-2 s(-1 and initial light use efficiency (α 0.059 ± 0.006 µmol µmol(-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI, canopy conductance (g c and air temperature (T a but declined with increasing vapor pressure deficit (VPD (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001, indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1 in March and May and 26 mm s(-1 in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01, implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  18. Site scientific mission plan for the southern great plains CART site January-June 2000.; TOPICAL

    International Nuclear Information System (INIS)

    Peppler, R. A.; Sisterson, D. L.; Lamb, P.

    2001-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 2000, and looks forward in less detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team[DSIT], Operations Team, and Instrument Team[IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. With this issue, many aspects of earlier Site Scientific Mission Plan reports have been moved to ARM sites on the World Wide Web. This report and all previous reports are available on the SGP CART web site

  19. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    Science.gov (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  20. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China

    NARCIS (Netherlands)

    Dong, J.; Hengsdijk, H.; Dai, T.; Boer, de W.; Qi, J.; Cao, W.

    2006-01-01

    Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the

  1. Developments Related to Tourism and Their Effects in Debrecen Following the Turn of the Millennium (Northern Great Plain Region, Hungary Success Or Failure?

    Directory of Open Access Journals (Sweden)

    Mária Vasvári

    2013-04-01

    Full Text Available The present paper focuses on the developments related to tourism and their effects in Debrecen, the largest city in the Northern Great Plain Region most of all in the time period after the country joining the European Union. The tourist industrial development regarding the infrastructure and supra-structure inDebrecen is presented. These developed further the traditionally popular attractions (Great Forest of the city. Relationship between the demand and reception conditions are described reflecting statistic data and the role of Debrecen in the market is analysed in relation to several other greater towns of the country. Data reveal that the number of visitors did not increase despite the developments related to tourism in the years following the turn of the millennium, even so it decreased after 2008 similarly to other greater towns of the country. Our questionnaire survey performed among the inhabitants and visitors as well revealed that the realized investments and the produced new attractions have only a slight role in attracting the target audience. Still the traditionally popular attractions attract most of the visitors to Debrecen therefore the most important task for the leaders of the Debrecen-Hortobágy Tourism Destination Management founded in 2010 is to propagate the new attraction elements.

  2. Rare Earth Elements (REE Deposits Associated with Great Plain Margin Deposits (Alkaline-Related, Southwestern United States and Eastern Mexico

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore

    2018-01-01

    Full Text Available W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE, tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including

  3. Moistening of the northern North American Great Plains enhances land-atmosphere coupling

    Science.gov (United States)

    Gerken, T.; Bromley, G. T.; Stoy, P. C.

    2017-12-01

    Land use change impacts planetary boundary layer processes and regional climate by altering the magnitude and timing of water and energy flux into the atmosphere. In the North American Great Plains (NGP), a decline in the practice of summer fallow on the order of 20 Mha from the 1970s until the present has coincided with a decrease in summertime radiative forcing, on the order of 6 W m-2. MERRA 2 (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, associated with an increase of latent heat fluxes (5.2-9.1 W m-2 decade-1) since the 1980s. Net radiation changed little. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1 in 2015. Findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy. We use a mixed-layer (ML) atmospheric modeling framework to further investigate the impact of the surface energy balance on convective development and local land-atmosphere coupling in the NGP. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we compare the development of modeled ML and lifted condensation level (LCL) to find times of ML exceeding LCL, a necessary but not sufficient condition for the occurrence of convective precipitation. We establish that the ML model adequately captures ML heights and timing of locally triggered convection at the site and that there is a c. 10% increase in modeled convection permitting conditions today compared to 1975-85 in response to ML-moistening and decreasing Bo. We find that growing season land-atmosphere coupling develops from wet preference in May to dry coupling in July and atmospheric suppression

  4. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    Science.gov (United States)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  5. Nutrient cycling potential of camelina (Camelina sativa L. Crantz.) as a cover crop in the US Northern Great Plains

    Science.gov (United States)

    Berti, Marisol; Samarappuli, Dulan

    2017-04-01

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize-soybean-wheat cropping systems. The objectives of this study were to determine the agronomic performance and nutrient scavenging potential of winter camelina in comparison with other common cover crops. Experiments were conducted in Fargo, ND in 2015 and 2016, and in Prosper, ND in 2015. The experimental design was a randomized complete block design with a split-plot arrangement with three replicates. The main plot was the sowing date and the subplot were camelina cultivars as well as other common cover crops in the area. Sowing dates were targeted to 15 August and September 1, although the final dates varied slightly each year. Biomass yield, N content of the biomass N uptake and P uptake was evaluated. Winter camelina N and P uptake ranged between 21 and 30.5 kg N ha-1 and 3.4 to 5.3 kg P ha-1. The nutrient scavenging potential of winter camelina was similar to other cover crops although slightly lower than turnip (Brassica rapa L.), radish (Raphanus sativus L.), and rape (Brassica napus L.) cultivars which had significantly higher P uptake than winter camelina and the other cover crops in the study. An evaluation of spring regrowth and cover indicated that only rye, winter camelina, and pennycress (Thlaspi arvense L.) survived the winter, although a few plants of triticale (x Trticosecale Witt.) and rape were found on a few plots. Because of the high variability on the plots there were no significant differences among the surviving cover crops on soil coverage. The soil coverage for rye cultivars was 25 and 35% and for camelina cv. Bison was 27%.In 2016, biomass yield was not significant for sowing date, cultivars, or their interaction. Winter camelina cultivars biomass yield fluctuated between 1.15 and 2.33 Mg dry matter ha-1 on the first sowing

  6. Radon-prone areas in the Lombard plain

    International Nuclear Information System (INIS)

    Sesana, Lucia; Polla, Giancarla; Facchini, Ugo; De Capitani, Luisa

    2005-01-01

    This paper reports the results of indoor radon measurements carried out in the Lombard plain. The aim of this study, which is based on the geological context, was to identify radon high-risk areas. The underlying geology has been established by means of the available stratigraphies giving a schematic representation of the sites in which either occurrence of gravel or silt and clay predominate with depths ranging from 0 to 50 m. Radon measurements were performed in a sample of 411 one-family houses in seven villages located in the southern area of Bergamo and Brescia. The findings indicate that when the substrate is dominated by clay, radon concentration for dwellings on the ground floor are low, whereas a strong predominance of underlying gravel mixed up in sand gives in winter months high radon flux from underground

  7. Radon-prone areas in the Lombard plain

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, Lucia [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy)]. E-mail: lucia.sesana@unimi.it; Polla, Giancarla [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy); Facchini, Ugo [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy); De Capitani, Luisa [Dipartimento di Scienze della Terra, Universita degli Studi di Milano, Via Botticelli, 23 - 20133 Milan (Italy)

    2005-07-01

    This paper reports the results of indoor radon measurements carried out in the Lombard plain. The aim of this study, which is based on the geological context, was to identify radon high-risk areas. The underlying geology has been established by means of the available stratigraphies giving a schematic representation of the sites in which either occurrence of gravel or silt and clay predominate with depths ranging from 0 to 50 m. Radon measurements were performed in a sample of 411 one-family houses in seven villages located in the southern area of Bergamo and Brescia. The findings indicate that when the substrate is dominated by clay, radon concentration for dwellings on the ground floor are low, whereas a strong predominance of underlying gravel mixed up in sand gives in winter months high radon flux from underground.

  8. The Use of Remote Sensing for Monitoring, Prediction, and Management of Hydrologic, Agricultural, and Ecological Processes in the Northern Great Plains

    Science.gov (United States)

    Farwell, Sherry O.; DeTroye, Diane (Technical Monitor)

    2002-01-01

    The NASA-EPSCoR program in South Dakota is focused on the enhancement of NASA-related research in earth system science and corresponding infrastructure development to support this theme. Hence, the program has adopted a strategy that keys on research projects that: a) establish quantitative links between geospatial information technologies and fundamental climatic and ecosystem processes in the Northern Great Plains (NGP) and b) develop and use coupled modeling tools, which can be initialized by data from combined satellite and surface measurements, to provide reliable predictions and management guidance for hydrologic, agricultural, and ecological systems of the NGP. Building a partnership network that includes both internal and external team members is recognized as an essential element of the SD NASA-EPSCoR program. Hence, promoting and tracking such linkages along with their relevant programmatic consequences are used as one metric to assess the program's progress and success. This annual report first summarizes general activities and accomplishments, and then provides progress narratives for the two separate, yet related research projects that are essential components of the SD NASA-EPSCoR program.

  9. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  10. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  11. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI

    Directory of Open Access Journals (Sweden)

    Yari A.R.

    2016-09-01

    Full Text Available Abstract Aims: The chemical elements in water resources, especially groundwater, can affect the water consumption purposes. The aim of this study was to evaluate the status of the overall pollution level of ground water of Qaleeh Shahin plain with respect to heavy metals by Cd and HEI methods. Instrument & Methods: This cross-sectional semi-experimental study was conducted in Sarpol-e Zahab township in Kermanshah Province, west of Iran. For this purpose, 20 groundwater wells were chosen randomly. The samples were filtered (0.45μm, stored in polyethylene bottles and were acidified at a pH lower than 2 by adding concentrated HNO3 in order to avoid metal adsorption onto the inner bottle walls. Element concentrations were determined using ICP-OES. The correlation between the metals in the different seasons, between the indices values and concentration of metals and between different indices values was assessed by Pearson’s correlation coefficient. Findings: There were no significant correlations between the concentrations of the elements in 2 seasons except between As and Cd in winter (r=0.544; p<0.05. Only the concentration of Pb had significant correlations with Cd (r=0.937; p=0.0001 and HEI (r=0.997; p=0.0001 values in winter and with Cd (r=0.997; p=0.0001 and HEI (r=0.810; p=0.0001 values in summer, which indicated Pb as the main contributory pollutant. The correlation between Cd and HEI was significant in winter (r=0.943; p=0.0001 and was significant in summer (r=0.818; p=0.0001. Conclusion: The water resources of Qaleeh Shahin plain, Kermanshah Province, Iran, are not polluted by heavy metals and are suitable for drinking.

  12. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    Full Text Available The production and consumption of the greenhouse gases (GHGs methane (CH4, carbon dioxide (CO2 and nitrous oxide (N2O in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1 year(-1 in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS. The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.

  13. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  14. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  15. Genetic architecture of winter hardiness and frost tolerance in triticale.

    Directory of Open Access Journals (Sweden)

    Wenxin Liu

    Full Text Available Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm.

  16. The Genome of Winter Moth (Operophtera brumata) Provides a Genomic Perspective on Sexual Dimorphism and Phenology

    NARCIS (Netherlands)

    Derks, Martijn F. L.; Smit, Sandra; Salis, Lucia; Schijlen, Elio; Bossers, Alex; Mateman, Christa; Pijl, Agata S.; de Ridder, Dick; Groenen, Martien A. M.; Visser, Marcel E.; Megens, Hendrik-Jan

    The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth

  17. Four-wing saltbush (Atriplex canescens) seed and seedling consumption by granivorous rodents

    Science.gov (United States)

    Four-wing saltbush (Atriplex canescens [Pursh] Nutt.), native to western North America, extends from Canada to Mexico and from the Great Plains to the Pacific Coast. Shrubby species of Atriplex are in the family Chenopodiacea, which contains other important shrubs such as winter fat (Krascheninnikov...

  18. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  19. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  20. Comparative geoscience studies of the Madeira and Southern Nares Abyssal Plains: NEA/SWG preference location document

    International Nuclear Information System (INIS)

    Auffret, G.A.; Buckley, D.E.; Schuttenhelm, R.T.E.; Searle, R.C.; Shephard, L.E.; Cranston, R.E.

    1986-01-01

    This document summarizes the status of geoscience investigations in the two primary North Atlantic study locations Great Meteor East (GME) in the Madeira Abyssal Plain, and the Southern Nares Abyssal Plain (SNAP), and assesses the characteristics of these locations relative to the guidelines considered desirable and necessary for a potential subseabed high-level waste repository. These characteristics will be continually reevaluated as additional data become available and as our understanding of deep-sea sediment processes within abyssal plain environments improves. Initially, a number of areas of minimum size were identified in the ocean basins that appeared to comply with most of the stability and barrier guidelines. However, detailed studies in both GME and SNAP demonstrate that as our level of knowledge improves, and the degree of resolution increases, the number of 100 km 2 areas complying with these guidelines becomes much more limited. This observation may be characteristic of abyssal plain and abyssal hill environments in both the North Atlantic and North Pacific basins. Marked differences in geoscience characteristics exist between the Great Meteor East and the Southern Nares Abyssal Plain study locations. The significance of these differences, as they impact the selection of a single preferred site for a potential subseabed repository, can only be determined by using an integrated systems risk assessment modeling approach. The known geoscience characteristics can, however, be used in conjunction with the site assessment guidelines to draw conclusions concerning the geoscience suitability of these two locations. These conclusions will be modified as specific types of data from future expeditions become available

  1. Effects of marsh pond terracing on coastal wintering waterbirds before and after Hurricane Rita.

    Science.gov (United States)

    O'Connell, Jessica L; Nyman, John A

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  2. Effects of Marsh Pond Terracing on Coastal Wintering Waterbirds Before and After Hurricane Rita

    Science.gov (United States)

    O'Connell, Jessica L.; Nyman, John A.

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  3. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    Science.gov (United States)

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  4. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  5. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  6. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  7. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Science.gov (United States)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  8. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Directory of Open Access Journals (Sweden)

    J. Delamere

    2011-09-01

    Full Text Available We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM facility at the Southern Great Plains (SGP site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs, four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated can be identified. A normalized difference vegetation index (NDVI is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  9. Integrated hydrological modelling of the North China Plain

    DEFF Research Database (Denmark)

    Shu, Yunqiao; Villholth, Karen G.; Jensen, Karsten Høgh

    2012-01-01

    The integrated hydrological model MIKE SHE was applied to a part of the North China Plain to examine the dynamics of the hydrological system and to assess water management options to restore depleted groundwater resources. The model simulates the spatio-temporal distribution of recharge...... for scenario analysis of the effect of different cropping rotations, irrigation intensity, and other water management options, like the implementation of the South to North Water Transfer (SNWT) project. The model analysis verified that groundwater tables in the region are subject to steep declines (up to 1 m....../yr) due to decades of intensive exploitation of the groundwater resources for crop irrigation, primarily the widespread crop rotation of irrigated winter wheat and mostly rainfed summer maize. The SNWT project mitigates water stress in Shijiazhuang city and areas adjacent to wastewater canals but cannot...

  10. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  11. Winter Atomiades 2014: CERN skiers win 31 medals!

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    The 12th Winter Atomiades took place at Flachau, Austria, from 8 to 15 March 2014. The event, organised by the Association of the Sports Communities of the European Research Institutes (see here), brought together 18 research centres, including CERN, AIT, ESRF, PSI and many others, with a total of about 280 participants.   Lots of fun and a great result for the 13 CERN skiers at the 2014 Winter Atomiades in Flachau, Austria. From left to right and from bottom to top: Lennart Jirden (PH), Anna Lipniacka (PH), Guillaume Michet (DGS), Vera Chetvertkova (TE), Thierry Boileau (external), Jean-Louis Grenard (EN), Clement Bovet (EN), Marc Tavlet (BE), Rob Knoops (PH), Giuseppe Lo Presti (IT), Simone Campana (IT), Sylviane Gander (external) and Javier Pablos (TE).   The team of 13 athletes from six different CERN departments won 31 medals across all disciplines, in a spirit of fun and fair play. CERN came second in the general ranking of all participating institutes! The next Winter Atomiades...

  12. Is parental competitive ability in winter negatively affected by previous springs' family size?

    Science.gov (United States)

    Fokkema, Rienk W; Ubels, Richard; Tinbergen, Joost M

    2017-03-01

    Reproductive behavior cannot be understood without taking the local level of competition into account. Experimental work in great tits ( Parus major ) showed that (1) a survival cost of reproduction was paid in environments with high levels of competition during the winter period and (2) experimentally manipulated family size negatively affected the ability of parents to compete for preferred breeding boxes in the next spring. The fact that survival was affected in winter suggests that the competitive ability of parents in winter may also be affected by previous reproductive effort. In this study, we aim to investigate whether (1) such carryover effects of family size on the ability of parents to compete for resources in the winter period occurred and (2) this could explain the occurrence of a survival cost of reproduction under increased competition. During two study years, we manipulated the size of in total 168 great tit broods. Next, in winter, we induced competition among the parents by drastically reducing the availability of roosting boxes in their local environment for one week. Contrary to our expectation, we found no negative effect of family size manipulation on the probability of parents to obtain a roosting box. In line with previous work, we did find that a survival cost of reproduction was paid only in plots in which competition for roosting boxes was shortly increased. Our findings thus add to the scarce experimental evidence that survival cost of reproduction are paid under higher levels of local competition but this could not be linked to a reduced competitive ability of parents in winter.

  13. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    Science.gov (United States)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  14. Continuous cropping with 13 - 15 inches of precipitation

    Science.gov (United States)

    Producers in the Great Plains have use fallow to adjust for inconsistent and often, inadequate rainfall. The prevalent rotation in this region is winter wheat-fallow. Fallow, however, is damaging to soil health. No-till practices have enabled producers to include more crops in the rotation. This...

  15. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    Science.gov (United States)

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions.

  17. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  18. Uranium in pore waters from North Atlantic (GME and Southern Nares Abyssal Plain) sediments

    International Nuclear Information System (INIS)

    Santschi, P.H.; Bajo, C.; Mantovani, M.; Orciuolo, D.; Cranston, R.E.; Bruno, J.

    1988-01-01

    Here we report the measurement of low uranium concentrations in composite pore-water samples from the uppermost 20-30 m of deep-sea abyssal plain sediments from the Great Meteor East and Southern Nares Abyssal Plains Area. Many values are the lowest uranium concentrations ever measured in the pore waters of deep-sea sediments. Our lowest value, 0.05 ± 0.01 p.p.b., is orders of magnitude lower than the predicted solubility of U0 2 or U 4 0 9 . The uranium concentrations obtained from both sites correlate closely with measured redox potentials in the sediments. The low mobility of uranium in pore waters from turbiditic deep-sea abyssal plain sediments, which can be deduced from these measurements, has important implications for the sub-seabed disposal of high-level radioactive waste, and for marine geochemistry of uranium. (author)

  19. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Energy Technology Data Exchange (ETDEWEB)

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  20. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  1. Combined effects of elevated temperature and CO2 enhance threat from low temperature hazard to winter wheat growth in North China.

    Science.gov (United States)

    Tan, Kaiyan; Zhou, Guangsheng; Lv, Xiaomin; Guo, Jianping; Ren, Sanxue

    2018-03-12

    We examined the growth and yield of winter wheat (Triticum aestivum) in response to the predicted elevated CO 2 concentration and temperature to determine the mechanism of the combined impacts in North China Plain. An elevated treatment (CO 2 : 600 μmol mol -1 , temperature: +2.5~3.0 °C, ECTI) and a control treatment (ambient CO 2 and temperature, CK) were conducted in open-top chambers from October 2013 to June 2016. Post-winter growth stages of winter wheat largely advanced and shifted to a cooler period of nature season under combined impact of elevated CO 2 and temperature during the entire growing season. The mean temperature and accumulated photosynthetic active radiations (PAR) over the post-winter growing period in ECTI decreased by 0.8-1.5 °C and 10-13%, respectively compared with that in CK, negatively impacted winter wheat growth. As a result, winter wheat in ECTI suffered from low temperature hazards during critical period of floret development and anthesis and grain number per ear was reduced by 10-31% in the three years. Although 1000-kernel weight in ECTI increased by 8-9% mainly due to elevated CO 2 , increasing CO 2 concentration from 400 to 600 μmol mol -1 throughout the growth stage was not able to offset the adverse effect of warming on winter wheat growth and yield.

  2. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    Science.gov (United States)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  3. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  4. Marine assemblages respond rapidly to winter climate variability.

    Science.gov (United States)

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  5. Salmonella isolated from the feces of migrating cranes at the Izumi Plain (2002-2008): serotype, antibiotic sensitivity and PFGE type.

    Science.gov (United States)

    Kitadai, Noriyuki; Ninomiya, Naoko; Murase, Toshiyuki; Obi, Takeshi; Takase, Kozo

    2010-07-01

    From November 2002 to February 2008, 2,251 crane feces were collected at the Izumi Plain in Kagoshima Prefecture. Salmonella enterica was isolated from 359 feces (15.9%), of which 332 (92.5%) were Salmonella Typhimurium (ST), 9 were S. Hvittingfoss/II, 4 were S. Abaetetuba, 3 were S. Enteritidis, 2 were S. Konstanz, 1 was S. Pakistan and 8 were untyped isolates, respectively. Against 12 antimicrobial agents, no resistant strains were found in 154 isolates examined, but one was found to be resistant to ampicillin. By pulsed-field gel electrophoresis (PFGE), all but one of the 68 ST isolates tested showed indistinguishable banding patterns; one had a different pattern. The results suggest that ST strains from the same origin would spread in crane flocks during their stay at Izumi Plain every winter.

  6. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    Science.gov (United States)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published

  7. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    International Nuclear Information System (INIS)

    Gao, Bing; Ju, Xiaotang; Su, Fang; Meng, Qingfeng; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2014-01-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N 2 O) and methane (CH 4 ) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N 2 O emissions plus CH 4 uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH 4 by the soil was little affected by cropping system. Average N 2 O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N 2 O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N 2 O + CH 4 emission differ among cropping systems. • An

  8. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bing [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Ju, Xiaotang, E-mail: juxt@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Su, Fang; Meng, Qingfeng [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Oenema, Oene [Wageningen University and Research, Alterra, Wageningen (Netherlands); Christie, Peter [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Chen, Xinping; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China)

    2014-02-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N{sub 2}O emissions plus CH{sub 4} uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH{sub 4} by the soil was little affected by cropping system. Average N{sub 2}O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N{sub 2}O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N{sub 2}O + CH{sub 4} emission

  9. Vulnerability of crops and croplands in the U.S. Northern Plains to predicted climate change

    Science.gov (United States)

    The states of Colorado, Montana, Nebraska, North Dakota, South Dakota, and Wyoming comprise the Northern Great Plains region of the United States. The soil and water resources contained in this region have historically supported a highly diverse and productive agriculture that provides a significant...

  10. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  11. Sports injury and illness epidemiology: Great Britain Olympic Team (TeamGB) surveillance during the Sochi 2014 Winter Olympic Games.

    Science.gov (United States)

    Palmer-Green, Debbie; Elliott, Niall

    2015-01-01

    Sports injury and illness surveillance is the first step in injury and illness prevention, and is important for the protection of both athlete health and performance in major competitions. To identify the prevalence, severity nature and causes of athlete injuries and illnesses in the Great Britain Olympic Team (TeamGB) during the Sochi 2014 Winter Olympic Games. The observational prospective cohort study followed the Great Britain Injury/Illness Performance Project surveillance methodology and obtained information on injuries and illnesses that occurred during the Games between 30 January and 23 February 2014 in TeamGB athletes (n=56). Among the 56 TeamGB athletes, there were 27 injuries and 11 illnesses during the Olympic Games period. This equated to 39% sustaining at least one injury and 18% at least one illness, with an incidence of 48.2 injuries and 19.6 illnesses per 100 athletes, respectively. Of all injuries and illnesses, 9% and 7%, respectively, resulted in time loss. The risk of sustaining an injury was highest for freestyle skiing, skeleton and snowboarding; and lowest for curling, biathlon and Alpine skiing (with no reported injuries); with the lower limb being the most commonly injured location. Respiratory system illnesses were most frequently reported overall, and older female athletes were the ones most affected by illness. The risk of injury was double the risk of illness for TeamGB athletes. Overall, the rate of time-loss issues was low. Methodological considerations are important when interpreting data, and prevention strategies should focus on those issues causing the greatest risk, in terms of prevalence and severity, to athlete health and performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Prospect Evaluation as an Emerging Pre-Evaluation Technique in the Case of Great Plains Wheat Producers’ Use of Web 2.0

    Directory of Open Access Journals (Sweden)

    Nicholas R. Brown

    2016-06-01

    Full Text Available We introduce a pre-evaluation technique, prospect evaluation, in the case of Great Plains wheat producers’ practices with Web 2.0. We emerged prospect evaluation as a pre-evaluation technique, expanding the role of evaluative logic and reasoning into the ideation phase of project and product development to close the risk gap between project idea and implementation. Prospect evaluation serves as a prequel to the well-established developmental, formative, and summative evaluation models. We implemented the prospect evaluation technique in the context of iWheat, a USDA-funded Web 2.0 project (currently known as myFields, http://myfields.info/dashboard. Wheat producers were comfortable using computers; however, they conceptualized the Internet with a Web 1.0 mindset that depends on a centralized model of development and delivery of content. Wheat producers were not comfortable actively co-creating useful information for the betterment of community, a fundamental underpinning of Web 2.0 advancement. Extension specialists and educators should focus on the rewards of contributing to Web 2.0 sites and proceed in diffusing Web 2.0 tools to the wheat producers. Prospect evaluation was sufficient for helping project leaders bridge the risk gap and move forward with the project.

  13. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Highlights: → A stable isotope study of the hydrochemistry of a Prairie Pothole wetland system. → δ 18 O H2O and δ 2 H H2O values show salt concentration by transpiration at wetland edge. → A range of δ 34 S SO4 values indicate SO 4 source and reduction processes. → Isotopic mixing lines show interaction of surface and groundwater at wetland edge. - Abstract: Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO 4 2- due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ 18 O H2O , δ 2 H H2O , and δ 34 S SO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO 4 reduction.

  14. Radon and thoron levels, their spatial and seasonal variations in adobe dwellings - a case study at the great Hungarian plain.

    Science.gov (United States)

    Szabó, Zsuzsanna; Jordan, Gyozo; Szabó, Csaba; Horváth, Ákos; Holm, Óskar; Kocsy, Gábor; Csige, István; Szabó, Péter; Homoki, Zsolt

    2014-06-01

    Radon and thoron isotopes are responsible for approximately half of the average annual effective dose to humans. Although the half-life of thoron is short, it can potentially enter indoor air from adobe walls. Adobe was a traditional construction material in the Great Hungarian Plain. Its major raw materials are the alluvial sediments of the area. Here, seasonal radon and thoron activity concentrations were measured in 53 adobe dwellings in 7 settlements by pairs of etched track detectors. The results show that the annual average radon and thoron activity concentrations are elevated in these dwellings and that the proportions with values higher than 300 Bq m(-3) are 14-17 and 29-32% for radon and thoron, respectively. The calculated radon inhalation dose is significantly higher than the world average value, exceeding 10 mSv y(-1) in 7% of the dwellings of this study. Thoron also can be a significant contributor to the inhalation dose with about 30% in the total inhalation dose. The changes of weather conditions seem to be more relevant in the variation of measurement results than the differences in the local sedimentary geology. Still, the highest values were detected on clay. Through the year, radon follows the average temperature changes and is affected by the ventilation, whereas thoron rather seems to follow the amount of precipitation.

  15. Javelin, Arrow, Dart and Pin Games of Native American Women of the Plains.

    Science.gov (United States)

    Pesavento, Wilma J.; Pesavento, Lisa C.

    This study was designed to determine (1) the arrow, dart, javelin, and pin games of Native American girls and women of the Great Plains, (2) the geographical spread of the games within the culture area, and (3) the characteristics of the various games. Data for this investigation were researched from "Annual Reports of the Bureau of American…

  16. Impacts of climate change for Swiss winter and summer tourism: a general equilibrium analysis

    OpenAIRE

    Thurm, Boris; Vielle, Marc; Vöhringer, Frank

    2017-01-01

    Tourism could be greatly affected by climate change due to its strong dependence on weather. In Switzerland, the sector represents an appreciable share of the economy. Thus, studying climate effects on tourism is necessary for developing adequate adaptation strategies. While most of the studies focused on winter tourism, we investigate the climate change impacts on both winter and summer tourism in Switzerland. Using a computable general equilibrium (CGE) model, we simulate the impacts of tem...

  17. Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences

    NARCIS (Netherlands)

    Beumer, V.

    2009-01-01

    Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences Victor Beumer Climatic change has great impacts on stream catchments and their ecology. Expectations are that more extreme climate events will result in undesired flooding in stream catchments. In

  18. Forest management strategy, spatial heterogeneity, and winter birds in Washington.

    Science.gov (United States)

    B. Haveri; A.B. Carey

    2000-01-01

    Ecological management of second-growth forest holds great promise for conservation of biodiversity, yet little experimental evidence exists to compare alternative management approaches. Wintering birds are one of several groups of species most likely to be influenced by forest management activities. We compared species richness and proportion of stand area used over...

  19. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    International Nuclear Information System (INIS)

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E.

    1992-01-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression

  20. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  1. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods

    Directory of Open Access Journals (Sweden)

    Muhammad Fahim Khokhar

    2016-05-01

    Full Text Available Fog is a meteorological/environmental phenomenon which happens across the Indo-Gangetic Plains (IGP and leads to significant social and economic problems, especially posing significant threats to public health and causing disruptions in air and road traffic. Meteorological stations in Pakistan provide limited information regarding fog episodes as these provide only point observations. Continuous monitoring, as well as a spatially coherent picture of fog distribution, is possible through the use of satellite observations. This study focuses on the 2012–2015 winter fog episodes over the Pakistan region using the Moderate Resolution Image Spectrometer (MODIS, the Ozone Monitoring Instrument and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO products. The main objective of the study was to map the spatial distribution of aerosols, their types, and to identify the aerosol origins during special weather conditions like fog in Pakistan. The study also included ground monitoring of particulate matter (PM concentrations, which were conducted during the 2014–2015 winter period only. Overall, this study is part of a multi-country project supported by the International Centre for Integrated Mountain Development (ICIMOD, started in 2014–2015 winter period, whereby scientists from Bangladesh, India and Nepal have also conducted measurements at their respective sites. A significant correlation between MODIS (AOD and AERONET Station (AOD data from Lahore was identified. Mass concentration of PM10 at all sampling sites within Lahore city exceeded the National Environmental Quality Standards (NEQS levels on most of the occasions. Smoke and absorbing aerosol were found to be major constituents of winter fog in Pakistan. Furthermore, an extended span of winter fog was also observed in Lahore city during the winter of 2014–2015. The Vertical Feature Mask (VFM provided by CALIPSO satellite confirmed the low-lying aerosol

  2. Nitrous oxide emissions from a Northern Great Plains soil as influenced by nitrogen management and cropping systems.

    Science.gov (United States)

    Dusenbury, M P; Engel, R E; Miller, P R; Lemke, R L; Wallander, R

    2008-01-01

    Field measurements of N2O emissions from soils are limited for cropping systems in the semiarid northern Great Plains (NGP). The objectives were to develop N2O emission-time profiles for cropping systems in the semiarid NGP, define important periods of loss, determine the impact of best management practices on N2O losses, and estimate direct N fertilizer-induced emissions (FIE). No-till (NT) wheat (Triticum Aestivum L.)-fallow, wheat-wheat, and wheat-pea (Pisum sativum), and conventional till (CT) wheat-fallow, all with three N regimes (200 and 100 kg N ha(-1) available N, unfertilized control); plus a perennial grass-alfalfa (Medicago sativa L.) system were sampled over 2 yr using vented chambers. Cumulative 2-yr N2O emissions were modest in contrast to reports from more humid regions. Greatest N2O flux activity occurred following urea-N fertilization (10-wk) and during freeze-thaw cycles. Together these periods comprised up to 84% of the 2-yr total. Nitrification was probably the dominant process responsible for N2O emissions during the post-N fertilization period, while denitrification was more important during freeze-thaw cycles. Cumulative 2-yr N2O-N losses from fertilized regimes were greater for wheat-wheat (1.31 kg N ha(-1)) than wheat-fallow (CT and NT) (0.48 kg N ha(-1)), and wheat-pea (0.71 kg N ha(-1)) due to an additional N fertilization event. Cumulative losses from unfertilized cropping systems were not different from perennial grass-alfalfa (0.28 kg N ha(-1)). Tillage did not affect N2O losses for the wheat-fallow systems. Mean FIE level was equivalent to 0.26% of applied N, and considerably below the Intergovernmental Panel on Climate Change mean default value (1.25%).

  3. EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph H. Hartman

    1999-09-01

    Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.

  4. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  5. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    Science.gov (United States)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  6. Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, J.H.; Roth, B.; Kihm, A.J.

    1997-08-11

    Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

  7. Using a time-series statistical framework to quantify trends and abrupt change in US corn, soybean, and wheat yields from 1970-2016

    Science.gov (United States)

    Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.

    2017-12-01

    Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.

  8. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  9. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  10. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    International Nuclear Information System (INIS)

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-01-01

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 μm in winter to 9.7 μm during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union

  11. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    Science.gov (United States)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  12. Changing Land Use from Cotton to Bioenergy Crops in the Southern Great Plains: Implications on Carbon and Water Vapor Fluxes

    Science.gov (United States)

    Rajan, N.; Sharma, S.

    2016-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Although first-generation biofuels like corn ethanol are available, second-generation biofuels are gaining importance because they don't directly compete with food production. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). While we believe there would be environmental benefits associated with this change in land use, their exact nature and magnitude have not been investigated for this region. The overall goal of the proposed study was to investigate the water and carbon (C) fluxes associated with the change in agricultural land use to biofuels-dominated cropping systems in the semi-arid Southwestern U.S. Cotton Belt region. Eddy covariance flux towers were established at selected producer fields (cotton, perennial grasses and biomass sorghum) in the Southern Great Plains region. The fluxes of carbon dioxide, water vapor and sensible heat between the surface and the atmosphere will be measured throughout the year. The results have demonstrated that the dynamics of C and water vapor fluxes for these agroecosystems were strongly affected by environmental variables, management factors, and crop phenology. Detailed results will be presented at the meeting.

  13. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2016-09-01

    Full Text Available Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = −0.01 ± 0.03, whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02.

  14. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  15. 49 CFR 229.64 - Plain bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to the...

  16. Shelterbelts: A buffer to climate on the Plains

    International Nuclear Information System (INIS)

    Brandle, J.R.

    1991-01-01

    One type of non-traditional forest on the Great Plains is the shelterbelt, which act as buffers to the climatic extremes of the region. The primary direct effect of a shelterbelt is to reduce the surface wind speed, resulting in altered microclimates extending 3-4 times the height of the shelterbelt on the windward side and 10-20 times the height on the leeward side. Field shelterbelts are used to protect crops, reduce wind erosion and distribute snow. Shelterbelts may also be used to protect farmsteads, livestock, roadways, and wildlife habitat. As future climate patterns develop, the value of wind protection and the moderating effect on microclimate will become more important, and careful shelterbelt design will result in benefits to various human activities. If the climate in the Plains becomes hotter and drier, as predicted, plants will need to have greater heat and drought tolerance, and will also require greater resistance to insect and disease attack. A classical genetic approach may be successful in adapting varieties, or biotechnology may shorten the period between successful identification of stress resistance and inclusion of the resistance on the next generation. 13 refs

  17. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  18. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  19. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  20. Climate change affects winter chill for temperate fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  1. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  2. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    Science.gov (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  3. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  4. Is parental competitive ability in winter negatively affected by previous springs' family size?

    NARCIS (Netherlands)

    Fokkema, Rienk W; Ubels, Richard; Tinbergen, Joost M

    2017-01-01

    Reproductive behavior cannot be understood without taking the local level of competition into account. Experimental work in great tits (Parus major) showed that (1) a survival cost of reproduction was paid in environments with high levels of competition during the winter period and (2)

  5. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    International Nuclear Information System (INIS)

    Pei, Hongwei; Shen, Yanjun; Liu, Changming; Scanlon, Bridget R; Reedy, Robert C; Long, Di

    2015-01-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ∼2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP–USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources. (letter)

  6. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    Science.gov (United States)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  7. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  8. Diurnal Freeze-Thaw Cycles Modify Winter Soil Respiration in a Desert Shrub-Land Ecosystem

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-07-01

    Full Text Available Winter soil respiration (Rs is becoming a significant component of annual carbon budgets with more warming in winter than summer. However, little is known about the controlling mechanisms of winter Rs in dryland. We made continuous measurements of Rs in four microsites (non-crust (BS, lichen (LC, moss (MC, and a mixture of moss and lichen (ML in a desert shrub-land ecosystem northern China, to investigate the causes of Rs dynamics in winter. The mean winter Rs ranged from 0.10 to 0.17 µmol CO2 m−2·s−1 across microsites, with the highest value in BS. Winter Q10 (known as the increase in respiration rate per 10 °C increase in temperature values (2.8–19 were much higher than those from the growing season (1.5. Rs and Q10 were greatly enhanced in freeze-thaw cycles compared to frozen days. Diurnal patterns of Rs between freeze-thaw and frozen days differed. Although the freeze-thaw period was relatively short, its cumulative Rs contributed significantly to winter Rs. The presence of biocrust might induce lower temperature, thus having fewer freeze-thaw cycles relative to bare soil, leading to the lower Rs for microsites with biocrusts. In conclusion, winter Rs in drylands was sensitive to soil temperature (Ts and Ts-induced freeze-thaw cycles. The temperature impact on Rs varied among soil cover types. Winter Rs in drylands may become more important as the climate is continuously getting warmer.

  9. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  10. Diagnosing the Nature of Land-Atmosphere Coupling During the 2006-7 Dry/Wet Extremes in the U. S. Southern Great Plains

    Science.gov (United States)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Kennedy, Aaron D.; Kumar, Sujay; Dong, Xiquan

    2011-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.

  11. Case study of developing an integrated water and nitrogen scheme for agricultural systems on the North China Plain

    Science.gov (United States)

    Liu, Y.; Tao, F.; Luo, Y.; Ma, J.

    2013-12-01

    Appropriate irrigation and nitrogen fertilization, along with suitable crop management strategies, are essential prerequisites for optimum yields in agricultural systems. This research attempts to provide a scientific basis for sustainable agricultural production management for the North China Plain and other semi-arid regions. Based on a series of 72 treatments over 2003-2008, an optimized water and nitrogen scheme for winter wheat/summer maize cropping system was developed. Integrated systems incorporating 120 mm of water with 80 kg N ha-1 N fertilizer were used to simulate winter wheat yields in Hebei and 120 mm of water with 120 kg N ha-1 were used to simulate winter wheat yields in Shandong and Henan provinces in 2000-2007. Similarly, integrated treatments of 40 kg N ha-1 N fertilizer were used to simulate summer maize yields in Hebei, and 80 kg N ha-1 was used to simulate summer maize yields in Shandong and Henan provinces in 2000-2007. Under the optimized scheme, 341.74 107 mm ha-1 of water and 575.79 104 Mg of urea fertilizer could be saved per year under the wheat/maize rotation system. Despite slight drops in the yields of wheat and maize in some areas, water and fertilizer saving has tremendous long-term eco-environmental benefits.

  12. Effects of heavy metal exposure on the condition and health of adult great tits (Parus major)

    International Nuclear Information System (INIS)

    Dauwe, Tom; Janssens, Ellen; Eens, Marcel

    2006-01-01

    We examined the possible effects of heavy metal exposure on the quality and health of adult great tits (Parus major) at four study sites along a pollution gradient near a non-ferrous smelter in Belgium. Tarsus length, wing length, body mass and condition of great tits were compared with respect to study site, age (first-year and older great tits), sex and season (birds caught in winter and during breeding). Tarsus length did not differ significantly among study sites. The wing length of great tits was larger at the study site furthest from the smelter, especially for older great tits. The length of the outermost tail feathers, however, did not differ significantly among study sites. We found no signs of loss of body mass or condition towards the pollution source. The body mass and condition was lowest for female great tits at the site furthest from the smelter, especially during winter. Haematocrit values did not differ significantly among sites. Overall, we found no clear significant effects of heavy metal pollution on morphological measurements and health parameters of great tits. - Heavy metal pollution had no clear effect on condition and health, but this may have been masked by habitat quality differences and gene flow

  13. Spatial analysis of health risk assessment with arsenic intake of drinking water in the LanYang plain

    Science.gov (United States)

    Chen, C. F.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2016-12-01

    Groundwater is one of the most component water resources in Lanyang plain. The groundwater of the Lanyang Plain contains arsenic levels that exceed the current Taiwan Environmental Protection Administration (Taiwan EPA) limit of 10 μg/L. The arsenic of groundwater in some areas of the Lanyang Plain pose great menace for the safe use of groundwater resources. Therefore, poor water quality can adversely impact drinking water uses, leading to human health risks. This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain. Geostatistical approach is widely used in spatial variability analysis and distributions of field data with uncertainty. The estimation of spatial distribution of the arsenic contaminant in groundwater is very important in the health risk assessment. This study used indicator kriging (IK) and ordinary kriging (OK) methods to explore the spatial variability of arsenic-polluted parameters. The estimated difference between IK and OK estimates was compared. The extent of arsenic pollution was spatially determined and the Target cancer risk (TR) and dose response were explored when the ingestion of arsenic in groundwater. Thus, a zonal management plan based on safe groundwater use is formulated. The research findings can provide a plan reference of regional water resources supplies for local government administrators and developing groundwater resources in the Lanyang Plain.

  14. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  15. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  16. Defining 'plain language' in contemporary South Africa | Cornelius ...

    African Journals Online (AJOL)

    Defining the concept 'plain language' has been hugely problematic since the origins of the socalled Plain Language Movement in the 1970s in the United States and elsewhere in the world. Definitions of 'plain language' abound, yet James (2008: 6) warns, in relation to plain language practitioners, that “we can't yet call ...

  17. 7 CFR 650.25 - Flood-plain management.

    Science.gov (United States)

    2010-01-01

    ... user how alternative land use decisions may affect the aquatic and terrestial ecosystems, human safety... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  18. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.

  19. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.109 Winter Harbor...

  20. Fire, grazing history, lichen abundance, and winter distribution of caribou in Alaska's taiga

    Science.gov (United States)

    Collins, William B.; Dale, Bruce W.; Adams, Layne G.; McElwain, Darien E.; Joly, Kyle

    2011-01-01

    In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P lichen biomass and stands older than 80 yr postfire (P lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis‐idaea) were necessary for predicting caribou use of winter range.

  1. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  2. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    Science.gov (United States)

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  3. Spatial differences in hydrologic characteristics and water chemistry of a temperate coastal plain peatland: The Great Dismal Swamp, USA

    Science.gov (United States)

    Speiran, Gary K.; Wurster, Frederick C.

    2016-01-01

    Spatial differences in hydrologic processes and geochemistry across forested peatlands control the response of the wetland-community species and resiliency to natural and anthropogenic disturbances. Knowing these controls is essential to effectively managing peatlands as resilient wetland habitats. The Great Dismal Swamp is a 45,325 hectare peatland in the Atlantic Coastal Plain of Virginia and North Carolina, USA, managed by the U.S. Fish and Wildlife Service. The existing forest-species distribution is a product of timber harvesting, hydrologic alteration by canal and road construction, and wildfires. Since 2009, studies of hydrologic and geochemical controls have expanded knowledge of groundwater flow paths, water chemistry, response to precipitation events, and characteristics of the peat. Dominant hydrologic and geochemical controls include (1) the gradual slope in land surface, (2) vertical differences in the hydraulic characteristics of the peat, (3) the proximity of lateral groundwater and small stream inflows from uplands, (4) the presence of an extensive canal and road network, and (5) small, adjustable-height dams on the canals. Although upland sources provide some surface water and lateral groundwater inflow to western parts of the swamp, direct groundwater recharge by precipitation is the major source of water throughout the swamp and the only source in many areas. Additionally, the proximity and type of upland water sources affect water levels and nutrient concentrations in canal water and groundwater. Where streams are a dominant upland source, variations in groundwater levels and nutrient concentrations are greater than where recharge by precipitation is the primary water source. Where upland groundwater is a dominant source, water levels are more stable. Because the species distribution of forest communities in the Swamp is strongly influenced by these controls, swamp managers are beginning to incorporate this knowledge into forest, water, and fire

  4. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.

    Science.gov (United States)

    Livneh, B.; Hoerling, M. P.

    2014-12-01

    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  5. Measurements and Analysis of Chemical Composition of Particulate Matter during High Pollution Events at Guanzhong Plain, China

    Science.gov (United States)

    Junji, C.

    2017-12-01

    Particulate matter pollution is a serious environmental problem which influencing air quality, regional and global climates, and human health. PM2.5 samples were collected at Guanzhong Plain with six sampling sites atdifferent cities in the year scale from 2012 to 2014. All of the six sites exhibited highest organic carbon (OC)and elemental carbon (EC) values in winter and lowest values in summer. OC correlates well with EC indicating similar emission sources. The contributions of secondary species SO42-, NO3- and NH4+ in total ions were greatest, and the high concentrations in winter were mainly due to emissions from coal combustion and biomass burning.During autumn the haze days were severest in Xi'an city with similar tendency of PM2.5 variations, and it was proved that biomass burning may be the main emission source of the regional pollution. In winter pollution episodes, the pollution patterns in Guanzhong Plain were similar which was resulted from strong secondary reactions and coal burning.Source apportionment using a positive matrix factorizationreceptor model indicates that on average secondary aerosol was the main source of PM2.5 (39.3%), followed by coal burning (17.3%), motor vehicle/industrial emissions (15.7%), fugitive dust (14.9%), and biomass burning (12.8%). The online, in situ measurement airborne species, especially the chemical composition of non-refectory submicron aerosol, during a heavyhaze-fog event, was analyzed in detailed.The formation of secondary sulfate and organic aerosol were observed during the event. The sulfur oxidation ratio (SOR), defined as sulfate/(SO2+sulfate) were mostly over 0.10, with a maximum of 0.30, when relative humidity > 80%. The aging product of organic aerosol (OA) were also observed in the event. The wet scattering coefficient was influenced by secondary sulfate, in the form of (NH4)2SO4, with contribution of 48.9% of wet particulate phase scattering. Thus decreased the visibility dramatically with a minimum of

  6. The foraging behaviour of herons and egrets on the Magela Creek flood plain, Northern Territory

    International Nuclear Information System (INIS)

    Recher, H.F.; Holmes, R.T.

    1982-03-01

    Five species of diurnal herons are common on the Magela Creek flood plain and forage along the edges of natural and artifical waterbodies both inside and outside the Ranger Uranium Project Area. The species of heron differ in the kinds and sizes of prey they take, their foraging location, degree of sociality and foraging behaviour. Because it takes relatively large fish, the Great Egret, E. alba, is most likely to be affected by any contamination of the aquatic environment by heavy metals or radionuclides. The Nankeen Night Heron, Nycticorax caledonicus is also abundant on the flood plain and probably feeds on large fish and frogs. The other herons take smaller or immature prey or hunt mostly in terrestrial habitats and are therefore less likely to be affected by contamination of the aquatic environment

  7. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    Directory of Open Access Journals (Sweden)

    A. L. Hodshire

    2016-07-01

    Full Text Available New-particle formation (NPF is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available, condensation of organic vapors, uptake of organic acids through acid–base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS measurement campaign took place at the DOE Southern Great Plains (SGP facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1 growth by primarily organics, (2 growth by primarily sulfuric acid and ammonia, and (3 growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1 sulfuric-acid condensation (and subsequent salt formation with ammonia or amines, (2 near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs, and (3 organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  8. 49 CFR 215.111 - Defective plain bearing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing. 215.111 Section 215.111... § 215.111 Defective plain bearing. A railroad may not place or continue in service a car, if the car has a plain bearing— (a) That is missing, cracked, or broken; (b) On which the bearing liner— (1) Is...

  9. Evaluation of nocturnal roost and diurnal sites used by whooping cranes in the Great Plains, United States

    Science.gov (United States)

    Pearse, Aaron T.; Harner, Mary J.; Baasch, David M.; Wright, Greg D.; Caven, Andrew J.; Metzger, Kristine L.

    2017-01-17

    Endangered whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate through the Great Plains twice each year. Although there is much interest in conservation and management for this species, information regarding characteristics of nocturnal roost sites used during migration has been limited and based largely on incidental observations. Using high-quality location data collected concurrently, we directed a companion field study designed to characterize sites used as roost or day-use sites to augment knowledge and assist the Platte River Recovery Implementation Program in identifying migration habitat for restoration, conservation, and management actions along the Platte River in central Nebraska. We collected data at 504 roost sites and 83 day-use sites used by marked whooping cranes in Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, and Montana. Roost sites were located in emergent wetlands (50 percent), lacustrine wetlands (25 percent), rivers (20 percent), and dryland sites (5 percent). Most day-use sites were characterized as dryland sites (54 percent), with the balance in wetlands (45 percent) and rivers (1 percent). Habitat criteria thresholds initially derived by the Platte River Recovery Implementation Program to represent where 90 percent of whooping cranes used along the Platte River were different from those we measured over a larger section of the migration corridor. For most of the metrics, the Platte River Recovery Implementation Program’s initial habitat criteria thresholds would be considered more conservative than critical values estimated from our data; thus, whooping cranes were seemingly able to tolerate a wider range of these metrics than initially suspected. One exception was the metric distance to nearest disturbance feature, where our results sug­gest that whooping cranes may be less tolerant to nearby dis­turbances in a larger part of the migration corridor compared to the Platte River

  10. Impact of Altered Precipitation Patterns on Plant Productivity and Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Haase, L.; Flanagan, L. B.

    2017-12-01

    between the normal vs. reduced frequency treatments in both experiments for either the plant greenness or soil respiration measurements. The results of this study have implications for understanding the mechanisms underlying ecosystem responses to anticipated precipitation change in the Great Plains.

  11. Chenier plain development: feedbacks between waves, mud and sand

    Science.gov (United States)

    Nardin, W.; Fagherazzi, S.

    2015-12-01

    Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.

  12. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  13. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain.

    Science.gov (United States)

    Huang, Ping; Zhang, Jiabao; Zhu, Anning; Li, Xiaopeng; Ma, Donghao; Xin, Xiuli; Zhang, Congzhi; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol

    2018-01-01

    Irrigation and nitrogen (N) fertilization in excess of crop requirements are responsible for substantial nitrate accumulation in the soil profile and contamination of groundwater by nitrate leaching during intensive agricultural production. In this on-farm field trial, we compared 16 different water and N treatments on nitrate accumulation and its distribution in the soil profile (0-180cm), nitrate leaching potential, and groundwater nitrate concentration within a summer-maize (Zea mays L.) and winter-wheat (Triticum aestivum L.) rotation system in the Huang-Huai-Hai Plain over five cropping cycles (2006-2010). The results indicated that nitrate remaining in the soil profile after crop harvest and nitrate concentration of soil solutions at two depths (80cm and 180cm) declined with increasing irrigation amounts and increased greatly with increasing N application rates, especially for seasonal N application rates higher than 190kgNha -1 . During the experimental period, continuous torrential rainfall was the main cause for nitrate leaching beyond the root zone (180cm), which could pose potential risks for contamination of groundwater. Nitrate concentration of groundwater varied from 0.2 to 2.9mgL -1 , which was lower than the limit of 10mgL -1 as the maximum safe level for drinking water. In view of the balance between grain production and environmental consequences, seasonal N application rates of 190kgNha -1 and 150kgNha -1 were recommended for winter wheat and summer maize, respectively. Irrigation to the field capacity of 0-40cm and 0-60cm soil depth could be appropriate for maize and wheat, respectively. Therefore, taking grain yields, mineral N accumulation in the soil profile, nitrate leaching potential, and groundwater quality into account, coupled water and N management could provide an opportunity to promote grain production while reducing negative environmental impacts in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Long term effects of wet site timber harvesting and site preparation on soil properties and loblolly pine (Pinus taeda L.) productivity in the lower Atlantic Coastal Plain

    OpenAIRE

    Neaves III, Charles Mitchell

    2017-01-01

    Short term studies have suggested that ground based timber harvesting on wet sites can alter soil properties and inhibit early survival and growth of seedlings. Persistence of such negative effects may translate to losses in forest productivity over a rotation. During the fall and winter of 1989, numerous salvage logging operations were conducted during high soil moisture conditions on wet pine flats in the lower coastal plain of South Carolina following Hurricane Hugo. A long-term experim...

  15. Great Meteor East (distal Madeira Abyssal Plain): geological studies of its suitability for disposal of heat-emitting radioactive wastes

    International Nuclear Information System (INIS)

    Searle, R.C.; Schultheiss, P.J.; Weaver, P.P.E.; Noel, M.; Kidd, R.B.; Jacobs, C.L.; Huggett, Q.J.

    1985-01-01

    This report summarises geological and geophysical studies carried out by the Institute of Oceanographic Sciences up to December 1983 in an area of the Madeira Abyssal Plain in order to assess its suitability for the disposal of heat-emitting radioactive waste. The results of work carried out in the same area by the Rijks Geologische Dienst of the Netherlands are also reviewed in the report. Other oceanographic studies in the area in the fields of geochemistry, biology and oceanography are briefly touched upon. (author)

  16. Combined Deterministic and Stochastic Approach to Determine Spatial Distribution of Drought Frequency and Duration in the Great Hungarian Plain

    Science.gov (United States)

    Szabó, J. A.; Kuti, L.; Bakacsi, Zs.; Pásztor, L.; Tahy, Á.

    2009-04-01

    Drought is one of the major weather driven natural hazards, which has most harm impacts on environment, agricultural and hydrological factors than the other hazards. In spite of the fact that Hungary - that country is situated in Central Europe - belongs to the continental climate zone (influenced by Atlantic and Mediterranean streams) and this weather conditions should be favourable for agricultural production, the drought is a serious risk factor in Hungary, especially on the so called "Great Hungarian Plain", which area has been hit by severe drought events. These drought events encouraged the Ministry of Environment and Water of Hungary to embark on a countrywide drought planning programme to coordinate drought planning efforts throughout the country, to ensure that available water is used efficiently and to provide guidance on how drought planning can be accomplished. With regard to this plan, it is indispensable to analyze the regional drought frequency and duration in the target region of the programme as fundamental information for the further works. According to these aims, first we initiated a methodological development for simulating drought in a non-contributing area. As a result of this work, it has been agreed that the most appropriate model structure for our purposes using a spatially distributed physically based Soil-Vegetation-Atmosphere Transfer (SVAT) model embedded into a Markov Chain-Monte Carlo (MCMC) algorithm for estimate multi-year drought frequency and duration. In this framework: - the spatially distributed SVAT component simulates all the fundamental SVAT processes (such as: interception, snow-accumulation and melting, infiltration, water uptake by vegetation and evapotranspiration, vertical and horizontal distribution of soil moisture, etc.) taking the groundwater table as lower, and the hydrometeorological fields as upper boundary conditions into account; - and the MCMC based stochastic component generates time series of daily weather

  17. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  18. Tietkens Plain karst - Maralinga

    International Nuclear Information System (INIS)

    James, J.M.

    1988-09-01

    The Tietkens Plain karst is located to the north of Maralinga village which is on the crest of the Ooldea Range on the north and east margin of the Nullarbor Plain in western South Australia. The geology of the carbonate rocks in the Maralinga area is summarised. On Tietkens Plain from 1955 to 1963 nuclear weapons tests dispersed radioactive materials over the Maralinga area. Six nuclear devices were detonated in the air and one was exploded a few metres below the surface. The effect such explosions have on the karst and the possible rate of recovery of its surface are discussed. This report is the record of a visit to the Maralinga area from the 15th -21st November 1986 which involved an inspection of the karst surface together with collection of water, soil and rock samples. Results of the measurements made in order to assess water quality and water contamination by radioactive nuclides are presented. The implications arising from the presence of radioactive materials on the surface and the possibility of their entering and contaminating the groundwater in the area are discussed in the context of the chemistry of uranium and plutonium. The potential for transmission of contaminants through groundwater conduits and aquifers in the dolomite is discussed. Evidence is produced to show that the caves of the Nullabor Plain are not contaminated at present and are unlikely to be so in the future. 21 refs., 2 figs. 3 tabs., ills

  19. A global analysis of the comparability of winter chill models for fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Brown, Patrick H

    2011-05-01

    Many fruit and nut trees must fulfill a chilling requirement to break their winter dormancy and resume normal growth in spring. Several models exist for quantifying winter chill, and growers and researchers often tacitly assume that the choice of model is not important and estimates of species chilling requirements are valid across growing regions. To test this assumption, Safe Winter Chill (the amount of winter chill that is exceeded in 90% of years) was calculated for 5,078 weather stations around the world, using the Dynamic Model [in Chill Portions (CP)], the Chilling Hours (CH) Model and the Utah Model [Utah Chill Units (UCU)]. Distributions of the ratios between different winter chill metrics were mapped on a global scale. These ratios should be constant if the models were strictly proportional. Ratios between winter chill metrics varied substantially, with the CH/CP ratio ranging between 0 and 34, the UCU/CP ratio between -155 and +20 and the UCU/CH ratio between -10 and +5. The models are thus not proportional, and chilling requirements determined in a given location may not be valid elsewhere. The Utah Model produced negative winter chill totals in many Subtropical regions, where it does not seem to be useful. Mean annual temperature and daily temperature range influenced all winter chill ratios, but explained only between 12 and 27% of the variation. Data on chilling requirements should always be amended with information on the location and experimental conditions of the study in which they were determined, ideally including site-specific conversion factors between winter chill models. This would greatly facilitate the transfer of such information across growing regions, and help prepare growers for the impact of climate change.

  20. The timing and nature of Late Quaternary vegetation changes in the northern Great Plains, USA and Canada: a re-assessment of the spruce phase

    Science.gov (United States)

    Yansa, Catherine H.

    2006-02-01

    This paper revises the chronology for the northward migration of Picea glauca (white spruce) across the northern Great Plains, following the recession of the Laurentide Ice Sheet, and reinterprets the species composition and structure of the late-glacial vegetation on the basis of pollen and plant-macrofossil analysis. The timing of spruce migration is based on 26 14C ages obtained from Picea macrofossils. The date for the appearance of white spruce in southern South Dakota, USA, remains unchanged, 12,600 14C yr BP (ca 15,000 cal yr BP), but its arrival in southern Saskatchewan, Canada, by 10,300 14C yr BP (ca 12,100 cal yr BP) is about 1500 years later than previously estimated based on an organic sediment date. Picea glauca thus migrated northwards at an average rate of 0.38 km/ 14C year (0.30 km/calendar year), significantly slower than the previously published rate of 2 km/ 14C year. White spruce trees probably inhabited lake shorelines, whereas prairie, parkland, and boreal plants occupied both lowlands and uplands, forming an open white spruce parkland. This interpretation differs from a previous reconstruction of a boreal-type spruce forest and thus offers another paleoclimatic interpretation. Precipitation was probably low and summer temperatures relatively mild, averaging about 19 °C.

  1. Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes in the U.S. Southern Great Plains

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.

  2. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  3. Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunyan [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Fan, Jiwen [Pacific Northwest National Laboratory, Richland, Washington; Chandra, Arunchandra S. [Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida; Kollias, Pavlos [School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California

    2017-10-01

    Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.

  4. Concentrations of mineral aerosol from desert to plains across the central Rocky Mountains, western United States

    Science.gov (United States)

    Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Goldstein, Harland L.; Neff, Jason C.

    2016-01-01

    Mineral dusts can have profound effects on climate, clouds, ecosystem processes, and human health. Because regional dust emission and deposition in western North America are not well understood, measurements of total suspended particulate (TSP) from 2011 to 2013 were made along a 500-km transect of five remote sites in Utah and Colorado, USA. The TSP concentrations in μg m−3 adjusted to a 24-h period were relatively high at the two westernmost, dryland sites at Canyonlands National Park (mean = 135) and at Mesa Verde National Park (mean = 99), as well as at the easternmost site on the Great Plains (mean = 143). The TSP concentrations at the two intervening montane sites were less, with more loading on the western slope of the Rocky Mountains (Telluride, mean = 68) closest to the desert sites compared with the site on the eastern slope (Niwot Ridge, mean = 58). Dust concentrations were commonly highest during late winter-late spring, when Pacific frontal storms are the dominant causes of regional wind. Low concentrations (10), as revealed by relatively low average daily concentrations of fine (<5 μg m−3; PM2.5) and coarse (<10 μg m−3; PM2.5–10) fractions monitored at or near four sites. Standard air-quality measurements for PM2.5 and PM10 apparently do not capture the large majority of mineral-particulate pollution in the remote western interior U.S.

  5. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  6. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  7. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  8. 2012 Aspen Winter Conferences on High Energy and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Olivier, Dore [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fox, Patrick [Aspen Center for Physics, CO (United States); Furic, Ivan [Univ. of Florida, Gainesville, FL (United States); Halkiadakis, Eva [Rutgers Univ., Piscataway, NJ (United States); Schmidt, Fabian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Senatore, Leonardo [Stanford Univ., CA (United States); Smith, Kendrick M. [Princeton Univ., NJ (United States); Whiteson, Daniel [Univ. of California, Irvine, CA (United States)

    2012-05-01

    Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era. It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists

  9. Physical activity levels of community-dwelling older adults are influenced by winter weather variables.

    Science.gov (United States)

    Jones, G R; Brandon, C; Gill, D P

    2017-07-01

    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Accessing the uncertainties of seismic velocity and anisotropy structure of Northern Great Plains using a transdimensional Bayesian approach

    Science.gov (United States)

    Gao, C.; Lekic, V.

    2017-12-01

    Seismic imaging utilizing complementary seismic data provides unique insight on the formation, evolution and current structure of continental lithosphere. While numerous efforts have improved the resolution of seismic structure, the quantification of uncertainties remains challenging due to the non-linearity and the non-uniqueness of geophysical inverse problem. In this project, we use a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate seismic observables including Rayleigh and Love wave dispersion, Ps and Sp receiver function to invert for shear velocity (Vs), compressional velocity (Vp), density, and radial anisotropy of the lithospheric structure. The Bayesian nature and the transdimensionality of this approach allow the quantification of the model parameter uncertainties while keeping the models parsimonious. Both synthetic test and inversion of actual data for Ps and Sp receiver functions are performed. We quantify the information gained in different inversions by calculating the Kullback-Leibler divergence. Furthermore, we explore the ability of Rayleigh and Love wave dispersion data to constrain radial anisotropy. We show that when multiple types of model parameters (Vsv, Vsh, and Vp) are inverted simultaneously, the constraints on radial anisotropy are limited by relatively large data uncertainties and trade-off strongly with Vp. We then perform joint inversion of the surface wave dispersion (SWD) and Ps, Sp receiver functions, and show that the constraints on both isotropic Vs and radial anisotropy are significantly improved. To achieve faster convergence of the rjMcMC, we propose a progressive inclusion scheme, and invert SWD measurements and receiver functions from about 400 USArray stations in the Northern Great Plains. We start by only using SWD data due to its fast convergence rate. We then use the average of the ensemble as a starting model for the joint inversion, which is able to resolve distinct seismic signatures of

  11. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    Science.gov (United States)

    Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.

    1992-12-01

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those

  12. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  13. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  14. Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain

    Science.gov (United States)

    Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel

    2016-04-01

    The Russian Plain is one of the largest plains with an area of 460 × 106 ha. Soil erosion during snow-melting and rainstorms occurs mostly on arable lands at the Russian Plain. The relative contribution of different types of soil erosion changes from the central part of the Russian Plain to the south. Sheet and rill soil erosion during snow-melting and rainfall are practically equal in the forest zone, while rainfall erosion prevails in the forest-steppe zone and the northern part of the steppe zone. Mostly rainfall erosion is observed in the southern part of the steppe zone. Mean annual soil losses from cultivated lands change in the range from 1 to 3 t ha-1 within lowlands to 6 to 8 t ha-1 at uplands with the maximum (10 t ha-1) observed near the Caucasus Mountains in the Stavropolskiy Krai. The intensity of gully erosion is relatively low during the last two decades. The collapse of the Soviet Union in 1991 caused a serious crisis in the agriculture because of financial problems and structural reorganization. As a result, the area of arable lands decreased in the southern half of the Russian Plain in 1991 - 2003. To a greater extent it was observed in the south of the forest zone because of the low productivity of its soils compared with chernozem. More than one third of the arable lands were abandoned in the dry steppe - semi-desert zones because these lands were irrigated during the Soviet period. The reduction of the arable land occurred in the forest-steppe and steppe zones mostly because of funding limitations during the 1990s. Recently the area of arable lands in the steppe zone was practically restored to its pre-1991 size. Simultaneously the last 25 years are characterized by unusual warm winters - in particular, in the southern half of the Russian Plain because of the global warming. As a result, the coefficient of surface snow-melting runoff considerably decreased for both cultivated fields and compacted fields after harvesting. Accordingly, spring

  15. Chemical weathering outputs from the flood plain of the Ganga

    Science.gov (United States)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the

  16. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  17. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China.

    Science.gov (United States)

    Song, Kaishan; Wang, Zongming; Du, Jia; Liu, Lei; Zeng, Lihong; Ren, Chunying

    2014-08-01

    This study investigated human-induced long-term wetland degradation that occurred in the Sanjiang Plain. Results from analyzing land-use/land-cover data sets derived from remotely sensed Landsat Multispectral Scanner/Thematic Mapper imagery for four time points showed that wetlands in the Sanjiang Plain have been severely transformed, and the area of wetlands decreased by 38 % from 1976 to 1986, by 16 % from 1986 to 1995, and by 31 % from 1995 to 2005. This study showed that transition to agricultural cultivation accounted for 91 % of wetland losses, whereas transition to grassland and forest accounted for 7 % of the wetlands losses. Institutional strategies and market policies probably exerted great impacts on agricultural practice that directly or indirectly influenced the decrease in wetlands. This study also indicated that an increased population likely led to wetland conversion to cropland by showing a high correlation between population and cropland (R (2) = 0.92, P reinforced further because of possible environmental consequences of wetland loss, such as enhanced soil carbon emission, changed hydrological cycling, and regional temperature increase.

  18. Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain

    Science.gov (United States)

    Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong

    2006-10-01

    Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.

  19. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  20. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  1. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  2. Foraging flight distances of wintering ducks and geese: a review

    Directory of Open Access Journals (Sweden)

    William P. Johnson

    2014-12-01

    Full Text Available The distance covered by foraging animals, especially those that radiate from a central area when foraging, may affect ecosystem, community, and population dynamics, and has conservation and landscape planning implications for multiple taxa, including migratory waterfowl. Migrating and wintering waterfowl make regular foraging flights between roosting and feeding areas that can greatly impact energetic resources within the foraging zone near roost sites. We reviewed published studies and gray literature for one-way foraging flight distances (FFDs of migrating and wintering dabbling ducks and geese. Thirty reviewed studies reported FFDs and several reported values for multiple species or locations. We obtained FFD values for migration (n = 7 and winter (n = 70. We evaluated the effects of body mass, guild, i.e., dabbling duck or goose, and location, i.e., Nearctic or Palearctic, on FFDs. We used the second-order Akaike's Information Criterion for model selection. We found support for effects of location and guild on FFDs. FFDs of waterfowl wintering in the Nearctic (7.4 ± 6.7 km, mean ± SD; n = 39 values were longer than in the Palearctic (4.2 ± 3.2 km; n = 31 values. The FFDs of geese (7.8 ± 7.2 km, mean ± SD; n = 24 values were longer than FFDs of dabbling ducks (5.1 ± 4.4 km, mean ± SD; n = 46 values. We found mixed evidence that distance flown from the roost changed, i.e., increased or decreased, seasonally. Our results can be used to refine estimates of energetic carrying capacity around roosts and in biological and landscape planning efforts.

  3. Seismic echo character northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1985-01-01

    Latest efforts in echo-character mapping of the northern Hatteras Abyssal Plain have discerned variations in thickness in a near-surface sedimentary sequence which has been designated seismic unit A. This unit probably represents the last episode of progradation of the Hatteras Deep Sea Fan in the southern part of the study area, and has infilled probable paleochannels from the Wilmington Canyon and Sohm Gap in the north. Unit A thins to a minimum in the central part of the plain, where older sediments come within 1 meter of the surface. Variations in the character of the surface reflector probably represent differing degrees of microtopography developed on a Late Pleistocene surface overlain by Holocene sediments. With the exception of one area identified as a relict surface outcropping in the western plain, this microtopography seems related to present-day thalweg locations on the abyssal plain. 11 references, 13 figures

  4. Moored current meter data from the Madeira Abyssal Plain (GME). 1. deployment (1984)

    International Nuclear Information System (INIS)

    Saunders, P.M.

    1986-01-01

    Near bottom current have been measured at three closely spaced sites in the N.E. Atlantic for 13 months. Locations were selected in the Great Meteor East study site area, near 31 0 30'N 25 0 W, one on the abyssal plain, one on top of a small abyssal hill about 400 m high and one on its flank just above the plain. Current meters were moored 10, 100, and 1000 m above the local bottom (5438 m, 5398 m and 4999 m) in January 1984 and recovered in February 1985. This report displays the characteristics of the currents in numerous tables and figures. In the mean they ar found to be very weak and though adjacent moorings are separated by only 12 km and 27 km the year-long current directions differ radically. Current variations are principally due to semi-diurnal tides, inertial oscillations and eddies the latter of which migrate over the moorings. The tidal energy meets expectations as does the eddy energy with magnitude 2-3 cm 2 s -2 . Horizontal (isopycnal) diffusivity is estimated as about 2x10 2 m 2 s -1 . Currents 10 m above the bottom exceed 10 cm/s least frequently on the plain and most frequently at the hill-foot. The influence of the hill is surprisingly large. At all three sites the strongest currents are found near the sea bed. Speeds also show a Weibull distribution and rough 50 year return currents are inferred. (author)

  5. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    Science.gov (United States)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.

    2018-03-01

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

  6. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Science.gov (United States)

    Logan, Timothy; Dong, Xiquan; Xi, Baike

    2018-02-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration ( N CCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient ( σ sp) values less than 20 Mm-1 and N CCN values less than 100 cm-3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation ( R) among aerosol loading ( σ sp moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

  7. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  8. 49 CFR 230.102 - Tender plain bearing journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tender plain bearing journal boxes. 230.102... Locomotives and Tenders Running Gear § 230.102 Tender plain bearing journal boxes. Plain bearing journal boxes... expected to damage the bearing; or have a detrimental effect on the lubrication of the journal and bearing...

  9. Changes and significance of oxygen-metabolism and SHH signal pathway in soldiers trained in high altitude after returning to plains

    Directory of Open Access Journals (Sweden)

    Li LIU

    2012-11-01

    Full Text Available Objective  To observe the changes in oxygen metabolism and sonic hedgehog (SHH signaling pathway in soldiers returning to plains after being stationed and trained for 6 months in a plateau. Methods  Eighty male officers and soldiers, aged 20-30 (22.3±2.9 years, after being stationed and trained on plateau (altitude 3960m for 6 months and returned to plain region (altitude 200m, were selected as subjects. Before their returning to plateau, 6 months after their station and training in plateau, and 2 days after their returning to plain, fasting venous blood samples were collected, the serum levels of superoxide dismutase (SOD, malondialdehyde (MDA and Sonic Hedgehog (SHH were determined by ELISA, the transcription of SHH mRNA was assayed by RT-PCR, and the expressions of SMO and nucleoprotein GLI2 were detected by Western blotting. All the data mentioned above were collected for statistical analysis. Results  As the subjects entered and garrisoned in plateau for 6 months, the activity of SOD decreased and the content of MDA increased significantly (P < 0.05. Both the protein expression and mRNA transcription of SHH were significantly higher after staying in plateau than in plain. When they returned to plain, both parameters decreased significantly, but were still higher than that when they lived in plain (P < 0.01. The expressions of SMO and nucleoprotein GLI2 showed a same tendency of changes. Conclusion  High altitude environment may have a great influence on oxygen metabolism of organism and SHH signal pathway, and the hypoxic environment of high altitude region is one of the conditions in activating the SHH signal pathway.

  10. Spatiotemporal Variation and Abrupt Change Analysis of Temperature from 1960 to 2012 in the Huang-Huai-Hai Plain, China

    Directory of Open Access Journals (Sweden)

    Yanyu Yin

    2015-01-01

    Full Text Available Based on a monthly dataset of temperature time series (1960–2012 in the Huang-Huai-Hai Plain of China (HHHPC, spatiotemporal variation and abrupt change analysis of temperature were examined by moving average, linear regression, spline interpolation, Mann-Kendall test, and moving t-test. Major conclusions were listed as follows. (1 Annual and seasonal temperature increased with different rates on the process of fluctuating changes during 1960~2012. The upward trend was 0.22°C 10a−1 for annual temperature, while it was very significant in winter (0.34°C 10a−1 and spring (0.31°C 10a−1, moderately significant in autumn (0.21°C 10a−1, and nonsignificant in summer (0.05°C 10a−1. (2 The spatial changes of annual and seasonal temperature were similar. The temperature increased significantly in Beijing and its adjacent regions, while it was nonsignificant in the central and southern regions. (3 The spring, autumn, winter, and annual temperature had warm abrupt change. The abrupt change time for winter temperature was in the late 1970s, while it was in the late 1980s and early 1990s for spring, autumn, and annual temperature. (4 Macroscopic effects of global and regional climate warming and human activities were probably responsible for the temperature changes. The climate warming would influence the hydrological cycle and agricultural crops in the study area.

  11. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  12. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2016-01-01

    Nitrous oxide (N2O) emissions from agricultural soils play an important role in the global greenhouse gas budget. However, the response of N2O emissions from nitrogen fertilized agricultural soils to climate warming is not yet well understood. A field experiment with simulated warming (T) using...... infrared heaters and its control (C) combined with a nitrogen (N1) fertilization treatment (315 kg N ha−1 y−1) and no nitrogen treatment (N0) was conducted over five years at an agricultural research station in the North China Plain in a winter wheat–soybean double cropping system. N2O fluxes were measured...

  13. Klaus Winter (1930 - 2015)

    CERN Multimedia

    2015-01-01

    We learned with great sadness that Klaus Winter passed away on 9 February 2015, after a long illness.   Klaus was born in 1930 in Hamburg, where he obtained his diploma in physics in 1955. From 1955 to 1958 he held a scholarship at the Collège de France, where he received his doctorate in nuclear physics under the guidance of Francis Perrin. Klaus joined CERN in 1958, where he first participated in experiments on π+ and K0 decay properties at the PS, and later became the spokesperson of the CHOV Collaboration at the ISR. Starting in 1976, his work focused on experiments with the SPS neutrino beam. In 1984 he joined Ugo Amaldi to head the CHARM experiment, designed for detailed studies of the neutral current interactions of high-energy neutrinos, which had been discovered in 1973 using the Gargamelle bubble chamber at the PS. The unique feature of the detector was its target calorimeter, which used large Carrara marble plates as an absorber material. From 1984 to 1991, Klau...

  14. Prevalence of operator fatigue in winter maintenance operations.

    Science.gov (United States)

    Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J

    2018-02-02

    Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Characteristics of foraging sites and protein status in wintering muskoxen: insights from isotopes of nitrogen

    Science.gov (United States)

    Gustine, David D.; Barboza, Perry S.; Lawler, James P.; Arthur, Stephen M.; Shults, Brad S.; Persons, Kate; Adams, Layne G.

    2011-01-01

    Identifying links between nutritional condition of individuals and population trajectories greatly enhances our understanding of the ecology, conservation, and management of wildlife. For northern ungulates, the potential impacts of a changing climate to populations are predicted to be nutritionally mediated through an increase in the severity and variance in winter conditions. Foraging conditions and the availability of body protein as a store for reproduction in late winter may constrain productivity in northern ungulates, yet the link between characteristics of wintering habitats and protein status has not been established for a wild ungulate. We used a non‐invasive proxy of protein status derived from isotopes of N in excreta to evaluate the influence of winter habitats on the protein status of muskoxen in three populations in Alaska (2005–2008). Multiple regression and an information‐theoretic approach were used to compare models that evaluated the influence of population, year, and characteristics of foraging sites (components of diet and physiography) on protein status for groups of muskoxen. The observed variance in protein status among groups of muskoxen across populations and years was partially explained (45%) by local foraging conditions that affected forage availability. Protein status improved for groups of muskoxen as the amount of graminoids in the diet increased (−0.430 ± 0.31, β± 95% CI) and elevation of foraging sites decreased (0.824 ± 0.67). Resources available for reproduction in muskoxen are highly dependent upon demographic, environmental, and physiographic constraints that affect forage availability in winter. Due to their very sedentary nature in winter, muskoxen are highly susceptible to localized foraging conditions; therefore, the spatial variance in resource availability may exert a strong effect on productivity. Consequently, there is a clear need to account for climate–topography effects in winter at multiple scales

  16. Development of great cormorant population (Phalacrocorax carbo sinensis in North-East France – synthesis of long term monitoring (1997–2008

    Directory of Open Access Journals (Sweden)

    Collas M.

    2011-12-01

    Full Text Available Since 1997, the North-east inter-regional delegation of the French National Institute for Water and Aquatic Ecosystems (ONEMA has been running annual networked monitoring of the great cormorant (Phalacrocorax carbo sinensis population in three French administrative regions: Alsace, Lorraine and Champagne-Ardenne. Changes in the wintering population are assessed by means of four monthly counts. Over the period 1997/2001, the population increased at a steady rate (average annual increase of 16%. Taking the population in January as the reference, the year 2001 shows a peak population of 13 000 birds. Since 2002, gradual decreasing in numbers has taken place (average rate of –4.5%. In January 2008, less than 10 000 birds were recorded. At the same time, nesting of the great cormorant was observed for the first time in Lorraine region in 1986. Then, the bird has been nesting in Champagne-Ardenne region and, since 2003, in all three regions. In 2008, ten nesting colonies were identified, composed of 512 couples (annual increase in population of 30.2% and 1500 births were recorded in Spring. Parallel to nesting, 4605 great cormorants were killed during the winter of 2007/2008 for a population of 10 000 birds. Climatic conditions may cause significant changes in wintering movements of the species, while operations to regulate cormorant numbers do not seem to have significant impact on the level of frequentation in winter. Finally, the using conditions of certain artificial lakes seem to be favourable for the bird during particularly difficult periods.

  17. Drought Forecasting with Vegetation Temperature Condition Index Using ARIMA Models in the Guanzhong Plain

    Directory of Open Access Journals (Sweden)

    Miao Tian

    2016-08-01

    Full Text Available This paper works on the agricultural drought forecasting in the Guanzhong Plain of China using Autoregressive Integrated Moving Average (ARIMA models based on the time series of drought monitoring results of Vegetation Temperature Condition Index (VTCI. About 90 VTCI images derived from Advanced Very High Resolution Radiometer (AVHRR data were selected to develop the ARIMA models from the erecting stage to the maturity stage of winter wheat (early March to late May in each year at a ten-day interval of the years from 2000 to 2009. We take the study area overlying on the administration map around the study area, and divide the study area into 17 parts where at least one weather station is located in each part. The pixels where the 17 weather stations are located are firstly chosen and studied for their fitting models, and then the best models for all pixels of the whole area are determined. According to the procedures for the models’ development, the selected best models for the 17 pixels are identified and the forecast is done with three steps. The forecasting results of the ARIMA models were compared with the monitoring ones. The results show that with reference to the categorized VTCI drought monitoring results, the categorized forecasting results of the ARIMA models are in good agreement with the monitoring ones. The categorized drought forecasting results of the ARIMA models are more severity in the northeast of the Plain in April 2009, which are in good agreements with the monitoring ones. The absolute errors of the AR(1 models are lower than the SARIMA models, both in the frequency distributions and in the statistic results. However, the ability of SARIMA models to detect the changes of the drought situation is better than the AR(1 models. These results indicate that the ARIMA models can better forecast the category and extent of droughts and can be applied to forecast droughts in the Plain.

  18. June 9-10, 2015: A case study of the Great Plains Low-Level Jet during PECAN (Plains Elevated Convection at Night)

    Science.gov (United States)

    Sullivan, Sharon M.

    Observations as part of the Plains Elevated Convection at Night (PECAN) campaign have allowed for an examination of the thermodynamic and dynamic structure of the LLJ using ground-based and airborne measurements in central Kansas. A shallow jet with wind speeds near 20 m s-1 formed during the nighttime hours on 10 June 2015. The University of Wyoming King Air research aircraft conducted two research flights beginning at sunset and ending near dawn, capturing the full evolution of the LLJ. Each flight included a series of vertical sawtooth maneuvers and isobaric legs along a fixed track at 38.7°N between 98.89°W and 100.3°W. This case featured classic signatures of the LLJ, including but not limited to the inertial oscillation of the ageostrophic wind. Forcing of the LLJ was analyzed using cross sections of D-values that allowed the vertical structure of the horizontal pressure gradient and hence thermal wind to be examined. A series of numerical simulations of the 10 June 2015 case study were made using the Weather Research and Forecasting (WRF) model to compare with observations. Output grids indicated that a temperature gradient of 6°C over 500 km was present between the surface and 850 hPa. Warmer temperatures were found to the west from the surface up to 600 hPa. The 600 hPa geostrophic winds were from the north. As a result, only weak southerly geostrophic winds were able to develop at the surface. The terrain-induced thermal wind was sufficiently large to overcome the adverse pressure gradient in the free atmosphere, but could only produce weak southerly geostrophic winds at the surface of about 11.4 m s-1.

  19. Mountain-Plains Curriculum.

    Science.gov (United States)

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  20. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  1. Great War legacies in Serbian culture

    Directory of Open Access Journals (Sweden)

    Milojković-Đurić Jelena

    2015-01-01

    Full Text Available In the aftermath of the Great War, Ivo Andrić published a number of poems, essays and short stories describing the hard-won victorious outcome as transient to the dire reality of the inordinate loss of human lives and suffering. Yet, personal experiences, although perceived as ephemeral, helped to define the historical discourse capturing man’s resolve to persist in his chosen mission. Over time, Serbian literature and fine arts sustained an unfinished dialogue of the past and the present, merging the individual voices with the collective voices to construct the national narrative. The young writer Miloš Crnjanski observed the sights of destruction and despair that seemed to pale in new literary works pertaining to the war. His novel A Diary about Čarnojević was closely related to his own perilous wartime journey as a conscript in the Austrian army. The vastness of Pannonian plains and Galician woods must have invoked a comparison of sorts with another historic chapter recorded in the collective consciousness of his nation: the Great Migration of Serbs led by Patriarch Arsenije III Čarnojević (Crnojević in 1690. The very title of the novel contained a powerful reference to the migration, and its illustrious historic leader which has not been discussed or explored before.

  2. [Food habits and winter diet of Charadrius melodus (Charadriiformes: Charadriidae) in Boca Ciega, Tamaulipas, Mexico].

    Science.gov (United States)

    Banda-Villanueva, Iris; Contreras-Lozano, Jorge; Garcia-Salas, Juan; González-Páez, Hugo

    2013-06-01

    The Piping Plover (Charadrius melodus) is a migratory endangered species that arrives, along with a great number of other winter migratory birds, to Boca Ciega every year. In spite of the importance of this ecosystem, these species, are threatened by the current habitat change caused by the dredging activities in the area. With the aim to generate new information about the importance of this area during winter, we studied C melodus activities during the winter season in Laguna Madre, from December 2009 to March 2010. Our objectives were: 1) determine the importance of the area during winter, 2) describe C. melodus ethology, feeding substrate preferences and food items, 3) to analyze and describe the sympatric diversity associated with C melodus. A total of ninety nine individuals were observed during the monitoring. The Cochran and Kendall test showed a high significance of the species with the substrate and signs tests using a binomial distribution that indicated a high preference for algal type of substrate. The highest activity recorded for this species during this winter season was feeding. The principal food items found in sediments were larvae of Diptera: Chironomidae and Ephydridae. The sympatric species of C. melodus were two families of Charadriiforms: Scolopacidae (nine species) and Charadriidae (two species). We concluded that this is an important area for feeding, protection and rest sites for this species, and its protection and management is recommended.

  3. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  4. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2018-06-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  5. Study on ecological regulation of coastal plain sluice

    Science.gov (United States)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  6. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  7. 27 CFR 9.207 - Outer Coastal Plain.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Outer Coastal Plain. 9.207... Outer Coastal Plain. (a) Name. The name of the viticultural area described in this section is “Outer Coastal Plain”. For purposes of part 4 of this chapter, “Outer Coastal Plain” is a term of viticultural...

  8. Analyzing the Various Approaches of Plain Language Laws.

    Science.gov (United States)

    Bowen, Betsy A., And Others

    1986-01-01

    Proposes a two-phase evaluation of the plain language laws that are designed to ensure that consumers can understand and use the personal business contracts they sign so that the best model for plain language legislation can be identified. (DF)

  9. Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Institute of Scientific and Technical Information of China (English)

    Timothy LOGAN; Xiquan DONG; Baike XI

    2018-01-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean.Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration (NCCN) on aerosol type and transport pathways.ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds,Aerosol,and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site.Northerly winds over the SGP reflect clean,continental conditions with aerosol scattering coefficient (σsp) values less than 20 Mm-1 and NCCN values less than 100 cm-3.However,southerly winds over the SGP are responsible for the observed moderate to high correlation (R)among aerosol loading (σsp > 60 Mm-1) and NCCN,carbonaceous chemical species (biomass burning smoke),and precipitable water vapor.This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico,indicating a strong dependence on air mass type.NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data,suggesting that this facility can represent surface aerosol conditions in the SGP,especially during strong aerosol loading events that transport via the Gulf of Mexico.Future long-term investigations will help to understand the seasonal influences of air masses on aerosol,CCN,and cloud properties over land in comparison to over ocean.

  10. Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia

    Science.gov (United States)

    Lim, Young-Kwon; Kim, Hae-Dong

    2013-01-01

    Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between

  11. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain and for thromboplastin, recombinant, human, plain

    DEFF Research Database (Denmark)

    van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F

    2018-01-01

    BACKGROUND: The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current 4(th) International Standards are running low. Candidate replacement materia......) international standard (rTF/09). The candidate materials have been accepted by WHO as the 5(th) International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain. This article is protected by copyright. All rights reserved.......BACKGROUND: The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current 4(th) International Standards are running low. Candidate replacement materials...... have been prepared. This report describes the calibration of the proposed 5(th) International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). METHODS: An international collaborative study was carried out for the assignment...

  12. Plain packaging of cigarettes: do we have sufficient evidence?

    Science.gov (United States)

    Smith, Collin N; Kraemer, John D; Johnson, Andrea C; Mays, Darren

    2015-01-01

    Tobacco industry marketing is a primary factor influencing cigarette smoking behavior and the cigarette pack has become an important marketing vehicle for tobacco companies. Standardized “plain” cigarette packaging is advocated as a public health policy to prevent and reduce morbidity and mortality caused by smoking by reducing youth smoking initiation and promoting cessation among smokers. Plain packaging was implemented in Australia in December 2012, and several other countries are considering doing so, but each faces foreseeable legal resistance from opponents to such measures. Tobacco companies have challenged these public health policies, citing international trade agreements and intellectual property laws. Decision-making in these court cases will hinge in part on whether the evidence indicates the public health benefits of plain packaging outweigh any potential harm to tobacco manufacturers’ interests. We reviewed the available evidence in support of plain packaging, finding evidence from observational, experimental, and population-based studies. Results indicate that plain packaging can reduce positive perceptions of smoking and dissuade tobacco use. Governments deciding to implement plain cigarette packaging measures can rely on this evidence to help make a strong case that plain packaging plays an important role in the context of comprehensive smoking prevention efforts. PMID:25897269

  13. Tobacco plain packaging: Evidence based policy or public health advocacy?

    Science.gov (United States)

    McKeganey, Neil; Russell, Christopher

    2015-06-01

    In December 2012, Australia became the first country to require all tobacco products be sold solely in standardised or 'plain' packaging, bereft of the manufacturers' trademarked branding and colours, although retaining large graphic and text health warnings. Following the publication of Sir Cyril Chantler's review of the evidence on the effects of plain tobacco packaging, the Ministers of the United Kingdom Parliament voted in March 2015 to implement similar legislation. Support for plain packaging derives from the belief that tobacco products sold in plain packs have reduced appeal and so are more likely to deter young people and non-smokers from starting tobacco use, and more likely to motivate smokers to quit and stay quit. This article considers why support for the plain packaging policy has grown among tobacco control researchers, public health advocates and government ministers, and reviews Australian survey data that speak to the possible introductory effect of plain packaging on smoking prevalence within Australia. The article concludes by emphasising the need for more detailed research to be undertaken before judging the capacity of the plain packaging policy to deliver the multitude of positive effects that have been claimed by its most ardent supporters. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Plain packaging of cigarettes: do we have sufficient evidence?

    Directory of Open Access Journals (Sweden)

    Smith CN

    2015-04-01

    Full Text Available Collin N Smith,1 John D Kraemer,2 Andrea C Johnson,1 Darren Mays1 1Department of Oncology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA; 2Department of Health Systems Administration, School of Nursing and Health Studies, Georgetown University, Washington, DC, USA Abstract: Tobacco industry marketing is a primary factor influencing cigarette smoking behavior and the cigarette pack has become an important marketing vehicle for tobacco companies. Standardized “plain” cigarette packaging is advocated as a public health policy to prevent and reduce morbidity and mortality caused by smoking by reducing youth smoking initiation and promoting cessation among smokers. Plain packaging was implemented in Australia in December 2012, and several other countries are considering doing so, but each faces foreseeable legal resistance from opponents to such measures. Tobacco companies have challenged these public health policies, citing international trade agreements and intellectual property laws. Decision-making in these court cases will hinge in part on whether the evidence indicates the public health benefits of plain packaging outweigh any potential harm to tobacco manufacturers’ interests. We reviewed the available evidence in support of plain packaging, finding evidence from observational, experimental, and population-based studies. Results indicate that plain packaging can reduce positive perceptions of smoking and dissuade tobacco use. Governments deciding to implement plain cigarette packaging measures can rely on this evidence to help make a strong case that plain packaging plays an important role in the context of comprehensive smoking prevention efforts. Keywords: cigarette smoking, tobacco, plain packaging, regulation, policy

  15. The events associated with the great tsunami of 26 December, 2004 sea level variation and impact on coastal region of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    -Type text/plain; charset=ISO-8859-1 Satish R. Shetye National Institute of Oceanography, Goa The events associated with the Great Tsunami of 26 December 2004 Sea Level Variation and Impact on Coastal Region of India Tsunamis are shallow... in the region. The Great Tsunami, though an event with a low probability of occurrence, was a high-impact event. One cannot but compare this event with what happened in 1755 along the east coast of the North Atlantic, another low-probability location...

  16. Plain Language to Communicate Physical Activity Information: A Website Content Analysis.

    Science.gov (United States)

    Paige, Samantha R; Black, David R; Mattson, Marifran; Coster, Daniel C; Stellefson, Michael

    2018-04-01

    Plain language techniques are health literacy universal precautions intended to enhance health care system navigation and health outcomes. Physical activity (PA) is a popular topic on the Internet, yet it is unknown if information is communicated in plain language. This study examined how plain language techniques are included in PA websites, and if the use of plain language techniques varies according to search procedures (keyword, search engine) and website host source (government, commercial, educational/organizational). Three keywords ("physical activity," "fitness," and "exercise") were independently entered into three search engines (Google, Bing, and Yahoo) to locate a nonprobability sample of websites ( N = 61). Fourteen plain language techniques were coded within each website to examine content formatting, clarity and conciseness, and multimedia use. Approximately half ( M = 6.59; SD = 1.68) of the plain language techniques were included in each website. Keyword physical activity resulted in websites with fewer clear and concise plain language techniques ( p websites with more clear and concise techniques ( p language techniques did not vary by search engine or the website host source. Accessing PA information that is easy to understand and behaviorally oriented may remain a challenge for users. Transdisciplinary collaborations are needed to optimize plain language techniques while communicating online PA information.

  17. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  18. Chromosomal aberration induced by gamma rays in winter rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Luczkiewicz, T.; Rogalska, S.M.

    1994-01-01

    Winter rape seeds (Brassica napus L. cv. Jet Neuf) were irradiated twice with gamma rays. In γ 1-2 generation (dose 50.0 kR) plants with reduced fertility were selected. Offspring of these plants, in the following generations, were segregated into fertile plants, partly fertile and sterile plants. Analysis of meiosis in PCM revealed presence of a great number of cells (in prophase 1. and metaphase 1.) with crosses, rings and chains of multivalents. It is a proof of vast heterozygous translocation. (author)

  19. Results of the of wintering bird populations monitoring in the region of Nizhnee Prisurye

    Directory of Open Access Journals (Sweden)

    Ekaterina S. Preobrazhenskaya

    2016-05-01

    Full Text Available The monitoring of wintering bird populations in the region of Nizhnee Prisurie on the territory of Chuvash Republic was carried out in 1989–1990. From 2000 censuses were conducted on the territory of the nature reserve "Prisurskiy" and the National Park "Chavash Varmane". These regular censuses were called project "Parus" by the Menzbir Ornithological Society of the Russian Academy of Sciences. The last ten years they were also included in the overall-Russian campaign "Euro-Asian Christmas Bird Counts" project from the Russian Birds Conservation Union. During these 20 years there were 44 bird species registered in the studied area. Eleven of them are marked by single or rare. Four species - Regulus regulus, Aegithalos caudatus, Spinus spinus and Carduelis carduelis – increased their abundance from 1990 till the middle 2000-s and then – decreased. Dendrocopos minor showed the opposite trend. The abundance of 13 species in the 1990-s was higher, sometimes significantly, than in the 2000s and 2010s. The reason may be searched in the differences between the censuses areas in 1990s and 2000s. However, the decreasing of the population densities is typical for other forest species, not only in Nizhnee Prisurie, but also in other model territories. In general, during the last 25 years we can see negative trends in the population dynamics of wintering bird species within the East European plain.

  20. Stratigraphy of the Martian northern plains

    Science.gov (United States)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  1. Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications

    Science.gov (United States)

    Singh, Nandita; Mhawish, Alaa; Deboudt, Karine; Singh, R. S.; Banerjee, Tirthankar

    2017-05-01

    Organic aerosol (OA) constitutes a dominant fraction of airborne particulates over Indo-Gangetic Plain (IGP) especially during post-monsoon and winter. Its exposure has been associated with adverse health effects while there are evidences of its interference with Earth's radiation balance and cloud condensation (CC), resulting possible alteration of hydrological cycle. Therefore, presence and effects of OA directly link it with food security and thereby, sustainability issues. In these contexts, atmospheric chemistry involving formation, volatility and aging of primary OA (POA) and secondary OA (SOA) have been reviewed with specific reference to IGP. Systematic reviews on science of OA sources, evolution and climate perturbations are presented with databases collected from 82 publications available throughout IGP till 2016. Both gaseous and aqueous phase chemical reactions were studied in terms of their potential to form SOA. Efforts were made to recognize the regional variation of OA, its chemical constituents and sources throughout IGP and inferences were made on its possible impacts on regional air quality. Mass fractions of OA to airborne particulate showed spatial variation likewise in Lahore (37 and 44% in fine and coarse fractions, respectively), Patiala (28 and 37%), Delhi (25 and 38%), Kanpur (24 and 30%), Kolkata (11 and 21%) and Dhaka. Source apportionment studies indicate biomass burning, coal combustion and vehicular emissions as predominant OA sources. However, sources represent considerable seasonal variations with dominance of gasoline and diesel emissions during summer and coal and biomass based emissions during winter and post-monsoon. Crop residue burning over upper-IGP was also frequently held responsible for massive OA emission, mostly characterized by its hygroscopic nature, thus having potential to act as CC nuclei. Conclusively, climatic implication of particulate bound OA has been discussed in terms of its interaction with radiation balance.

  2. Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

    Science.gov (United States)

    Zhang, E.; Yin, X.

    2017-12-01

    One of the most challenging steps in implementing analysis of virtual water content (VWC) of agricultural crops is how to properly assess the volume of consumptive water use (CWU) for crop production. In practice, CWU is considered equivalent to the crop evapotranspiration (ETc). Following the crop coefficient method, ETc can be calculated under standard or non-standard conditions by multiplying the reference evapotranspiration (ET0) by one or a few coefficients. However, when current crop growing conditions deviate from standard conditions, accurately determining the coefficients under non-standard conditions remains to be a complicated process and requires lots of field experimental data. Based on regional surface water-energy balance, this research integrates the Budyko framework into the traditional crop coefficient approach to simplify the coefficients determination. This new method enables us to assess the volume of agricultural VWC only based on some hydrometeorological data and agricultural statistic data in regional scale. To demonstrate the new method, we apply it to the Shijiazhuang Plain, which is an agricultural irrigation area in the North China Plain. The VWC of winter wheat and summer maize is calculated and we further subdivide VWC into blue and green water components. Compared with previous studies in this study area, VWC calculated by the Budyko-based crop coefficient approach uses less data and agrees well with some of the previous research. It shows that this new method may serve as a more convenient tool for assessing VWC.

  3. Ocean-Bottom Topography: The Divide between the Sohm and Hatteras Abyssal Plains.

    Science.gov (United States)

    Pratt, R M

    1965-06-18

    A compilation of precision echo soundings has delineated the complex topography between the Sohm and Hatteras abyssal plains off the Atlantic coast of the United States. At present the divide between the two plains is a broad, flat area about 4950 meters deep; however, the configuration of channels and depressions suggests spillage of turbidity currents from the Sohm Plain into the Hatteras Plain and a shifting of the divide toward the northeast. Hudson Canyon terminates in the divide area and has probably fed sediment into both plains.

  4. Prenatal exposure to the 1944-45 Dutch 'hunger winter' and addiction later in life.

    Science.gov (United States)

    Franzek, Ernst J; Sprangers, Niels; Janssens, A Cecile J W; Van Duijn, Cornelia M; Van De Wetering, Ben J M

    2008-03-01

    Prenatal exposure to severe famine has been associated with an increased risk of schizophrenia and affective disorders. We studied the relationship between prenatal exposure to famine during the Dutch hunger winter of 1944-45 and addiction later in life. A case-control study. The Rotterdam city area during the Dutch hunger winter lasting from mid-October 1944 to mid-May 1945. From February 1945 to mid-May 1945 the hunger winter was characterized by a famine peak. Patients are native Dutch addicted patients from the Rotterdam Addiction Treatment Program and controls are native Dutch inhabitants of Rotterdam, born between 1944 and 1947. Exposure to the whole hunger winter (treatment for an addictive disorder [OR = 1.34, 95% confidence interval (CI) 1.10-1.64]. Stratification by sex shows that the odds of exposure during the first trimester was significantly higher only among men (OR = 1.34, 95% CI 1.05-1.72), but not among women (OR = 1.26, 95% CI 0.88-1.81). The odds of exposure to the peak of the hunger winter during the first trimester of gestation were also significantly higher among addiction treatment patients (OR = 1.61, 95% CI 1.22-2.12). We did not find any significant differences for the second and third trimesters of gestation. First-trimester prenatal exposure to famine appears to be associated with addiction later in life. The study confirms the adverse influence of severe malnutrition on brain development and maturation, confirms the influence of perinatal insults on mental health in later life and gives rise to great concern about the possible future consequences for the hunger regions in our world.

  5. Spatiotemporal Variation of Dissolved Carbon in Semi-humid/arid Inland Waters: A Case Study from Songnen Plain, China

    Science.gov (United States)

    Song, K.; Li, L.; Zang, S.; Zhao, Y.

    2012-12-01

    Spatial and seasonal variations of dissolved organic carbon (DOC) and inorganic carbon (DIC) in 34 waters across the semi-humid/arid Songnen Plain, China were examined with 320 samples collected in 2011-2012. Large variations in both the concentration and quality of DOC are revealed, ranging from 0.47 mgL-1 to 720 mgL-1, which is mainly caused by the hydro-climatic condition in the plain. Large variations of DOC and DIC concentrations are observed between open (mean ± sd: 5.6 ± 2.4 mgL-1, 57.4 ± 34.7 mgL-1) and closed lakes (43.3 ± 7.9 mgL-1, 172.9 ± 113.3 mgL-1). Temporally, higher DOC and DIC concentrations are measured for ice-underlying water in winter than ice-free seasons. Colored dissolved organic matter (CDOM) and DOC concentrations are higher after high discharge events with terrigenous sources of CDOM/DOC dominated, while autochthonous sources also contributed to CDOM/DOC concentrations during algal bloom seasons. An interesting result of this study is that the non-outflow conditions for various water catchments had condensed effects on the dissolved carbon, resulting in close relationships between salinity and dissolved carbon parameters, e.g. salinity vs DOC (R2 = 0.83, p DOC (R2 = 0.79, p DOC/DIC from salinity measurements for thousand of waters dispersed in the semi-arid Songnen Plain. Indices based on CDOM absorption spectra, e.g. E250:365, DOC specific CDOM absorption (SUVA254) and spectral slope ratio (Sr, S275-295/S350-400), were applied to characterize DOM components and sources. Our results indicate high molecular weight CDOM fractions are more abundant in open waters than closed waters.

  6. Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)

    Science.gov (United States)

    Tazeh, mahdi; Kalantari, Saeideh

    2013-04-01

    This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.

  7. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  8. Late Quarternary evolution of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Dickson, S.M.; Laine, E.P.

    1986-05-01

    The sedimentary history and seismic structure of a deep-water turbidite basin in the Western North Atlantic Ocean has been investigated to understand further the evolution of abyssal plains. This study integrates analyses of sedimentary and seismic facies in order to examine the temporal and spatial patterns of sedimentation on the northern Hatteras Abyssal Plain during the Late Quaternary. Forty deep-sea sediment cores and 6000 km of high resolution (3.5 kHz) seismic reflection profiles from within 31-34 0 N and 69-74 0 W include portions of the Hatteras Outer Ridge, Lower Continental Rise and Bermuda Rise as well as the northern Hatteras Abyssal Plain. Seismic profiles (within 32-33 0 N, 70-71.5 0 W) define two acoustically-transparent seismic units beneath the Plain. The composition of these seismic units has been investigated with sediment cores. This study has found two notable features in the sedimentary framework of the Plain that appear to have resulted from temporal changes in sediment supply. The most recent change, a postglacial decline in turbidity current activity, produced a diagenetic iron enrichment at the Pleistocene-Holocene boundary. The stratigraphic thickness affected by diagenesis is related spatially to patterns of turbidite sedimentation. An earlier change, discovered in this research, occurred during the Wisconsinian glaciation and brought coarser-grained turbidity currents to the northern Plain. Deposition of sands from these flows appears to have been locally controlled by a broad topographic feature with less than ten meters relief. As a result of the topographic influence, there are abrupt boundaries, both verically and laterally, between an older mud facies and a younger sandy turbidite facies of the Plain

  9. Geohazards (floods and landslides in the Ndop plain, Cameroon volcanic line

    Directory of Open Access Journals (Sweden)

    Wotchoko Pierre

    2016-07-01

    Full Text Available The Ndop Plain, located along the Cameroon Volcanic Line (CVL, is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually and landslides (occasionally occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered.

  10. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  11. Mercury Distribution Along the Food Chain of a Wetland Ecosystem at Sanjiang Plain, Northeast China.

    Science.gov (United States)

    Zhilong, Ma; Qiang, Wang; Zhongsheng, Zhang; Xuehong, Zhou

    2017-02-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) in a wetland food chain were determined at Majuan Island of the Sanjiang Plain in China. Four tissues (muscle, liver, kidney and brain) of three waterbird species (great cormorant, grey heron and great egret), muscle tissues of fish (grass carp, crucian carp and longnose gudgeon), insects (predacious diving beetle), aquatic plants (ditch reed) and soil were analyzed. The mean concentrations of T-Hg were 0.392 ± 0.237 mg/kg for tissues of all juveniles, 1.999 ± 2.053 mg/kg for great cormorant adults, and 0.029 ± 0.019 mg/kg for fish muscle, respectively. While the relative contents of T-Hg of insects, plants and sediments were 0.012 ± 0.002, 0.006 ± 0.001 and 0.020 ± 0.002 mg/kg, respectively. Bioaccumulation of Hg along the wetland food chain may be able to show the current situation of Hg contamination in remote regions of East Asia.

  12. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  13. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    Science.gov (United States)

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  14. Braid-plain dynamics and bank erosion along the Matanuska River, Alaska

    Science.gov (United States)

    Curran, J. H.

    2009-12-01

    Braid-plain activity and geomorphic features in the Matanuska River in southcentral Alaska between 1949 and 2006 were examined to support a bank erosion hazard assessment. The glacial Matanuska River drains 6,500 km2 and is braided for 85 percent of its 150 km course, which parallels a major highway and flows through the towns of Sutton and Palmer, Alaska. The historical braid plain was defined as the envelope of areas with active channels, unvegetated bars, or vegetated bars with evidence of channels since 1949 and delineated in a GIS from 1949, 1962, and 2006 aerial orthoimagery. We created a strip map of bank height and composition (primarily bedrock and unconsolidated sediment) at braid-plain margins and outlined valley bottom features (terraces and tributary fans) adjacent to the braid plain to assess erodibility. Braid-plain dynamism has created a mosaic of extensive lightly vegetated bars interspersed with forested bars in strips along the banks and in small mid-channel positions. Abandoned channels filled with groundwater or tributary streamflow have created clearwater side channels within these bars that serve as the primary spawning location for chum, sockeye, and coho salmon in the Matanuska River basin. Erosion magnitudes for the periods 1949-1962 and 1962-2006 were computed as braid-plain expansion at transects across the historical braid-plain boundaries. Episodic, spatially distributed erosion and the antiquity of some eroded surfaces suggests that average annual erosion rates at a location are not adequate for assessing future erosion at that location in a braid plain. Lateral expansion caused bank erosion of 100 -275 m at 20 locations over the full period, about half at tributary fans and most occurring in a single time period. Minor growth of tributary fans constricted the braid plain, and emerging terraces have the potential to shrink the braid plain. Eroded banks included undated but pre-historic fluvial terraces and tributary fans. Where

  15. Interpretation of plain film radiology in infants and children with cardiac and vascular malformations. Pt. 2

    International Nuclear Information System (INIS)

    Rautenburg, H.W.

    1987-01-01

    This second part shows that its interpreted correctly diagnostic plain film radiology may contribute important information to an often complicated differential diagnosis of complex angiocardiopthies exemplified here by various subforms and types of pulmonary and tricuspid atresias. Diagnostic plainfilm radiology, however, is just one part of total preliminary cardiological diagnostics. In many cases of congenital heart and vessel malformations, it is of great diagnostic value in the practical medical environment and does not compete with echo cardiography especially in easy diagnoses like that of lung perfusion. (orig.) [de

  16. Investigation of land subsidence due to groundwater withdraw in Rafsanjan plain using GIS software

    International Nuclear Information System (INIS)

    Rahnama, M. B; Moafi H

    2009-01-01

    Nowadays, the purpose of predicting land subsidence is to manage the optimum usage of groundwater, which is considered according to irregular use of groundwater. Digging deep and semi-deep wells and continuous drought, mainly in wasteland and semi-wasteland zone in recent years causes the land subsidence in Rafsanjan plain. The Rafsanjan basin is located in the nearly central part of Iran in the Kerman province, with a general elevation between 1,400-1,500 m above sea level. In this research, first, the deep and semi-deep wells were investigated and groundwater table data were colleted. Second, these informations were analyzed and corrected. These data were used to create great bank of information data, to manage and program the geographic information system (GIS) software. Then by investigation of an existing land subsidence data, which were collected by GPS in August 1998 and April 1999, by the GIS software, the results show that discharging of groundwater is the main factor of the land subsidence in Rafsanjan zone. Therefore, the critical land subsidence zone of the Rafsanjan plain was determined, and precaution and recommendations are presented. (author)

  17. Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site

    Energy Technology Data Exchange (ETDEWEB)

    Knobelspiesse, Kirk D.; Cairns, Brian; Schmid, Beat; Roman, Miguel O.; Schaaf, Crystal B.

    2008-10-21

    The surface spectral albedo is an important component of climate models since it determines the amount of incident solar radiation that is absorbed by the ground. The albedo can be highly heterogeneous, both in space and time, and thus adequate measurement and modeling is challenging. One source of measurements that constrain the surface albedo are satellite instruments that observe the Earth, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF) by correcting top of the atmosphere (TOA) radiances for atmospheric effects and accumulating observations at a variety of viewing geometries. The BRDF can then be used to determine the albedo that is required in climate modeling. Other measurements that provide a more direct constraint on surface albedo are those made by upward and downward looking radiometers at the ground. One product in particular, the Best Estimate Radiation Flux (BEFLUX) value added product of the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains Central Facility (SGP CF) in central Oklahoma, has been used to evaluate the quality of the albedo products derived from MODIS BRDF estimates. These comparisons have highlighted discrepancies between the energy absorbed at the surface that is calculated from the BEFLUX products and that is predicted from the MODIS BRDF product. This paper attempts to investigate these discrepancies by using data from an airborne scanning radiometer, the Research Scanning Polarimeter (RSP) that was flown at low altitude in the vicinity of the SGP CF site during the Aerosol Lidar Validation Experiment (ALIVE) in September of 2005. The RSP is a polarimeter that scans in the direction of the aircraft ground track, and can thus estimate the BRDF in a period of seconds, rather than the days required by MODIS to accumulate enough viewing angles. Atmospheric correction is aided by the

  18. Assessing the vegetation condition impacts of the 2011 drought across the U.S. southern Great Plains using the vegetation drought response index (VegDRI)

    Science.gov (United States)

    Tadesse, Tsegaye; Wardlow, Brian D.; Brown, Jesslyn F.; Svoboda, Mark; Hayes, Michael; Fuchs, Brian; Gutzmer, Denise

    2015-01-01

    The vegetation drought response index (VegDRI), which combines traditional climate- and satellite-based approaches for assessing vegetation conditions, offers new insights into assessing the impacts of drought from local to regional scales. In 2011, the U.S. southern Great Plains, which includes Texas, Oklahoma, and New Mexico, was plagued by moderate to extreme drought that was intensified by an extended period of record-breaking heat. The 2011 drought presented an ideal case study to evaluate the performance of VegDRI in characterizing developing drought conditions. Assessment of the spatiotemporal drought patterns represented in the VegDRI maps showed that the severity and patterns of the drought across the region corresponded well to the record warm temperatures and much-below-normal precipitation reported by the National Climatic Data Center and the sectoral drought impacts documented by the Drought Impact Reporter (DIR). VegDRI values and maps also showed the evolution of the drought signal before the Las Conchas Fire (the largest fire in New Mexico’s history). Reports in the DIR indicated that the 2011 drought had major adverse impacts on most rangeland and pastures in Texas and Oklahoma, resulting in total direct losses of more than $12 billion associated with crop, livestock, and timber production. These severe impacts on vegetation were depicted by the VegDRI at subcounty, state, and regional levels. This study indicates that the VegDRI maps can be used with traditional drought indicators and other in situ measures to help producers and government officials with various management decisions, such as justifying disaster assistance, assessing fire risk, and identifying locations to move livestock for grazing.

  19. Plains Energy Services Ltd. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    Plains Energy Services Ltd. (Plains) is a two year old public company in the oil and gas service industry. It provides an integrated pool of services, concentrating on the life cycle of oil and gas wells as the driver for its expansion. Although the industry saw a marked decrease in well drilling activity for 1998, Plains was able to sustain a consistent income and cash flow because of its focus on ensuring access to the well during drilling, completion, production and abandonment. For 1998, revenue reached a record $93.3 million, an 85 per cent increase over 1997. This report presented Plain's major achievements for 1998. These included the completed construction of a technical, machining and manufacturing facility to enhance the development and implementation of technology and equipment among all business units. The company also introduced coiled tubing drilling services in the North American marketplace, as well as the first commercial version of a casing inspection tool. Plain's also introduced production logging through their wireline services business and applied for four new patents in relation to downhole tool development. In 1998, the company consolidated their operations into four divisions including consolidation of administration, benefits, banking and related overhead services. This report also described the company's efforts in addressing the year 2000 challenge. The company's consolidated financial statements were presented for the benefit of shareholders. These included statements of earnings and deficit, balance sheets, as well as statements of changes in financial position. Notes to the consolidated financial statements included highlights of significant accounting policies, changes in accounting policies, acquisitions, discontinued operations, and capital assets. tabs., figs

  20. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  1. Necrotizing fasciitis : plain radiographic and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Dae; Park, Jeong Hee; Jeon, Hae Jeong; Lim, Jong Nam; Heo, Tae Haeng; Park, Dong Rib [Konkuk Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-11-01

    To evaluate the plain radiographic and CT findings of the necrotizing fasciitis. We retrospectively reviewed the radiologic findings of 4 cases with necrotizing fasciitis. Three cases were proven pathologically. We evaluated pattern and extent of the gas shadows in plain films. CT findings were analysed, with emphasis on : (a) gas pattern, (b) extent, (c) location and involved site, (d) associated focal abscess, and (e) swelling of the adjacent muscles. On plain radiographs, four cases showed streaky or mottled gas densities in the pelvis, three cases in the perineum, one case in the abdomen, and two cases in the thigh. On CT images, gas pattern was mottled and streaky appearance with swelling of the adjacent muscles. Gas shadows located in the extraperitoneal space in four cases, fascial layer in four cases, and subcutaneous layer in four cases. There were gas shadows in pelvic wall, perineum, abdominal wall, buttock, thigh, and scrotum. Focal low density lesion suggestive of focal abscess was not visualized. Plain radiography is useful for early diagnosis of the necrotizing fasciitis and CT is very useful for detection of precise location and extent of the disease. CT is also useful for differentiation of necrotizing fasciitis from focal abscess and cellulitis.

  2. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  3. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  4. Sustainable Authorship in Plain Text using Pandoc and Markdown

    Directory of Open Access Journals (Sweden)

    Dennis Tenen

    2014-03-01

    Full Text Available In this tutorial, you will first learn the basics of Markdown—an easy to read and write markup syntax for plain text—as well as Pandoc, a command line tool that converts plain text into a number of beautifully formatted file types: PDF, .docx, HTML, LaTeX, slide decks, and more.1 With Pandoc as your digital typesetting tool, you can use Markdown syntax to add figures, a bibliography, formatting, and easily change citation styles from Chicago to MLA (for instance, all using plain text.

  5. Plain ABDO X-rays: a waste of time?

    Science.gov (United States)

    2002-03-01

    Plain abdominal radiographs are commonly requested for acute medical emergencies on patients with non-specific abdominal symptoms and signs. In this study, 131 plain abdominal radiographs performed on the day of admission were prospectively analysed by the research team. In only 16 cases (12 per cent) the reasons for requests conformed to the recommended guidelines by the Royal College of Radiologists. The reason for the request was stated in the case notes in only three cases. In 62 cases (47 per cent), there was no comment made on the film by the requesting clinician. There was a discrepancy in the interpretation of the radiograph between the clinician and the radiologist in 31 cases (24 per cent). The clinical management was influenced by plain abdominal radiographs in only nine cases (7 per cent). The researchers argue that most plain abdominal radiographs requested on acute medical emergencies are inappropriate. They suggest there is a need to ensure guidelines are followed to prevent unnecessary exposure of patients to radiation as well as preventing expenditure on irrelevant investigations.

  6. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to...

  7. Perceptions of branded and plain cigarette packaging among Mexican youth.

    Science.gov (United States)

    Mutti, Seema; Hammond, David; Reid, Jessica L; White, Christine M; Thrasher, James F

    2017-08-01

    Plain cigarette packaging, which seeks to remove all brand imagery and standardize the shape and size of cigarette packs, represents a novel policy measure to reduce the appeal of cigarettes. Plain packaging has been studied primarily in high-income countries like Australia and the UK. It is unknown whether the effects of plain packaging may differ in low-and-middle income countries with a shorter history of tobacco regulation, such as Mexico. An experimental study was conducted in Mexico City to examine perceptions of branded and plain cigarette packaging among smoking and non-smoking Mexican adolescents (n = 359). Respondents were randomly assigned to a branded or plain pack condition and rated 12 cigarette packages for appeal, taste, harm to health and smoker-image traits. As a behavioral measure of appeal, respondents were offered (although not given) four cigarette packs (either branded or plain) and asked to select one to keep. The findings indicated that branded packs were perceived to be more appealing (β = 3.40, p packaging may reduce brand appeal among Mexican youth, consistent with findings in high-income countries. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  9. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  10. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    Institute of Scientific and Technical Information of China (English)

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing

    2006-01-01

    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  11. Examining winter visitor use in Yellowstone National Park

    Science.gov (United States)

    Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang

    2000-01-01

    This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the author’s hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...

  12. Winter Dew Harvest in Mexico City

    Directory of Open Access Journals (Sweden)

    Arias-Torres Jorge Ernesto

    2015-12-01

    Full Text Available This study presents experimental and theoretical results of winter dew harvest in México City in terms of condensation rate. A simplified theoretical model based on a steady-state energy balance on a radiator-condenser was fitted, as a function of the ambient temperature, the relative humidity and the wind velocity. A glass sheet and aluminum sheet white-painted were used as samples over the outdoor experiments. A good correlation was obtained between the theoretical and experimental data. The experimental results show that there was condensation in 68% of the winter nights on both condensers. The total winter condensed mass was 2977 g/m2 and 2888 g/m2 on the glass sheet and aluminum sheet white-painted, respectively. Thus, the condensed mass on the glass was only 3% higher than that on the painted surface. The maximum nightly dew harvests occurred during December, which linearly reduced from 50 g/m2 night to 22 g/m2 night as the winter months went by. The condensation occurred from 1:00 a.m. to 9:00 a.m., with maximum condensation rates between 6:00 a.m. and 7:00 a.m. The dew harvest can provide a partial alternative to the winter water shortage in certain locations with similar climates to the winter in Mexico City, as long as pollution is not significant.

  13. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  14. Leadership in American Indian Communities: Winter Lessons

    Science.gov (United States)

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  15. Radiocarbon dating of sediment cores from Hachinohe, the Kamikita Plain

    International Nuclear Information System (INIS)

    Hitoki, Eri; Nakamura, Toshio; Matsumoto, Yui; Tsuji, Sei-ichiro; Fujine, Hisashi

    2013-01-01

    We investigated stratigraphy and chronology by analyses of Holocene sediments and radiocarbon dating of sediment cores from the Kamikita Plain. On the Kamikita Plain, which faces the Pacific coast of Northeast Japan, marine and fluvial terraces covered with tephras derived from Towada and Hakkoda volcanoes are well developed. We clarified that Towada Chuseri tephra and fluvial deposits consisted of volcanic sediments influenced an alluvial depositional system in the Kamikita Plain after a maximum of the Jomon Transgression. (author)

  16. Contamination Status of Seven Elements in Hooded Cranes Wintering in South-West Kyushu, Japan: Comparison with Red-Crowned Cranes in Hokkaido, Japan.

    Science.gov (United States)

    Teraoka, Hiroki; Miyagi, Hasumi; Haraguchi, Yuko; Takase, Kozo; Kitazawa, Takio; Noda, Jun

    2018-05-31

    The hooded crane is designated as an endangered species. The cranes breed primarily in wetlands in southeast Russia and China in summer. Most of the hooded crane population winters in the Izumi plain in Japan. It is difficult to know the contamination status of their habitat because of their vast breeding area. We determined the levels of Cd, Pb, As, (total) Hg, Se, Zn, and Cu in the liver, kidney, and muscle of hooded cranes that were found dead in Izumi in the periods 2003-2006 and 2014-2015 compared with the levels in red-crowned cranes in Hokkaido, Japan, as the only cranes in which these elements had been studied extensively. There were no notable differences between levels of the seven elements in the two periods. Overall, tissue levels of the elements examined in hooded cranes were comparable to those in red-crowned cranes except for Hg and Se. Tissue levels of Hg and Se were clearly lower in hooded cranes than in red-crowned cranes that were found dead from 2000. One lead poisoning case was confirmed. The results suggest that Hooded cranes wintering in Izumi are not extensively contaminated with the seven elements examined.

  17. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  18. Clinical and Plain Radiograph Pattern of Joint Dislocations and ...

    African Journals Online (AJOL)

    Plain radiograph is an integral part of early assessment of patients' evaluation, though newer imaging modalities such as magnetic resonance imaging (MRI), ... Conclusion: The shoulder joint is the most frequently dislocated and a conventional plain radiograph is still valuable as a first line investigative modality in ...

  19. Analysis of High Plains Resource Risk and Economic Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dealy, Bern Caudill [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaneyfelt, Calvin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Braeton James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moreland, Barbara Denise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-01

    The importance of the High Plains Aquifer is broadly recognized as is its vulnerability to continued overuse. T his study e xplore s how continued depletions of the High Plains Aquifer might impact both critical infrastructure and the economy at the local, r egional , and national scale. This analysis is conducted at the county level over a broad geographic region within the states of Kansas and Nebraska. In total , 140 counties that overlie the High Plains Aquifer in these two states are analyzed. The analysis utilizes future climate projections to estimate crop production. Current water use and management practices are projected into the future to explore their related impact on the High Plains Aquifer , barring any changes in water management practices, regulat ion, or policy. Finally, the impact of declining water levels and even exhaustion of groundwater resources are projected for specific sectors of the economy as well as particular elements of the region's critical infrastructure.

  20. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China

    Science.gov (United States)

    Gao, Chuanyu; Liu, Hanxiang; Cong, Jinxin; Han, Dongxue; Zhao, Winston; Lin, Qianxin; Wang, Guoping

    2018-05-01

    Black carbon (BC), the byproduct of incomplete combustion of fossil fuels and biomass can be stored in soil for a long time and potentially archive changes in natural and human activities. Increasing amounts of BC has been produced from human activities during the past 150 years and has influenced global climate change and carbon cycle. Identifying historical BC sources is important in knowing how historical human activities influenced BC and BC transportation processes in the atmosphere. In this study, PAH components and δ13C-BC in peatland in the Sanjiang Plain were used for identifying and verifying regional BC sources during the last 150 years. Results showed that environment-unfriendly industry developed at the end of the 1950s produced a great amount of BC and contributed the most BC in this period. In other periods, however, BC in the Sanjiang Plain was mainly produced from incomplete biomass burning before the 1990s; particularly, slash-and-burn of pastures and forests during regional reclamation periods between the 1960s and 1980s produced a huge amount of biomass burning BC, which then deposited into the surrounding ecosystems. With the regional reclamation decreasing and environment-friendly industry developing, the proportion of BC emitted and deposited from transportation sources increased and transportation source became an important BC source in the Sanjiang Plain after the 1990s.

  1. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  2. GIS BASED AQUIFER VULNERABILITY ASSESSMENT IN HANGZHOU-JIAXINGHUZHOU PLAIN, CHINA

    Directory of Open Access Journals (Sweden)

    Jean de Dieu Bazimenyera

    2014-01-01

    Full Text Available Hangzhou-Jiaxing-Huzhou plain is among the regions which faces the shortage of water due to its increasing population, industrialization, agriculture and domestic use; hence the high dependence on groundwater. In China, the exploitation of aquifers has been historically undertaken without proper concern for environmental impacts or even the concept of sustainable yield. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out whether certain locations in this groundwater basin are susceptible to receive and transmit pollution, this is why the main objective of this research is to find out the groundwater vulnerable zones using Geographical Information System (GIS model in Hangzhou-Jiaxing-Huzhou plain. GIS was used to create groundwater vulnerability map by overlaying hydro-geological data. The input of the model was provided by the following seven data layers: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity. This study showed that Hangzhou-Jiaxing-Huzhou area is grouped into three categories: High vulnerable zone with 27.4% of the total area, moderate vulnerable zone which occupy the great part of that area 60.5% and low vulnerable zone with 12.1%. This research suggests first the prioritization of high vulnerable areas in order to prevent the further pollution to already polluted areas; next the frequent monitoring of vulnerable zones to monitor the changing level of pollutants; and finally suggests that this model can be an effective tool for local authorities who are responsible for managing groundwater resources in that area.

  3. Woodville Karst Plain, North Florida

    OpenAIRE

    2006-01-01

    Map showing the largest mapped underwater cave systems and conduit flow paths confirmed by tracer testing relative to surface streams, sinkholes and potentiometric surface of the Florida aquifer in the Woodville Karst Plain, Florida

  4. Barriers to wheelchair use in the winter.

    Science.gov (United States)

    Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D

    2015-06-01

    To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  6. Winter road access to projected works in the diversion of the Little Whale River

    International Nuclear Information System (INIS)

    Goulet, R.

    1993-01-01

    The Great Whale hydroelectric complex in northern Quebec will require diversion of the Little Whale River, involving construction of dams 40 m and 30 m high and a canal 600 m long. The main mode of access to the construction sites will be a winter road, supplemented by an airfield designed for large-capacity aircraft. The method used by Hydro-Quebec in its environmental assessment of the winter road project is described. This method comprises five steps: delimitation of the study zone; establishment of a road corridor of choice by successively eliminating territory according to given constraints; description of the physical and biological environment; determination and optimization of the road route; and evaluation of potential impacts, along with establishment of measures to mitigate those impacts. The optimal routing is determined on the basis of criteria such as the presence of permafrost, the nature of the soils, avoidance of slopes steeper than 10%, and the depth and width of ice crossings

  7. Plain film diagnostic of the acromio-clavicular dislocation

    International Nuclear Information System (INIS)

    Vogel, H.; Thomae, J.; Jungbluth, K.H.; Hamburg Univ.

    1980-01-01

    The distance between the clavicula and the acromion, between the clavicula and the processus coracoideus and the step height between the acromion and the clavicula arch were measured on roentgen films. Evaluated were plain films of the shoulder and of the chest. 64 patients with dislocation of the acromio-clavicular joint were compared to patients without shoulder lesion. The comparance of both groups showed that measures exceeding the upper limits of the group without lesions are highly suggestive for acromio-clavicular dislocation. If one defines an acromio-clavicular dislocation as proved when two of the measured three distances exceed the upper limit, then an acromio-clavicular dislocation could be seen in 36% of the analysed cases on plain films of the shoulder and in 56% on plain chest films. (orig.) [de

  8. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands...

  9. Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations

    Science.gov (United States)

    Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R. D.; Case, J. L.; Iguchi, T.; Kemp, E.; Putman, W.; Wang, W.; Wu, D.; Tian, B.

    2018-01-01

    Winter precipitation (PR) characteristics in western United States (WUS) related to atmospheric river (AR) landfalls are examined using the observation-based PRISM data. The observed AR-related precipitation characteristics are in turn used to evaluate model precipitation data from the NASA MERRA2 reanalysis and from seven dynamical downscaling simulations driven by the MERRA2. Multiple metrics including mean bias, Taylor diagram, and two skill scores are used to measure model performance for three climatological sub-regions in WUS, Pacific Northwest (PNW), Pacific Southwest (PSW) and Great Basin (GB). All model data well represent the winter-mean PR with spatial pattern correlations of 0.8 or higher with PRISM for the three sub-regions. Higher spatial resolutions and/or the use of spectral nudging generally yield higher skill scores in simulating the geographical distribution of PR for the entire winter. The PRISM data shows that the AR-related fraction of winter PR and associated daily PR PDFs in each region vary strongly for landfall locations; AR landfalls in the northern WUS coast (NC) affect mostly PNW while those in the southern WUS coast (SC) affect both PSW and GB. NC (SC) landfalls increase the frequency of heavy PR in PNW (PSW and GB) but reduce it in PSW (PNW). All model data reasonably represent these observed variations in the AR-related winter PR fractions and the daily PR PDFs according to AR landfall locations. However, unlike for the entire winter period, no systematic effects of resolution and/or spectral nudging are identified in these AR-related PR characteristics. Dynamical downscaling in this study generally yield positive added values to the MERRA2 PR in the AR-related PR fraction for most sub-regions and landfall locations, most noticeably for PSW by NU-WRF. The downscaling also generate positive added value in p95 for PNW, but negative values for PSW and GB due to overestimation of heavy precipitation events.

  10. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat.

    Science.gov (United States)

    Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana

    2017-12-01

    Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    Science.gov (United States)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  12. 49 CFR 215.107 - Defective plain bearing box: General.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing box: General. 215.107... Suspension System § 215.107 Defective plain bearing box: General. A railroad may not place or continue in... the bearing; or (2) Have a detrimental effect on the lubrication of the journal and the bearings. ...

  13. High-performance plain bearings for diesel engines. Hochleistungs-Gleitlager fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.M.; Mathias, M.; Herrmann, B. (MTU, Friedrichshafen (Germany))

    1992-01-01

    The crankshaft bearings are among the most highly stressed engine components. Conventional plain bearings no longer fulfill the requirements of modern high-performance diesel engines. Introduction of the 'Sputter' technology, as a method of anti friction layer application, opened new perspectives in the field of plain bearing manufacture. In this presentation it is intended to compare various types of plain bearings and to demonstrate operation-oriented bearing testing. (orig.).

  14. Health Needs Assessment of Plain Populations in Lancaster County, Pennsylvania.

    Science.gov (United States)

    Miller, Kirk; Yost, Berwood; Abbott, Christina; Thompson, Scottie; Dlugi, Emily; Adams, Zachary; Schulman, Meryl; Strauss, Nicole

    2017-02-01

    We performed a health needs assessment for three Plain communities in Lancaster County, Pennsylvania from a random sample of households. Compared with the general population of adults, Plain respondents were more likely to be married, to have children, and they had large families; they were more likely to drink well water, to eat fruit and vegetables, to drink raw milk, and to live on a farm. Plain respondents had better physical and mental health and were less likely to have been diagnosed with various medical conditions compared with the general population of adults in Lancaster County but Old Order Mennonite respondents were more likely to have been diagnosed compared with Old Order Amish respondents. Plain respondents usually have a regular doctor and often receive preventive care but Old Order Mennonite respondents were more likely to have a regular doctor, to receive preventive care, to have had their children vaccinated, and to receive routine dental care compared with Old Order Amish respondents. Despite their relative geographic and genetic isolation, and despite the small, relative differences noted, the health of Plain communities in Lancaster County is similar to that of other adults in the County.

  15. Drought variability over Thessaly plain, Greece. Present and future changes

    Science.gov (United States)

    Nastos, Panagiotis T.; Kapsomenakis, John; Dalezios, Nicolas R.; Kotsopoulos, Spyridon; Poulos, Serafim

    2015-04-01

    The diachronic variability of precipitation is of major scientific concern, because it is linked to water availability or deficiency on regional scale. The latter, resulted from a prolonged period of abnormally low precipitation or permanent absence of precipitation, is associated with dryness, having on one hand, a substantial impact on agricultural production and thus the society itself, and on the other hand, the redistribution of flora and fauna. In some cases, dryness drive climate refugees, and this is a great challenge - threat - that must be faced - mitigated - by stake holders in international organizations and fora. The Aridity Index (AI) measures the degree of dryness of the climate at a given region, and according to the United Nations Environmental Programme (UNEP) it is defined as the ratio of precipitation to the potential evapotranspiration. In this study, we investigate the climate change impacts on AI over Thessaly plain, Greece. Thessaly, the largest plain and granary of Greece, includes a total area of 14,036 km2, which represents almost 11% of the Greek territory. Regarding the geomorphology, the ground is 50% mountainous-hilly and 50% flat, irrigated by Peneus, the third largest river in the country, which flows through the axis east-west. The assessment of AI was conducted utilizing daily evapotranspiration losses, based on the modified FAO-56 Penman-Monteith formula, and daily precipitation totals from a number of Regional Climate Models (RCMs), within the ENSEMBLE European Project. Further, the projected changes of AI between the period 1961-1990 (reference period) and the periods 2021-2050 (near future) and 2071-2100 (far future) along with the inter-model standard deviations are presented, under SRES A1B. The findings of the analysis revealed significant spatiotemporal changes of AI over Thessaly plain, focusing on their societal aspects. Acknowlegdements. This work is supported by the project AGROCLIMA (11SYN_3_1913), which is funded by

  16. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen

    DEFF Research Database (Denmark)

    Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.

    2015-01-01

    occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...

  17. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China

    Science.gov (United States)

    Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan

    2017-03-01

    Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.

  18. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  19. Winter climate limits subantarctic low forest growth and establishment.

    Science.gov (United States)

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  20. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  1. The Unusual Southern Hemisphere Stratosphere Winter of 2002

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.

    2003-01-01

    The southern hemisphere stratospheric winter of 2002 was the most unusual winter yet observed in the southern hemisphere climate record. Temperatures near the edge of the Antarctic polar vortex were considerably warmer than normal over the entire course of the winter. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters. These record high temperatures and weak jet resulted from a series of wave events that took place over the course of the winter. The first large event occurred on 15 May, and the final warming occurred on 25 October. The propagation of these wave events from the troposphere is diagnosed from time series of Eliassen-Palm flux vectors. The wave events tended to occur irregularly over the course of the winter, and pre-conditioned the polar night jet for the extremely large wave event of 22 September. This large wave event resulted in the first ever observed major stratospheric warming in the southern hemisphere. This wave event split the Antarctic ozone hole. The combined effect of the wave events of the 2002 winter resulted in the smallest ozone hole observed since 1988.

  2. Evaluating the Use of Plain Language in a Cancer Clinical Trial Website/App.

    Science.gov (United States)

    Schultz, Paula L; Carlisle, Regina; Cheatham, Chesley; O'Grady, Melissa

    2017-12-01

    Medically complex titles and descriptions found on clinical trial websites and online applications present a barrier to comprehension for users from the general public. In this study, we examine the effectiveness of plain language trial descriptions for user comprehension of basic trial details. Two hundred seventeen volunteers recruited from patient waiting areas completed 441 user tests of ten plain language trial descriptions. The majority of volunteers adequately comprehended the cancer type and basic inclusion/exclusion criteria from plain language trial descriptions. Difficulty comprehending the treatment being studied was seen in seven of ten descriptions tested. Revision and retesting of the seven trial descriptions showed continued user challenges in comprehending the treatment being studied. Plain language clinical trial descriptions integrated into a website/app allowed users to understand basic inclusion/exclusion criteria. Despite plain language used, discerning the treatment being studied may be difficult for some users. Integration of plain language descriptions into clinical trial online applications can help users understand trial basics. Further research regarding effective use of plain language to communicate the treatment being studied is needed.

  3. Artificial urethral sphincters: Value of plain film radiography i