WorldWideScience

Sample records for great lakes history

  1. Trends in fishery management of the Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1970-01-01

    Some hope is returning for recovery of the fish stocks of the Great Lakes, which have been outstanding examples of abuse although they are the world's largest and most valuable freshwater fishery resource. The lakes and the fish in them have been under complete jurisdiction of sovereign nations and their subdivisions almost since the settlement of north-central North America, but ironically this control has not prevented their decadence. For the first time in the long history of the Great Lakes fishery, management measures have been taken to meliorate conditions that contributed to earlier difficulties.

  2. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  3. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  4. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  5. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  6. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  7. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  8. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  9. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  10. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  11. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    Science.gov (United States)

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  12. Application of theory and research in fishery management of the Laurentian Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1973-01-01

    The Great Lakes have a high potential for the conduct of research and useful application of research findings, but the history of the Great Lakes indicates that extensive research and intensive management have failed to prevent deterioration of the fisheries. At times the research was not done before a loss occurred, or did not provide the information needed to solve a problem, or was not interpreted to indicate a need for corrective action.

  13. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  14. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  15. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  16. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  17. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  18. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  19. Notes on dredging in the Great Bitter Lake of the Suez Canal

    NARCIS (Netherlands)

    Beets, C.

    1953-01-01

    INTRODUCTION In the summer of 1950, the present writer spent a three weeks' holiday dredging in the Great Bitter Lake. Plans to collect specimens in that area for the Rijksmuseum van Natuurlijke Historie at Leiden had, unfortunately, to be drawn up somewhat hurriedly, but at least the most essential

  20. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  1. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  2. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  3. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  4. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0029] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on February 11, 2013, in..., 2013, after the committee completes its work on the agenda given under SUPPLEMENTARY INFORMATION...

  5. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  6. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    Science.gov (United States)

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  7. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  8. Great Lakes CoastWatch Node

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CoastWatch is a nationwide National Oceanic and Atmospheric Administration (NOAA) program within which the Great Lakes Environmental Research Laboratory (GLERL)...

  9. EXTRACELLULAR ENZYME ACTIIVTY AS A SURROGATE FOR NUTRIENTS AND NUTRIENT HISTORY IN GREAT LAKES WETLANDS

    Science.gov (United States)

    Great Lakes ecosystems are generally thought to be P-limited, but N-limitation may be more common than previously suspected. N-limitation should be most obvious in freshwater coastal wetlands, where the anaerobic oxidation of organic carbon may be limited by nitrate availability...

  10. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  11. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  12. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  13. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  14. Biology and status of the shortnose cisco Coregonus reighardi Koelz in the Laurentian Great Lakes

    Science.gov (United States)

    Webb, Shane A.; Todd, Thomas N.

    1995-01-01

    The shortnose cisco, Coregonus reighardi, a member of the endemic species assemblage of Coregoninae in the Laurentian Great Lakes, was commercially important until overfishing and competition pressures from induced planktivores extirpated the species in Lakes Michigan and Ontario. Spawning shortnose ciscoes have been collected from Lake Huron and Georgian Bay of Lake Huron since 1956, however, no individuals have been collected from these habitats since 1985. Shortnose ciscoes were not collected during surveys of the cisco fishery of Georgian Bay during the summer of 1992 and spring of 1993. The lack of captures in the last eight years coupled with captures of only lone individuals in the last 16 years suggests the species may be extinct in all of the Laurentian system. The life history traits examined for Lake Huron shortnose ciscoes were similar to the conditions recorded for Lake Michigan and Ontario shortnose ciscoes, although Lake Huron fish were smaller.

  15. GLERL Great Lakes Air Temperature/Degree Day Climatology, 1897-1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily maximum and minimum temperatures for 25 stations around the Great Lakes, 1897 to 1983, were given to NSIDC by the NOAA Great Lakes Environmental Research...

  16. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  17. Milankovitch Modulation of the Ecosystem Dynamics of Fossil Great Lakes

    Science.gov (United States)

    Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.; Cornet, B.; Huber, P.; McDonald, N. G.

    2008-12-01

    Triassic and Early Jurassic lacustrine deposits of eastern North American rift basins preserve a spectacular record of precession-related Milankovitch forcing in the Pangean tropics. The abundant and well-preserved fossil fish assemblages from these great lakes demonstrate a sequence of cyclical changes that track the permeating hierarchy of climatic cycles. To detail ecosystem processes correlating with succession of fish communities, we measured bulk δ13Corg through a 100 ky series of Early Jurassic climatic precession-forced lake level cycles in the lower Shuttle Meadow Formation of the Hartford rift basin, CT. The deep-water phase of one of these cycles, the Bluff Head bed, has produced thousands of articulated fish. We observe fluctuations in the bulk δ13Corg of the cyclical strata that reflect differing degrees of lake water stratification, nutrient levels, and relative proportion of algal vs. plant derived organic matter that trace fish community changes. We can exclude extrinsic changes in the global exchangeable reservoirs as an origin of this variability because molecule-level δ13C of n-alkanes of plant leaf waxes from the same strata show no such variability. While at higher taxonomic levels the fish communities responded largely by sorting of taxa by environmental forcing, at the species level the holostean genus Semionotus responded by in situ evolution, and ultimately extinction, of a species flock. Fluctuations at the higher frequency, climatic precessional scale are mirrored at lower frequency, eccentricity modulated, scales, all following the lake-level hierarchical pattern. Thus, lacustrine isotopic ratios amplify the Milankovitch climate signal that was already intensified by sequelae of the end-Triassic extinctions. The degree to which the ecological structure of modern lakes responds to similar environmental cyclicity is largely unknown, but we suspect similar patterns and processes within the Neogene history of the East African great lakes

  18. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  19. Wildlife in the Upper Great Lakes Region: a community profile.

    Science.gov (United States)

    Janine M. Benyus; Richard R. Buech; Mark D. Nelson

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. The composite NORTHWOODS data base is summarized. Multiple queries of NORTHWOODS were used to profile the wildlife community of the Upper Great Lakes region.

  20. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for the Great Lakes and inland waters. 11... Endorsements for the Great Lakes and inland waters. Any license or MMC endorsement issued for service on the Great Lakes and inland waters is valid on all of the inland waters of the United States as defined in...

  1. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  2. 78 FR 21937 - Proposed Agency Information Collection Request: Comment Request; Great Lakes Accountability...

    Science.gov (United States)

    2013-04-12

    ... Collection Request: Comment Request; Great Lakes Accountability System (Renewal) AGENCY: Environmental... an information collection request (ICR), ``Great Lakes Accountability System'' (EPA ICR No. 2379.02... using www.regulations.gov (our preferred method) or by mail to: Great Lakes Accountability System, Attn...

  3. 75 FR 34448 - Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation...

    Science.gov (United States)

    2010-06-17

    ... Settlement; Great Lakes Container Corporation Superfund Site, Coventry Rhode Island AGENCY: Environmental... and future response costs concerning the Great Lakes Container Corporation Superfund Site, located in...), Boston, MA 02109-3912, (617) 918-1216. Comments should reference the Great Lakes Container Corporation...

  4. HYPERSPECTRAL REMOTE SENSING, GPS, AND GIS APPLICATIONS IN OPPORTUNISTIC PLANT SPECIES MONITORING OF GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Coastal wetlands of the Laurentian Great Lakes (LGL) are among the most fragmented and disturbed ecosystems of the world, with a long history of human-induced disturbance. LGL wetlands have undergone losses in the biological diversity that coincides with an increase in the presen...

  5. The Great Lakes Spill Co-op and how it works

    International Nuclear Information System (INIS)

    Usher, D.

    1994-01-01

    A major program was launched by spill control professionals and industry in 1990 when it created the Great Lakes Spill Cooperative (GLSCOOP). The major objective of this cooperative is to provide a network to facilitate quick response in crises situations in the Great Lakes region. Specifically, the Great Lakes Spill Cooperative will: (1) coordinate environmental response activities in connection with emergency conditions as a result of spills of petroleum and hazardous substances in the Great Lakes; (2) apply state-of-the-art management, training and equipment technology during emergency environmental response operations, consistent with local, state and federal regulations; and (3) promote cooperation with its members, governmental agencies as well as allied trade and professional associations, consistent with the existing laws, in mobilizing equipment and expertise in controlling or mitigating pollution incidents in the Great Lakes. In this presentation the author discusses how the cooperative was formed, how it will operate, the members of the group and their individual roles as well as the organization's partnership with government--local, state and federal. He also discusses his involvement in the formation of the Mamne Response Alliance (MRA). This co-op was utilized recently by one of its members to provide 100 personnel who were Haz-Woper trained for the recent Tampa Bay Spill in August of last year

  6. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  7. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  8. Mercury contamination in the Laurentian Great Lakes region: Introduction and overview

    International Nuclear Information System (INIS)

    Wiener, James G.; Evers, David C.; Gay, David A.; Morrison, Heather A.; Williams, Kathryn A.

    2012-01-01

    The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land–water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish. - Highlights: ► We describe a bi-national synthesis of Hg data from the Great Lakes region. ► Emission controls have reduced Hg inputs to inland lakes about 20% since the 1980s. ► Wet and dry deposition and evasion are regionally important atmospheric Hg fluxes. ► Land use affects Hg inputs to surface waters and bioaccumulation of methylmercury. ► In some waters, Hg levels in yellow perch pose risks to fish, wildlife, and humans. - A synthesis of Hg data from the Great Lakes region reveals the chronology of contamination; the importance of wet and dry deposition and evasion to Hg budgets; the influence of land–water linkages; bioaccumulation in aquatic foods webs; and risks associated with Hg in an important prey fish.

  9. Evidence for early hunters beneath the Great Lakes

    OpenAIRE

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and loca...

  10. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.

    Science.gov (United States)

    Sandheinrich, Mark B; Bhavsar, Satyendra P; Bodaly, R A; Drevnick, Paul E; Paul, Eric A

    2011-10-01

    Contamination of fish populations with methylmercury is common in the region of the Laurentian Great Lakes as a result of atmospheric deposition and methylation of inorganic mercury. Using fish mercury monitoring data from natural resource agencies and information on tissue concentrations injurious to fish, we conducted a screening-level risk assessment of mercury to sexually mature female walleye (Sander vitreus), northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and largemouth bass (Micropterus salmoides) in the Great Lakes and in interior lakes, impoundments, and rivers of the Great Lakes region. The assessment included more than 43,000 measurements of mercury in fish from more than 2000 locations. Sexually mature female fish that exceeded threshold-effect tissue concentrations of 0.20 μg g(-1) wet weight in the whole body occurred at 8% (largemouth bass) to 43% (walleye) of sites. Fish at 3% to 18% of sites were at risk of injury and exceeded 0.30 μg g(-1) where an alteration in reproduction or survival is predicted to occur. Most fish at increased risk were from interior lakes and impoundments. In the Great Lakes, no sites had sexually mature fish that exceeded threshold-effect concentrations. Results of this screening-level assessment indicate that fish at a substantive number of locations within the Great Lakes region are potentially at risk from methylmercury contamination and would benefit from reduction in mercury concentrations.

  11. Utilization of a Marketing Strategy at Naval Regional Medical Center Great Lakes, Great Lakes, Illinois

    Science.gov (United States)

    1983-06-01

    22 Analysis of the Mare.....................22 Development of the Marketing Mix .. .......... 29 A Marketing Mix --Recommendations...problem. Marketing strategy, marketing mix and ultimately the marketing orientation will allow hospitals to persevere and possibly thrive in a somewhat...market are currently being met at Naval Regional Medical Center Great Lakes. The fourth objective is to demonstrate an appropriate marketing mix for

  12. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  13. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  14. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  15. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    Science.gov (United States)

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  16. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    Science.gov (United States)

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  17. Great Lakes Research Review, 1982. Appendices.

    Science.gov (United States)

    1982-11-01

    7D-i53 28 GREAT LAKES RESEARCH REVIEW 1982 PPENDICES (U) / PETROLEUM REFINERY PO INT SOURCE TASK FORCE WINDSOR (ONTARIO) NOV 82UNCLASSIFIED F/G 8...C7 U. 3 X 7 45 1 2 0. ODm C of. C.’ WC.’ L. LI 7 R-Ri53 62B GREAT LKES RESEARCH REVIEW 1982 PPENDICES (U) 2/3 PETROLEUM REFINERY POINT SOURCE TASK...NUMBER ORGANIZATION* TITLE OF PROJECT 001 A** 0300 ERL-D Acute and Early Life Stage Toxicity Testing of Priority Pollutant Chemicals 002 A 0302 ERL-D

  18. Evidence for early hunters beneath the Great Lakes.

    Science.gov (United States)

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  19. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    Science.gov (United States)

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  20. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B Appendix B to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  1. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    Science.gov (United States)

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  2. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

    Science.gov (United States)

    Pritt, Jeremy J.; Roseman, Edward F.; O'Brien, Timothy P.

    2014-01-01

    In his seminal work, Hjort (in Fluctuations in the great fisheries of Northern Europe. Conseil Parmanent International Pour L'Exploration De La Mar. Rapports et Proces-Verbaux, 20: 1–228, 1914) observed that fish population levels fluctuated widely, year-class strength was set early in life, and egg production by adults could not alone explain variability in year-class strength. These observations laid the foundation for hypotheses on mechanisms driving recruitment variability in marine systems. More recently, researchers have sought to explain year-class strength of important fish in the Laurentian Great Lakes and some of the hypotheses developed for marine fisheries have been transferred to Great Lakes fish. We conducted a literature review to determine the applicability of marine recruitment hypotheses to Great Lakes fish. We found that temperature, interspecific interactions, and spawner effects (abundance, age, and condition of adults) were the most important factors in explaining recruitment variability in Great Lakes fish, whereas relatively fewer studies identified bottom-up trophodynamic factors or hydrodynamic factors as important. Next, we compared recruitment between Great Lakes and Baltic Sea fish populations and found no statistical difference in factors driving recruitment between the two systems, indicating that recruitment hypotheses may often be transferable between Great Lakes and marine systems. Many recruitment hypotheses developed for marine fish have yet to be applied to Great Lakes fish. We suggest that future research on recruitment in the Great Lakes should focus on forecasting the effects of climate change and invasive species. Further, because the Great Lakes are smaller and more enclosed than marine systems, and have abundant fishery-independent data, they are excellent candidates for future hypothesis testing on recruitment in fish.

  3. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  4. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wissemann, Chris [Freshwater Wind I, LLC, Youngstown, OH (United States); White, Stanley M [Stanley White Engineering LLC, Noank, CT (United States)

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project; Developed a cost model and “baseline” LCOE; Documented Site Conditions within Lake Erie; Developed Fabrication, Installation and Foundations Innovative Concept Designs; Evaluated LCOE Impact of Innovations; Developed Assembly line “Rail System” for GBF Construction and Staging; Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System; Developed GBF with “Penetration Skirt”; Developed Integrated GBF with Turbine Tower; Developed Turbine, Plant Layout and O&M Strategies. The

  5. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    Science.gov (United States)

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  6. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  7. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  8. 46 CFR 117.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... PASSENGERS LIFESAVING EQUIPMENT AND ARRANGEMENTS Number and Type of Survival Craft § 117.206 Survival craft... vessel certificated to operate on a Great Lakes route must be provided with the survival craft required...

  9. Reaching Regional and Local Learners via a Great Lakes MOOC

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  10. Artificial propagation of coregonines in the management of the Laurentian Great Lakes

    Science.gov (United States)

    Todd, Thomas N.

    1986-01-01

    Numerous stresses caused wide fluctuations in the abundance of Great Lakes coregonine fishes during the last century. State, Provincial, and Federal agencies attempted to bolster these fisheries by stocking more than 32 billion fry of lake whitefish (Coregonus clupeaformis) and 6 billion fry of lake herring (C. artedii) over a period of about 90 years (1870-1960). Propagation efforts were unsuccessful in arresting the decline of these fishes, perhaps because the stocking densities were too low. It appears that stocking densities must exceed 41% of the natural hatch to produce measurable success in a planting program that augments natural reproduction. Stocking of any of the Great Lakes with lake whitefish at these levels would require several billion fry per lake annually. Such a program is too large to be practical and intensified protection of the remaining stocks would be more cost effective. A species such as the shortnose cisco (C. reighardi) which has only a small number of extant individuals, and can therefore be significantly augmented with fewer stocked fish, may be a much better candidate for propagation than is the lake whitefish. Propagation of coregonines in the Great Lakes should be considered only in localities that have little or no natural recruitment and then only for rehabilitation, and only if accompanied by adequate assessment of the performance of the stocked fish.

  11. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes.

    Science.gov (United States)

    Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M

    2007-09-01

    Although Lake Tanganyika is not the most species-rich of the Great East African Lakes it comprises by far the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. Our study focuses on the Tanganyikan cichlid tribe Perissodini, which exhibits one of the most peculiar feeding strategies found in cichlids-scale-eating. Their evolutionary history was reconstructed from 1416 bp DNA sequence of two mitochondrial genes (ND2 and partial control region) and from 612 AFLP markers. We confirm the inclusion of the zooplanktivorous genus Haplotaxodon in the tribe Perissodini, and species status of Haplotaxodon trifasciatus. Within the Perissodini, the major lineages emerged within a short period roughly 1.5-2 MYA, which makes their radiation slightly younger than that of other Tanganyikan cichlid tribes. Most scale-eaters evolved in deep-water habitat, perhaps associated with the previously documented radiations of other deep-water dwelling cichlid lineages, and colonized the shallow habitat only recently.

  12. Distribution of fallout plutonium in the waters of the lower Great Lakes

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Nelson, D.M.

    1976-01-01

    The concentrations of fallout 239 240 Pu in the surface waters from all the Great Lakes were slightly lower in 1976 samples than in those from 1973. The same trend of higher concentrations in the surface waters of the upper lakes as in the surface waters of the lower lakes was observed for both years. In addition, the 239 240 Pu concentration in samples of deep water collected during the summer of 1976 was higher than in the surface waters but was similar to the surface water values of the 1973 spring samples. This observation is significant in that it suggests that the surface waters of all the Great Lakes undergo a seasonal decrease in plutonium concentration similar to that already observed in Lake Michigan

  13. 46 CFR 180.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... Craft § 180.206 Survival craft—vessels operating on Great Lakes routes. (a) Except as allowed by... with the survival craft required by § 180.205 (a) through (e), as appropriate. (b) Each vessel...

  14. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    Science.gov (United States)

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  15. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  16. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  17. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  18. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China

    International Nuclear Information System (INIS)

    Yuan Guoli; Liu Chen; Chen Long; Yang Zhongfang

    2011-01-01

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km 2 ) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by 210 Pb and 137 Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake.

  19. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  20. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  1. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  2. 3 CFR - National Policy for the Oceans, Our Coasts, and the Great Lakes

    Science.gov (United States)

    2010-01-01

    ... sustainable oceans, coasts, and Great Lakes resources for the benefit of this and future generations. Yet, the... conservation, economic activity, user conflict, and sustainable use of ocean, coastal, and Great Lakes... publish this memorandum in the Federal Register.BARACK OBAMATHE WHITE HOUSE, Washington, June 12, 2009. ...

  3. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    Science.gov (United States)

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  4. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    Science.gov (United States)

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  5. The effect of the United States Great Lakes on the maintenance of derecho-producing mesoscale convective systems.

    Science.gov (United States)

    Bentley, M.; Sparks, J.; Graham, R.

    2003-04-01

    The primary aim of this research is to investigate the influence of the United States Great Lakes on the intensity of mesoscale convective systems (MCSs). One of the greatest nowcast challenges during the warm season is anticipating the impact of the Great Lakes on severe convection, particularly MCSs capable of producing damaging widespread windstorms known as derechos. Since a major derecho activity corridor lies over the Great Lakes region, it is important to understand the effects of the Lakes on the intensity and propagation of severe wind producing MCSs. Specific objectives of the research include: 1) The development of a short-term climatology of MCS events that have impacted the Great Lakes region over the past seven years; 2) An analysis of radar, satellite, surface (including buoy and lighthouse observations), and lake surface temperature data to determine the environmental conditions impacting the evolution of MCSs passing over a Great Lake; 3) An examination of MCS initiation times and seasonal frequencies of occurrence to delineate temporal consistencies in MCS evolution due to changing lake surface temperatures; and 4) The development of conceptual and forecast models to help anticipate MCS intensity and morphology as these systems interact with the Great Lakes environment.

  6. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    Science.gov (United States)

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  7. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    Science.gov (United States)

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  8. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    Science.gov (United States)

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  9. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  10. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  11. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Science.gov (United States)

    2010-07-01

    ... most cost effective pollution prevention and treatment techniques available, and minimizes the... shall adopt an antidegradation standard applicable to all waters of the Great Lakes System and identify... result in an increased loading of BCCs to surface waters of the Great Lakes System and for which...

  12. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  13. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  14. Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada

    Science.gov (United States)

    Sharpe, D. R.; Kjarsgaard, B. A.; Knight, R. D.; Russell, H. A. J.; Kerr, D. E.

    2017-06-01

    Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (∼500 sample sites) in a ∼33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (∼5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan

  15. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  16. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes.

    Science.gov (United States)

    Lepak, Ryan F; Janssen, Sarah E; Yin, Runsheng; Krabbenhoft, David P; Ogorek, Jacob M; DeWild, John F; Tate, Michael T; Holsen, Thomas M; Hurley, James P

    2018-03-06

    Identifying the sources of methylmercury (MeHg) and tracing the transformations of mercury (Hg) in the aquatic food web are important components of effective strategies for managing current and legacy Hg sources. In our previous work, we measured stable isotopes of Hg (δ 202 Hg, Δ 199 Hg, and Δ 200 Hg) in the Laurentian Great Lakes and estimated source contributions of Hg to bottom sediment. Here, we identify isotopically distinct Hg signatures for Great Lakes trout ( Salvelinus namaycush) and walleye ( Sander vitreus), driven by both food-web and water-quality characteristics. Fish contain high values for odd-isotope mass independent fractionation (MIF) with averages ranging from 2.50 (western Lake Erie) to 6.18‰ (Lake Superior) in Δ 199 Hg. The large range in odd-MIF reflects variability in the depth of the euphotic zone, where Hg is most likely incorporated into the food web. Even-isotope MIF (Δ 200 Hg), a potential tracer for Hg from precipitation, appears both disconnected from lake sedimentary sources and comparable in fish among the five lakes. We suggest that similar to the open ocean, water-column methylation also occurs in the Great Lakes, possibly transforming recently deposited atmospheric Hg deposition. We conclude that the degree of photochemical processing of Hg is controlled by phytoplankton uptake rather than by dissolved organic carbon quantity among lakes.

  17. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  18. First evidence of microplastics in the African Great Lakes

    DEFF Research Database (Denmark)

    Biginagwa, Fares John; Mayoma, Bahati Sosthenes; Shashoua, Yvonne

    2016-01-01

    -FTIR) spectroscopy. A variety of polymer types were identified with likely sources being urban waste and consumer use. Although further research is required to fully assess the impact of plastic pollution in this region, our study is the first to report the presence of microplastics in Africa's Great Lakes...... on the southern shore of Lake Victoria. The gastrointestinal tracts of locally fished Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) were examined for plastics. Plastics were confirmed in 20% of fish from each species by Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  19. Stable Isotope Mass Balance of the Laurentian Great Lakes to Constrain Evaporative Losses

    Energy Technology Data Exchange (ETDEWEB)

    Jasechko, S. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario and Alberta Innovates, Technology Futures, Victoria, British Columbia (Canada); Gibson, J. J. [Canada Alberta Innovates, Technology Futures, Victoria, British Columbia and Department of Geography, University of Victoria, Victoria, British Columbia (Canada); Pietroniro, A. [National Water Research Institute, Environment Canada, Saskatoon, Saskatchewan (Canada); Edwards, T.W D. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-15

    Evaporation is an important yet poorly constrained component of the water budget of the Laurentian Great Lakes, but is known historically to have a significant impact on regional climate, including enhanced humidity and downwind lake effect precipitation. Sparse over lake climate monitoring continues to limit ability to quantify bulk lake evaporation and precipitation rates by physical measurements, impeded by logistical difficulties and costs of instrumenting large areas of open water (10{sup 3}-10{sup 5} km2). Measurements of stable isotopes of oxygen and hydrogen in water samples of precipitation and surface waters within the great lakes basin are used to better understand the controls on the region's water cycle. A stable isotope mass balance approach to calculate long term evaporation as a proportion of input to each lake is discussed. The approach capitalizes on the well understood systematic isotopic separation of an evaporating water body, but includes added considerations for internal recycling of evaporated moisture in the overlying atmosphere that should be incorporated for surface waters sufficiently large to significantly influence surrounding climate. (author)

  20. Building a reference inventory of Great Lakes aquatic fauna

    Science.gov (United States)

    Despite the existence of numerous publications and web-pages that address aspects of species composition and distribution in the Great Lakes, there is at present no single resource that brings all this information together. This poster describes our progress towards generating a ...

  1. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  2. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  3. Earliest Cucurbita from the Great Lakes, Northern USA

    Science.gov (United States)

    Monaghan, G. William; Lovis, William A.; Egan-Bruhy, Kathryn C.

    2006-03-01

    Directly dated Cucurbita from archaeological sites near Lake Huron expand the range and human usage of adventive, cultivated wild gourds or squash into the Great Lakes region, USA, by 4000 14C yr BP. The data also show that domesticated C. pepo squash was cultivated there by 3000 14C yr BP. Although milder Hypsithermal climate may have been a contributing factor, squash and gourds expanded northward during the mid-Holocene mainly by human agency and may be the first human-introduced adventive plant in temperate North America. Even after 3000 14C yr BP, when domesticated squash generally replaced wild varieties at northern sites, squash stands were probably informally managed rather than intensively cultivated.

  4. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    Science.gov (United States)

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  5. Toward Integrated Resource Management: Lessons About the EcosystemApproach from the Laurentian Great Lakes

    Science.gov (United States)

    MACKENZIE

    1997-03-01

    / The ecosystem approach is an innovative tool for integratedresource management. Its goal is to restore, enhance, and protect ecosystemintegrity through a holistic and integrated mode of planning. Under thisapproach, the ecosystem itself becomes the unit of analysis and organizingprinciple for environmental management. Utilizing the ecosystem approachchallenges the prevailing structure and function of contemporary resourcemanagement agencies. This paper explores a number of important policy andmanagement issues in the context of a ten-year initiative to remediate theLaurentian Great Lakes using the ecosystem approach. The lessons gleaned fromthe Great Lakes experience are relevant to other areas in North America andabroad where resource management responsibilities are held by multiple andsometimes overlapping jurisdictions.KEY WORDS: Integrated resource management; Ecosystem approach; Watershedmanagement; Great Lakes

  6. Wetland Plants of Great Salt Lake, A Guide to Identification, Communities, & Bird Habitat

    OpenAIRE

    Downard, Rebekah; Frank, Maureen; Perkins, Jennifer; Kettenring, Karin; Larese-Casanova, Mark

    2017-01-01

    Wetland Plants of Great Salt Lake: a guide to identification, communities, & bird habitat is a wetland plant identification guide, resulting from collaborative research efforts about Great Salt Lake (GSL) wetland conditions and bird habitat. Dr. Rebekah Downard collected dissertation field data from GSL wetlands during 2012–2015, the majority of which informed this work. Dr. Maureen Frank contributed her guide to GSL wetland vegetation and how to manage native plants as high-quality habitat f...

  7. 78 FR 49544 - Great Lakes Pilotage Advisory Committee; Vacancies

    Science.gov (United States)

    2013-08-14

    .... ADDRESSES: Send your cover letter and resume indicating the membership category for which you are applying... pilotage of vessels on the Great Lakes, and at least 5 years of practical experience in maritime operations..., national origin, political affiliation, sexual orientation, gender identity, marital status, disability and...

  8. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV isolate from USA

    Directory of Open Access Journals (Sweden)

    Vakharia Vikram N

    2009-10-01

    Full Text Available Abstract Background Viral hemorrhagic septicemia virus (VHSV is a highly contagious viral disease of fresh and saltwater fish worldwide. VHSV caused several large scale fish kills in the Great Lakes area and has been found in 28 different host species. The emergence of VHS in the Great Lakes began with the isolation of VHSV from a diseased muskellunge (Esox masquinongy caught from Lake St. Clair in 2003. VHSV is a member of the genus Novirhabdovirus, within the family Rhabdoviridae. It has a linear single-stranded, negative-sense RNA genome of approximately 11 kbp, with six genes. VHSV replicates in the cytoplasm and produces six monocistronic mRNAs. The gene order of VHSV is 3'-N-P-M-G-NV-L-5'. This study describes molecular characterization of the Great Lakes VHSV strain (MI03GL, and its phylogenetic relationships with selected European and North American isolates. Results The complete genomic sequences of VHSV-MI03GL strain was determined from cloned cDNA of six overlapping fragments, obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of MI03GL comprises 11,184 nucleotides (GenBank GQ385941 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. The first 4 nucleotides at the termini of the VHSV genome are complementary and identical to other novirhadoviruses genomic termini. Sequence homology and phylogenetic analysis show that the Great Lakes virus is closely related to the Japanese strains JF00Ehi1 (96% and KRRV9822 (95%. Among other novirhabdoviruses, VHSV shares highest sequence homology (62% with snakehead rhabdovirus. Conclusion Phylogenetic tree obtained by comparing 48 glycoprotein gene sequences of different VHSV strains demonstrate that the Great Lakes VHSV is closely related to the North American and Japanese genotype IVa, but forms a distinct genotype IVb, which is clearly different from the three European genotypes. Molecular

  9. Great Lakes Surface Ice Reports from U.S. Coast Guard

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consist of ice observations from U.S. Coast Guard vessels operating on the Great Lakes, and from Coast Guard shore stations reported via teletype messages and...

  10. Food habits of diving ducks in the Great Lakes after the zebra mussel invasion

    Science.gov (United States)

    Custer, Christine M.; Custer, T.W.

    1996-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  11. History of metal contamination in Lake Illawarra, NSW, Australia.

    Science.gov (United States)

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Rutkiewicz, Jennifer [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States); Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena [Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Basu, Niladri, E-mail: niladri@umich.ed [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States)

    2010-08-15

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 {mu}g/g (dry weight) with a mean of 0.54 {mu}g/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor {alpha}-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  13. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    International Nuclear Information System (INIS)

    Rutkiewicz, Jennifer; Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena; Basu, Niladri

    2010-01-01

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 μg/g (dry weight) with a mean of 0.54 μg/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor α-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  14. Phallodrilus hallae, a new tubificid oligochaete from the St. Lawrence Great Lakes

    Science.gov (United States)

    Cook, David G.; Hiltunen, Jarl K.

    1975-01-01

    The predominantly marine tubificid genus Phallodrilus is defined, a key to its nine species constructed, and an illustrated description of Phallodrilus hallae n. sp. from the St. Lawrence Great Lakes presented. The species is distinguished from other members of the genus by its well-developed atrial musculature, extensions of which ensheath the posterior prostatic ducts.Phallodrilus hallae n. sp. is a small worm which is widely distributed in the sublittoral and profundal benthos of Lake Superior; lakewide it occurred in mean densities of 50 individuals per square metre. Available records indicate a more restricted distribution in Lake Huron and Georgian Bay. We suggest that P. hallae n. sp. is either a glaciomarine relict species, or that it entered the Great Lakes system at the time of the marine transgression of the St. Lawrence valley. The apparent restriction of P. hallae n. sp. to waters of high quality suggests that it may be a sensitive oligotrophic indicator species.

  15. History of Great Ideas: An Honors Seminar.

    Science.gov (United States)

    Terrill, Marty; And Others

    The History of Great Ideas is an interdisciplinary seminar course for sophomore honor students at North Arkansas Community Technical College that teaches the intellectual history of western civilization. Each semester, students study 14 ideas from science, philosophy, history, religion, sociology, and economics to discover how philosophical…

  16. Understanding Obstacles to Peace in the Great Lakes Region ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Africa's Great Lakes region is home to violent and prolonged conflicts that cause a lot of suffering and block socioeconomic progress. Several initiatives are underway to bring peace to the region. But, most of these focus on specific countries and have not taken into account the interrelated and overlapping nature of the ...

  17. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  18. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    Science.gov (United States)

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  19. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  20. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Directory of Open Access Journals (Sweden)

    Kevin Anthony Meyer

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01 and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02, and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes and resistance to foreign genetic elements (such as CRISPR-Cas systems. Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  1. DECLINE AND EXTINCTION OF LAKE TROUT IN THE GREAT LAKES: CAN BIOLOGICAL INDICATORS HELP DIAGNOSE CAUSES, IDENTIFY REMEDIAL ACTIONS, AND PREDICT FUTURE CONDITIONS?

    Science.gov (United States)

    The lake trout, Salvelinus namaycush, is the predominant top predator native fish species of the Great Lakes. Lake trout are valued for commercial and recreational use in addition to their ecological importance. In the last half of the 20th century, population declines lead to vi...

  2. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  3. Air pollution and environmental justice in the Great Lakes region

    Science.gov (United States)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  4. Petrology of the Fort Smith - Great Slave Lake radiometric high near Pilot Lake, N.W.T

    International Nuclear Information System (INIS)

    Burwash, R.A.; Cape, D.F.

    1981-01-01

    Near Pilot Lake, the east boundary of the Fort Smith - Great Slave Lake radiometric high coincides with the contact of a well-foliated, porphyroblastic microcline-plagioclase-quartz-garnet-biotite gneiss (Pilot Lake Gneiss) with a hybrid assemblage of quartzite, mica schist, garnet-cordierite gneiss, and minor amphibolite (Variable Paragneiss). Anomalously high concentrations of uranium and thorium are associated with mafic-rich, lenticular bodies with a mineral assemblage biotite + monazite + zircon + ilmenite + hematite +- plagioclase +- quartz, within both the Variable Paragneiss and the Pilot Lake Gneiss. Corundum and spinel occur in the mafic lenses and sillimanite, kyanite, and hypersthene in other inclusions of the Pilot Lake Gneiss. The ilmenite-magnetite--monazite-zircon-apatite assemblage is interpreted as a 'black sand' concentration in a clastic sedimentary sequence subsequently metamorphosed by a regional granulite facies event. A granite pluton intruded during the same orogenic cycle assimilated the clastic metasedimentary rocks containing black sand interlayers, becoming enriched in thorium from the monazite. A second metamorphic event at lower P-T conditions, accompanied by strong cataclasis, developed the texture of the Pilot Lake Gneiss as now observed. Shearing within the gneiss locally concentrated hematite + quartz + uranium. Regional tectonic extrapolations suggest that the pyroxene granulite event was Kenoran and the later amphibolite event Hudsonian. (author)

  5. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    Science.gov (United States)

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  6. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    Science.gov (United States)

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  7. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  8. Morphometric variation among spawning cisco aggregations in the Laurentian Great Lakes: are historic forms still present?

    Science.gov (United States)

    Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.

    2013-01-01

    Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.

  9. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  10. Is History Repeating Itself at Lubicon Lake?

    Science.gov (United States)

    Cloutier, Joe

    1988-01-01

    Shows impact of industrial development and public policies since 1899 upon Cree Indians at Lubicon Lake, Alberta, Canada. Details development-related destruction of Indian culture and economic base, creating welfare society. Reports Crees' 1987 protest of Calgary Olympics. Calls for educators to broaden and deepen approach to history and cultural…

  11. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H; Kidd, Jeffrey M

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...

  12. Regional versus local influences on lead and cadmium loading to the Great Lakes region

    Energy Technology Data Exchange (ETDEWEB)

    Yohn, S.; Long, D.; Fett, J.; Patino, L. [Michigan State University, East Lansing, MI (United States). Dept. of Geological Science

    2004-07-01

    Environmental legislation has reduced the anthropogenic loadings of Pb and Cd to the Great Lakes region over the past 3 decades. However, the accumulation rates of these metals still remain above background values. Because environmental legislation was targeted at major sources (e.g., Pb in gasoline) whose influence on the environment was on a regional scale, local sources (e.g., watershed scale) for the metals may now play a more significant role. The relative importance of regional versus local scale influences on metal inputs to the environment is poorly understood. In this study, sediment chronologies of Pb and Cd were examined from 12 inland lakes that cover the broad geographic area of the State of Michigan. These chronologies were compared temporally and spatially and to watershed population densities and metal production records to gain an understanding of local and regional influences on metal inputs to the Great Lakes region. Results show that anthropogenic Pb loading during the 1930s and 1970s was dominated by regional sources. such as coal burning and use of leaded gasoline. Current loadings are now more related to local influences such as watershed population densities, rather than atmospheric deposition. Anthropogenic Cd loadings to the Great Lakes region have been dominated by both regional and local sources over time. Lead may also have shown the influence of local sources over time, if the influence of emissions from gasoline had not been present. This work shows that Pb and Cd loadings in the Great Lakes region are strongly related to watershed population densities; however, the specific sources and pathways for the metal cycling are unclear.

  13. Democratic Republic of Congo A Fertile Ground for Instability in the Great Lakes Region States

    Science.gov (United States)

    2017-06-09

    ravaged by a brutal armed conflict. In comparison to the three past presidents, Joseph Kabila has managed to restore political stability and calm to much...DEMOCRATIC REPUBLIC OF CONGO-A FERTILE GROUND FOR INSTABILITY IN THE GREAT LAKES REGION STATES A thesis presented to the Faculty of...From - To) AUG 2016 – JUNE 2017 4. TITLE AND SUBTITLE Democratic Republic of Congo-A Fertile Ground for Instability in the Great Lakes Region

  14. Occurrence and distribution of fecal indicator bacteria and gene markers of pathogenic bacteria in Great Lakes tributaries, March-October 2011

    Science.gov (United States)

    Brennan, Angela K.; Johnson, Heather E.; Totten, Alexander R.; Duris, Joseph W.

    2015-01-01

    From March through October 2011, the U.S. Geological Survey (USGS), conducted a study to determine the frequency of occurrence of pathogen gene markers and densities of fecal indicator bacteria (FIB) in 22 tributaries to the Great Lakes. This project was funded as part of the Great Lakes Restoration Initiative (GLRI) and included sampling at 22 locations throughout 6 states that border the Great Lakes.

  15. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  16. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    Science.gov (United States)

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  17. Ecosystem Services in the Great Lakes – Results of a Summit

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  18. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    Science.gov (United States)

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  19. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    Science.gov (United States)

    Van Oosten, John

    1948-01-01

    Fish live and thrive in water with turbidities that range above 400 p.p.m. and average 200 p.p.m. The waters of the Great Lakes usually are clear except in Lake Erie where the turbidities of the inshore areas averaged 37 p.p.m.; the turbidities of the offshore waters averaged less. Lake Erie waters were no clearer 50 years ago than they are now. In fact, the turbidity values are less now than they were in the earlier years; the annual average of the inshore waters dropped from 44 p.p.m. before 1930 to 32 p.p.m. in 1930 and later, and the April-May values decreased from 72 p.p.m. to 46 p.p.m. Any general decline in the Lake Erie fishes cannot be attributed to increased turbidities. Furthermore, these turbidities averaged well below 100 p.p.m. and, therefore, were too low to affect fishes adversely.

  20. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  1. Biological and ecological science for Wisconsin—A Great Lakes and Rivers State

    Science.gov (United States)

    ,

    2018-03-06

    Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.

  2. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  3. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  4. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    Science.gov (United States)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  5. Decadal trends and common dynamics of the bio-optical and thermal characteristics of the African Great Lakes.

    Directory of Open Access Journals (Sweden)

    Steven Loiselle

    Full Text Available The Great Lakes of East Africa are among the world's most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation. Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.

  6. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  7. An Overview of Sediment Organic Matter Records of Human Eutrophication in the Laurentian Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Philip A. [University of Michigan, Department of Geological Sciences (United States)], E-mail: pameyers@umich.ed

    2006-12-15

    The isotopic and molecular compositions of organic matter buried in lake sediments provide information that helps to reconstruct past environmental conditions and to assess impacts of humans on local ecosystems. This overview of sedimentary records from the North American Great Lakes region describes examples of applications of organic geochemistry to paleolimnological reconstructions. These lakes experienced a succession of human-induced environmental changes that started after completion of the Erie Canal in 1825. Agricultural deforestation in the mid-nineteenth century released soil nutrients that increased algal productivity and caused an associated increase in algal biomarkers in sediment records. Eutrophication that accompanied magnified delivery of municipal nutrients to the lakes in the 1960s and 1970s created excursions to less negative {delta}{sup 13}C values in sediment organic matter. Increased organic carbon mass accumulation rates mirror the isotopic evidence of eutrophication in the Great Lakes.

  8. Quantitative interpretation of great lakes remote sensing data

    International Nuclear Information System (INIS)

    Shook, D.F.; Salzman, J.; Svehla, R.A.; Gedney, R.T.

    1980-01-01

    Remote sensing has been applied in the past to the surveillance of Great Lakes water quality, but it has been only partially successful because of the completely empirical approach taken in relating the multispectral scanning data at visible and near-infrared wavelengths to water parameters. Any remote sensing approach using water color information must take into account (1) the existence of many different organic and inorganic species throughtout the Greak Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial (inter- and interlake as well as vertical) variations in types and concentrations of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which clearly show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported

  9. New records of Ergasilus (Copepoda: Ergasilidae) in the Laurentian Great Lakes, including a lakewide review of records and host associations

    Science.gov (United States)

    Hudson, Patrick L.; Bowen, Charles A.; Stedman, Ralph M.

    1994-01-01

    Ergasilus nerkae was found infecting ninespine stickleback (Pungitius pungitius) in lakes Huron, Michigan, and Superior and threespine stickleback (Gasterosteus aculeatus) and round whitefish (Prosopium cylindraceum) in Lake Huron. Based upon the literature and study of archived material, we propose that E. nerkae is enzootic to the Great Lakes and that ninespine stickleback are a preferred host in Lake Huron. Prevalence of E. nerkae on ninespine stickleback increased from 17% in June to 68% in September, but mean intensity remained light. Prevalence and mean intensity increased with host length. Ergasilus luciopercarum is also reported on lake trout (Salvelinus namaycush) and largemouth bass (Micropterus salmoides) for the first time. Host-parasite records of Ergasilus spp. in North America are reviewed, biology and taxonomy are summarized, and a checklist of Great Lakes host-parasite-locality records is provided. At present, eight species of Ergasilus are known to infect 42 Great Lakes fish species.

  10. Stock discrimination in Great Lakes Walleye using mitochondrial DNA restriction analysis

    International Nuclear Information System (INIS)

    Billington, N.; Hebert, P.D.N.

    1986-01-01

    Over the past two years it has become evident that because of its strict maternal inheritance and rapid rate of evolutionary differentiation, mitochondrial (mt) DNA diversity offers exceptional promise in the discrimination of fish stocks. The current project aims to determine the extent of mt DNA variation among stocks of walleye (Stizostedion vitreum) from the Great Lakes. At this point, mt DNA has been isolated from 68 walleye representing the Thames River stock and a reef breeding stock from western Lake Erie, as well as from individuals of S. canadense, a species which hybridizes with S. vitreum. Mitochondrial DNA was extracted from livers of these fish, purified by CsCl density gradient centrifugation and digested using 20 endonucleases. Polymorphisms were detected with 8 of the enzymes. There was a great deal of variation among fish from both spawning populations, so much so that individual fish could be identified by this technique. No single enzyme allowed discrimination of the two stocks, but restriction pattern variation following Dde I digestion permitted separation of 50% of Lake Erie fish from Thames River stock. Comparison of mt DNA restriction patterns of walleye and sauger showed that two species are easily separable, setting the stage for a more detailed study of hybridization between the taxa

  11. Environmental Sensitivity Index (ESI) Atlas: Great Lakes, 1995-1998 (NODC Accession 0013820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps in .PDF format for the following Great Lakes and associated waterways: north, east, and west...

  12. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  13. Rating impacts in a multi-stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes.

    Science.gov (United States)

    Smith, Sigrid D P; Mcintyre, Peter B; Halpern, Benjamin S; Cooke, Roger M; Marino, Adrienne L; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Ciborowski, Jan J H; Doran, Patrick J; Infante, Dana M; Johnson, Lucinda B; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Steinman, Alan D; Allan, J David

    2015-04-01

    Ecosystems often experience multiple environmental stressors simultaneously that can differ widely in their pathways and strengths of impact. Differences in the relative impact of environmental stressors can guide restoration and management prioritization, but few studies have empirically assessed a comprehensive suite of stressors acting on a given ecosystem. To fill this gap in the Laurentian Great Lakes, where considerable restoration investments are currently underway, we used expert elicitation via a detailed online survey to develop ratings of the relative impacts of 50 potential stressors. Highlighting the multiplicity of stressors in this system, experts assessed all 50 stressors as having some impact on ecosystem condition, but ratings differed greatly among stressors. Individual stressors related to invasive and nuisance species (e.g., dreissenid mussels and ballast invasion risk) and climate change were assessed as having the greatest potential impacts. These results mark a shift away from the longstanding emphasis on nonpoint phosphorus and persistent bioaccumulative toxic substances in the Great Lakes. Differences in impact ratings among lakes and ecosystem zones were weak, and experts exhibited surprisingly high levels of agreement on the relative impacts of most stressors. Our results provide a basin-wide, quantitative summary of expert opinion on the present-day influence of all major Great Lakes stressors. The resulting ratings can facilitate prioritizing stressors to achieve management objectives in a given location, as well as providing a baseline for future stressor impact assessments in the Great Lakes and elsewhere.

  14. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    Science.gov (United States)

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  15. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  16. 75 FR 18451 - Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes; Cleveland, OH; Bay City, MI...

    Science.gov (United States)

    2010-04-12

    ...-AA87 Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes; Cleveland, OH; Bay City, MI.... SUMMARY: The Coast Guard proposes to establish temporary safety and security zones around each Tall Ship visiting the Great Lakes during the Tall Ships Challenge 2010 race series. These safety and security zones...

  17. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    Science.gov (United States)

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  18. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    Science.gov (United States)

    Anthony, Robert; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  19. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  20. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  1. The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history.

    Science.gov (United States)

    Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas

    2012-07-01

    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28-0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46-1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance was

  2. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    Science.gov (United States)

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  3. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  4. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    Science.gov (United States)

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  5. Ecotoxicology of organochlorine chemicals in birds of the Great Lakes

    Science.gov (United States)

    Tillitt, Donald E.; Giesy, John P.

    2013-01-01

    Silent Spring was fulfilled in the United States with passage of environmental legislation such as the Clean Water Act, the Federal Insecticide, Fungicide, and Rodenticide Act, and the Toxic Substance Control Act in the 1970s. Carson's writings, television interviews, and testimony before Congress alerted a nation and the world to the unintended effects of persistent, bioaccumulative chemicals on populations of fish, wildlife, and possibly humans. Her writings in the popular press brought attention to scientific findings that declines in populations of a variety of birds were directly linked to the widespread use of dichlorodiphenyltrichloroethane (DDT) in agriculture, public health, and horticulture. By the 1970s, DDT and other persistent organic pollutants (POPs) were being banned or phased out, and the intent of these regulatory acts became apparent in a number of locations across the United States, including the Great Lakes. Concentrations of DDT and its major product of transformation, dichlorodiphenylchloroethane (DDE), were decreasing in top predators, such as bald eagles (Haliaeetus leucocephalus), osprey (Pandion haliaetus), colonial waterbirds, and other fish-eating wildlife. Eggshell thinning and the associated mortality of bird embryos caused by DDE had decreased in the Great Lakes and elsewhere by the early 1980s.

  6. Respondent driven sampling in a biomonitoring study of refugees from Burma in Buffalo, New York who eat Great Lakes fish.

    Science.gov (United States)

    Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An

    2018-06-01

    Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.

  7. Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Science.gov (United States)

    Hansen, Michael J.; Madenjian, Charles P.; Slade, Jeffrey W.; Steeves, Todd B.; Almeida, Pedro R.; Quintella, Bernardo R.

    2016-01-01

    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.

  8. 40 CFR Appendix D to Part 132 - Great Lakes Water Quality Initiative Methodology for the Development of Wildlife Criteria

    Science.gov (United States)

    2010-07-01

    ... Methodology for the Development of Wildlife Criteria D Appendix D to Part 132 Protection of Environment... Development of Wildlife Criteria Great Lakes States and Tribes shall adopt provisions consistent with (as protective as) this appendix. I. Introduction A. A Great Lakes Water Quality Wildlife Criterion (GLWC) is the...

  9. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake.

    Science.gov (United States)

    Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B

    2015-01-01

    Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.

  10. Great Lake beach-goer behavior during a retrospectively detected bloom of cyanobacteria

    Science.gov (United States)

    Cyanobacteria blooms pose a potential health risk to beachgoers. We conducted a prospective study of weekend beachgoers at a public Great Lake site during July – September 2003. We recorded each person’s health status and activity during their beach visit. We measured...

  11. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    Science.gov (United States)

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  12. New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes

    Science.gov (United States)

    Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.

    2015-01-01

    Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.

  13. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes

    Science.gov (United States)

    Jorgenson, Zachary G.; Thomas, Linnea M.; Elliott, Sarah M.; Cavallin, Jenna E.; Randolph, Eric C.; Choy, Steven J.; Alvarez, David; Banda, Jo A.; Gefell, Daniel J.; Lee, Kathy E.; Furlong, Edward T.; Schoenfuss, Heiko L.

    2018-01-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in

  14. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  15. A sensor-based energy balance method for the distributed estimation of evaporation over the North American Great Lakes

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.

    2014-12-01

    We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake

  16. 75 FR 51191 - Great Lakes Pilotage Rates-2011 Annual Review and Adjustment

    Science.gov (United States)

    2010-08-19

    ... the Great Lakes to generate sufficient revenue to cover allowable expenses, target pilot compensation, and return on investment. The proposed update reflects a projected August 1, 2011, increase in... adjusting the pilotage rates for the 2011 shipping season to generate sufficient revenue to cover allowable...

  17. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  18. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    Science.gov (United States)

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  19. Environmental conditions synchronize waterbird mortality events in the Great Lakes

    Science.gov (United States)

    Prince, Karine; Chipault, Jennifer G.; White, C. LeAnn; Zuckerberg, Benjamin

    2018-01-01

    Since the 1960s, periodic outbreaks of avian botulism type E have contributed to large-scale die-offs of thousands of waterbirds throughout the Great Lakes of the United States. In recent years, these events have become more common and widespread. Occurring during the summer and autumn months, the prevalence of these die-offs varies across years and is often associated with years of warmer lake temperatures and lower water levels. Little information exists on how environmental conditions mediate the spatial and temporal characteristics of mortality events.In 2010, a citizen science programme, Avian Monitoring for Botulism Lakeshore Events (AMBLE), was launched to enhance surveillance efforts and detect the appearance of beached waterbird carcasses associated with avian botulism type E outbreaks in northern Lake Michigan. Using these data, our goal was to quantify the within-year characteristics of mortality events for multiple species, and to test whether the synchrony of these events corresponded to fluctuations in two environmental factors suspected to be important in the spread of avian botulism: water temperature and the prevalence of green macroalgae.During two separate events of mass waterbird mortality, we found that the detection of bird carcasses was spatially synchronized at scales of c. 40 km. Notably, the extent of this spatial synchrony in avian mortality matched that of fluctuations in lake surface water temperatures and the prevalence of green macroalgae.Synthesis and applications. Our findings are suggestive of a synchronizing effect where warmer lake temperatures and the appearance of macroalgae mediate the characteristics of avian mortality. In future years, rising lake temperatures and a higher propensity of algal masses could lead to increases in the magnitude and synchronization of avian mortality due to botulism. We advocate that citizen-based monitoring efforts are critical for identifying the potential environmental conditions associated

  20. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  1. Investigating Human-Induced Changes of Elemental Cycles in the Great Lakes

    Science.gov (United States)

    Baskaran, Mark; Bratton, John

    2013-07-01

    Food webs and associated elemental cycles in the Laurentian Great Lakes have been considerably altered over the past 30 years due to factors such as phosphorus abatement, introduction of zebra and quagga mussels, and climate change. These perturbations provide a unique opportunity to document how this natural system has responded and possibly to predict future changes in biogeochemical cycling.

  2. Beneficial use of dredged materials in Great Lakes commercial ports for transportation projects.

    Science.gov (United States)

    2014-05-01

    This report describes an effort to facilitate beneficial use of dredged materials (DM) from Great Lakes ports and harbors as an alternative construction : material in transportation-related earthwork applications. The overall objective is to link tog...

  3. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Laura Bourgeau-Chavez

    2015-07-01

    Full Text Available Methods using extensive field data and three-season Landsat TM and PALSAR imagery were developed to map wetland type and identify potential wetland stressors (i.e., adjacent land use for the United States and Canadian Laurentian coastal Great Lakes. The mapped area included the coastline to 10 km inland to capture the region hydrologically connected to the Great Lakes. Maps were developed in cooperation with the overarching Great Lakes Consortium plan to provide a comprehensive regional baseline map suitable for coastal wetland assessment and management by agencies at the local, tribal, state, and federal levels. The goal was to provide not only land use and land cover (LULC baseline data at moderate spatial resolution (20–30 m, but a repeatable methodology to monitor change into the future. The prime focus was on mapping wetland ecosystem types, such as emergent wetland and forested wetland, as well as to delineate wetland monocultures (Typha, Phragmites, Schoenoplectus and differentiate peatlands (fens and bogs from other wetland types. The overall accuracy for the coastal Great Lakes map of all five lake basins was 94%, with a range of 86% to 96% by individual lake basin (Huron, Ontario, Michigan, Erie and Superior.

  4. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  5. 75 FR 57288 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2010-09-20

    ... Natural History, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice. Notice is... possession and control of the Utah Museum of Natural History, Salt Lake City, UT. The human remains and... unworked faunal bone. The associated funerary objects found with the interments indicate that the human...

  6. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    Science.gov (United States)

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  7. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Science.gov (United States)

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  8. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    Science.gov (United States)

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  9. 78 FR 2434 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service..., 2013. ADDRESSES: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT... lot of horse tack, a metal punch, 1 piece of worked wood, gunshot, two mirrors, a harness ring, an awl...

  10. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    To better understand the transport of neonicotinoid insecticides to a sensitive freshwater ecosystem, monthly samples (October 2015-September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in...

  11. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    Science.gov (United States)

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  12. Physical behavior of PCBs in the Great Lakes

    International Nuclear Information System (INIS)

    McKay, D.; Eisenreich, S.J.; Patterson, S.; Simmons, M.S.

    1983-01-01

    This book presents a review of all aspects of the physical behavior of one contaminant (PCBs) in one aquatic environment (Great Lakes). This book not only treats this topic extensively, but also serves as a model for treatment of other contaminants in other aquatic environments. This book focuses on the physical rather than biological aspects of PCBs. This focus does not imply a lack of concern for the biosphere or for the effects or toxicology of PCBs; instead, it represents an attempt to tackle a smaller problem of manageable proportions. The environmental fate of PCBs is largely controlled by physical processes, with biodegradation of lower chlorine congeners as the outstanding exception

  13. Canada's Response to the Recommendations in the Tenth Biennial Report on Great Lakes Water Quality of the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Government of Canada and Ontario are currently renegotiating the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA). They are committed to restoring and maintaining the basin's chemical, physical and biological integrity and ensuring that it has a healthy, sustainable future. The COA has established a strategic framework for coordinated federal-provincial responsibilities regarding the Great Lakes basin ecosystem. This document presents responses to the recommendations of the International Joint Commission's (IJC) Tenth Biennial Report on how to improve the performance and effectiveness of government programs such as the Great Lakes Water Quality Agreement. According to the IJC, there are many challenges ahead, including: cleanup of Canadian Areas of Concern; controlling and preventing the further introduction of exotic species; mitigating the impact of rapid urban growth on environmental conditions throughout the basin; and reducing contaminants transported in the atmosphere over long distances to the Great Lakes. This document presented the government's responses to each of the following IJC recommendations regarding remedial action plans, threats to human health with respect to consumption of fish, contaminated sediment, airborne toxic substances, Great Lakes binational toxics strategy, land use, alien invasive species, and information and data management. IJC also recommended that indicators should be reported regarding whether the Great Lakes surface waters are suitable for drinking, swimming and whether fish are edible.

  14. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service...: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT 84108, telephone (801... fragments, 13 pieces of horse tack, 3 saddle fragments, 1 knife sheath, 1 rifle and barrel, 1 lot of bullet...

  15. Biological effects-based tools for monitoring impacted surface waters in the Great Lakes: a multiagency program in support of the Great Lakes Restoration Initiative

    Science.gov (United States)

    Ekman, Drew R.; Ankley, Gerald T.; Blazer, Vicki; Collette, Timothy W.; Garcia-Reyero, Natàlia; Iwanowicz, Luke R.; Jorgensen, Zachary G.; Lee, Kathy E.; Mazik, Pat M.; Miller, David H.; Perkins, Edward J.; Smith, Edwin T.; Tietge, Joseph E.; Villeneuve, Daniel L.

    2013-01-01

    There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particularly with regard to monitoring potentially toxic chemicals and assessing Areas of Concern (AOCs), as envisioned by the Great Lakes Restoration Initiative (GLRI). Our strategy includes use of both targeted and open-ended/discovery techniques, as appropriate to the amount of information available, to guide a priori end point and/or assay selection. Specifically, a combination of in vivo and in vitro tools is employed by using both wild and caged fish (in vivo), and a variety of receptor- and cell-based assays (in vitro). We employ a work flow that progressively emphasizes in vitro tools for long-term or high-intensity monitoring because of their greater practicality (e.g., lower cost, labor) and relying on in vivo assays for initial surveillance and verification. Our strategy takes advantage of the strengths of a diversity of tools, balancing the depth, breadth, and specificity of information they provide against their costs, transferability, and practicality. Finally, a series of illustrative scenarios is examined that align EBMS options with management goals to illustrate the adaptability and scaling of EBMS approaches and how they can be used in management decisions.

  16. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  17. A field guide to valuable underwater aquatic plants of the Great Lakes

    Science.gov (United States)

    Schloesser, Donald W.

    1986-01-01

    Underwater plants are a valuable part of the Great Lakes ecosystem, providing food and shelter for aquatic animals. Aquatic plants also help stabilize sediments, thereby reducing shoreline erosion. Annual fall die-offs of underwater plants provide food and shelter for overwintering small aquatic animals such as insects, snails, and freshwater shrimp.

  18. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade.

    Science.gov (United States)

    Nathan, Lucas R; Jerde, Christopher L; Budny, Michelle L; Mahon, Andrew R

    2015-04-01

    Over 180 non-native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty-seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade. © 2014 Society for Conservation Biology.

  19. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  20. Elucidating causes of Diporeia decline in the Great Lakes via metabolomics: physiological responses after exposure to different stressors.

    Science.gov (United States)

    Maity, Suman; Jannasch, Amber; Adamec, Jiri; Watkins, James M; Nalepa, Thomas; Höök, Tomas O; Sepúlveda, Maria S

    2013-01-01

    The benthic macroinvertebrate Diporeia spp. have been extirpated from many areas of the Laurentian Great Lakes, but the mechanisms underlying such declines are not fully understood. Diporeia declines coinciding with the invasion of exotic dreissenid mussels (zebra and quagga) have led to the hypothesis that Diporeia declines are a result of decreased food availability from increasing competition with dreissenids for diatoms. There is additional evidence that Diporeia are negatively affected when in close proximity to dreissenids, probably because of exposure to toxins present in the mussels' pseudofeces. Diporeia are also known to be sensitive to anthropogenic contaminants (such as polychlorinated biphenyls [PCBs]) present in Great Lakes sediments. To better understand the physiological responses of Diporeia to diverse stressors, we conducted three 28-d experiments evaluating changes in the metabolomes of Diporeia (1) fed diatoms (Cyclotella meneghiniana) versus starved, (2) exposed (from Lake Michigan and Cayuga Lake) to quagga mussels (Dreissena bugensis), and (3) exposed to sediments contaminated with PCBs. The metabolomes of samples were examined using both two-dimensional gas and liquid chromatography coupled with mass spectrometry. Each stressor elicited a unique metabolome response characterized by enhanced citric acid cycle, fatty acid biosynthesis, and protein metabolism in diatom-fed Diporeia; impaired glycolysis, protein catabolism, and folate metabolism in Diporeia from Lake Michigan irrespective of quagga mussel exposure, suggesting lake-specific adaptation mechanisms; and altered cysteine and phospholipid metabolism during PCB exposure. Subsequent comparisons of these stressor-specific metabolic responses with metabolomes of a feral Diporeia population would help identify stressors affecting Diporeia populations throughout the Great Lakes.

  1. 350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain

    Directory of Open Access Journals (Sweden)

    Richard P. Guyette

    2016-08-01

    Full Text Available Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus resinosa at four sites in the Northern Sands Ecological Landscapes of Wisconsin to quantify the interactions among fire occurrence and seasonality, drought, and humans. New methods for assessing the influence of human ignitions on fire regimes were developed. A temporal and spatial index of wildland fire was significantly correlated (r = 0.48 with drought indices (Palmer Drought Severity Index, PDSI. Fire intervals varied through time with human activities that included early French Jesuit missions, European trade (fur, diseases, war, and land use. Comparisons of historical fire records suggest that annual climate in this region has a broad influence on the occurrence of fire years in the Great Lakes region.

  2. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  3. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  4. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  5. Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique

    International Nuclear Information System (INIS)

    Dove, A.; Hill, B.; Klawunn, P.; Waltho, J.; Backus, S.; McCrea, R.C.

    2012-01-01

    Environment Canada recently developed a clean method suitable for sampling trace levels of metals in surface waters. The results of sampling for total mercury in the Laurentian Great Lakes between 2003 and 2009 give a unique basin-wide perspective of concentrations of this important contaminant and represent improved knowledge of mercury in the region. Results indicate that concentrations of total mercury in the offshore regions of the lakes were within a relatively narrow range from about 0.3 to 0.8 ng/L. The highest concentrations were observed in the western basin of Lake Erie and concentrations then declined towards the east. Compared to the offshore, higher levels were observed at some nearshore locations, particularly in lakes Erie and Ontario. The longer-term temporal record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease in equivalent water concentrations since 1986. - Highlights: ► Basin-wide concentrations of total mercury in Great Lakes surface waters are provided for the first time. ► A clean sampling method is described, stressing isolation of the sample from extraneous sources of contamination. ► Sub-ng/L concentrations of total mercury are observed in most Great Lakes offshore areas. ► Concentrations in the western basin of Lake Erie are consistently the highest observed in the basin. ► The longer-term record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease since 1986. - A new, clean sampling method for metals is described and basin-wide measurements of total mercury are provided for Great Lakes surface waters for the first time.

  6. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  7. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  8. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  9. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    Science.gov (United States)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  10. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  11. 77 FR 38803 - Request for Nominations to the Great Lakes Advisory Board (GLAB)

    Science.gov (United States)

    2012-06-29

    ... affiliations and other considerations); Demonstrated experience with Great Lakes issues; Leadership experience... nominees will include: The background and experiences that would help members contribute to the diversity... the nominee's experience and knowledge will bring value to the work of the GLAB. To help the Agency in...

  12. Can We Drink the Water? Data Sharing Lessons From the Great Lakes

    Science.gov (United States)

    Aufdenkampe, A. K.; Paige, K.; Slawecki, T. A.

    2017-12-01

    The Great Lakes Observing System (GLOS) is one of 11 regional associations of the Integrated Ocean Observing System (IOOS). Over time, GLOS has built a reputation as a trusted data aggregator and resource for managers, policy makers and recreational boaters in the region. This was evidenced best when, in response to the 2014 Lake Erie harmful algal bloom event, local stakeholders including universities, state government, and municipal water managers turned to GLOS as a repository for sharing and finding data. The IOOS Certification process, required under the authority of the Integrated Coastal and Ocean Observation System Act of 2009 (ICOOS Act), further legitimizes these data assembly centers that serve as valuable coordinators of data for their regions.

  13. Assessing potential impacts of climate change and variability on the Great Lakes-St. Lawrence Basin: A binational approach

    International Nuclear Information System (INIS)

    Quinn, F.H.; Mortsch, L.D.

    1997-01-01

    The potential impacts of climate change and variability on the Great Lakes environment are serious and complex. The Great Lakes-St. Lawrence Basin is home to 42.5 million US and Canadian citizens and is the industrial and commercial heartland of both nations. The region is rich in human and natural resources, with diverse economic activities and substantial infrastructure which would be affected by major shifts in climate. For example, water level changes could affect wetland distribution and functioning; reductions in streamflow would alter assimilative capacities while warmer water temperatures would influence spring and fall turnover and incidence of anoxia. A binational program has been initiated to conduct interdisciplinary, integrated impact assessments for the Great Lakes-St. Lawrence River Basin. The goal of this program is to undertake interdisciplinary, integrated studies to improve the understanding of the complex interactions between climate, the environment, and socioeconomic systems in order to develop informed regional adaptation responses

  14. Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes.

    Science.gov (United States)

    McDonough, Carrie A; Khairy, Mohammed A; Muir, Derek C G; Lohmann, Rainer

    2014-07-15

    Polyethylene passive samplers (PEs) were used to measure concentrations of gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water throughout the lower Great Lakes during summer and fall of 2011. Atmospheric Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in downtown Cleveland (OH). Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH concentrations correlated strongly with population within 3-40 km of the sampling site depending on the compound considered, suggesting that urban centers are a primary source of gaseous PAHs (except retene) in the lower Great Lakes region. The significance of distant population (within 20 km) versus local population (within 3 km) increased with subcooled liquid vapor pressure. Most dissolved aqueous PAHs did not correlate significantly with population, nor were they consistently related to river discharge, wastewater effluents, or precipitation. Air-water exchange calculations implied that diffusive exchange was a source of phenanthrene to surface waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water fluxes with temperature suggested that the significance of urban centers as sources of dissolved PAHs via diffusive exchange may decrease in warmer months.

  15. Systems approach to detect and evaluate contaminants of emerging concern in the Great Lakes

    Science.gov (United States)

    The release of chemicals of emerging concern threatens near shore health in the Great Lakes, particularly in regions already suffering from degradation of water and environmental quality due to past and present anthropogenic activities. Critical issues remain in delisting Areas ...

  16. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  17. Deep Learning Methods for Quantifying Invasive Benthic Species in the Great Lakes

    Science.gov (United States)

    Billings, G.; Skinner, K.; Johnson-Roberson, M.

    2017-12-01

    In recent decades, invasive species such as the round goby and dreissenid mussels have greatly impacted the Great Lakes ecosystem. It is critical to monitor these species, model their distribution, and quantify the impacts on the native fisheries and surrounding ecosystem in order to develop an effective management response. However, data collection in underwater environments is challenging and expensive. Furthermore, the round goby is typically found in rocky habitats, which are inaccessible to standard survey techniques such as bottom trawling. In this work we propose a robotic system for visual data collection to automatically detect and quantify invasive round gobies and mussels in the Great Lakes. Robotic platforms equipped with cameras can perform efficient, cost-effective, low-bias benthic surveys. This data collection can be further optimized through automatic detection and annotation of the target species. Deep learning methods have shown success in image recognition tasks. However, these methods often rely on a labelled training dataset, with up to millions of labelled images. Hand labeling large numbers of images is expensive and often impracticable. Furthermore, data collected in the field may be sparse when only considering images that contain the objects of interest. It is easier to collect dense, clean data in controlled lab settings, but this data is not a realistic representation of real field environments. In this work, we propose a deep learning approach to generate a large set of labelled training data realistic of underwater environments in the field. To generate these images, first we draw random sample images of individual fish and mussels from a library of images captured in a controlled lab environment. Next, these randomly drawn samples will be automatically merged into natural background images. Finally, we will use a generative adversarial network (GAN) that incorporates constraints of the physical model of underwater light propagation

  18. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2016-12-01

    Full Text Available Marsh birds are notoriously elusive, with variation in detection probability across species, regions, seasons, and different times of day and weather. Therefore, it is important to develop regional field survey protocols that maximize detections, but that also produce data for estimating and analytically adjusting for remaining differences in detections. We aimed to improve regional field survey protocols by estimating detection probability of eight elusive marsh bird species throughout two regions that have ongoing marsh bird monitoring programs: the southern Canadian Prairies (Prairie region and the southern portion of the Great Lakes basin and parts of southern Québec (Great Lakes-St. Lawrence region. We accomplished our goal using generalized binomial N-mixture models and data from ~22,300 marsh bird surveys conducted between 2008 and 2014 by Bird Studies Canada's Prairie, Great Lakes, and Québec Marsh Monitoring Programs. Across all species, on average, detection probability was highest in the Great Lakes-St. Lawrence region from the beginning of May until mid-June, and then fell throughout the remainder of the season until the end of June; was lowest in the Prairie region in mid-May and then increased throughout the remainder of the season until the end of June; was highest during darkness compared with light; and did not vary significantly according to temperature (range: 0-30°C, cloud cover (0%-100%, or wind (0-20 kph, or during morning versus evening. We used our results to formulate improved marsh bird survey protocols for each region. Our analysis and recommendations are useful and contribute to conservation of wetland birds at various scales from local single-species studies to the continental North American Marsh Bird Monitoring Program.

  19. Zooplankton community response to experimental acidification in boreal shield lakes with different ecological histories

    Energy Technology Data Exchange (ETDEWEB)

    Derry, A.M.; Arnott, S.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology

    2007-06-15

    This study investigated the adaptive response of crustacean zooplankton to widespread regional acidification at the Killarney Provincial Park in Ontario. Mesocosm experiments were conducted in 2 circumneutral lakes with different acidification histories. A reciprocal transplant field enclosure experiment was conducted to assess whether the zooplankton community within the acid-recovering boreal shield lake showed evidence of increased acid tolerance to historical acidification following a 6 year period in which the lake's pH was 6.0. The enclosures were filled with epilimnetic water from the lake. Zooplankton from other lakes in the area were used. Zooplankton and water samples were collected from the enclosures once a week. Shannon-Wiener indices, species richness, and total abundance of the zooplankton were calculated for each sample day. Repeated measures analyses of variance (RM-ANOVAs) were used to test for the effects of the incubation lake, the zooplankton source, and the pH. Species abundance data were log{sub 10} transformed to improve homogeneity of variances and normality. Principle components analysis was conducted on species abundances to infer the influence of treatments on zooplankton community composition. Zooplankton were also transferred from 1 lake to the other in order to determine if subtle differences in local water chemistry and food conditions were limiting the recovery of species in acid-recovering lakes. The study showed that 2 key species, H. gibberum and L. minutus, contributed to community-level differences to acid tolerance of zooplankton with different acidification histories. It was concluded that zooplankton with adaptable acid tolerances may monopolize resources in acidified and acid-recovering lakes, and may contribute to the delayed recolonization of other taxa. 62 refs., 3 tabs., 6 figs.

  20. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    Science.gov (United States)

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs recolonized sediments in western Lake Erie in the 1990s.

  1. Life history traits of Bathyclarias nyasensis (Siluroidei) in Lake Malawi

    African Journals Online (AJOL)

    Life history traits, including age, growth, reproduction and diet of Bathyclarias nyasensis from Lake Malawi were studied between December 1996 and November 1998. Owing to reabsorp tion of pectoral spines with increasing fish size, and the relatively low number of spines that could be aged reliably, only otoliths were ...

  2. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    Science.gov (United States)

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  3. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  4. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  5. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  6. The sterile-male-release technique in Great Lakes sea lamprey management

    Science.gov (United States)

    Twohey, Michael B.; Heinrich, John W.; Seelye, James G.; Fredricks, Kim T.; Bergstedt, Roger A.; Kaye, Cheryl A.; Scholefield, Ron J.; McDonald, Rodney B.; Christie, Gavin C.

    2003-01-01

    The implementation of a sterile-male-release technique from 1991 through 1999 and evaluation of its effectiveness in the Great Lakes sea lamprey (Petromyzon marinus) management program is reviewed. Male sea lampreys were injected with the chemosterilant bisazir (P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide) using a robotic device. Quality assurance testing indicated the device delivered a consistent and effective dose of bisazir. Viability of embryos in an untreated control group was 64% compared to 1% in a treatment group. A task force developed nine hypotheses to guide implementation and evaluation of the technique. An annual average of 26,000 male sea lampreys was harvested from as many as 17 Great Lakes tributaries for use in the technique. An annual average of 16,100 sterilized males was released into 33 tributaries of Lake Superior to achieve a theoretical 59% reduction in larval production during 1991 to 1996. The average number of sterile males released in the St. Marys River increased from 4,000 during 1991 to 1996 to 20,100 during 1997 to 1999. The theoretical reduc-stertion in reproduction when combined with trapping was 57% during 1991 to 1996 and 86% during 1997 to 1999. Evaluation studies demonstrated that sterilized males were competitive and reduced production of larvae in streams. Field studies and simulation models suggest reductions in reproduction will result in fewer recruits, but there is risk of periodic high recruitment events independent of sterile-male release. Strategies to reduce reproduction will be most reliable when low densities of reproducing females are achieved. Expansion of the technique is limited by access to additional males for sterilization. Sterile-male release and other alternative controls are important in delivering integrated pest management and in reducing reliance on pesticides.

  7. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  8. Are Predators Limiting Zebra Mussel Colonization of Unionid Mussels in Great Lake Coastal Wetlands?

    Science.gov (United States)

    de Szalay, F. A.; Bowers, R.

    2005-05-01

    Although many native mollusc populations have been eliminated in the Laurentian Great Lakes by the exotic zebra mussel, recent surveys have found abundant unionid (Bivalvia: Unionidae) populations in some coastal wetlands. Unionid burrowing in soft sediments and predation by fish have been shown to reduce numbers of attached zebra mussels, and we tested these factors in a Lake Erie coastal wetland. In 2002, we held live unionids (Leptodea fragilis, Quadrula quadrula) and Pyganodon grandis shells in exclosures with wire mesh bottoms that were buried to sediment depths of either 5, 10, or 20 cm. After 2 months, numbers of attached dreissenids on unionids were significantly higher inside all exclosure treatments than outside exclosures. This indicated that either unionid burrowing was prevented in all sediment depth treatments or molluscivores were excluded by exclosures. In 2004, we measured dreissenid colonization on Q. quadrula and PVC plates in bottomless exclosures with different mesh sizes. After 6 months, dreissenid numbers on PVC plates and on Q. quadrula in 2.5 cm X 2.5 cm and 5 cm X 10 cm mesh exclosures were significantly higher than in open exclosures. These data suggest that molluscivores are important in limiting dreissenids in Great Lake coastal wetlands.

  9. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    Science.gov (United States)

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  10. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes.

    Science.gov (United States)

    Chun, Chan Lan; Ochsner, Urs; Byappanahalli, Muruleedhara N; Whitman, Richard L; Tepp, William H; Lin, Guangyun; Johnson, Eric A; Peller, Julie; Sadowsky, Michael J

    2013-03-19

    Avian botulism, a paralytic disease of birds, often occurs on a yearly cycle and is increasingly becoming more common in the Great Lakes. Outbreaks are caused by bird ingestion of neurotoxins produced by Clostridium botulinum, a spore-forming, gram-positive, anaerobe. The nuisance, macrophytic, green alga Cladophora (Chlorophyta; mostly Cladophora glomerata L.) is a potential habitat for the growth of C. botulinum. A high incidence of botulism in shoreline birds at Sleeping Bear Dunes National Lakeshore (SLBE) in Lake Michigan coincides with increasingly massive accumulations of Cladophora in nearshore waters. In this study, free-floating algal mats were collected from SLBE and other shorelines of the Great Lakes between June and October 2011. The abundance of C. botulinum in algal mats was quantified and the type of botulism neurotoxin (bont) genes associated with this organism were determined by using most-probable-number PCR (MPN-PCR) and five distinct bont gene-specific primers (A, B, C, E, and F). The MPN-PCR results showed that 16 of 22 (73%) algal mats from the SLBE and 23 of 31(74%) algal mats from other shorelines of the Great Lakes contained the bont type E (bont/E) gene. C. botulinum was present up to 15000 MPN per gram dried algae based on gene copies of bont/E. In addition, genes for bont/A and bont/B, which are commonly associated with human diseases, were detected in a few algal samples. Moreover, C. botulinum was present as vegetative cells rather than as dormant spores in Cladophora mats. Mouse toxin assays done using supernatants from enrichment of Cladophora containing high densities of C. botulinum (>1000 MPN/g dried algae) showed that Cladophora-borne C. botulinum were toxin-producing species (BoNT/E). Our results indicate that Cladophora provides a habitat for C. botulinum, warranting additional studies to better understand the relationship between this bacterium and the alga, and how this interaction potentially contributes to botulism

  11. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  12. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    Science.gov (United States)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    Mercury (Hg) contamination of the aquatic food webs across the Great Lakes remains a significant environmental issue. However, our ability to prescribe corrective actions has been significantly hampered by a scarcity of data, particularly for methylmercury (MeHg) the most toxic and bioaccumulative form of mercury in freshwater ecosystems. As part of the Great Lakes Restoration Initiative initiated in 2010, a joint effort was undertaken by the U.S. Geological Survey (USGS) and U.S. Environmental Protection Agency (USEPA) to improve our understanding of total Hg and MeHg concentrations and distributions in the Great Lakes. Since 2010, sampling surveys have been conducted at about 15-20 stations twice annually (April and August) at 15-20 stations per lake to collect data from both cold and warm water conditions. All sampling was conducted using trace-metal free protocols using a sampling rosette equipped with 12 Teflon-lined Niskin. Water samples were collected at predetermined depths: mid-epilimnion, mid-thermocline, deep chlorophyll layer, mid-hypolimnion, and about 2 meters above the bottom. Seston samples were collected from the top 20 meters using plankton nets, while bottom sediments and benthos samples were acquired using a ponar sampler. Water, biota, and sediment samples were all analyzed for Hg and MeHg concentration at the USGS Mercury Research Laboratory in Middleton, Wisconsin. Several important trends are apparent from the water column samples. First, most stations reveal a strong top-to-bottom declining trend total Hg concentration, underscoring the importance of atmospheric deposition to the Great Lakes. Methylmercury profiles, show maximal concentrations at the thermocline or deep chlorophyll layer, suggesting in situ water-column MeHg production. Calculations suggest this in-lake MeHg source is similar in magnitude to tributary loading of MeHg, which heretofore was thought to be the dominant MeHg source. Aqueous total Hg results also suggest that

  13. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  14. Short-Term Bluff Recession Behavior Along Pennsylvania's Great Lakes Coastline, USA

    Science.gov (United States)

    Foyle, A. M.; Naber, M. D.; Pluta, M. J.

    2011-12-01

    Coastal bluff retreat is a common problem along the world's unconsolidated coastlines. On the Great Lakes coast of Pennsylvania, Quaternary clay-rich glacial till, paleo-lake plain, and sandy strandplain sequences overlie Devonian bedrock. These Quaternary strata are subject to subaerial and lacustrine erosional processes that cause permanent coastal land loss at spatially variable rates, with the former (runoff, slumping, groundwater focusing, etc) dominating over the latter (wave and current scour, abrasion, etc). Land loss is of concern to environmental agencies because land-use planning should account for spatial and temporal variability in land-loss rates, and because bluff erosion contributes to a temporary degradation in coastal water quality. The goal of this study is to evaluate spatial variability in bluff retreat rates along a 20 km sector of Pennsylvania's short Great Lakes coast. High resolution LiDAR data covering a one-decade time frame (1998-2007) permit bluff-crest mapping on two comparable data sets that captures change within a timeframe similar to CZM planning intervals. Short-term recession data can be more useful, cost-effective, and accurate than long-term analyses that use lower-resolution field measurements, T-sheets, and historical aerial photography. Bluffs along the 20 km coastal study site consist of up to 26 m of unlithified Quaternary sediments overlying a 1-4 m ledge of sub-horizontal Devonian shale and sandstone. Bluff slopes range from 20-90 degrees, beaches are narrow (wide) or absent, and the bluffs are seasonally shielded by ground-freeze and lake ice. DEMs, hillshades, and slope and contour maps were generated from bare-earth 1998 and 2007 LiDAR data, and checked against 2005 aerial ortho-photography. Maps were analyzed at a scale of 1:120 in ArcGIS and the bluff crest was identified primarily by the visual-break-in-slope method. Rates of bluff retreat derived using DSAS vary from unresolvable to as much as 2.2 m/yr, averaging

  15. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    Science.gov (United States)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-02-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and

  16. Questioning the Origin of the Great Salt Lake "Microbialites"

    Science.gov (United States)

    Frantz, C.; Matyjasik, M.; Newell, D. L.; Vanden Berg, M. D.; Park, C.

    2017-12-01

    The Great Salt Lake (GSL) of Utah contains abundant carbonate mounds that have been described in the literature as "biostromes", "bioherms", "stromatolites", and "microbialites". The structures are commonly cited as being rare examples of modern lacustrine microbialites, which implies that they are actively-forming and biogenic. Indeed, at least in some regions of the lake, the mounds are covered in a mixed community of cyanobacteria, algae, insect larval casings, microbial heterotrophs, and other organisms that is thought to contribute significantly to benthic primary productivity in GSL. However, the presence of a modern surface microbial community does not implicate a biogenic or modern origin for the mounds. The few studies to date GSL microbialites indicate that they are ancient, with radiocarbon calendar ages in the late Pleistocene and Holocene ( 13 - 3 cal ka). However, could they still be actively growing, and are the surface microbial communities playing a role? Here, we present results of a suite geochemical measurements used to constrain parameters—including groundwater seepage—influencing carbonate saturation and precipitation in the vicinity of one currently-submerged "microbialite reef" on the northern shore of Antelope Island in the South Arm of GSL. Our data suggests that calcium-charged brackish groundwater input to the lake through a permeable substratum in this location results in locally supersaturated conditions for aragonite, which could lead to modern, abiogenic mineralization. In addition, a series of laboratory experiments suggest that the modern surface microbial communities that coat the mounds do not appreciably facilitate carbonate precipitation in simulated GSL conditions, although they may serve as a template for precipitation when local waters become supersaturated.

  17. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    Science.gov (United States)

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  18. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  19. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  20. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping

    Science.gov (United States)

    Bain, Mark B.; Cornwell, Emily R.; Hope, Kristine M.; Eckerlin, Geofrey E.; Casey, Rufina N.; Groocock, Geoffrey H.; Getchell, Rodman G.; Bowser, Paul R.; Winton, James R.; Batts, William N.; Cangelosi, Allegra; Casey, James W.

    2010-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  1. Money, management, and manipulation: Environmental mobilization in the Great Lakes basin

    International Nuclear Information System (INIS)

    Gould, K.A.

    1991-01-01

    This document examines variations in the responses of communities to local pollution problems affecting Great Lakes water quality. The study is based on research conducted at six such communities, at sites that have been designated as 'Areas of Concern' by the International Joint Commission. The roles of economic dependency or diversity, access to scientific and political resources, community size, social visibility of pollution, and consciousness- and unconsciousness-making activities are examined as they relate to grass roots political mobilization in response to local, lake-related environmental issues. Of particular interest is the participation of national and regional environmental social movement organizations, Federal, State/Provincial and local governments, and local industry. National and regional environmental social movement organizations appear to have a greater mobilizing impact on communities that are closest to the urban centers in which these organizations are based. State and Provincial environmental agencies play a centrist role in promoting minimal remediation. Local governments typically oppose the definition of local environmental disorganization as a problem

  2. Microplastic pollution in the surface waters of the Laurentian Great Lakes.

    Science.gov (United States)

    Eriksen, Marcus; Mason, Sherri; Wilson, Stiv; Box, Carolyn; Zellers, Ann; Edwards, William; Farley, Hannah; Amato, Stephen

    2013-12-15

    Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash. Many microplastic particles were multi-colored spheres, which were compared to, and are suspected to be, microbeads from consumer products containing microplastic particles of similar size, shape, texture and composition. The presence of microplastics and coal ash in these surface samples, which were most abundant where lake currents converge, are likely from nearby urban effluent and coal burning power plants.

  3. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    Science.gov (United States)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  4. Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact

    Science.gov (United States)

    Wittmann, Marion E.; Jerde, Christopher L.; Howeth, Jennifer G.; Maher, Sean P.; Deines, Andrew M.; Jenkins, Jill A.; Whitledge, Gregory W.; Burbank, Sarah B.; Chadderton, William L.; Mahon, Andrew R.; Tyson, Jeffrey T.; Gantz, Crysta A.; Keller, Reuben P.; Drake, John M.; Lodge, David M.

    2014-01-01

    Intentional introductions of nonindigenous fishes are increasing globally. While benefits of these introductions are easily quantified, assessments to understand the negative impacts to ecosystems are often difficult, incomplete, or absent. Grass carp (Ctenopharyngodon idella) was originally introduced to the United States as a biocontrol agent, and recent observations of wild, diploid individuals in the Great Lakes basin have spurred interest in re-evaluating its ecological risk. Here, we evaluate the ecological impact of grass carp using expert opinion and a suite of the most up-to-date analytical tools and data (ploidy assessment, eDNA surveillance, species distribution models (SDMs), and meta-analysis). The perceived ecological impact of grass carp by fisheries experts was variable, ranging from unknown to very high. Wild-caught triploid and diploid individuals occurred in multiple Great Lakes waterways, and eDNA surveillance suggests that grass carp are abundant in a major tributary of Lake Michigan. SDMs predicted suitable grass carp climate occurs in all Great Lakes. Meta-analysis showed that grass carp introductions impact both water quality and biota. Novel findings based on updated ecological impact assessment tools indicate that iterative risk assessment of introduced fishes may be warranted.

  5. Regulations and policies that limit the growth of the U.S. Great Lakes cruising market.

    Science.gov (United States)

    2011-10-01

    The worldwide cruise industry has seen remarkable growth since the 1990s. The cruise market on the Great Lakes has lagged the worldwide growth and compared to historical records, has fallen far short of its full potential. This paper reviews the hist...

  6. Assessment of a new seasonal to inter-annual operational Great Lakes water supply, water levels, and connecting channel flow forecasting system

    Science.gov (United States)

    Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.

  7. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Non-point sources (NPS of agricultural chemical pollution are one major reason for the water quality degradation of the Great Lakes, which impacts millions of residents in the states and provinces that are bordering them. Future climate change will further impact water quality in both direct and indirect ways by influencing the hydrological cycle and processes of nutrient transportation and transformation, but studies are still rare. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus losses from the two small watersheds (Walworth watershed and Green Lake watershed within the Great Lakes region. Analysis focused on changes through this century (comparing the nutrient loss prediction of three future periods from 2015 to 2099 with 30 years for each period against the historical nutrient estimation data from 1985 to 2008. The effects on total phosphorus and nitrate-nitrogen losses due to changes in precipitation quantity, intensity, and frequency, as well as air temperature, are evaluated for the two small watersheds, under three special report emission scenarios (SRES A2, A1B, B1. The newly developed Water Erosion Prediction Project-Water Quality (WEPP-WQ model is utilized to simulate nutrient losses with downscaled and bias corrected future climate forcing from two General Circulation Models (GFDL, HadCM3. For each watershed, the observed runoff and nutrient loads are used to calibrate and validate the model before the application of the WEPP-WQ model to examine potential impacts from future climate change. Total phosphorus loss is projected to increase by 28% to 89% for the Green Lake watershed and 25% to 108% for the Walworth watershed mainly due to the combined effects of increase of precipitation quantity, extreme storm events in intensity and frequency, and air temperature. Nitrate-nitrogen losses are projected to increase by 1.1% to 38% for the Green Lake watershed and 8% to 95% for the

  8. Materials for Public Listening Session - Stakeholder Input on Public Notice for CSOs in the Great Lakes

    Science.gov (United States)

    Materials for the Public Listening Session on September 14, 2016, to obtain information from the public to help inform development of a new regulation establishing requirements for public notification of CSO discharges in the Great Lakes.

  9. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  10. Huguangyan Maar Lake (SE China): A solid record of atmospheric mercury pollution history in a non-remote region

    Science.gov (United States)

    Zeng, Yan; Chen, Jingan; Yang, Yongqiong; Wang, Jianxu; Zhu, Zhengjie; Li, Jian

    2017-10-01

    Mercury is a highly toxic metal that can cause harm to environment and human health. As atmospheric deposition is the main source of total Hg input to aquatic system in remote and pristine regions, almost all the studies on atmospheric Hg pollution history concentrated in these areas, while the studies in non-remote areas are much limited, especially for the long history records. In this study, Huguangyan Maar Lake, an undisturbed lake system at low altitude in China, was selected to reconstruct the atmospheric mercury pollution history. Variation patterns of TOC, Hg and non-residual Sr in the sediment core indicated that, compared to the direct atmospheric Hg deposition, the effect of either Hg scavenging from water column by algae or the catchment inputs of previously deposited Hg on the Hg accumulation in the lake sediment was limited. The sediment Hg content in Huguangyan Lake was mainly controlled by the atmospheric Hg deposition, and thus accurately reflected the atmospheric Hg pollution history. The Hga (Hg content from atmospheric deposition) in Huguangyan Lake presented a comparable variation pattern to that in remote sites. It had the same variation trend as the global atmospheric Hg before 1950 CE, which could be attributed to the Industrial Revolution. After that, it was mainly controlled by Hg emissions from Asian countries. The variation of Hga also indicated that atmospheric Hg deposition accelerated significantly since 2000 CE. This study, along with other investigations in remote sites in China, showed that the sediment Hg in Huguangyan Lake responded to the atmospheric Hg pollution more sensitively than in the alpine regions. It should be noted that, the more intensive acceleration of Hg deposition in Huguangyan Lake may imply that the South of China suffered from much more serious atmospheric Hg pollution than previous studies revealed.

  11. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2011-05-13

    ... of the Utah Museum of Natural History, Salt Lake City, UT. The human remains were removed from Snow.... A detailed assessment of the human remains was made by the Utah Museum of Natural History... with the human remains should contact Duncan Metcalfe, Utah Museum of Natural History, 1390 E...

  12. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 1: Present Conditions

    Science.gov (United States)

    2013-11-01

    There are two U.S. cement plants (Charlevoix and Alpena ) that supply all U.S. ports on the lakes. Ballast Water Treatment, U.S. Great Lakes...Marquette, MI Brevort, MI Buffington, IN Alpena , MI Bay City, MI Cleveland, OH Ashtabula, OH Duluth, MN Munising, MI Charlevoix, MI Burns Harbor, IN...Manitowoc Pathfinder Calumet Alpena Total shown: 40,699,415 mt Total, all U.S. Vsls: 42,508,108 mt % ballast moved by top 5 vsls

  13. 75 FR 82141 - Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study

    Science.gov (United States)

    2010-12-29

    ... future role of Great Lakes shipping in supporting the region's economy and as an important component of... port assets will be developed. That inventory will be used to determine if the Maritime Administration... environmental regulations. This analysis will be used in developing strategies for how the Maritime...

  14. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  15. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    Science.gov (United States)

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  17. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Science.gov (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  18. It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes

    Science.gov (United States)

    Armenio, Patricia M.; Bunnell, David B.; Adams, Jean V.; Watson, Nicole M.; Woelmer, Whitney

    2017-01-01

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

  19. The PIRLA project: paleoecological investigations of recent lake acidification

    Energy Technology Data Exchange (ETDEWEB)

    Charles, D F; Whitehead, D R

    1986-12-19

    The PIRLA project is a broadly interdisciplinary paleolimnological investigation of five to fifteen comparable watershed lake systems from each of four low-alkalinity regions in North America that are currently receiving acid deposition. The areas are the Adirondack Mountains (N.Y.), northern New England, northern Great Lakes states, and northern Florida. The primary objective of the study is to provide a detailed reconstruction of the recent acidification histories of a representative suite of lakes from each of the regions. The study will increase our understanding of the timing, rates, and magnitude of acidification (and other chemical changes), and the regional and inter-regional patterns of lake acidification. 3 figs., 2 tabs., 41 refs.

  20. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    Science.gov (United States)

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  1. 76 FR 1665 - Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study; Correction

    Science.gov (United States)

    2011-01-11

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2010-0111] Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study; Correction AGENCY: Maritime Administration, Department of Transportation. ACTION: Correction Notice. SUMMARY: On December 29, 2010, at 75 FR...

  2. Evaluation of a rural demonstration program to increase seat belt use in the Great Lakes Region.

    Science.gov (United States)

    2009-03-01

    Six States in the Great Lakes Region (Region 5) participated in a Rural Demonstration Program to increase seat belt : use in rural areas and among high-risk occupants, such as young males and occupants of pickup trucks. These : efforts, which include...

  3. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    Science.gov (United States)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-01-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in

  4. Post-War Economics. Micro-Level Evidence from the African Great Lakes Region

    OpenAIRE

    D'Aoust, Olivia

    2015-01-01

    This thesis starts by arguing that the civil conflicts that erupted in the African Great Lakes are rooted in a continuous pursuit of power, in which ethnic, regional and political identifiers are used by the contenders for power to rally community support. In an introductory chapter, I go back to the colonial era, drawing attention to Burundi and Rwanda, and then describe in more details Burundi's refugee crisis, ex-combatants' demobilization and the 2010 elections, all of which will be addre...

  5. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  6. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  7. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    Science.gov (United States)

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  8. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    Science.gov (United States)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  9. Great Bear Lake, N.W.T. - 1963, No. 13 in 1964 Data Record Series, Canadian Oceanographic Data Center (NODC Accession 7500188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Great Bear Lake has an area of 29,500 km^2 and it is the fourth largest lake in North America. It is situated at an elevation of 169 m (515 ft) and has a maximum...

  10. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  11. The origin of shallow lakes in the Khorezm Province, Uzbekistan, and the history of pesticide use around these lakes

    Science.gov (United States)

    Rosen, Michael R.; Crootof, Arica; Reidy, Liam; Saito, Laurel; Nishonov, Bakhriddin; Scott, Julian A.

    2018-01-01

    The economy of the Khorezm Province in Uzbekistan relies on the large-scale agricultural production of cotton. To sustain their staple crop, water from the Amu Darya is diverted for irrigation through canal systems constructed during the early to mid-twentieth century when this region was part of the Soviet Union. These diversions severely reduce river flow to the Aral Sea. The Province has >400 small shallow (data indicate that the majority of the lakes investigated are less than 150 years old, which supports a recent origin of the lakes. The thickness of lacustrine sediments in the cores analyzed ranged from 20 to 60 cm in all but two of the lakes, indicating a relatively slow sedimentation rate and a relatively short-term history for the lakes. Hydrologic changes in the lakes are evident from loss on ignition and pollen analyses of a subset of the lake cores. The data indicate that the lakes have transitioned from a dry, saline, arid landscape during pre-lake conditions (low organic carbon content) and low pollen concentrations (in the basal sediments) to the current freshwater lakes (high organic content), with abundant freshwater pollen taxa over the last 50–70 years. Sediments at the base of the cores contain pollen taxa dominated by Chenopodiaceae and Tamarix, indicating that the vegetation growing nearby was tolerant to arid saline conditions. The near surface sediments of the cores are dominated by Typha/Sparganium, which indicate freshwater conditions. Increases in pollen of weeds and crop plants indicate an intensification of agricultural activities since the 1950s in the watersheds of the lakes analyzed. Pesticide profiles of DDT (dichlorodiphenyltrichloroethane) and its degradates and γ-HCH (gamma-hexachlorocyclohexane), which were used during the Soviet era, show peak concentrations in the top 10 cm of some of the cores, where estimated ages of the sediments (1950–1990) are associated with peak pesticide use during the Soviet era. These data

  12. 2010 Great Lakes Restoration Initiative Bathymetric Lidar: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in this file contain hydrographic and topographic data collected by the Fugro LADS Mk II system along the Lake Superior coast of Minnessota,...

  13. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  14. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  15. Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches.

    Science.gov (United States)

    Vincent, Anna; Drag, Nate; Lyandres, Olga; Neville, Sarah; Hoellein, Timothy

    2017-01-15

    Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches. Initial assessments of the AAB records quantified sources and abundance of AL on Lake Michigan beaches, and showed that plastic AL was >75% of AL on beaches across all five Great Lakes. However, AAB records have not yet been used to examine patterns of AL density and composition among beaches of all different substrate types (e.g., parks, rocky, sandy), across land-use categories (e.g., rural, suburban, urban), or among seasons (i.e., spring, summer, and fall). We found that most AL on beaches are consumer goods that most likely originate from beach visitors and nearby urban environments, rather than activities such as shipping, fishing, or illegal dumping. We also demonstrated that urban beaches and those with sand rather than rocks had higher AL density relative to other sites. Finally, we found that AL abundance is lowest during the summer, between the US holidays of Memorial Day (last Monday in May) and Labor Day (first Monday in September) at the urban beaches, while other beaches showed no seasonality. This research is a model for utilizing datasets collected by volunteers involved in citizen science programs, and will contribute to AL management by offering priorities for AL types and locations to maximize AL reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    Science.gov (United States)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  17. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  18. Mosaic maternal ancestry in the Great Lakes region of East Africa.

    Science.gov (United States)

    Gomes, Verónica; Pala, Maria; Salas, Antonio; Álvarez-Iglesias, Vanesa; Amorim, António; Gómez-Carballa, Alberto; Carracedo, Ángel; Clarke, Douglas J; Hill, Catherine; Mormina, Maru; Shaw, Marie-Anne; Dunne, David W; Pereira, Rui; Pereira, Vânia; Prata, Maria João; Sánchez-Diz, Paula; Rito, Teresa; Soares, Pedro; Gusmão, Leonor; Richards, Martin B

    2015-09-01

    The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.

  19. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Dvonch, J. Timothy [University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gratz, Lynne E. [University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011 (United States); Landis, Matthew S. [U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709 (United States)

    2015-01-01

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ({sup 207}Pb/{sup 206}Pb = 0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ({sup 87}Sr/{sup 86}Sr = 0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ{sup 202}Hg = − 1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution. - Highlights: • We measured Pb, Sr, and Hg isotopes in precipitation from the Great Lakes region. • Pb isotopes suggest that deposition was impacted by coal combustion and metal production. • Sr isotope ratios vary regionally, likely due to soil dust and coal fly ash. • Hg isotopes vary due to fractionation occurring within facilities and the atmosphere. • Isotope results support conclusions of previous trace element receptor modeling.

  20. Plutonium and americum concentration along fresh water food chains of the Great Lakes, U.S.A. General summary of progress, 1975--1976

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1976-01-01

    Progress is reported for studies on the distribution of long-lived transuranic nuclides and 137 Cs introduced into the Great Lakes by fallout deposits or in radioactive effluents from nuclear facilities. Emphasis is placed on the content of 137 Cs, 241 Am, 239 Pu, 240 Pu, and 244 Cm in plankton, fish, and sediments sampled in Lake Erie and Lake Ontario during 1975 and 1976

  1. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    Mercury (Hg) is a hazardous bioaccumulative neurotoxin, and atmospheric deposition is a primary way in which mercury enters terrestrial and aquatic ecosystems. However, the chemical processes and transport regimes that mercury undergoes from emission to deposition are not well understood. Thus the use of mercury isotopes to characterize the biogeochemical cycling of mercury is a rapidly growing area of study. Precipitation samples were collected in Chicago, IL, Holland, MI, and Dexter, MI from April 2007 - October 2007 to begin examining the isotopic fractionation of atmospheric mercury in the Great Lakes region. Results show that mass-dependent fractionation relative to NIST-3133 (MDF - δ202Hg) ranged from -0.8‰ to 0.2‰ (±0.2‰) in precipitation samples, while mass-independent fractionation (MIF - Δ199Hg) varied from 0.1‰ to 0.6‰ (±0.1‰). Although clear urban-rural differences were not observed, this may be due to the weekly collection of precipitation samples rather than collection of individual events, making it difficult to truly characterize the meteorology and source influences associated with each sample and suggesting that event-based collection is necessary during future sampling campaigns. Additionally, total vapor phase mercury samples were collected in Dexter, MI in 2009 to examine isotopic fractionation of mercury in ambient air. In ambient samples δ202Hg ranged from 0.3‰ to 0.5‰ (±0.1‰), however Δ199Hg was not significant. Because mercury in precipitation is predominantly Hg2+, while ambient vapor phase mercury is primarily Hg0, these results may suggest the occurrence of MIF during the oxidation of Hg0 to Hg2+ prior to deposition. Furthermore, although it has not been previously reported or predicted, MIF of 200Hg was also detected. Δ200Hg ranged from 0.0‰ to 0.2‰ in precipitation and from -0.1‰ to 0.0‰ in ambient samples. This work resulted in methodological developments in the collection and processing of

  2. Lake Titicaca: History and current studies

    International Nuclear Information System (INIS)

    Paredes Riveros, M.A.; Gonfiantini, R.

    1999-01-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed

  3. Lake Titicaca: History and current studies

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Riveros, M A [PELT, Puno (Peru); Gonfiantini, R [Istituto di Geocronologia e Geochimica Isotopica del CNR, Pisa (Italy)

    1999-12-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed.

  4. A comparison of water quality criteria for the Great Lakes based on human and wildlife health

    Science.gov (United States)

    Ludwig, James P.; Giesy, John P.; Summer, Cheryl L.; Bowerman, William; Aulerich, Richard J.; Bursian, Steven J.; Auman, Heidi J.; Jones, Paul D.; Williams, Lisa L.; Tillitt, Donald E.; Gilbertson, Michael

    1993-01-01

    Water quality criteria (WQC) can be derived in several ways. The usual techniques involve hazard and risk assessment procedures. For non-persistent, non-biomagnified compounds and elements, WQC are experimentally derived from their acute and chronic toxicity to aquatic organisms. For those persistent chlorinated hydrocarbons (PCHs) that are bioaccumulated and biomagnified, these traditional techniques have not been effective, partly because effects higher in the food web were not considered. Polychlorinated biphenyls (PCBs) are the bioaccumulative synthetic chemicals of primary toxicological significance to the Great Lakes biota which have caused widespread injury to wildlife. In the Laurentian Great Lakes, the primary emphasis of hazard assessments has been on the potential for adverse effects in humans who eat fish. The primary regulatory endpoint of traditional hazard and risk assessments underlying current WQC are the probabilities of additional cancers occurring in the human population. The analysis presented here indicates that this is not adequate to restore sensitive wildlife species that are highly exposed to PCBs, especially those that have suffered serious population declines. Because WQC are legal instruments, the methods of deriving WQC have large implications for remediation, litigation, and damage assessments. Here WQC are derived for six species based on the responses of wildlife in the field or produced by feeding fish to surrogate species, rather than projecting a potential of increased cancer rates in humans. If the most sensitive wildlife species are restored and protected for very sensitive reproductive endpoints, then all components of the ecosystem, including human health, should be more adequately protected. The management of Great Lakes wildlife requires an understanding of the injury and causal relationships to persistent toxic substances.

  5. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    Science.gov (United States)

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  6. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    Science.gov (United States)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  7. A 9,000-year-old caribou hunting structure beneath Lake Huron

    OpenAIRE

    O’Shea, John M.; Lemke, Ashley K.; Sonnenburg, Elizabeth P.; Reynolds, Robert G.; Abbott, Brian D.

    2014-01-01

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. These contexts have unique potentials for preserving ancient sites without disturbance from later human occupation. The Alpena-Amberley Ridge beneath modern Lake Huron in the Great Lakes offers unique evidence of prehistoric caribou hunters for a time period that is very poorly known on land. The newly discovered Drop 45 Drive Lane and associated artifacts presen...

  8. Novel effects-based monitoring approaches to evaluate chemicals of emerging concern in Great Lakes areas of concern

    Science.gov (United States)

    As part of an on-going program of research in support of the Great Lakes Restoration Initiative, we have been developing effects-based biomonitoring tools to evaluate the occurrence and potential hazards associated with Chemicals of Emerging Concern (CECs). Over three field seaso...

  9. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Science.gov (United States)

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  10. A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes.

    Science.gov (United States)

    Hughes, K D; Ewins, P J; Clark, K E

    1997-11-01

    Osprey (Pandion haliaetus) eggs and chick feathers were collected for mercury analysis from nests at four Great Lakes study areas in Ontario (three "naturally formed" lakes in southern Ontario and one reservoir in northern Ontario) and two New Jersey study areas in 1991-1994. Adult osprey feathers were sampled from three Great Lakes study areas in 1991. Feathers sampled from chicks (approximately 28-35 days old) appear to be better indicators of local contaminant conditions since spatial patterns of mercury in known prey, yellow perch (Perca flavescens), also collected in these areas, were more similar to chick feathers than to eggs. Mercury levels were less variable in chick feathers than in eggs. Estimates of biomagnification factors using prey of known size at these areas were also less variable in feathers than in eggs. At naturally formed lakes, no significant correlation in mercury levels between eggs and chick feathers from the same nest was apparent, suggesting that the source of mercury contamination was not the same in these two tissues: mercury levels in eggs reflect mercury acquired on the breeding grounds, wintering grounds, and migratory route; mercury levels in chick feathers reflect local dietary conditions on the breeding grounds. Mercury levels in both osprey eggs and chick feathers were higher at the Ogoki Reservoir than at naturally formed lakes. Adult osprey feathers had higher mercury concentrations than chick feathers. Mercury levels in osprey eggs, chick feathers, and adult feathers did not approach levels associated with toxic reproductive effects.

  11. Hydraulic and water-quality data collection for the investigation of Great Lakes tributaries for Asian carp spawning and egg-transport suitability

    Science.gov (United States)

    Murphy, Elizabeth A.; Jackson, P. Ryan

    2013-01-01

    If the invasive Asian carps (bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix) migrate to the Great Lakes, in spite of the efforts to stop their advancement, these species will require the fast-flowing water of the Great Lakes tributaries for spawning and recruitment in order to establish a growing population. Two Lake Michigan tributaries (the Milwaukee and St. Joseph Rivers) and two Lake Erie tributaries (the Maumee and Sandusky Rivers) were investigated to determine if these tributaries possess the hydraulic and water-quality characteristics to allow successful spawning of Asian carps. To examine this issue, standard U.S. Geological Survey sampling protocols and instrumentation for discharge and water-quality measurements were used, together with differential global positioning system data for georeferencing. Non-standard data-processing techniques, combined with detailed laboratory analysis of Asian carp egg characteristics, allowed an assessment of the transport capabilities of each of these four tributaries. This assessment is based solely on analysis of observed data and did not utilize the collected data for detailed transport modeling.

  12. The Proliferation and Illicit Trafficking of Small Arms and Light Weapons in the Great Lakes and Horn of Africa

    National Research Council Canada - National Science Library

    Kiugu, Aphaxard M

    2007-01-01

    In Africa, the effect of the proliferation of small arms and light weapons (SALW) continues to impact negatively on socioeconomic development, particularly within the Great Lakes and Horn of Africa...

  13. Feasibility study of a Great Lakes bioenergy system.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2011-01-01

    A bioenergy production and delivery system built around the Great Lakes St. Lawrence Seaway (GLSLS) transportation corridor was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of the GLSLS and associated railway lines was estimated to be capable of producing at least 30 Mt(dry) yr(-1) of lignocellulosic biomass with minimal adverse impacts on food and fibre production. This was estimated to be sufficient to displace all of the coal-fired electricity in Ontario plus more than 620 million L of green diesel (equivalent to 5.3% of diesel consumption in GLSLS provinces). Lifecycle greenhouse gas emissions were 88% and 76% lower than coal-fired power and conventional diesel, respectively. Production costs of $120 MWh(-1) for power and up to $30 GJ(-1) ($1.1 L(-1)) for green diesel were higher than current market prices, but a value for low-carbon energy would narrow the price differential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Observation of thermal plumes from submerged discharges in the Great Lakes and their implications for modeling and monitoring

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Paddock, R.A.; Frigo, A.A.

    1977-01-01

    Measurements of thermal plumes from submerged discharges of power plant cooling waters into the Great Lakes provide the opportunity to view the mixing processes at prototype scales and to observe the effects of the ambient environment on those processes. Examples of thermal plume behavior in Great Lakes' ambient environments are presented to demonstrate the importance of measurements of the detailed structure of the ambient environment, as well as of the plumes, for interpretation of prototype data for modeling and monitoring purposes. The examples are drawn from studies by Argonne National Laboratory (ANL) at the Zion Nuclear PowerStation and the D. C. Cook Nuclear Plant on Lake Michigan and at the J. A. FitzPatrick Nuclear Power Plant on Lake Ontario. These studies included measurements of water temperatures from a moving boat which provide a quasi-synoptic view of the three-dimensional temperature structure of the thermal plume and ambient water environment. Additional measurements of water velocities, which are made with continuously recording, moored, and profiling current meters, and of wind provide data on the detailed structure of the ambient environment. The detailed structure of the ambient environment, in terms of current, current shear, variable winds, and temperature stratification, often influence greatly thermal plume behavior. Although predictive model techniques and monitoring objectives often ignore the detailed aspects of the ambient environment, useful interpretation of prototype data for model evaluation or calibration and monitoring purposes requires detailed measurement of the ambient environment. Examination of prototype thermal plume data indicates that, in several instances, attention to only the gross characteristics of the ambient environment can be misleading and could result in significant errors in model calibration and extrapolation of data bases gathered in monitoring observations

  15. Prevalence of toxin-producing Clostridium botulinum associated with the macroalga Cladophora in three Great Lakes: growth and management

    Science.gov (United States)

    Chun, Chan Lan; Kahn, Chase I.; Borchert, Andrew J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Peller, Julie R.; Pier, Christina; Lin, Guangyun; Johnson, Eric A.; Sadowsky, Michael J.

    2015-01-01

    The reemergence of avian botulism caused by Clostridium botulinum type E has been observed across the Great Lakes in recent years. Evidence suggests an association between the nuisance algae, Cladophoraspp., and C. botulinum in nearshore areas of the Great Lakes. However, the nature of the association between Cladophora and C. botulinum is not fully understood due, in part, to the complex food web interactions in this disease etiology. In this study, we extensively evaluated their association by quantitatively examining population size and serotypes of C. botulinum in algal mats collected from wide geographic areas in lakes Michigan, Ontario, and Erie in 2011–2012 and comparing them with frequencies in other matrices such as sand and water. A high prevalence (96%) of C. botulinum type E was observed inCladophora mats collected from shorelines of the Great Lakes in 2012. Among the algae samples containing detectable C. botulinum, the population size of C. Botulinum type E was 100–104 MPN/g dried algae, which was much greater (up to 103 fold) than that found in sand or the water column, indicating thatCladophora mats are sources of this pathogen. Mouse toxinantitoxin bioassays confirmed that the putativeC. botulinum belonged to the type E serotype. Steam treatment was effective in reducing or eliminating C. botulinum type E viable cells in Cladophora mats, thereby breaking the potential transmission route of toxin up to the food chain. Consequently, our data suggest that steam treatment incorporated with a beach cleaning machine may be an effective treatment of Cladophora-borne C. botulinum and may reduce bird mortality and human health risks.

  16. 77 FR 73646 - Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint

    Science.gov (United States)

    2012-12-11

    ... Transmission Limited Partnership (Respondent), alleging that the Respondent has failed to comply with the... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RP13-313-000] Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint Take notice that on...

  17. Big Ship Data: Using vessel measurements to improve estimates of temperature and wind speed on the Great Lakes

    Science.gov (United States)

    Fries, Kevin; Kerkez, Branko

    2017-05-01

    The sheer size of many water systems challenges the ability of in situ sensor networks to resolve spatiotemporal variability of hydrologic processes. New sources of vastly distributed and mobile measurements are, however, emerging to potentially fill these observational gaps. This paper poses the question: How can nontraditional measurements, such as those made by volunteer ship captains, be used to improve hydrometeorological estimates across large surface water systems? We answer this question through the analysis of one of the largest such data sets: an unprecedented collection of one million unique measurements made by ships on the North American Great Lakes from 2006 to 2014. We introduce a flexible probabilistic framework, which can be used to integrate ship measurements, or other sets of irregular point measurements, into contiguous data sets. The performance of this framework is validated through the development of a new ship-based spatial data product of water temperature, air temperature, and wind speed across the Great Lakes. An analysis of the final data product suggests that the availability of measurements across the Great Lakes will continue to play a large role in the confidence with which these large surface water systems can be studied and modeled. We discuss how this general and flexible approach can be applied to similar data sets, and how it will be of use to those seeking to merge large collections of measurements with other sources of data, such as physical models or remotely sensed products.

  18. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    Science.gov (United States)

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  19. Coastal Cover Change Analysis Program (C-CAP) Great Lakes 2001-era land cover change analysis (NODC Accession 0038694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data is the 2001 era or late-date classification of the Great Lakes. This data set consists of about 74 partial Landsat 7 Thematic Mapper scenes which were...

  20. Seasonal patterns in growth, blood consumption, and effects on hosts by parasitic-phase sea lampreys in the Great Lakes: an individual-based model approach

    Science.gov (United States)

    Madenjian, Charles P.; Cochran, Philip A.; Bergstedt, Roger A.

    2003-01-01

    An individual-based model (IBM) was developed for sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes. The IBM was then calibrated to observed growth, by season, for sea lampreys in northern Lake Huron under two different water temperature regimes: a regime experienced by Seneca-strain lake trout (Salvelinus namaycush) and a regime experienced by Marquettestrain lake trout. Modeling results indicated that seasonal blood consumption under the Seneca regime was very similar to that under the Marquette regime. Simulated mortality of lake trout directly due to blood removal by sea lampreys occurred at nearly twice the rate during August and September under the Marquette regime than under the Seneca regime. However, cumulative sea lamprey-induced mortality on lake trout over the entire duration of the sea lamprey's parasitic phase was only 7% higher for the Marquette regime compared with the Seneca regime. Thus, these modeling results indicated that the strain composition of the host (lake trout) population was not important in determining total number of lake trout deaths or total blood consumption attributable to the sea lamprey population, given the sea lamprey growth pattern. Regardless of water temperature regime, both blood consumption rate by sea lampreys and rate of sea lamprey-induced mortality on lake trout peaked in late October. Elevated blood consumption in late October appeared to be unrelated to changes in water temperature. The IBM approach should prove useful in optimizing control of sea lampreys in the Laurentian Great Lakes.

  1. Economic feasibility of sail power devices on Great Lakes bulk carriers

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-24

    Progress is reported in a project to determine whether retro-fitting existing Great Lakes bulk carriers with auxiliary sail powering devices is economically feasible. The approach being used is to apply known technology both in terms of sail devices and calculation methods to determine the amount of fuel that can be saved and the probable cost of the sail device. Progress includes the identification and collection of data needed to determine the state of the art as well as to model the problem. Several sail powering devices were compared and an unstayed cat rig was chosen for further analysis and its performance characteristics were incorporated into a computer model, which is flow charted. (LEW)

  2. Halogenated flame retardants in the Great Lakes environment.

    Science.gov (United States)

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  3. Long livestock farming history and human landscape shaping revealed by lake sediment DNA.

    Science.gov (United States)

    Giguet-Covex, Charline; Pansu, Johan; Arnaud, Fabien; Rey, Pierre-Jérôme; Griggo, Christophe; Gielly, Ludovic; Domaizon, Isabelle; Coissac, Eric; David, Fernand; Choler, Philippe; Poulenard, Jérôme; Taberlet, Pierre

    2014-01-01

    The reconstruction of human-driven, Earth-shaping dynamics is important for understanding past human/environment interactions and for helping human societies that currently face global changes. However, it is often challenging to distinguish the effects of the climate from human activities on environmental changes. Here we evaluate an approach based on DNA metabarcoding used on lake sediments to provide the first high-resolution reconstruction of plant cover and livestock farming history since the Neolithic Period. By comparing these data with a previous reconstruction of erosive event frequency, we show that the most intense erosion period was caused by deforestation and overgrazing by sheep and cowherds during the Late Iron Age and Roman Period. Tracking plants and domestic mammals using lake sediment DNA (lake sedDNA) is a new, promising method for tracing past human practices, and it provides a new outlook of the effects of anthropogenic factors on landscape-scale changes.

  4. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp. in the Nicaraguan crater lakes

    Directory of Open Access Journals (Sweden)

    Meyer Axel

    2010-10-01

    Full Text Available Abstract Background Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites. We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. Results We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s of each crater lake differs, although most of them occurred more (probably much more recently than 20,000 years ago. Conclusion The

  5. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes.

    Science.gov (United States)

    Barluenga, Marta; Meyer, Axel

    2010-10-26

    Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old) and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s) of each crater lake differs, although most of them occurred more (probably much more) recently than 20,000 years ago. The genetic differentiation of the crater lake populations

  6. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  7. Stable lead isotopes and lake sediments. A useful combination for the study of atmospheric lead pollution history

    Energy Technology Data Exchange (ETDEWEB)

    Renberg, I.; Braennvall, M.-L.; Bindler, R. [Department of Ecology and Environmental Science, Umea University, SE-901 87 Umea (Sweden); Emteryd, O. [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umea (Sweden)

    2002-06-20

    Analysis of stable lead isotopes and lead concentrations in lake-sediment deposits, not least in varved (annually-laminated) sediments, is a useful method to study lead pollution history. This paper presents details from a study of 31 lakes in Sweden. Using a strong acid digestion of sediment samples and ICP-MS analyses, we have found that Swedish lake sediments have a high natural (pre-pollution) 206[Pb]/207[Pb] ratio (mean 1.52{+-}0.18, range 1.28-2.01, n=31 lakes). In contrast, atmospheric lead pollution derived from metal smelting processes, coal burning and from alkyl-lead added to petrol has a lower ratio (<1.2). Consequently, when pollution lead deposition began approximately 3500 years ago, the lead isotope ratio of the sediments started to decline, and in modern sediments it is typically <1.2. Using the isotope and concentration values and a mixing model, the relative contribution of pollution and natural lead in sediment samples can be calculated. The pollution lead records of the Swedish lake sediments show a consistent picture of the atmospheric lead pollution history. Some noticeable features are the Roman peak, the large and permanent Medieval increase, peaks at approximately 1200 and 1530 ad, the rapid increase after World War II, the peak in the 1970s, and the large modern decline.

  8. Using medically-derived iodine-131 to track sewage effluent in the Laurentian Great Lakes.

    Science.gov (United States)

    Montenero, Michael P; Dilbone, Elizabeth K; Waples, James T

    2017-10-15

    Tracking sewage wastewater in a large lake is difficult. Concentrations of pharmaceuticals that can be used as indicator compounds are quickly diluted and not easy to measure. In this study, we examined the potential of using medically-derived iodine-131 ( 131 I, t ½  = 8.02 d) as a tracer for Milwaukee sewage effluent in Lake Michigan. 131 I activities in sewage effluent from two Milwaukee wastewater treatment plants (WWTPs) were measured in conjunction with 131 I activities in water, sediment and biota in the Milwaukee Outer Harbor and Lake Michigan. 131 I discharge rates from both WWTPS ranged from 34 ± 15 to 1807 ± 24 MBq d -1 , with average and median 131 I discharges of 278 and 129 MBq d -1 . A budget of 131 I in the Milwaukee Outer Harbor - based on measured sediment and water column inventories - showed that ∼11% of the 131 I discharged to the harbor was scavenged to bottom sediments, ∼19% decayed in the harbor water column, and ∼70% was flushed out of the harbor to Lake Michigan. From this budget, we derived a harbor flushing rate of 3.1 days. In Lake Michigan, 131 I activity was found in Cladophora algae (undetected to 91 ± 2 Bq kg -1 ) along ∼40 km of shoreline. Benthic trawl samples showed 131 I activity up to 8 km from shore. Calculated 131 I length scales were 30 km alongshore and 3.4 km offshore and corresponded to sewage effluent dispersion rates of ∼2.6 km d -1 and ∼0.3 km d -1 in along- and offshore directions. Using 131 I as a tracer of sewage effluent from other coastal municipalities to the Laurentian Great Lakes appears feasible, particularly for larger (>10 5 ) population centers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  10. Recreation conflict of riparian landowners with personal watercraft and motorboat use along the New York's Great Lakes

    Science.gov (United States)

    Cheng-Ping Wang; Chad P. Dawson

    2002-01-01

    Riparian landowners of the New York's Great Lakes (NYGL) are reportedly in conflict with some motorboat and personal watercraft (PWC) use. Goal interference theory was used to explain landowners' perceived conflict caused by motorboat and PWC use. A study conducted in the NYGL area surveyed the riparian landowners' perceived conflict and problems caused...

  11. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  12. Use of fish telemetry in rehabilitation planning, management, and monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J.L.; Boston, C.; Doka, Susan E.; Gorsky, Dimitry; Gustavson, K.; Hondorp, Darryl W.; Isermann, Daniel A.; Midwood, Jonathan D.; Pratt, T.C.; Rous, Andrew M.; Withers, J. L.; Krueger, C.C.; Cooke, S.J.

    2017-01-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish–habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  13. Comparison of genetic and visual identification of cisco and lake whitefish larvae from Chaumont Bay, Lake Ontario

    Science.gov (United States)

    George, Ellen M.; Hare, Matthew P.; Crabtree, Darran L.; Lantry, Brian F.; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi are an important component of native food webs in the Great Lakes, and their restoration is instrumental to the recovery of lake trout Salvelinus namaycush and Atlantic salmon Salmo salar. Difficulties with visual identification of larvae can confound early life history surveys, as cisco are often difficult to distinguish from lake whitefish C. clupeaformis. We compared traditional visual species identification methods to genetic identifications based on barcoding of the mitochondrial cytochrome C oxidase I gene for 726 coregonine larvae caught in Chaumont Bay, Lake Ontario. We found little agreement between the visual characteristics of cisco identified by genetic barcoding and the most widely used dichotomous key, and the considerable overlap in ranges of traditionally utilized metrics suggest that visual identification of coregonine larvae from Chaumont Bay is impractical. Coregonines are highly variable and plastic species, and often display wide variations in morphometric characteristics across their broad range. This study highlights the importance of developing accurate, geographically appropriate larval identification methods in order to best inform cisco restoration and management efforts.

  14. AN ECOLOGICAL REVIEW OF CLADOPHORA GLOMERATA (CHLOROPHYTA) IN THE LAURENTIAN GREAT LAKES(1).

    Science.gov (United States)

    Higgins, Scott N; Malkin, Sairah Y; Todd Howell, E; Guildford, Stephanie J; Campbell, Linda; Hiriart-Baer, Veronique; Hecky, Robert E

    2008-08-01

    Cladophora glomerata (L.) Kütz. is, potentially, the most widely distributed macroalga throughout the world's freshwater ecosystems. C. glomerata has been described throughout North America, Europe, the Atlantic Islands, the Caribbean Islands, Asia, Africa, Australia and New Zealand, and the Pacific Islands. Cladophora blooms were a common feature of the lower North American Great Lakes (Erie, Michigan, Ontario) from the 1950s through the early 1980s and were largely eradicated through the implementation of a multibillion-dollar phosphorus (P) abatement program. The return of widespread blooms in these lakes since the mid-1990s, however, was not associated with increases in P loading. Instead, current evidence indicates that the resurgence in blooms was directly related to ecosystem level changes in substratum availability, water clarity, and P recycling associated with the establishment of dense colonies of invasive dreissenid mussels. These results support the hypothesis that dreissenid mussel invasions may induce dramatic shifts in energy and nutrient flow from pelagic zones to the benthic zone. © 2008 Phycological Society of America.

  15. Pesticide presence in Great Lakes tributaries and comparison to ToxCast and other water quality benchmarks to screen for potential biological effects

    Science.gov (United States)

    Product Description:Pesticides are a broad category of current use chemicals that pose potential threats to aquatic organisms in and around the Great Lakes basin. In this study, we monitored for over 200 pesticides or their break down products in 16 major tributaries to the Great...

  16. Decay model for biocide treatment of unballasted vessels: application for the Laurentian Great Lakes.

    Science.gov (United States)

    Sano, Larissa L; Bartell, Steven M; Landrum, Peter F

    2005-10-01

    A biocide decay model was developed to assess the potential efficacy and environmental impacts associated with using glutaraldehyde to treat unballasted overseas vessels trading on the Laurentian Great Lakes. The results of Monte Carlo simulations indicate that effective glutaraldehyde concentrations can be maintained for the duration of a vessel's oceanic transit (approximately 9-12 days): During this transit, glutaraldehyde concentrations were predicted to decrease by approximately 10% from initial treatment levels (e.g., 500 mgL(-1)). In terms of environmental impacts, mean glutaraldehyde concentrations released at Duluth-Superior Harbor, MN were predicted to be 100-fold lower than initial treatment concentrations, and ranged from 3.2 mgL(-1) (2 SD: 2.74) in April to 0.7 mgL(-1) (2 SD: 1.28) in August. Sensitivity analyses indicated that the re-ballasting dilution factor was the major variable governing final glutaraldehyde concentrations; however, lake surface temperatures became increasingly important during the warmer summer months.

  17. Late Glacial-Holocene Pollen-Based Vegetation History from Pass Lake, Prince of Wales Island, Southeastern Alaska

    Science.gov (United States)

    Ager, Thomas A.; Rosenbaum, Joseph G.

    2009-01-01

    A radiocarbon-dated history of vegetation development since late Wisconsin deglaciation has been reconstructed from pollen evidence preserved in a sediment core from Pass Lake on Prince of Wales Island, southeastern Alaska. The shallow lake is in the south-central part of the island and occupies a low pass that was filled by glacial ice of local origin during the late Wisconsin glaciation. The oldest pollen assemblages indicate that pine woodland (Pinus contorta) had developed in the area by ~13,715 cal yr B.P. An abrupt decline in the pine population, coinciding with expansion of alder (Alnus) and ferns (mostly Polypodiaceae) began ~12,875 yr B.P., and may have been a response to colder, drier climates during the Younger Dryas climatic interval. Mountain hemlock (Tsuga mertensiana) began to colonize central Prince of Wales Island by ~11,920 yr B.P. and was soon followed by Sitka spruce (Picea sitchensis). Pollen of western hemlock (Tsuga heterophylla) began to appear in Pass Lake sediments soon after 11,200 yr B.P. The abundance of western hemlock pollen in the Pass Lake core during most of the Holocene appears to be the result of wind transport from trees growing at lower altitudes on the island. The late Holocene pollen record from Pass Lake is incomplete because of one or more unconformities, but the available record suggests that a vegetation change occurred during the late Holocene. Increases in pollen percentages of pine, cedar (probably yellow cedar, Chamaecyparis nootkatensis), and heaths (Ericales) suggest an expansion of muskeg vegetation occurred in the area during the late Holocene. This vegetation change may be related to the onset of cooler, wetter climates that began as early as ~3,774 yr B.P. in the region. This vegetation history provides the first radiocarbon-dated Late Glacial-Holocene terrestrial paleoecological framework for Prince of Wales Island. An analysis of magnetic properties of core sediments from Pass Lake suggests that unconformities

  18. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  19. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  20. Analysis of long-term forest bird monitoring data from national forests of the western Great Lakes Region

    Science.gov (United States)

    Gerald J. Niemi; Robert W. Howe; Brian R. Sturtevant; Linda R. Parker; Alexis R. Grinde; Nicholas P. Danz; Mark D. Nelson; Edmund J. Zlonis; Nicholas G. Walton; Erin E. Gnass Giese; Sue M. Lietz

    2016-01-01

    Breeding bird communities in forests of the western Great Lakes region are among the most diverse in North America, but the forest environment in this region has changed dramatically during the past 150 years. To address concerns about loss of biodiversity due to ongoing forest harvesting and to better inform forest planning, researchers have systematically monitored...

  1. Great Lakes water quality initiative technical support document for human health criteria and values (January 1993 draft)

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of the human health criteria and values for the Great Lakes is the protection of humans from unacceptable exposure to toxicants from consumption of contaminated fish, drinking water and water related to recreational activities. Emphasis is on the protection of the individual in evaluating toxicity information and its application in the derivation of criteria and values

  2. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Science.gov (United States)

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) presents human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it ...

  3. The first US National Coastal Condition Assessment survey in the Great Lakes: Development of the GIS frame and exploration of spatial variation in nearshore water quality results

    Science.gov (United States)

    A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...

  4. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  5. Growth and survival of sea lampreys from metamorphosis to spawning in Lake Huron

    Science.gov (United States)

    Swink, William D.; Johnson, Nicholas S.

    2014-01-01

    Larval Sea Lampreys Petromyzon marinus live burrowed in stream bottoms and then metamorphose into their parasitic stage. Among larvae that metamorphose in a given year (i.e., parasitic cohort), autumn out-migrants (October–December) to the Laurentian Great Lakes can feed on fish for up to 6 months longer than spring outmigrants (March–May), which overwinter in streams without feeding. We evaluated whether the season of outmigration affected growth or survival of newlymetamorphosed Sea Lampreys in LakeHuron. Newlymetamorphosed individuals (n=2,718) from three parasitic cohorts were netted during their out-migration from BlackMallard Creek, Michigan, to LakeHuron during autumn 1997 through spring 2000; each out-migrant was injected with a sequentially numbered coded wire tag and was released back into the creek. After up to 18 months of feeding in the Great Lakes, 224 (8.2%) Sea Lampreys were recaptured (in 1999–2001) as upstream-migrating adults in tributaries to Lakes Huron and Michigan. Recovery rates of autumn and spring out-migrants as adults were 9.4% and 7.8%, respectively, and these rates did not significantly differ. Overwinter feeding (i.e., as parasites) by autumn out-migrants did not produce adult mean sizes greater than those of spring out-migrants. Because we detected no growth or survival differences between autumn and spring out-migrants, the capture of newly metamorphosed Sea Lampreys at any point during their out-migration should provide equal reductions in damage to Great Lakes fisheries. The absence of a difference in growth or survival between autumn and spring out-migrants is an aspect of Sea Lamprey life history that yields resiliency to this invasive parasite and complicates efforts for its control in the Great Lakes.

  6. Coastal Change Analysis Program (C-CAP) Great Lakes; Michigan 1996-2001 era land cover change analysis (NODC Accession 0042189)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is a change analysis of 1996-era C-CAP land cover and 2001-era C-CAP land cover for the State of Michigan, in the Great Lakes Region of the U.S. This...

  7. Radial ooids from Great Salt Lake (Utah) as paleoenvironmental archives: Insights from radiocarbon chronology and stable isotopes

    Science.gov (United States)

    Paradis, O. P.; Corsetti, F. A.; Bardsley, A.; Hammond, D. E.; Xu, X.; Walker, J. C.

    2017-12-01

    Ooids (laminated, carbonate coated grains) are ubiquitous in the geologic record in marine and lacustrine settings, and thus remain a common target for geochemical analysis to understand modern and ancient aqueous environments. However, the processes governing ooid formation remain unclear. Recently, radiocarbon dating has revealed that modern marine ooids grow slowly (Beaupre et al. 2015), and laboratory experiments have highlighted the importance of sediment transport and abrasion on net growth rates and ooid size (Trower et al. 2017). Ooid cortex structure includes micritic, tangential and/or radially oriented fabrics. Most modern marine ooids have tangential or micritic cortices, whereas many ancient ooids have radial cortices—thus, there is a need to understand how radial ooids in ancient rocks might inform us about their depositional environment. The Great Salt Lake (GSL), Utah, provides a unique environment to assess the growth rate of primary radial aragonitic ooids. Ooids collected near Antelope Island in the south arm of GSL were sieved, the 355-500 µm fraction was sequentially leached, and 14C of the evolved gas was analyzed to provide a time series of growth. The oldest inorganic carbon of this size fraction has an apparent 14C age of 6600 yr BP, with subsequent growth spanning over 6,000 years. Closed-basin lakes are particularly susceptible to a "reservoir effect" which results in anomalously old apparent radiocarbon ages. The 14C age of the modern dissolved inorganic carbon (DIC) of the south arm was measured to be 295 yr BP, a reservoir age comparable to estimates from lacustrine cave carbonates (McGee et al. 2012). Net growth rate of south arm ooids ranges between 0.01-0.025 µm per year. The δ13C of the outermost cortex suggests that the ooids resemble the modern DIC in the south arm water, suggesting ooids precipitate in equilibrium with lake water. Finer-scale structure in the δ13C of the ooid cortex through time suggests lake level changed

  8. Observations of cocooned Hydrobaenus (Diptera: Chironomidae) larvae in Lake Michigan

    Science.gov (United States)

    Tucker, Taaja R.; Hudson, Patrick L.; Riley, Stephen

    2016-01-01

    Larvae of the family Chironomidae have developed a variety of ways to tolerate environmental stress, including the formation of cocoons, which allows larvae to avoid unfavorable temperature conditions, drought, or competition with other chironomids. Summer cocoon formation by younger instars of the genus Hydrobaenus Fries allows persistence through increased temperatures and/or intermittent dry periods in arid regions or temporary habitats, but this behavior was not observed in the Great Lakes until the current study. Cocoon-aestivating Hydrobaenus sp. larvae were found in benthic grab samples collected in 2010–2013 near Sleeping Bear Dunes National Lakeshore in northern Lake Michigan with densities up to 7329/m2. The aestivating species was identified as Hydrobaenus johannseni (Sublette, 1967), and the associated chironomid community was typical for an oligotrophic nearshore system. Hydrobaenus cocoon formation in the Great Lakes was likely previously unnoticed due to the discrepancies between the genus' life history and typical benthos sampling procedures which has consequences for describing chironomid communities where Hydrobaenus is present.

  9. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    Science.gov (United States)

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  10. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  11. Great Lakes/Saint Lawrence Seaway Regional Transportation Study for U.S. Army Corps of Engineers. Phase II. Summary Report.

    Science.gov (United States)

    1982-03-01

    center in Hamilton and the public utilities in Toronto. The vast majority of these shipments are loaded at U.S. Lake Erie ports. (2) The Great Lakes...fish spawning, including egg survival, behavior, distribution of species and spawning, nursery and food/cover habitats in wetlands. Although fish...30P 305 CHICAGO 0 IR 21 41 74 43 141 16P 16P CALUMFT HR 0 7S9 3%0 %On IOA4 631 1934 240A 2414 INDIANA HA 0 1 4 7 10 13 1r is BURNS HOP 0 115 65 , A ?07

  12. Using Scenario Development to Encourage Tourism Business Resilience in the Great Lakes

    Science.gov (United States)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2015-12-01

    Tourism is an economic sector anticipated to be greatly affected by climate change, but the potential impacts of climate change on tourism have rarely been examined in detail in existing research. Past research has shown, however, that the small and medium businesses that dominate the tourism sector could be greatly impacted by climate change. We have presented global climate and hydrologic model research results to pre-selected coastal tourism business owners in the Great Lakes region to determine the best methods for delivering user-friendly future climate scenarios, given that existing research suggests that climate change adaptive behaviors and resilience increase with information (message) clarity. Model output analyses completed for this work have focused on temperature, precipitation, and extreme weather events due to their economic impact on tourism activities. We have also experimented with the development and use of infographics because of their ability to present information quickly and clearly. Initial findings of this work will be presented as well as lessons learned from stakeholder interactions. Two main results include that (1) extreme weather events may have more meaning to tourism business owners than general trends in climate and (2) long-term planning for climate is extremely difficult for tourism business owners because they operate on a much shorter planning timeline than those generally used for climate change analyses.

  13. Assessing Canadian inventories to understand the environmental impacts of mercury releases to the Great Lakes region

    International Nuclear Information System (INIS)

    Trip, Luke; Bender, Tonya; Niemi, David

    2004-01-01

    North American pollutant release and transfer registries have been continuously developing with an eye to understanding source/receptor relationships and ensuring that the polluter-paid principle is applied to the appropriate parties. The potential contribution of mercury to the Great Lakes Basin arising from the rerelease of historic mercury pollution from contaminated aquatic and terrestrial media is poorly understood and the subject of concern. Although a considerable amount of data may be available on the atmospheric component of mercury releases to the Basin, further inventory work is needed to quantify the rerelease of the historic mercury. Much of the related existing inventory information is either not derived from direct measurement or not bounded by a mass-balance accounting. Critical to this determination is an increased confidence in the inventories of mercury from past and current practices. This may be enhanced through comprehensive and thorough surveys of contributions from specific products and their life-cycle assessments. An even greater challenge is to determine the bioavailability of the mercury emanating from land-based sources and from aquatic media. This paper describes the interplay among the sources and receptors of mercury and provides a quantitative assessment of current Canadian contributions of mercury as a contaminant to the Great Lakes. Recommendations for improved assessments are provided

  14. Economic feasibility of sail power devices on Great Lakes bulk carriers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-22

    Three ships were examined, the ED RYERSON, the ST. CLAIR, and the STEWART CORT to determine if retro-fitting these ships with a 3000 sq ft soft sail cat rig is economically feasible. By using existing weather data taken from recorded observations on Lake Michigan and Lake Superior and known performance characteristics of both the sailplan and hull, a computer program was written to model the problem. Three cases for each ship were estimated. The first was the average fuel savings, second was an optimistic estimate of fuel savings, and the third was a pessimistic estimate of fuel savings. Several considerations had to be taken into account that had serious consequences for the economic viability of the idea. One was the fact that all of the aforementioned ships have self unloading equipment that require about 80% of the deck space to be clear. This limited the choice of sailplans to one per ship. Another consideration is that due to bridge clearance problems an air draft of less than 125' was required. These two factors limited the size and efficiency of the sail plan. The third consideration is that due to the very tight shipping channels on the Great Lakes, there is no provision for altering course to take advantage of prevailing winds in order to maximize the usefulness of the sail device. The sail device on the ED RYERSON does not seem to be economically feasible. Even at the lowest interest rate investigated in this study (8%) the average annual cost improves only in the optimistic estimates. At 12% interest even this slight advantage disappears. The sail devices on the STEWART CORT and ST. CLAIR seem to be marginally feasible at low interest rates and the present cost of fuel. The STEWART CORT seems to benefit most from the fitting of a sail device. A modest increase in fuel prices, perhaps possible, will make both of these ships look substantially better.

  15. Productivity, embryo and eggshell characteristics, and contaminants in bald eagles from the Great Lakes, USA, 1986 to 2000

    Science.gov (United States)

    Best, David A.; Elliott, Kyle; Bowerman, William; Shieldcastle, Mark C.; Postupalsky, Sergej; Kubiak, Timothy J.; Tillitt, Donald E.; Elliott, John E.

    2010-01-01

    Chlorinated hydrocarbon concentrations in eggs of fish-eating birds from contaminated environments such as the Great Lakes of North America tend to be highly intercorrelated, making it difficult to elucidate mechanisms causing reproductive impairment, and to ascribe cause to specific chemicals. An information- theoretic approach was used on data from 197 salvaged bald eagle (Haliaeetus leucocephalus) eggs (159 clutches) that failed to hatch in Michigan and Ohio, USA (1986–2000). Contaminant levels declined over time while eggshell thickness increased, and by 2000 was at pre-1946 levels. The number of occupied territories and productivity increased during 1981 to 2004. For both the entire dataset and a subset of nests along the Great Lakes shoreline, polychlorinated biphenyls (ΣPCBs, fresh wet wt) were generally included in the most parsimonious models (lowest-Akaike's information criterion [AICs]) describing productivity, with significant declines in productivity observed above 26 µg/g ΣPCBs (fresh wet wt). Of 73 eggs with a visible embryo, eight (11%) were abnormal, including three with skewed bills, but they were not associated with known teratogens, including ΣPCBs. Eggs with visible embryos had greater concentrations of all measured contaminants than eggs without visible embryos; the most parsimonious models describing the presence of visible embryos incorporated dieldrin equivalents and dichlorodiphenyldichloroethylene (DDE). There were significant negative correlations between eggshell thickness and all contaminants, with ΣPCBs included in the most parsimonious models. There were, however, no relationships between productivity and eggshell thickness or Ratcliffe's index. The ΣPCBs and DDE were negatively associated with nest success of bald eagles in the Great Lakes watersheds, but the mechanism does not appear to be via shell quality effects, at least at current contaminant levels, while it is not clear what other mechanisms were involved.

  16. GENETIC ANALYSIS OF THE CHINESE MITTEN CRAB (ERIOCHEIR SINENSIS) INTRODUCED TO THE NORTH AMERICAN GREAT LAKES AND ST. LAWRENCE SEAWAY

    Science.gov (United States)

    The Chinese mitten crab (Eriocheir sinensis) is a globally invasive organism, with established non-native populations in Europe and California, USA. Since 1965, there have been sixteen confirmed catches of E. sinensis in the North American Great Lakes and their associated waterw...

  17. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  18. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  19. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  20. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  1. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  2. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  3. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  4. Seasonal dynamics and life histories of pelagic cladocerans (Crustacea; Cladocera in an acid boreal lake

    Directory of Open Access Journals (Sweden)

    Jens Petter NILSSEN

    2011-02-01

    Full Text Available In the surveyed anthropogenic acidified Lake Gjerstadvann with pH ≈ 5.2 situated in southern Norway, spatial and temporal distribution of three characteristic planktonic cladocerans inhabiting acidified boreal biotopes, Bosmina longispina, Holopedium gibberum, and Diaphanosoma brachyurum, were studied over a period of one year. The major pelagic predator was Eurasian perch, Perca fluviatilis. The local perch probably balanced the cladoceran community and facilitated co-existence of all three species of cladocerans by removing significant portions of B. longispina, which could also be the case in similar types of boreal lakes. Invertebrate predators such as the dipteran larvae Chaoborus flavicans and carnivorous copepods did not seem to influence the cladoceran community. B. longispina was perennial, whereas both H. gibberum and D. brachyurum were recorded only during the ice-free period. The life cycle of these free-living pelagic species ranged from 2-3 in D. brachyurum, 3 in H. gibberum to approximately 6 annual generations in B. longispina. Wintering took place as resting eggs in D. brachyurum and H. gibberum, while B. longispina produced resting eggs in addition to an active planktonic stay. The warm water tolerant D. brachyurum was mainly distributed above the thermocline, whereas H. gibberum also inhabited deeper strata, and B. longispina most vertical strata of the lake. Maximum seasonal clutch volume of B. longispina coincided in time with peak in food abundance and may be a useful parameter to identify planktonic food availability in such lakes. Knowledge of the autecology and life history of species is fundamental for understanding ecosystem stress, such as anthropogenic acidification and recovery through liming or by natural causes. Seasonal depth isoplots combined with life history studies of commonly co-occurring cladoceran species from natural acid and anthropogenic acidified lakes on the Northern Hemisphere seem to be uncommon

  5. Gene expression of benthic amphipods (genus: Diporeia in relation to a circular ssDNA virus across two Laurentian Great Lakes

    Directory of Open Access Journals (Sweden)

    Kalia S.I. Bistolas

    2017-09-01

    Full Text Available Circular rep-encoding ssDNA (CRESS-DNA viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transcriptional profile of benthic amphipods of genus Diporeia and the presence of the CRESS-DNA virus, LM29173, in the Laurentian Great Lakes to provide potential insight into the influence of these viruses on invertebrate gene expression. Twelve transcriptomes derived from Diporeia were compared, representing organisms from two amphipod haplotype clades (Great Lakes Michigan and Superior, defined by COI barcode sequencing with varying viral loads (up to 3 × 106 genome copies organism−1. Read recruitment to de novo assembled transcripts revealed 2,208 significantly over or underexpressed contigs in transcriptomes with above average LM29173 load. Of these contigs, 31.5% were assigned a putative function. The greatest proportion of annotated, differentially expressed transcripts were associated with functions including: (1 replication, recombination, and repair, (2 cell structure/biogenesis, and (3 post-translational modification, protein turnover, and chaperones. Contigs putatively associated with innate immunity displayed no consistent pattern of expression, though several transcripts were significantly overexpressed in amphipods with high viral load. Quantitation (RT-qPCR of target transcripts, non-muscular myosin heavy chain, β-actin, and ubiquitin-conjugating enzyme E2, corroborated transcriptome analysis and indicated that Lake Michigan and Lake Superior amphipods with high LM29173 load exhibit lake-specific trends in gene expression. While this investigation provides the first comparative survey of the transcriptional profile of invertebrates of variable CRESS-DNA viral load, additional inquiry is required to define the scope of host

  6. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008

    International Nuclear Information System (INIS)

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002–2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002–2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation. - Highlights: ► Data from 5 Hg and precipitation networks in the USA and Canada were combined for the first time. ► High-resolution maps and statistical trends tests were used for spatial and temporal data analysis. ► Some 7-year mean annual Hg concentrations exceeded a 12 ng per liter water-quality criterion. ► Small, localized decreases in Hg concentration were offset by increases in precipitation. ► Hg wet deposition was unchanged in the Great Lakes region and its subregions during 2002–2008. - Analysis of monitoring data from 5 networks in the USA and Canada determined that mercury wet deposition was unchanged in the North American Great Lakes region during 2002–2008.

  7. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  8. Paleolimnological sedimentation of organic carbon, nitrogen, phosphorus, fossil pigments, pollen, and diatoms in a hypereutrophic, hardwater lake: a case history of eutrophication

    Energy Technology Data Exchange (ETDEWEB)

    Manny, B.A.; Wetzel, R.G.; Bailey, R.E.

    1977-01-01

    The sediment history of this productive, hardwater lake (Wintergreen Lake in southern Michigan) developed as five periods of increasing eutrophy, each strongly influenced by a hybrid basin morphometry. This morphometry led to higher productivity per unit area by macrophytic plants in littoral waters of the lake than by phytoplankton in pelagic waters. Climate and trophic conditions during each of the five periods between 14,000 and 0 B.P. are postulated.

  9. Great Lakes water quality initiative criteria documents for the protection of wildlife (proposed): DDT, mercury 2,3,7,8-TCDD and PCBs

    International Nuclear Information System (INIS)

    Bradbury, S.; Nolt, C.; Goodman, B.; Stromborg, K.; Sullivan, J.

    1993-04-01

    The document outlines, for each category of contaminant listed in the title, the relevant literature, the calculation of mammalian wildlife value, the calculation of Avian Wildlife Value, and the Great Lakes Wildlife criterion

  10. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  11. Inter- and intra-annual chemical variability during the ice-free season in lakes with different flushing rates and acid deposition histories.

    Science.gov (United States)

    Arnott, Shelley E; Dillon, Peter J; Somers, Keith; Keller, Bill

    2003-01-01

    Quantifying chemical variability in different lake types is important for the assessment of both chemical and biological responses to environmental change. For monitoring programs that emphasize a large number of lakes at the expense of frequent samples, high variability may influence how representative single samples are of the average conditions of individual lakes. Intensive temporal data from long-term research sites provide a unique opportunity to assess chemical variability in lakes with different characteristics. We compared the intra- and inter-annual variability of four acidification related variables (Gran alkalinity, pH, sulphate concentration, and total base cation concentration) in four lakes with different flushing rates and acid deposition histories. Variability was highest in lakes with high flushing rates and was not influenced by historic acid deposition in our study lakes. This has implications for the amount of effort required in monitoring programs. Lakes with high flushing rates will require more frequent sampling intervals than lakes with low flushing rates. Consideration of specific lake types should be included in the design of monitoring programs.

  12. Survey of fish impingement at power plants in the United States. Volume I. The Great Lakes

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F. III.

    1977-03-01

    Impingement of fish at cooling-water intakes of 20 power plants located on the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV

  13. Prehistory and History of the El Dorado Lake Area, Kansas. Phase II.

    Science.gov (United States)

    1981-01-01

    ae,()A5201018A520202,dosl ae (d) ~ ~ ~ ~ ~ , veta ae e 540100,dra ae f eta faeyg 510201 osa ae h eta ae(;~ 4308 Assuming that the sizes of edge...Anthropology Ŗ Project Rept..Xeries ’ e /-A. Number 47 Y / - REHISTORY AND HISTORY OF THE EL DORADO LAKE AREA, KANSAS (PHASE Z)/ ./-- °/ . 7 / Edited by...Mary J. dair Contributors: Mary J. Adair Joe Alan Artz Marie E . Brown Darrell Drew Ch4rie E . Haury Gary R. Leaf Ricky L. Roberts Matthew J. Root Mary

  14. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    Science.gov (United States)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  15. Exploiting Habitat and Gear Patterns for Efficient Detection of Rare and Non-native Benthos and Fish in Great Lakes Coastal ecosystems

    Science.gov (United States)

    There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...

  16. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    Science.gov (United States)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  17. Notes on a collection of Crustacea Decapoda from the Great Bitter Lake, Egypt, with a list of the species of Decapoda known from the Suez Canal

    NARCIS (Netherlands)

    Holthuis, L.B.

    1956-01-01

    Between August 18 and September 5, 1950, Dr. C. Beets, geologist Royal Dutch Shell Oil Company, explored the aquatic fauna and flora of the Great Bitter Lake. In the course of this exploration dredge hauls were made at 47 stations, distributed all over the lake. An account of this work and a

  18. Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu)

    DEFF Research Database (Denmark)

    Roland, Fleur A.E.; Morana, Cédric; Darchambeau, François

    2018-01-01

    We investigated CH4 oxidation in the water column of Lake Kivu, a deep meromictic tropical lake with CH4-rich anoxic deep waters. Depth profiles of dissolved gases (CH4 and N2O) and a diversity of potential electron acceptors for anaerobic CH4 oxidation (NO3 −, SO4 2−, Fe and Mn oxides) were dete...

  19. A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier

    Science.gov (United States)

    Fabbri, S. C.; Buechi, M. W.; Horstmeyer, H.; Hilbe, M.; Hübscher, C.; Schmelzbach, C.; Weiss, B.; Anselmetti, F. S.

    2018-05-01

    To investigate the history of the Aare Glacier and its overdeepened valley, a high-resolution multibeam bathymetric dataset and a 2D multi-channel reflection seismic dataset were acquired on perialpine Lake Thun (Switzerland). The overdeepened basin was formed by a combination of tectonically predefined weak zones and glacial erosion during several glacial cycles. In the deepest region of the basin, top of bedrock lies at ∼200 m below sea level, implying more than 750 m of overdeepening with respect to the current fluvial base level (i.e. lake level). Seismic stratigraphic analysis reveals the evolution of the basin and indicates a subaquatic moraine complex marked by high-amplitude reflections below the outermost edge of a morphologically distinct platform in the southeastern part of the lake. This stack of seven subaquatic terminal moraine crests was created by a fluctuating, "quasi-stagnant" grounded Aare Glacier during its overall recessional phase. Single packages of overridden moraine crests are seismically distuinguishable, which show a transition downstream into prograding clinoforms with foresets at the ice-distal slope. The succession of subaquatic glacial sequences (foresets and adjacent bottomsets) represent one fifth of the entire sedimentary thickness. Exact time constraints concerning the deglacial history of the Aare Glacier are very sparse. However, existing 10Be exposure ages from the accumulation area of the Aare Glacier and radiocarbon ages from a Late-Glacial lake close to the outlet of Lake Thun indicate that the formation of the subaquatic moraine complex and the associated sedimentary infill must have occurred in less than 1000 years, implying high sedimentation rates and rapid disintegration of the glacier. These new data improve our comprehension of the landforms associated with the ice-contact zone in water, the facies architecture of the sub- to proglacial units, the related depositional processes, and thus the retreat mechanisms of

  20. Development of DNA-based Identification methods to track the species composition of fish larvae within nearshore areas of the Great Lakes

    Science.gov (United States)

    The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become esta...

  1. Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity.

    Science.gov (United States)

    Thompson, Tarin M; Batts, William N; Faisal, Mohamed; Bowser, Paul; Casey, James W; Phillips, Kenneth; Garver, Kyle A; Winton, James; Kurath, Gael

    2011-08-29

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.

  2. Emergence of viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity

    Science.gov (United States)

    Thompson, T.M.; Batts, W.N.; Faisal, M.; Bowser, P.; Casey, J.W.; Phillips, K.; Garver, K.A.; Winton, J.; Kurath, G.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North Ame­rica. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from ­individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with ­previously naïve host populations.

  3. The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project

    Science.gov (United States)

    Wagner, Bernd; Wilke, Thomas; Francke, Alexander; Albrecht, Christian; Baumgarten, Henrike; Bertini, Adele; Combourieu-Nebout, Nathalie; Cvetkoska, Aleksandra; D'Addabbo, Michele; Donders, Timme H.; Föller, Kirstin; Giaccio, Biagio; Grazhdani, Andon; Hauffe, Torsten; Holtvoeth, Jens; Joannin, Sebastien; Jovanovska, Elena; Just, Janna; Kouli, Katerina; Koutsodendris, Andreas; Krastel, Sebastian; Lacey, Jack H.; Leicher, Niklas; Leng, Melanie J.; Levkov, Zlatko; Lindhorst, Katja; Masi, Alessia; Mercuri, Anna M.; Nomade, Sebastien; Nowaczyk, Norbert; Panagiotopoulos, Konstantinos; Peyron, Odile; Reed, Jane M.; Regattieri, Eleonora; Sadori, Laura; Sagnotti, Leonardo; Stelbrink, Björn; Sulpizio, Roberto; Tofilovska, Slavica; Torri, Paola; Vogel, Hendrik; Wagner, Thomas; Wagner-Cremer, Friederike; Wolff, George A.; Wonik, Thomas; Zanchetta, Giovanni; Zhang, Xiaosen S.

    2017-04-01

    This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard-Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced

  4. The Great Depression: A Textbook Case of Problems with American History Textbooks.

    Science.gov (United States)

    Miller, Steven L.; Rose, Stephen A.

    1983-01-01

    The 16 US history textbooks reviewed failed to incorporate economists' research on the causes of the Great Depression and consistently presented information that the economics profession has rejected. Strategies that social studies educators might adopt to improve the quality of economic analysis in textbooks is suggested. (Author/RM)

  5. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  6. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    Science.gov (United States)

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  7. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    Science.gov (United States)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  8. Composition and seasonal phenology of a nonindigenous root-feeding weevil (Coleoptera: Curculionidae) complex in northern hardwood forests in the Great Lakes Region

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Phyllobius oblongus (L.), Polydrusus sericeus (Schaller), and Sciaphilus asperatus (Bonsdorff) comprise a complex of nonindigenous root-feeding weevils in northern hardwood forests of the Great Lakes region. Little is known about their detailed biology, seasonality, relative abundance, and distribution patterns....

  9. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, H.D.; Dunbar, R.B. [Stanford University, Geological and Environmental Sciences, Stanford, CA (United States)

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease ({proportional_to}85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano. (orig.)

  10. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    Science.gov (United States)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  11. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  12. Imagining the Great Lakes Region: discourses and practices of civil society regional approaches for peacebuilding in Rwanda, Burundi and DR Congo

    NARCIS (Netherlands)

    Leeuwen, van M.

    2008-01-01

    The idea has gained ground in recent years that, as conflicts in the countries of the Great Lakes Region are strongly interlinked, regional approaches are necessary to resolve them. This interest in regional dimensions of conflict and peacebuilding also gains currency in other parts of the world.

  13. Sound velocity profiles collected by NOAA's Navigation Response Team No. 4 in the Great Lakes, July 5 - September 25, 2007 (NODC Accession 0020370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-4 in the Great Lakes from 05 July 2007 to 25 September 2007. Sound velocity profiles...

  14. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  15. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    Science.gov (United States)

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m 3 and a median of 1.9 particles/m 3 . Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  16. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  17. 33 CFR 165.T09-0073 - Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes; Cleveland, OH; Bay City, MI...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Tall... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS... Guard District § 165.T09-0073 Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes...

  18. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  19. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.

    2018-01-01

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1

  20. Changes in the sedimentation histories of lakes using Pb-210 as a tracer of sinking particulate matter

    International Nuclear Information System (INIS)

    Barnes, R.S.; Birch, P.B.; Spyridakis, D.E.; Schell, W.R.

    1978-01-01

    A detailed study of man's impact over the last 150 years on six lakes in Western Washington State has been made using Pb-210 dating methods and historical records. These lakes represent a gradient in watershed usage from pristine natural environments to heavily urbanized areas. Fine structures in the sediment profiles of Pb-210 measurements were found to correlate with changing watershed land use. Contemporary sedimentation rates varied from 50-679 g/m 2 x a (0.37-2.9 mm/a) and were generally higher than precultural rates. The highest average sedimentation rates (1230-1800 g/m 2 x a or 5.6-8.3 mm/a) were simultaneous with suburbanization. Construction of roads and houses appeared to be the major cause of increased erosion in the watersheds. The present day sediments of all lakes were enriched in lead compared to older background material. The stable lead profiles from all lakes except Lake Union were consistent with the local history of lead pollution based on the Pb-210 geochronologies. Water column residence times for Pb-210 and stable lead were almost identical and were consistent with algal settling rates and the sinking rates of fine silts and clays. (orig.) [de

  1. Lake tourism fatalities: a 46-year history of death at Lake Powell.

    Science.gov (United States)

    Heggie, Travis W

    2018-05-01

    This study investigates tourist mortality at Lake Powell over a 46-year period. To date no comprehensive long-term investigation examining the relationship between the lake environment and tourist mortality exists. A retrospective study was conducted of all tourist fatalities between 1959 and 2005. There were 351 fatal incidents resulting in 386 deaths between 1959 and 2005. Over the 46-year period, the average number of fatalities was 8.4 (±5.26) per year. Out of all fatalities, 282 were classified as accidental, 80 were classified as natural deaths, 13 were suicides and 5 were classified as homicides. Males accounted for 80% of fatalities and tourists aged 20-29 years and 10-19 years accounted for 36% of all fatalities. The highest number of fatalities was recorded in July (74), May (64), August (63) and June (59). Out of all accidental deaths, boating (29%) and swimming (22%) were the most common pre-death activities. High winds capsizing boats and carbon monoxide poisoning from boat engines were common factors contributing to 31 boating fatalities. Fatigue and exhaustion contributed to 22 swimming deaths. Recreational boating and swimming account for over half of all accidental deaths. Tourists visiting Lake Powell for recreational purposes should be informed of the risks associated with the lake environment.

  2. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    Science.gov (United States)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  3. History: A Great Lives Approach

    Science.gov (United States)

    Jarvis, F. Washington

    1973-01-01

    After examining the drawbacks of some of the currently popular teaching methods, the author proposes an approach to the teaching of high school history focusing on the matter of history -- the lives of men and ideas of the past. (SM)

  4. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    Science.gov (United States)

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  5. Early responses to zebra mussels in the Great Lakes: a journey from information vacuum to policy and regulation

    Science.gov (United States)

    Griffiths, Ronald W.; Schloesser, Don W.; Kovalak, William P.

    2013-01-01

    Invasive species such as zebra mussels pose a threat to the economies and environments of coastal and fresh-water habitats around the world. Consequently, it is important that government policies and programs be adequate to protect these waters from invaders. This chapter documents key events that took place in the early years (1988-1991) of zebra mussel colonization of the Laurentian Great Lakes and evaluates government responses (policies and programs) to this disruptive, invasive, freshwater species.

  6. Using traditional ecological knowledge as a basis for targeted forest inventory: paper birch (Betula papyrifera) in the US Great Lakes Region

    Science.gov (United States)

    Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert

    2014-01-01

    Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...

  7. Research on pathogens at Great Lakes beaches: sampling, influential factors, and potential sources

    Science.gov (United States)

    ,

    2013-01-01

    The overall mission of this work is to provide science-based information and methods that will allow beach managers to more accurately make beach closure and advisory decisions, understand the sources and physical processes affecting beach contaminants, and understand how science-based information can be used to mitigate and restore beaches and protect the public. The U.S. Geological Survey (USGS), in collaboration with many Federal, State, and local agencies and universities, has conducted research on beach health issues in the Great Lakes Region for more than a decade. The work consists of four science elements that align with the USGS Beach Health Initiative Mission: real-time assessments of water quality; coastal processes; pathogens and source tracking; and data analysis, interpretation, and communication. The ongoing or completed research for the pathogens and source tracking topic is described in this fact sheet.

  8. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  9. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    Science.gov (United States)

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  10. Holocene glacial history of the west Greenland Ice Sheet inferred from cosmogenic exposure ages and threshold lakes

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, K. H.; Colding, Sune Oluf

    2011-01-01

    In this study, we use a combination of 10Be exposure ages and threshold lakes to constrain the ice sheet history in Godthåbs- and Buksefjorden, west Greenland (63-64°N) during the Holocene. The 10Be cosmogenic exposure ages have been used to quantify both the ice retreat and thinning of the west...

  11. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian; Erickson, Richard A.

    2017-01-01

    Contaminant exposure of tree swallows, Tachycineta bicolor, nesting in 27 Areas of Concern (AOCs) in the Great Lakes basin was assessed from 2010 to 2014 to assist managers and regulators in their assessments of Great Lakes AOCs. Contaminant concentrations in nestlings from AOCs were compared with those in nestlings from nearby non-AOC sites. Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether concentrations in tree swallow nestling carcasses at 30% and 33% of AOCs, respectively, were below the mean concentration for non-AOCs. Polycyclic aromatic hydrocarbon (PAH) concentrations in nestling stomach contents and perfluorinated compound concentrations in nestling plasma at 67% and 64% of AOCs, respectively, were below the mean concentration for non-AOCs. Concentrations of PCBs in nestling carcasses were elevated at some AOCs but modest compared with highly PCB-contaminated sites where reproductive effects have been documented. Concentrations of PAHs in diet were sufficiently elevated at some AOCs to elicit a measurable physiological response. Among AOCs, concentrations of the perfluorinated compound perfluorooctane sulfonate in plasma were the highest on the River Raisin (MI, USA; geometric mean 330 ng/mL) but well below an estimated toxicity reference value (1700 ng/mL). Both PAH and PCB concentrations in nestling stomach contents and PCBs in carcasses were significantly correlated with concentrations in sediment previously reported, thereby reinforcing the utility of tree swallows to assess bioavailability of sediment contamination.

  12. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  13. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    Science.gov (United States)

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  14. Problems with the claim of ecotype and taxon status of the wolf in the Great Lakes region

    Science.gov (United States)

    Cronin, Matthew A.; Mech, L. David

    2009-01-01

    Koblmuller et al. (2009) analysed molecular genetic data of the wolf in the Great Lakes (GL) region of the USA and concluded that the animal was a unique ecotype of grey wolf and that genetic data supported the population as a discrete wolf taxon. However, some of the literature that the researchers used to support their position actually did not, and additional confusion arises from indefinite use of terminology. Herein, we discuss the problems with designation of a wolf population as a taxon or ecotype without proper definition and assessment of criteria.

  15. Synthetic musk fragrances in urban and rural air of Iowa and the Great Lakes

    Science.gov (United States)

    Peck, Aaron M.; Hornbuckle, Keri C.

    Synthetic musk fragrances are semivolatile organic compounds used to scent a variety of household and personal care products. In this study, six polycyclic musk fragrances (HHCB, AHTN, ATII, AHMI, ADBI, and DPMI) and two nitro musk fragrances (musk xylene and musk ketone) were evaluated in 181 air samples collected at urban, suburban, and rural sites in Iowa and the Great Lakes. This is the largest reported study of the compounds in ambient air and reveals the ubiquitous nature of these environmental contaminants. HHCB and AHTN were detected most frequently and at the highest concentrations at all sites. Synthetic musk fragrance concentrations were highest in urban locations, including Milwaukee, WI (previously reported) and an urban location in Cedar Rapids, IA. Urban concentrations of HHCB and AHTN are on the order of 1-5 ng m -3 and background terrestrial concentrations are about an order of magnitude less. In rural Iowa, the concentrations and frequency of detection of the synthetic musk fragrances are comparable to (and often greater than) gas-phase pesticide concentrations. The concentrations measured at the suburban location in Iowa City, IA and over the Lakes Erie, Ontario, and Michigan were generally intermediate of those measured at the rural and urban locations. Concentrations of HHCB and AHTN were correlated with temperature at the sampling sites in Iowa.

  16. A 9,000-year-old caribou hunting structure beneath Lake Huron.

    Science.gov (United States)

    O'Shea, John M; Lemke, Ashley K; Sonnenburg, Elizabeth P; Reynolds, Robert G; Abbott, Brian D

    2014-05-13

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters.

  17. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  18. Male cerebral palsy hospitalization as a potential indicator of neurological effects of methylmercury exposure in Great Lakes communities

    International Nuclear Information System (INIS)

    Gilbertson, Michael

    2004-01-01

    Perinatal exposure to methylmercury is known to result in severe neurological effects on the developing fetus and infant, including cerebral palsy, mental retardation, and seizures. Males are more susceptible than females to neurological damage from perinatal methylmercury exposures. Preliminary analyses of data and statistics for the hospitalization rates of males for cerebral palsy in the 17 Canadian Areas of Concern in the Great Lakes basin indicate a possible geographic association with locations with elevated mercury from natural or industrial sources

  19. The history, present status and prospects of the availability of Artemia cysts for aquaculture

    OpenAIRE

    Lavens, P.; Sorgeloos, P.

    2000-01-01

    This paper provides an overview of the history of Artemia cyst provision worldwide since the 1950s. It allows a better assessment of the current situation, characterized by poor yields from the main harvest site, the Great Salt Lake in Utah, USA, and to make prognoses about future supplies and demands.

  20. Public perspectives of fire, fuels, and the Forest Service in the Great Lakes Region: a survey of citizen-agency communication and trust

    Science.gov (United States)

    Bruce A. Shindler; Eric Toman; Sarah M. McCaffrey

    2009-01-01

    Relative to the western United States, where fire and fuel management programs have received greater emphasis, few community-based studies have focused on the Great Lakes region. The present paper describes public opinion research from counties surrounding National Forests inWisconsin, Minnesota and Michigan. Survey data address citizen perspectives on (1) fuel...

  1. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  2. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  3. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. -K. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mrozowski, T. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Harrell-Seyburn, A. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Ehrlich, N. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Hembroff, L. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Lieburn, B. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mazor, M. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); McIntyre, A. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mutton, C. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Parsons, G. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Syal, M. G. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Wilkinson, R. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States)

    2014-09-01

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.

  4. Life under ice: Investigating microbial-related biogeochemical cycles in the seasonally-covered Great Lake Onego, Russia

    Science.gov (United States)

    Thomas, Camille; Ariztegui, Daniel; Victor, Frossard; Emilie, Lyautey; Marie-Elodie, Perga; Life Under Ice Scientific Team

    2016-04-01

    The Great European lakes Ladoga and Onego are important resources for Russia in terms of drinking water, energy, fishing and leisure. Because their northern location (North of Saint Petersburgh), these lakes are usually ice-covered during winter. Due to logistical reasons, their study has thus been limited to the ice-free periods, and very few data are available for the winter season. As a matter of fact, comprehension of large lakes behaviour in winter is very limited as compared to the knowledge available from small subpolar lakes or perennially ice-covered polar lakes. To tackle this issue, an international consortium of scientists has gathered around the « life under ice » project to investigate physical, chemical and biogeochemical changes during winter in Lake Onego. Our team has mainly focused on the characterization and quantification of biological processes, from the water column to the sediment, with a special focus on methane cycling and trophic interactions. A first « on-ice » campaign in March 2015 allowed the sampling of a 120 cm sedimentary core and the collection of water samples at multiple depths. The data resulting from this expedition will be correlated to physical and chemical parameters collected simultaneously. A rapid biological activity test was applied immediately after coring in order to test for microbial activity in the sediments. In situ adenosine-5'-triphosphate (ATP) measurements were carried out in the core and taken as an indication of living organisms within the sediments. The presence of ATP is a marker molecule for metabolically active cells, since it is not known to form abiotically. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) were extracted from these samples, and quantified. Quantitative polymerase chain reactions (PCR) were performed on archaeal and bacterial 16S rRNA genes used to reconstruct phylogenies, as well as on their transcripts. Moreover, functional genes involved in the methane and nitrogen cycles

  5. Best Practices for Wind Energy Development in the Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Pebbles, Victoria; Hummer, John; Haven, Celia

    2011-07-19

    This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

  6. Status and future of Lake Huron fish communities

    Science.gov (United States)

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  7. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  8. The natural history of congenitally corrected transposition of the great arteries.

    Science.gov (United States)

    Huhta, James

    2011-01-01

    The natural history of congenitally corrected transposition of the great arteries is of clinical/surgical importance once the fetus is born without heart block or signs of heart failure. Without significant tricuspid valve malformation, associated defects such as ventricular septal defect and left ventricular outflow obstruction can be repaired surgically. The mortality and long-term outcome appear to be linked strongly with the severity of tricuspid valve regurgitation. Some patients with an intact ventricular septum and no right ventricular dysfunction will live long lives without detection, and some women will successfully complete pregnancy.

  9. Spatial co-distribution of neglected tropical diseases in the East African Great Lakes region: revisiting the justification for integrated control

    Science.gov (United States)

    Clements, Archie C. A.; Deville, Marie-Alice; Ndayishimiye, Onésime; Brooker, Simon; Fenwick, Alan

    2010-01-01

    Summary OBJECTIVE To determine spatial patterns of co-endemicity of schistosomiasis mansoni and the soil-transmitted helminths (STHs) Ascaris lumbricoides, Trichuris trichiura and hookworm in the Great Lakes region of East Africa, to help plan integrated neglected tropical disease programmes in this region. METHOD Parasitological surveys were conducted in Uganda, Tanzania, Kenya and Burundi in 28 213 children in 404 schools. Bayesian geostatistical models were used to interpolate prevalence of these infections across the study area. Interpolated prevalence maps were overlaid to determine areas of co-endemicity. RESULTS In the Great Lakes region, prevalence was 18.1% for Schistosoma mansoni, 50.0% for hookworm, 6.8% for A. lumbricoides and 6.8% for T. trichiura. Hookworm infection was ubiquitous, whereas S. mansoni, A. lumbricoides and T. trichiura were highly focal. Most areas were endemic (prevalence ≥10%) or hyperendemic (prevalence ≥50%) for one or more STHs, whereas endemic areas for schistosomiasis mansoni were restricted to foci adjacent large perennial water bodies. CONCLUSION Because of the ubiquity of hookworm, treatment programmes are required for STH throughout the region but efficient schistosomiasis control should only be targeted at limited high-risk areas. Therefore, integration of schistosomiasis with STH control is only indicated in limited foci in East Africa. PMID:20409287

  10. An Integrated Approach for Identifying Priority Contaminant in the Great Lakes Basin –Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary Areas of Concern

    Data.gov (United States)

    U.S. Environmental Protection Agency — Prioritization of chemicals was performed on two Areas of Concerns in the Great Lakes An integrated risk surveillance and monitoring approach was applied Bio-effect...

  11. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    Science.gov (United States)

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  12. Hydrological, morphometrical, and biological characteristics of the connecting rivers of the International Great Lakes: a review

    Science.gov (United States)

    Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.

    1989-01-01

    The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.

  13. Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.).

    Science.gov (United States)

    Mee, Jonathan A; Bernatchez, Louis; Reist, Jim D; Rogers, Sean M; Taylor, Eric B

    2015-06-01

    The concept of the designatable unit (DU) affords a practical approach to identifying diversity below the species level for conservation prioritization. However, its suitability for defining conservation units in ecologically diverse, geographically widespread and taxonomically challenging species complexes has not been broadly evaluated. The lake whitefish species complex (Coregonus spp.) is geographically widespread in the Northern Hemisphere, and it contains a great deal of variability in ecology and evolutionary legacy within and among populations, as well as a great deal of taxonomic ambiguity. Here, we employ a set of hierarchical criteria to identify DUs within the Canadian distribution of the lake whitefish species complex. We identified 36 DUs based on (i) reproductive isolation, (ii) phylogeographic groupings, (iii) local adaptation and (iv) biogeographic regions. The identification of DUs is required for clear discussion regarding the conservation prioritization of lake whitefish populations. We suggest conservation priorities among lake whitefish DUs based on biological consequences of extinction, risk of extinction and distinctiveness. Our results exemplify the need for extensive genetic and biogeographic analyses for any species with broad geographic distributions and the need for detailed evaluation of evolutionary history and adaptive ecological divergence when defining intraspecific conservation units.

  14. ALL THAT "PHRAG": BRINGING ENGINEERING, WETLAND ECOLOGY, ENVIRONMENTAL SCIENCE, AND LANDSCAPE ECOLOGY TO BEAR ON THE QUESTION OF COMMON REED IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  15. AN ECOLOGICAL ASSESSMENT OF INVASIVE AND AGRESSIVE PLANT SPECIES IN COASTAL WETLANDS OF THE LAURENTIAN GREAT LAKES: A COMBINED FIELD BASED AND REMOTE SENSING APPROACH

    Science.gov (United States)

    The aquatic plant communities within coastal wetlands of the Laurentian Great Lakes are among the most biologically diverse and productive systems of the world. Coastal wetlands have been especially impacted by landscape conversion and have undergone a marked decline in plant com...

  16. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem

    Science.gov (United States)

    Sierszen, Michael E.; Hrabik, Thomas R.; Stockwell, Jason D.; Cotter, Anne M; Hoffman, Joel C.; Yule, Daniel L.

    2014-01-01

    In large lakes around the world, depth-based changes in the abundance and distribution of invertebrate and fish species suggest that there may be concomitant changes in patterns of resource allocation. Using Lake Superior of the Laurentian Great Lakes as an example, we explored this idea through stable isotope analyses of 13 major fish taxa.

  17. Contemporary and historical trace metal loadings to the sediments of four lakes of the Lake Washington drainage. Completion report

    International Nuclear Information System (INIS)

    Spyridakis, D.E.; Barnes, R.S.

    1978-01-01

    Contemporary and historical loadings of lead, zinc, and copper to the profundal sediments of Lakes Washington, Sammamish, Chester Morse, and Findley were determined using chemical analysis and 210 Pb dating of sediment cores. Elemental sedimentation rates, a cross product of the sedimentation rate, and sediment concentration of a given element, were corrected for natural background concentrations and rates, and extrapolated across established sediment accumulating areas to give a conservative estimate of the pollutional trace metal loadings to each lake. The resulting chronological loadings appeared consistent with the known cultural history of the individual watersheds. Substantial alterations in sedimentation rates were noted in all lakes where deforestation, road building, suburbanization or urbanization had occurred in the lake's watershed. The quantities, elemental ratios and pollutional histories of copper, lead and zinc in the lake sediments indicate that aeolian inputs are the dominant source of trace metal pollution to the lake sediments at the present time

  18. Between Lake Baikal and the Baltic Sea: genomic history of the gateway to Europe.

    Science.gov (United States)

    Triska, Petr; Chekanov, Nikolay; Stepanov, Vadim; Khusnutdinova, Elza K; Kumar, Ganesh Prasad Arun; Akhmetova, Vita; Babalyan, Konstantin; Boulygina, Eugenia; Kharkov, Vladimir; Gubina, Marina; Khidiyatova, Irina; Khitrinskaya, Irina; Khrameeva, Ekaterina E; Khusainova, Rita; Konovalova, Natalia; Litvinov, Sergey; Marusin, Andrey; Mazur, Alexandr M; Puzyrev, Valery; Ivanoshchuk, Dinara; Spiridonova, Maria; Teslyuk, Anton; Tsygankova, Svetlana; Triska, Martin; Trofimova, Natalya; Vajda, Edward; Balanovsky, Oleg; Baranova, Ancha; Skryabin, Konstantin; Tatarinova, Tatiana V; Prokhortchouk, Egor

    2017-12-28

    The history of human populations occupying the plains and mountain ridges separating Europe from Asia has been eventful, as these natural obstacles were crossed westward by multiple waves of Turkic and Uralic-speaking migrants as well as eastward by Europeans. Unfortunately, the material records of history of this region are not dense enough to reconstruct details of population history. These considerations stimulate growing interest to obtain a genetic picture of the demographic history of migrations and admixture in Northern Eurasia. We genotyped and analyzed 1076 individuals from 30 populations with geographical coverage spanning from Baltic Sea to Baikal Lake. Our dense sampling allowed us to describe in detail the population structure, provide insight into genomic history of numerous European and Asian populations, and significantly increase quantity of genetic data available for modern populations in region of North Eurasia. Our study doubles the amount of genome-wide profiles available for this region. We detected unusually high amount of shared identical-by-descent (IBD) genomic segments between several Siberian populations, such as Khanty and Ket, providing evidence of genetic relatedness across vast geographic distances and between speakers of different language families. Additionally, we observed excessive IBD sharing between Khanty and Bashkir, a group of Turkic speakers from Southern Urals region. While adding some weight to the "Finno-Ugric" origin of Bashkir, our studies highlighted that the Bashkir genepool lacks the main "core", being a multi-layered amalgamation of Turkic, Ugric, Finnish and Indo-European contributions, which points at intricacy of genetic interface between Turkic and Uralic populations. Comparison of the genetic structure of Siberian ethnicities and the geography of the region they inhabit point at existence of the "Great Siberian Vortex" directing genetic exchanges in populations across the Siberian part of Asia. Slavic speakers

  19. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  20. Marine incursion: the freshwater herring of Lake Tanganyika are the product of a marine invasion into west Africa.

    Directory of Open Access Journals (Sweden)

    Anthony B Wilson

    Full Text Available The spectacular marine-like diversity of the endemic fauna of Lake Tanganyika, the oldest of the African Great Lakes, led early researchers to suggest that the lake must have once been connected to the ocean. Recent geophysical reconstructions clearly indicate that Lake Tanganyika formed by rifting in the African subcontinent and was never directly linked to the sea. Although the Lake has a high proportion of specialized endemics, the absence of close relatives outside Tanganyika has complicated phylogeographic reconstructions of the timing of lake colonization and intralacustrine diversification. The freshwater herring of Lake Tanganyika are members of a large group of pellonuline herring found in western and southern Africa, offering one of the best opportunities to trace the evolutionary history of members of Tanganyika's biota. Molecular phylogenetic reconstructions indicate that herring colonized West Africa 25-50MYA, at the end of a major marine incursion in the region. Pellonuline herring subsequently experienced an evolutionary radiation in West Africa, spreading across the continent and reaching East Africa's Lake Tanganyika during its early formation. While Lake Tanganyika has never been directly connected with the sea, the endemic freshwater herring of the lake are the descendents of an ancient marine incursion, a scenario which may also explain the origin of other Tanganyikan endemics.

  1. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  2. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    Science.gov (United States)

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  3. The Lake Petén Itzá Scientifi c Drilling Project

    Directory of Open Access Journals (Sweden)

    Daniel Ariztegui

    2006-09-01

    Full Text Available Polar ice cores provide us with high-resolution records of past climate change at high latitudes on both glacial-to-interglacial and millennial timescales. Paleoclimatologists and climate modelers have focused increasingly on the tropics, however, as a potentially important driver of global climate change because of the region’s role in controlling the Earth’s energy budget and in regulating the water vapor content of the atmosphere. Tropical climate change is often expressed most strongly as variations in precipitation, and closed-basin lakes are sensitive recorders of the balance between precipitation and evaporation. Recent advances in fl oating platformsand drilling technology now offer the paleolimnological community the opportunity to obtain long sediment records from lowland tropical lakes, as illustrated by the recent successful drilling of Lakes Bosumtwi and Malawi in Africa (Koeberl et al., 2005; Scholz et al., 2006. Tropical lakes suitable for paleoclimatic research were sought in Central America to complement the African lake drilling. Most lakes in the Neotropics are shallow, however, and these basins fell dry during the Late Glacial period because the climate in the region was more arid than today. The search for an appropriate lake to study succeeded in 1999 when a bathymetric survey of Lake Petén Itzá, northern Guatemala, revealed a maximum depth of 165 m, making itthe deepest lake in the lowlands of Central America (Fig. 1 .Although the lake was greatly reduced in volume during the Late Glacial period, the deep basin remained submerged and thus contains a continuous history of lacustrine sediment deposition. A subsequent seismic survey of Lake Petén Itzá in 2002 showed a thick sediment package overlying basement, with several subbasins containing up to 100 m of sediment (Anselmetti et al., 2006.

  4. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah

    Directory of Open Access Journals (Sweden)

    Swati Almeida-Dalmet

    2018-01-01

    Full Text Available Haloarchaea that inhabit Great Salt Lake (GSL, a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.

  5. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    Science.gov (United States)

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  6. Type A natural resource damage assessment models for Great Lakes environments (NRDAM/GLE) and coastal and marine environments (NRDAM/CME)

    International Nuclear Information System (INIS)

    French, D.P.; Reed, M.

    1993-01-01

    A computer model of the physical fates, biological effects, and economic damages resulting from releases of oil and other hazardous materials has been developed by ASA to be used in Type A natural resource damage assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Natural Resource Damage Assessment Models for Great Lakes Environments (NRDAM/GLE) and for Coastal and Marine Environments (NRDAM/GLE) and for Coastal and Marine Environments (NRDAM/CME) will become available. These models will also support NOAA's damage assessment regulations under the Oil Pollution Act of 1990. The physical and biological models are three-dimensional. Direct mortality from toxic concentrations and oiling, impacts of habitat loss, and food web losses are included in the model. Estimation of natural resource damages is based both on the lost value of injured resources and on the costs for restoration or replacement of those resources. A coupled geographical information system (GIS) allows gridded representation of complex coastal boundaries, variable bathymetry, shoreline types, and multiple biological habitats. The models contain environmental, geographical, chemical, toxicological, biological, restoration and economic databases with the necessary information to estimate damages. Chemical and toxicological data are included for about 470 chemicals and oils. Biological data are unique to 77 coastal and marine plus 11 Great Lakes provinces, and to habitat type. Restoration and economic valuations are also regionally specific

  7. Diplomatic History of the Great Patriotic War and the New World Order

    OpenAIRE

    Alexander Y. Borisov

    2015-01-01

    From ancient times, war was called "the creator of all things". And winners created the postwar world order. The article reveals the backstage, the diplomatic history of the Great Patriotic War, which make the picture of the main events of the war, that culminated in victory May 1945 in the capital of the defeated Third Reich, complete. The decisive role of the Soviet Union and its armed forces in the defeat of Nazi Germany and its allies was the strong foundation on which to build the strate...

  8. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  10. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    scenario yet exist, it is only a tentative explanation. Lacey et al. 2016. Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia). Biogeosciences 13 Stockhecke et al. 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology

  11. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  12. The History of Research and Development Islands Peter the Great Bay, Sea of Japan

    Directory of Open Access Journals (Sweden)

    Aleksandr B. Kosolapov

    2016-06-01

    Full Text Available The article discusses the history of the discovery, research and development of the islands of Russian pioneers in Peter the Great Bay, Sea of Japan from the middle of the XIX century. The paper used in scientific papers and journalistic materials researchers Islands Peter the Great Bay, unpublished sources: Russian State Historical Archive of the Far East, Primorsky Region State Archives, Archives of Primorsky regional department of the All-Russian public organization "Russian Geographical Society" Society for the Study of the Amur region. The methodological basis of the work was the principle of historicism and objectivity, allowed to consider the issue of research and development of the islands of the Gulf of Peter the Great on a broad documentary basis in the process of development in the specific historical conditions. The history of hydrographic discoveries of natural and geographical studies. It touches upon the issues concerning the construction of Vladivostok fortress. In the periodical press materials recreated pages agricultural and industrial development of the islands. Examples of business entrepreneurs first edge (A.D. Startsev, M.I. Jankowski, O.V. Lindgolm. The Toponymic notes link the island territories with the names of their discoverers, explorers, industrialists. The authors conclude that the historical conditionality of development of the islands is linked mainly with the military interests of Russia on its southeastern edge, using the resources of the sea and the unique natural conditions suitable for the development of agricultural, industrial, recreation and tourism.

  13. Zooplankton, chemical, and other data collected from net, sediment sampler, and other instruments from 01 July 1970 to 01 March 1972 in the Great Lakes (NODC Accession 7200691)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton, chemical, and other data were collected using net, sediment sampler, and other instruments in the Great Lakes. Data were collected from 01 July 1970 to...

  14. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes Basin

    Science.gov (United States)

    Rogers, R. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Preliminary results in Saginaw Bay show that processed LANDSAT data provides a synoptic view of turbidity and circulation patterns that no degree of ground monitoring can provide. Processed imagery was produced to show nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. Analysis of lakes near Madison, Wisconsin show that inland lake water can be categorized by LANDSAT as clear, tannin, algal, and red clay. LANDSAT's capability to inventory watershed land use was throughly demonstrated in the Ohio-Kentucky-Indiana regional planning area. Computer tabulations providing area covered by each of 16 land use categories were rapidly and economically produced for each of the 225 watersheds and nine counties.

  15. Lake Level Changes in the Mono Basin During the Last Deglacial Period

    Science.gov (United States)

    Wang, X.; Ali, G.; Hemming, S. R.; Zimmerman, S. R. H.; Stine, S. W.; Hemming, G.

    2014-12-01

    Mono Basin, located in the southwestern corner of the US Great Basin, has long been known to have experienced large lake level changes, particularly during the last deglaciation. But until recently it was not possible to establish a reliable lake level time series. We discovered many visually clean, white, shiny, dense calcite samples in the basin, associated with tufa deposits from high terraces. Their low thorium, but high uranium contents allow precise and reproducible U/Th age determinations. A highly resolved history of a minimum lake level through the last deglaciation can therefore be inferred based on sample locations and their ages. We found that the lake level reached ~2030 m asl at ~20.4 ka, evidenced by calcite coatings on a tufa mound at the upper Wilson Creek. The lake then rose to ~2075 m by ~19.1 ka, shown by calcite cements on conglomerates from the Hansen Cut terrace. The lake climbed to at least ~2140 m at ~15.9 ka, indicated by beach calcites from the east Sierra slope. Such timing of the highest lake stand, occurring within Heinrich Stadial 1, is reinforced by U/Th dates on calcite coatings from widespread locations in the basin, including the Bodie Hills and Cowtrack Mountains. The lake then dropped rapidly to ~2075 m at ~14.5 ka. It stood near this height over the next ~300 years, evidenced by a few-centimeter thick, laminated calcite rims on the Goat Ranch tufa mounds. It subsequently plunged to ~2007 m at ~13.8 ka, indicated by calcite coatings from cemetery road tufa mounds. The lake level came back to ~2030 m at ~12.9 ka, as seen in upper Wilson Creek tufa mounds. The lake level had a few fluctuations within the Younger Dryas, and even shot up to ~2075 m at ~12.0 ka. It then fell to levels in accord with Holocene climatic conditions. Relative to the present lake level of ~1950 m, Mono Lake broadly stood high during Heinrich Stadial 1 and Younger Dryas, when the climate was extremely cold over the North Atlantic, and the Asian monsoon was

  16. Cladophora in the Great Lakes: impacts on beach water quality and human health.

    Science.gov (United States)

    Verhougstraete, M P; Byappanahalli, M N; Rose, J B; Whitman, R L

    2010-01-01

    Cladophora in the Great Lakes grows rapidly during the warm summer months, detaches, and becomes free-floating mats as a result of environmental conditions, eventually becoming stranded on recreational beaches. Cladophora provides protection and nutrients, which allow enteric bacteria such as Escherichia coli, enterococci, Shigella, Campylobacter, and Salmonella to persist and potentially regrow in the presence of the algae. As a result of wind and wave action, these microorganisms can detach and be released to surrounding waters and can influence water quality. Enteric bacterial pathogens have been detected in Cladophora mats; E. coli and enterococci may populate to become part of the naturalized microbiota in Cladophora; the high densities of these bacteria may affect water quality, resulting in unnecessary beach closures. The continued use of traditional fecal indicators at beaches with Cladophora presence is inadequate at accurately predicting the presence of fecal contamination. This paper offers a substantial review of available literature to improve the knowledge of Cladophora impacts on water quality, recreational water monitoring, fecal indicator bacteria and microorganisms, and public health and policy.

  17. Geochemistry of sediments in the Back Bay and Yellowknife Bay of the Great Slave Lake

    International Nuclear Information System (INIS)

    Mudroch, A.; Joshi, S.R.; Sutherland, D.; Mudroch, P.; Dickson, K.M.

    1989-01-01

    Gold mining activities have generated wastes with high concentrations of arsenic and zinc in the vicinity of Yellowknife, Northwest Territories, Canada. Some of the waste material has been discharged into Yellowknife Bay of Great Slave Lake. Concentrations of arsenic and zinc were determined in sediment cores collected at the depositional areas of Yellowknife Bay. Sedimentation rates were estimated using two different radiometric approaches: the depth profiles of cesium 137 and lead 210. Geochemical analysis of the sediment cores indicated input of similar material into sampling areas over the past 50 yr. Age profiles of the sediment constructed from the radionuclide measurements were used to determine historical trends of arsenic and zinc inputs into Yellowknife Bay. The historical record was in good agreement with implemented remedial actions and the usage patterns of both elements. 16 refs., 6 figs., 3 tabs

  18. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Science.gov (United States)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  19. Beech Range Extension and Vegetation History: Pollen Stratigraphy of Two Wisconsin Lakes.

    Science.gov (United States)

    Webb, Sara L

    1987-12-01

    The pollen stratigraphy of two small lakes in eastern Wisconsin (Radtke Lake, Washington county, and Gass Lake, Manitowoc County) records the Holocene (past 10 000 yr) spread of beech (Fagus grandifolia: Fagaceae). Radiocarbon dates were obtained for the oldest stratigraphic levels at which beech pollen appeared consistently in amounts > 0.5% of terrestrial pollen. A spatially continuous pattern of beech expansion from the north was ruled out, because beech trees grew in Wisconsin by 6000 BP, 2000 yr before adjacent populations were established to the north. Alternative geographic patterns of speed (from the south or east) were spatially discontinuous, requiring seed dispersal distances of perhaps 25-130 km. That beechnuts could be dispersed across such distances suggests (1) the involvement of Blue Jays, Passenger Pigeons, or other vertebrates, and (2) a capacity for reaching climatically controlled range limits, given sufficient time despite such discontinuities in habitat. A lag 1000-2000 yr between the establishment of source populations in Michigan and Indiana and the appearance of beech in Wisconsin suggests that low-probability dispersal events were involved and that dispersal constraints limited the range of beech during this time, although climatic and edaphic explanations for the lag cannot be ruled out. Pollen data from the two sites reveal other features of vegetation history in eastern Wisconsin: an open Picea-Fraxinus woodland prior to 11 000 BP; sequence of Picea, Abies, Betula, and then Pinus forests between 11 000 and 7500 BP; the establishment of a coniferous/deciduous forest ecotone ("tension zone") ° 7000 BP in this region; and the presence of Quercus-dominanted deciduous forests from 7000 BP until 110 BP (time of Euro-American settlement), a period punctuated by a gradual decrease in Ulmus populations (° 4500 and 5700 BP at the two sites) and by an increase in mesophytic tree abundance at the expense of Quercus after 3500 BP. © 1987 by the

  20. The Cultural Heritage of the Great Prespa Region

    Directory of Open Access Journals (Sweden)

    Ema Muslli

    2015-03-01

    Full Text Available The Great Prespa region is situated in the Balkan Peninsula and is divided between Albania, Macedonia and Greece. It includes the Great Prespa Lake and the surrounding beach and meadow, areas designated for agricultural use and the towns of Pusteci (formerly known as Liqenas and Resen. This region is now part of the Trans-Boundary Biosphere Reserve ‘Ohrid-Prespa Watershed. Great and Small Prespa lakes plus Ohrid Lake are included in this newly-approved UNESCO world Heritage Site, but for this paper, we are looking only at the area surrounding the Great Prespa Lake. It is critical for this area to be protected immediately, because of the overuse it has undergone in recent years. While current levels of fauna are dangerously declining due to recent over-harvesting, this area has been known historically for its diverse natural and cultural features. Thus it is important to take drastic measures to reclaim the natural beauty immediately, including those areas currently covered by Prespa National Parks in Albania and Greece and Galichica and Pelisteri National Parks in Macedonia. Due to many wars over the centuries, it exists a mixture of Albanian and Macedonian culture. The historical and architectural remaining, religious structures and artifacts testify the richness and uniqueness of the communities of Pustec and Resen have. The cultural heritage is now a key element designated for the development of the region’s sustainable tourism development. This study was enhanced via the Geographic Info System (GIS digital presentation showing the opportunities for natural and cultural tourism in both countries (Albania and Macedonia.

  1. Review of Reports on Lake Erie - Lake Ontario Waterway, New York. Appendix D. Economics.

    Science.gov (United States)

    1973-10-01

    Venezuela (29 percent). Canada produced 48.3 million tons of iron ore in 1970 ,of which 23.9 million tons were exported to the United States (14.4 million...grain traffic, 1971 D-14 D-6 U.S. - Great Lakes grain exports 1960 - 1971 and projected D-15 D-7 U.S. doal traffic, Lake Erie - Lake Ontario, 1958-1970...Soybeans Wheat Barley Oats Rice Sorghum Grains Flaxseed Oilseeds, n.e.c. Tobacco, leaf Hay and Fodder Field crops, n.e.c. Fresh fruits Co ffee Cocoa beans

  2. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    Science.gov (United States)

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  3. FishVis, A regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change in the Great Lakes Region

    Science.gov (United States)

    Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.

    2016-10-13

    Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4

  4. GC-MS analysis of polybrominated diphenyl ethers in Lake Erie

    Science.gov (United States)

    Vagula, Mary C.; Vartak, Marissa; Tallmadge, Weslene

    2012-06-01

    Lake Erie is one of the five great lakes of North America. It is the shallowest, the warmest, and the most biologically productive of the Great Lakes producing more fish than all of the other four lakes combined. It is also a source of drinking water for 11 million people and a recreational asset. On the flipside, it is also very vulnerable and troubled with environmental challenges because it has the smallest water volume, but the greatest pressures from the human settlement. One of the many issues faced by the Lake is pollution. It receives larger loads of many pollutants than any other Great Lake. Even with the best pollution controls many pesticides and organohalogens continue to enter the lake. Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardants that have been used in a variety of consumer products since the 1970s. They are added to many commercial and household products such as computers, foam mattresses, carpets, etc. Being largely non-polar and chemically stable, these chemicals are extremely lipophilic and resist degradation in the environment, thus giving them a high affinity for their bioaccumulation. Due to these properties PBDEs have become ubiquitous environmental contaminants. These compounds are reported to be endocrine disruptors and could cause oxidative damage. This report presents the sample preparation protocol, the GC-MS analysis of PBDEs in Lake Erie sediment samples.

  5. Lessons from White Lake - Connecting Students to their Community through Environmental Stewardship

    Science.gov (United States)

    Tate, Susan

    2014-05-01

    White Lake and its surrounding community have been negatively affected by shoreline degradation and wildlife habitat loss caused primarily by historical logging practices, and reduced water quality from industrial pollution and storm water runoff. This led to the lake being identified as a Great Lakes Area of Concern by the United States Environmental Protection Agency three decades ago. Local community partners have worked diligently in recent years to reverse habitat loss, and repair damaged ecosystems. The "H2O White Lake" (Healthy Habitats On White Lake) project has involved over seven hundred middle school students in grades six through eight over the course of the last five years. Students begin by researching the environmental history of the watershed and then they monitor six tributaries of the lake for nutrient pollution and habitat degradation. Students use the field experience as a community inventory to identify stewardship needs, for which they then identify solutions that take into account land usage and community behaviors. Class projects have focused on stream bank restoration, storm water management, eradication of invasive species, shoreline clean-up, and community outreach and education. This year, the project culminated in the first ever White Lake Environmental Film Festival, for which students had the opportunity to create their own short documentary. This multiple year place based education project allows students to apply their classroom studies of surface water and groundwater dynamics to an authentic, real-world situation, conduct themselves as scientists, and feel valuable through connections with community partners.

  6. A "Great Roads" Approach to Teaching Modern World History and Latin American Regional Survey Courses: A Veracruz to Mexico City Case Study.

    Science.gov (United States)

    Brown, James Seay, Jr.; Sullivan-Gonzalez, Douglass

    2002-01-01

    Outlines an innovative way of teaching "World History Since 1500" at Samford University (Birmingham, Alabama) called the "great roads" approach, centered upon important roads in a country's history. Presents the "Veracruz to Mexico City corridor" case study used to teach a Latin American modern history course. (CMK)

  7. Genetic Analysis of Oncorhynchus Nerka : Life History and Genetic Analysis of Redfish Lake Oncorhynchus Nerka, 1993-1994 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.

    1994-10-01

    The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerka is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.

  8. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    Science.gov (United States)

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  9. HYDROGEOMORPHIC INFLUENCES ON MACROPHYTES AS HABITAT IN GREAT LAKES WETLANDS

    Science.gov (United States)

    We used rapid survey techniques to map saubmergerd, floating and emergent vegetation in 10 coastal wetlands of Lake Superior. Density and structure of plant beds in "bay," "main channel," and "side channel" areas was evaluated from cover indices and presence/dominance by growth f...

  10. Targets set to reduce Lake Erie algae

    Science.gov (United States)

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  11. Great Lakes water quality initiative technical support document for the procedure to determine bioaccumulation factors. Draft report

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the document is to provide the technical information and rationale in support of the proposed procedures to determine bioaccumulation factors. Bioaccumulation factors, together with the quantity of aquatic organisms eaten, determine the extent to which people and wildlife are exposed to chemicals through the consumption of aquatic organisms. The more bioaccumulative a pollutant is, the more important the consumption of aquatic organisms becomes as a potential source of contaminants to humans and wildlife. Bioaccumulation factors are needed to determine both human health and wildlife tier I water quality criteria and tier II values. Also, they are used to define Bioaccumulative Chemicals of Concern among the Great Lakes Initiative universe of pollutants. Bioaccumulation factors range from less than one to several million

  12. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  13. ACOUSTIC IDENTIFICATION OF NEAR-SHORE SUBSTRATES IN THE GREAT LAKES

    Science.gov (United States)

    Geo-referenced acoustic information is being used more often in research as a viable tool for everything from simple bathymetry to fisheries research and paleo-sediment studies. In the summer of 2002 geo-referenced acoustic soundings (QTC 4?) were recorded for ~20 km of lake bot...

  14. The International Conference on the Great Lakes Region and the implementation of the Ezulwini Consensus: Challenges and prospects

    Directory of Open Access Journals (Sweden)

    Shirambere P. Tunamsifu

    2017-07-01

    Full Text Available This article is evaluative assessing the implementation of the Ezulwini Consensus by the International Conference on the Great Lakes Region (ICGLR. In early April 2012, a mutiny started in the eastern part of the Democratic Republic of the Congo (DRC, resulting in the creation of the rebel group known as the Mouvement du 23 Mars (M23. The spread of M23 constituted a serious threat to peace, security and stability in the entire African Great Lakes region. On the basis of the Ezulwini Consensus, which emphasises that regional organisations in areas of proximity to conflicts should be empowered to take action, the ICGLR resolved to intervene. Through several summits attempting to find a home-grown solution, the ICGLR faced two main challenges in implementing the Ezulwini Consensus. The first was related to the lack of actions and sanctions against member states that violated fundamental principles and the second was related to the lack of neutrality of the chairperson of the ICGLR during the dialogue between the government of the DRC and M23. The intervention of the ICGLR is important, but in such circumstances, it is crucial that member states demonstrate their political will to respect fundamental principles and sanction members that allegedly ignore these principles. In the mediation process, where there is sufficient evidence to indicate that a member state is allegedly providing support to rebel groups that are destabilising another member state, it is important that the ICGLR adopt a policy of requesting such a country to avoid taking the lead in or mediating the conflict. However, when regional organisations in areas of conflict face such challenges, the African Union must take responsibility for comediating or sending African experts to resolve the conflict impartially.

  15. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    reproduction of zooplanktivorous European whitefish, Coregonus lavaretus, which feeds highly selectively on large cladocerans and which is of great economic significance for the whole region. Another possibility could be that the lack of large Cladocera in the Lower Lake is a result of strong fish predation which could be a consequence of lake morphology.

  16. Habitat capacity for cougar recolonization in the Upper Great Lakes region.

    Science.gov (United States)

    O Neil, Shawn T; Rahn, Kasey C; Bump, Joseph K

    2014-01-01

    Recent findings indicate that cougars (Puma concolor) are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL) region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management. Using Geographic Information Systems (GIS), we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2) of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013. Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region.

  17. Growth-climate relationships across topographic gradients in the northern Great Lakes

    Science.gov (United States)

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  18. Habitat capacity for cougar recolonization in the Upper Great Lakes region.

    Directory of Open Access Journals (Sweden)

    Shawn T O Neil

    Full Text Available BACKGROUND: Recent findings indicate that cougars (Puma concolor are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management. METHODOLOGY/PRINCIPAL FINDINGS: Using Geographic Information Systems (GIS, we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2 of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013. CONCLUSIONS/SIGNIFICANCE: Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region.

  19. The Great War as a Crucial Point in the History of Russian Science and Technology.

    Science.gov (United States)

    Saprykin, Dmitry L

    2016-01-01

    The paper is devoted to one of the most important and, at the same time, relatively unexplored phases in the history of Russian science and technology. The Great War coincided with the beginning of a heyday in science, engineering education, and technology in Russia. It was precisely the time in which Russia's era of "Big Science" was emer- ging. Many Russian and Soviet technical projects and scientific schools were rooted in the time of the Great War. The "engineerization" of science and a "physical-technical" way of thinking had already begun before the war. But it was precisely the war which encouraged a large proportion of the Russian academic community to take part in industrial projects. Academics also played a significant role in developing concepts and implementing strategic plans during the Great War. This article also discusses how the organization of science and the academic community was transformed during, and after, the Great War. And it looks at the impact that war had on Russia's participation in the international scientific community.

  20. 21 Years of Investing in a Clear, Healthy Lake Tahoe

    Science.gov (United States)

    Community Information Fact Sheet with information about Lake Tahoe's history, the roles of EPA, state, and local government in protecting the Lake Tahoe Basin, priorities for the next 20 years, as well as actions that you can take to protect Lake Tahoe.

  1. Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada

    Science.gov (United States)

    Hobbs, William O.; Edlund, Mark B.; Umbanhowar, Charles E.; Camill, Philip; Lynch, Jason A.; Geiss, Christoph; Stefanova, Vania

    2017-03-01

    The late-Quaternary paleoenvironmental history of the western Hudson Bay region of Subarctic Canada is poorly constrained. Here, we present a regional overview of the post-glacial history of eight lakes which span the forest-tundra biome in northern Manitoba. We show that during the penultimate drainage phase of Lake Agassiz the lake water had an estimated pH of ∼6.0, with abundant quillwort (Isöetes spp.) along the lakeshore and littoral zone and some floating green algae (Botryococcus spp. and Pediastrum sp.). Based on multiple sediment proxies, modern lake ontogeny in the region commenced at ∼7500 cal yrs BP. Pioneering diatom communities were shaped by the turbid, higher alkalinity lake waters which were influenced by base cation weathering of the surrounding till following Lake Agassiz drainage. By ∼7000 cal yrs BP, soil development and Picea spp. establish and the lakes began a slow trajectory of acidification over the remaining Holocene epoch. The natural acidification of the lakes in this region is slow, on the order of several millennia for one pH unit. Each of the study lakes exhibit relatively stable aquatic communities during the Holocene Thermal Maximum, suggesting this period is a poor analogue for modern climatic changes. During the Neoglacial, the beginning of the post-Little Ice Age period represents the most significant climatic event to impact the lakes of N. Manitoba. In the context of regional lake histories, the rate of diatom floristic change in the last 200-300 years is unprecedented, with the exception of post-glacial lake ontogeny in some of the lakes. For nearly the entire history of the lakes in this region, there is a strong linkage between landscape development and the aquatic ecosystems; however this relationship appears to become decoupled or less strong in the post-LIA period. Significant 20th century changes in the aquatic ecosystem cannot be explained wholly by changes in the terrestrial ecosystem, suggesting that future

  2. Mercury concentrations in fish from Canadian Great Lakes areas of concern: an analysis of data from the Canadian Department of Environment database

    International Nuclear Information System (INIS)

    Weis, I.M.

    2004-01-01

    The tissue mercury concentrations in six species of fish collected at the 17 Areas of Concern identified by the International Joint Commission on the Canadian side of the Great Lakes were analyzed using an Environment Canada database. A linear increase in mercury concentration with fish length was found, but slopes differed among locations. The temporal pattern over the period 1971-1997 differed across species in fish collected in Lake St. Clair; in at least two species there was evidence of increased mercury concentration during the 1990s that had been suggested in an earlier analysis. Areas of Concern differed significantly in observed tissue concentrations. Differences observed did not consistently parallel expectations associated with the historical presence of chlor-alkali plants in the vicinities of some locations. An attempt to correlate the fish tissue mercury concentration with the frequency of occurrence of infantile cerebral palsy at Areas of Concern was unsuccessful

  3. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    Science.gov (United States)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  4. Quantification of a male sea lamprey pheromone in tributaries of Laurentian Great Lakes by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Xi, X.; Johnson, N.S.; Brant, C.O.; Yun, S.-S.; Chambers, K.L.; Jones, A.D.; Li, W.

    2011-01-01

    We developed an assay for measuring 7α,12α,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), a mating pheromone released by male sea lampreys (Petromyzon marinus), at low picomolar concentrations in natural waters to assess the presence of invasive populations. 3kPZS was extracted from streamwater at a rate of recovery up to 90% using a single cation-exchange and reversed-phase mixed-mode cartridge, along with [2H5]3kPZS as an internal standard, and quantified using ultrahigh performance liquid chromatography-tandem mass spectrometry. The limit of detection was below 0.1 ng L–1 (210 fM), which was the lowest concentration tested. Intra- and interday coefficients of variation were between 0.3–11.6% and 4.8–9.8%, respectively, at 1 ng 3kPZS L–1 and 5 ng 3kPZS L–1. This assay was validated by repeat measurements of water samples from a stream spiked with synthesized 3kPZS to reach 4.74 ng L–1 or 0.24 ng L–1. We further verified the utility of this assay to detect spawning populations of lampreys; in the seven tributaries to the Laurentian Great Lakes sampled, 3kPZS concentrations were found to range between 0.15 and 2.85 ng L–1 during the spawning season in known sea lamprey infested segments and were not detectable in uninfested segments. The 3kPZS assay may be useful for the integrated management of sea lamprey, an invasive species in the Great Lakes where pheromone-based control and assessment techniques are desired.

  5. Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

    2011-07-19

    This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

  6. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada

    International Nuclear Information System (INIS)

    Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J.

    2007-01-01

    Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 μg g -1 . To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions. - Concentrations of alkylphenolic compounds in water, sediments and benthic invertebrates in a large coastal wetland and implications for trophic transfer

  7. ICDP project DeepCHALLA: reconstructing East African climate change and environmental history over the past 250,000 years

    Science.gov (United States)

    Verschuren, Dirk; Van Daele, Maarten; Wolff, Christian; Waldmann, Nicolas; Meyer, Inka; Ombori, Titus; Peterse, Francien; O'Grady, Ryan; Schnurrenberger, Doug; Olago, Daniel

    2017-04-01

    Sediments on the bottom of Lake Challa, a 92-meter deep crater lake on the border of Kenya and Tanzania near Mt. Kilimanjaro, contain a uniquely long and continuous record of past climate and environmental change. The near-equatorial location and exceptional quality of this natural archive provide great opportunities to study tropical climate variability at both short (inter-annual to decadal) and long (glacial-interglacial) time scales; and the influence of this climate variability on the region's freshwater resources, the functioning of terrestrial ecosystems, and the history of the East African landscape in which modern humans (our species, Homo sapiens) evolved and have lived ever since. Supported in part by the International Continental Scientific Drilling Programme (ICDP), the DeepCHALLA project has now recovered the sediment record of Lake Challa down to 214.8 meter below the lake floor, with almost certain 100% cover of the uppermost 121.3 meter (ca.150,000 year BP to present) and estimated 85% cover over the lower part of the sequence, down to the lowermost distinct reflector in the available seismic stratigraphy. This reflector represents a 2 meter thick layer of volcanic sand and silt deposited ca.250,000 years ago, and overlies still older silty lacustrine clays deposited during early lake development. Down-hole logging produced continuous profiles of in-situ sediment composition that confer an absolute depth scale to both the recovered cores and their three-dimensional representation in seismic stratigraphy. As readily observed through the transparent core liners, Lake Challa sediments are finely laminated throughout most of the recovered sequence. Combined with the great time span, the exquisite temporal resolution of these sediments promises to greatly increase our understanding of tropical climate and ecosystem dynamics, and create a long-awaited equatorial counterpart to the high-latitude climate records extracted from the ice sheets of Greenland

  8. Pinatubo Lake Chemistry and Degassing 1991-2010

    Science.gov (United States)

    Schwandner, F. M.; Newhall, C. G.; Christenson, B. W.; Apfelbeck, C. A.; Arpa, M. C. B.; Vaquilar, R.; Bariso, E.

    2016-12-01

    We review the history of degassing, bathymetry and water chemistry of the crater lake of Mt. Pinatubo (Philippines) using data obtained during 1991-2001, and 2010. In late 1992, the initial small lake had a significant acid-sulfate component from a volcanic degassing through a hydrothermal system and the lake, and anhydrite dissolution. Subsequently, this component was "drowned" by rainfall (2-4 m/y), meteoric groundwater draining from the crater walls into the lake, and a few neutral chloride crater wall springs. Conductivity-Temperature-Depth (CTD) measurements in August 2000 found a strong inverted thermal gradient below 20m depth, reaching over 70°C at 50-60 m depth. By January 2001 the lake had homogenized and was much cooler (27°C at all depths), and it was again well-mixed and still cool when re-surveyed in June 2001 and November 2010. By 2010, the lake was well mixed, at neutral pH, with no significant vertical or horizontal structure. Bubbling of a predominantly carbon dioxide (CO2) gas phase persists throughout the lake's history, some from 1991-92 magma and some from degassing of the long-standing (pre-1991) hydrothermal system fed from a deeper magmatic or mantle source. Crater wall fumaroles emit boiling-point hydrothermal gases dominated by water, air, and CO2.

  9. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  10. Mapping Lake Michigan Fish Catch Data

    OpenAIRE

    Wodd, Jacob; Doucette, Jarrod; Höök, Tomas O.

    2014-01-01

    The only Great Lake completely contained in the U.S., Lake Michigan offers an abundance of recreational fishing. This project takes 20 years’ worth of salmonid fish catch data, and uses GIS to organize and visually represent the data in a way that is meaningful and helpful to local fisherman and researchers. Species represented included Brown Trout, Lake Trout, Rainbow Trout, Chinook Salmon, and Coho Salmon. The species are organized by both decadal and yearly spans, as well as catch per t...

  11. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  12. Lake ecosystem response to climate change 8200 years ago. A multi-proxy study at Lake Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Hede, Mikkel Ulfeldt; Noe-Nygaard, Nanna

    2009-01-01

    of climate and the effects of human activities. These problems also complicate the prediction of possible future climate influence on lake ecology. A way of circumventing these problems is the use of lake sediment records which contain a wealth of information about past lake history over long time scales...... productivity as reflected by high algal pigment accumulation rates in the period c. 8400–7950 cal yr BP. After c. 7950 cal yr BP algal productivity declined somewhat but the lake did not return to its pre-8400 cal yr BP conditions remaining a more productive and nutrient rich lake than before the climate...... was of more importance for lake ecosystem process than the change in air temperature....

  13. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  14. Sound velocity profiles in the St. Clair and St. Mary's Rivers in the Great Lakes area by the National Ocean Service's Navigation Response Team 4, May 2006 (NODC Accession 0006777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sound velocity profile data were collected using sound velocimeter in the St. Clair and St. Mary rivers in the Great Lakes area by the NAVIGATION RESPONSE TEAM 4...

  15. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Science.gov (United States)

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  16. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  17. Anthropogenic mercury deposition to arctic lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.H. [Westchester University, Westchester, PA (United States). Dept. of Health

    1998-01-01

    The history of atmospheric mercury inputs to remote arctic regions can be measured in lake sediment cores using lead-210 chronology. In the investigation, total mercury deposition is measured in sediments from Imitavik and Annak Lakes on the Belcher Islands in southeastern Hudson Bay, an area in the southern Canadian Arctic with no history of local industrial or agricultural sources of contamination. Both lakes received background and atmospheric inputs of mercury while Annak also received mercury from raw domestic sewage from the Hamlet of Sanikiluaq, a growing Inuit community of about 550 established in the late 1960s. Results from Imitavik show that anthropogenic mercury inputs, apparently transported through the atmosphere, began to appear in the mid-eighteenth century, and continued to the 1990s. Annak had a similar mercury history until the late 1960s when disposal of domestic sewage led to increased sediment and contaminant accumulation. The high input of mercury to Annak confirms that Sanikiluaq residents are exposed to mercury through native food sources. 39 refs., 7 figs., 3 tabs.

  18. A GIS-based tool for bioaccumulation risk analysis and its application to study polychlorinated biphenyls in the Great Lakes

    Directory of Open Access Journals (Sweden)

    Fernanda P. Maciel

    2018-01-01

    Full Text Available This paper presents a GIS-based tool named Arc-BEST (Bioaccumulation Evaluation Screening Tool to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System software, released in 2012. It predicts concentration of concern contaminants in predators’ tissues from concentrations in organisms at the bottom of the food chain, and corresponding bioaccumulation factors. Additionally, it estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed, analysis and visualization of results, and comparison and cross-referencing with other geographic datasets. Furthermore, the model was improved to consider up to four trophic levels. The code is written in Python and is open-source. In this work Arc-BEST is used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study in the Laurentian Great Lakes, where long-term effects of polychlorinated biphenyls (PCBs is performed, based on measured concentrations in zebra mussels (Dreissena polymorpha, and local bioaccumulation factors from previous studies. Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for various

  19. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    Science.gov (United States)

    Hougardy, Devin D.

    The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2

  20. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  1. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  2. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  3. A Tribal Story Written in Silica: Using Phytoliths to Research the Effects of Mining on Past Wild Rice (Zizania palustris) Abundance in Sandy Lake, Minnesota

    Science.gov (United States)

    Clarke, I. R.; Jones, M. A.; Yost, C. L.; Drake, C.; Ladwig, J. L.; Myrbo, A.; Howes, T.

    2014-12-01

    Wild rice (Zizania palustris, manoomin) is an emergent aquatic plant that grows annually in the northern Great Lakes region of North America. This region is also rich in iron ore deposits and correspondingly has an extensive history of mining activities. Wild rice no longer grows in some areas where it was previously abundant. Sandy Lake, located in St. Louis County on federally protected lands that are ceded territory of the Fond du Lac Band of Lake Superior Chippewa in Minnesota and downstream of the nearby U.S. Steel Minntac mine, was selected as a test site. This lake has a history of ricing activities by the Ojibwe (Chippewa) People, for whom manoomin has cultural importance. Lake cores were taken on June 17, 2014 by LacCore and FDLRM staff and samples were obtained. This project used phytolith analysis to answer the question of past wild rice presence and abundance in Sandy Lake. Phytoliths are microscopic opal silica deposits produced in some plants. Zizania palustris produces phytolith morphotypes that are unequivocally diagnostic of this species in this region. Microscopic slides were prepared and analyzed for wild rice phytoliths. Concentration values ranged from 25 to 4379 phytoliths per cm3/year, and wild rice accumulation figures ranged from 7 to 789 phytoliths/cm2/year, the maximum values of which occurred in the 1920s and generally declined to the current lowest levels observed. Mining has likely impacted wild rice populations by causing increased sulfate levels and possibly contributing to higher lake levels.

  4. Hidden biodiversity in an ancient lake: phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites.

    Science.gov (United States)

    Vanhove, Maarten P M; Pariselle, Antoine; Van Steenberge, Maarten; Raeymaekers, Joost A M; Hablützel, Pascal I; Gillardin, Céline; Hellemans, Bart; Breman, Floris C; Koblmüller, Stephan; Sturmbauer, Christian; Snoeks, Jos; Volckaert, Filip A M; Huyse, Tine

    2015-09-03

    The stunning diversity of cichlid fishes has greatly enhanced our understanding of speciation and radiation. Little is known about the evolution of cichlid parasites. Parasites are abundant components of biodiversity, whose diversity typically exceeds that of their hosts. In the first comprehensive phylogenetic parasitological analysis of a vertebrate radiation, we study monogenean parasites infecting tropheine cichlids from Lake Tanganyika. Monogeneans are flatworms usually infecting the body surface and gills of fishes. In contrast to many other parasites, they depend only on a single host species to complete their lifecycle. Our spatially comprehensive combined nuclear-mitochondrial DNA dataset of the parasites covering almost all tropheine host species (N = 18), reveals species-rich parasite assemblages and shows consistent host-specificity. Statistical comparisons of host and parasite phylogenies based on distance and topology-based tests demonstrate significant congruence and suggest that host-switching is rare. Molecular rate evaluation indicates that species of Cichlidogyrus probably diverged synchronically with the initial radiation of the tropheines. They further diversified through within-host speciation into an overlooked species radiation. The unique life history and specialisation of certain parasite groups has profound evolutionary consequences. Hence, evolutionary parasitology adds a new dimension to the study of biodiversity hotspots like Lake Tanganyika.

  5. Species succession and sustainability of the Great Lakes fish community

    Science.gov (United States)

    Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.

  6. Neutron activation analysis of sixteenth- and seventeenth-century European blue glass trade beads from the eastern Great Lakes area of North America

    International Nuclear Information System (INIS)

    Hancock, R.G.V.; Chafe, A.; Kenyon, I.

    1994-01-01

    Sixteenth- and seventeenth-century European blue glass trade beads from aboriginal sites in the eastern Great Lakes area of North America have been analysed non-destructively using low neutron dose instrumental neutron activation analysis, so that the beads could be returned to their keepers. Dark blue (cobalt-coloured) beads are readily separable from turquoise (copper-coloured) beads. Differences in the chemistries of the turquoise blue