WorldWideScience

Sample records for great basin elevational

  1. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    Science.gov (United States)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  2. Geographic variability in elevation and topographic constraints on the distribution of native and nonnative trout in the Great Basin

    Science.gov (United States)

    Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David

    2014-01-01

    Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing

  3. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  4. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  5. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  6. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  7. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  8. Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah

    OpenAIRE

    Fonnesbeck, Brook B.

    2015-01-01

    Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models. Digital imagery from Landsat 5, a digital elevation model, and a digital geology map were used as environmental covariates in a 67,000-ha study area of the Great Basin west of Fillmore, UT. A “pre-map” was created for selecting sampling locatio...

  9. Shoreline Elevation Sabine Basin, Geographic NAD83, OSRADP/LOSCO (2008) [Shoreline_Elevation_Sabine_Basin_OSRADP_2008

    Data.gov (United States)

    Louisiana Geographic Information Center — These data consist of vector line segments tagged with elevation derived from the LOSCO/FEMA LIDAR five meter DEM data set for seven watershed basins in the...

  10. Shoreline Elevation Barataria Basin, Geographic NAD83, OSRADP/LOSCO (2008) [Shoreline_Elevation_Barataria_Basin_OSRADP_2008

    Data.gov (United States)

    Louisiana Geographic Information Center — These data consist of vector line segments tagged with elevation derived from the LOSCO/FEMA LIDAR five meter DEM data set for seven watershed basins in the...

  11. Shoreline Elevation Calcasieu Basin, Geographic NAD83, OSRADP/LOSCO (2008) [Shoreline_Elevation_Calcasieu_Basin_OSRADP_2008

    Data.gov (United States)

    Louisiana Geographic Information Center — These data consist of vector line segments tagged with elevation derived from the LOSCO/FEMA LIDAR five meter DEM data set for seven watershed basins in the...

  12. Shoreline Elevation Atchafalaya Basin, Geographic NAD83, OSRADP/LOSCO (2008) [Shoreline_Elevation_Atchafalaya_Basin_OSRADP_2008

    Data.gov (United States)

    Louisiana Geographic Information Center — These data consist of vector line segments tagged with elevation derived from the LOSCO/FEMA LIDAR five meter DEM data set for seven watershed basins in the...

  13. Shoreline Elevation Vermilion Basin, Geographic NAD83, OSRADP/LOSCO (2008) [Shoreline_Elevation_Vermilion_Basin_OSRADP_2008

    Data.gov (United States)

    Louisiana Geographic Information Center — These data consist of vector line segments tagged with elevation derived from the LOSCO/FEMA LIDAR five meter DEM data set for seven watershed basins in the...

  14. Gardening guide for high-desert urban landscapes of Great Basin regions in Nevada and Utah

    Science.gov (United States)

    Heidi Kratsch; Rick Heflebower

    2013-01-01

    Some Great Basin urban areas in Utah and Nevada exhibit climatic conditions that make it difficult for all but the toughest landscape plants to thrive without providing supplemental water. These areas are found at elevations from 4,000 feet to 6,000 feet in USDA cold-hardiness zones 6 and 7. Soils are often poor and gravelly, containing less than 1 percent organic...

  15. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  16. Great Basin Factsheet Series 2016 - Information and tools to restore and conserve Great Basin ecosystems

    Science.gov (United States)

    Jeanne C. Chambers

    2016-01-01

    Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...

  17. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  18. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  19. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  20. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    Science.gov (United States)

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal

  1. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  2. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  3. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  4. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  5. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  6. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  7. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  8. Late holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great Basin of western North America

    International Nuclear Information System (INIS)

    Wigand, P.E.; Hemphill, M.L.; Patra, S.M.

    1994-01-01

    Integration of pollen records, and fossil woodrat midden data recovered from multiple strata of fossil woodrat (Neotoma spp.) dens (middens) in both northern and southern Nevada reveal a detailed paleoclimatic proxy record for the Great Basin during the last 45,000 years in growing detail. Clear, late Holocene climate-linked elevational depressions of plant species' distributions have occurred throughout the Great Basin of up to 200 m below today's and by as much as 1000 m below what they were during the middle Holocene. Horizontal plant range extentions during the Holocene reflecting the final northern most adjustments to Holocene climates range up to several hundred kilometers in the Great Basin. Well documented lags evidenced in the late Holocene response of vegetation communities to increased precipitation indicate reduced effectiveness in the ability of plant communities to assimilate excess precipitation. This resulted in significant runoff that was available for recharge. These responses, although indicating both rapid and dramatic fluctuations of climate for the Holocene, fall far short of the scale of such changes during the late Pleistocene. Extension of these results to Pleistocene woodrat den and pollen data evidence spans lasting several hundred to a thousand or more years during which significantly greater amounts of precipitation would have been available for runnoff or recharge

  9. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Science.gov (United States)

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  10. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    Science.gov (United States)

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  11. Beginnings of range management: an anthology of the Sampson-Ellison photo plots (1913 to 2003) and a short history of the Great Basin Experiment Station

    Science.gov (United States)

    David A. Prevedel; E. Durant McArthur; Curtis M. Johnson

    2005-01-01

    High-elevation watersheds on the Wasatch Plateau in central Utah were severely overgrazed in the late 1800s, resulting in catastrophic flooding and mudflows through adjacent communities. Affected citizens petitioned the Federal government to establish a Forest Reserve (1902), and the Manti National Forest was established by the Transfer Act of 1905. The Great Basin...

  12. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  13. Value of the principles of ''isolation of basins and their boundaries'' and ''isolation of basins and elevations'' in prospecting for oil and gas in the oil and gas basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Chzhan, V.; Li, Yu.; Se, M.

    1982-01-01

    A feature of the Chinese oil and gas basins is their fracturing into a large number (to several dozen in one oil and gas basin) isolated basins which are controlled by fault disorders. In these basins in which thick masses of Mesozoic and mainly Cenozoic sedimentary rocks are developed, the main volumes of source rocks are concentrated. Migration of hydrocarbons usually occurs to short distances not exceeding tens of kilometers. From the experience of prospecting and exploration back in the 1950's it was established that thick masses in the central zones of the basins are favorable for processes of hydrocarbon generation, while accumulation occurs in the elevated peripheral parts of the basins and in the regions of the central elevations. The zones of articulation of the central elevations and the edges of the basins are very promising for prospecting for local structures. Examples of large fields which are subordinate to these laws are the largest oil fields in China, Lyakhoe, Dagan and Shenli which are located along the edges of the Bokhayvan basin in the North Chinese oil and gas basin and the Datsin field which is confined to the central elevation of the Sunlyao basin.

  14. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  15. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability

  16. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  17. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  18. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  19. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, Nils; Haig, Susan M.; Oring, Lewis W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  20. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  1. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  2. Use of the GREAT-ER model to estimate mass fluxes of chemicals, carried into the Western Scheldt estuary from the Rupel basin

    OpenAIRE

    Schowanek, D.

    2002-01-01

    The poster illustrates the application of the GREAT-ER model to estimate the mass flux of chemicals carried from a river basin into an estuary. GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) is a newly developed model (1999) for management and risk assessment of chemicals in river basins (see www.great-er.org). Recently the Rupel basin has been made available for use within GREAT-ER. This now allows to make a reliable estimation of the contribution of pollu...

  3. Birds of a Great Basin Sagebrush Habitat in East-Central Nevada

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Breeding bird populations ranged from 3.35 to 3.48 individuals/ha over a 3-year study conducted from 1981 to 1983. Brewer's sparrows, sage sparrows, sage thrashers, and black-throated sparrows were numerically dominant. Horned larks and western meadowlarks were less common. Results are compared with bird populations in Great Basin sagebrush habitats elsewhere in the United States.

  4. A landscape approach for ecologically based management of Great Basin shrublands

    Science.gov (United States)

    Michael J. Wisdom; Jeanne C. Chambers

    2009-01-01

    Native shrublands dominate the Great Basin of western of North America, and most of these communities are at moderate or high risk of loss from non-native grass invasion and woodland expansion. Landscape-scale management based on differences in ecological resistance and resilience of shrublands can reduce these risks. We demonstrate this approach with an example that...

  5. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  6. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    Science.gov (United States)

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    might consider using native-only seed mixtures, because we found that the non-native perennials typically used in Great Basin restoration efforts are selected for their competitive nature and may reduce establishment of less competitive native species. Although we attempted to include information on livestock grazing history after seedings, we were unable to extract sufficient data from files to address this topic that may play an additional role in understanding native plant abundance post-fire seeding. Evaluation of drill and aerial seeding effects on fuel characteristics focused on two metrics that are standard inputs for fire behavior models, fuel load and fuel continuity. Fuel loads were evaluated separately for total fuel load biomass, and the individual components that sum to total biomass, namely herbaceous, shrub, shrub:herbaceous ratio, litter, 10-hour, and 100-hour fuel biomasses. Fuel continuity was evaluated using the following cover categories, total, annual grass, annual forb, perennial forb perennial grass, shrub, litter, vegetative interspace, and perennial interspace. Drill seeding did not affect fuel loads, except to reduce 10-hour fuels, probably due to mechanical destruction of dead and down fuels by the drill seeding equipment. Drill seeding did affect fuel continuity, specifically decreasing total plant cover by increasing perennial grass cover which suppressed annual grass and litter production resulting in a net decrease in continuity, but only at the elevations above approximately 1500m. Aerial seeding had no effect on any fuel load or fuel continuity category. For the Greater Sage-Grouse habitat study, we developed multi-scale empirical models of sage-grouse occupancy in 211 randomly located plots within a 40 million ha portion of the species’ range. We then used these models to predict sage-grouse habitat quality at 101 ES&R seeding projects. We compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy

  7. Great Basin land managers provide detailed feedback about usefulness of two climate information web applications

    Directory of Open Access Journals (Sweden)

    Chad Zanocco

    Full Text Available Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a managers are searching for weather and climate information they can incorporate into their current management strategies and plans; b they are willing to be educated on how to find and understand climate related web applications; c both field and administrative-type managers want data for timescales ranging from seasonal to decadal; d managers want multiple levels of climate information, from simple summaries, to detailed descriptions accessible through the application; and e managers are interested in applications that evaluate uncertainty and provide projected climate impacts. Keywords: Great Basin, Sagebrush, Land management, Climate change, Web application, Co-production

  8. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  9. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  10. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  11. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  12. Diet and environment of a mid-Pliocene fauna in the Zanda Basin (western Himalaya): Paleo-elevation implications

    Science.gov (United States)

    Wang, Y.; Xu, Y.; Khawaja, S. N.; Wang, X.; Passey, B. H.; Zhang, C.; Li, Q.; Tseng, Z. J.; Takeuchi, G.; Deng, T.; Xie, G.

    2011-12-01

    A mid-Pliocene fauna (3.1-4.0 Ma) was recently discovered in the Zanda Basin in western Himalaya, at an elevation of about 4200 m above sea level. These fossil materials provide a unique window for examining the linkage among tectonic, climatic and biotic changes. Here we report the initial results from isotopic analyses of this fauna and of modern herbivores in the Zanda Basin. The δ13C values of enamel samples from modern wild Tibetan ass, horse, cow and goat from the Zanda Basin are -9.1±2.1%, which indicate a diet comprising predominantly of C3 plants and are consistent with the current dominance of C3 vegetation in the area. The enamel-δ13C values of the fossil horse, rhino, deer, and bovid are -9.6±0.8%, indicating that these ancient mammals, like modern herbivores in the area, fed primarily on C3 vegetation and lived in an environment dominated by C3 plants. The enamel-δ18O values of mid-Pliocene obligate drinkers (i.e., horse and rhino) are lower than those of their modern counterpart, most likely indicating a shift in climate to much drier conditions after ~3-4 Ma. Preliminary paleo-temperature estimates derived from a fossil-based temperature proxy as well as the "clumped isotope" thermometer for the mid-Pliocene Zanda Basin, although somewhat equivocal, are close to the present-day mean annual temperature in the area, suggesting that the paleo-elevation of the Zanda Basin in the mid-Pliocene was similar to its present-day elevation.

  13. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  14. Genecology and seed zones for tapertip onion in the US Great Basin

    Science.gov (United States)

    R. C. Johnson; Barbara C. Hellier; Ken W. Vance-Borland

    2013-01-01

    The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were...

  15. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Science.gov (United States)

    Chris Maser; Jack Ward. Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  16. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  17. 75 FR 26786 - Notice of Public Meeting: Sierra Front-Northwestern Great Basin Resource Advisory Council, NV

    Science.gov (United States)

    2010-05-12

    ... 261A; 10-08807; MO 4500012081; TAS: 14X1109] Notice of Public Meeting: Sierra Front-Northwestern Great..., Bureau of Land Management (BLM) Sierra Front-Northwestern Great Basin Resource Advisory Council (RAC... discussion will include, but are not limited to: District Manager's reports on current program of work, Draft...

  18. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  19. The Role of Credit in Native Adaptation to the Great Basin Ranching Economy.

    Science.gov (United States)

    Knack, Martha C.

    1987-01-01

    Examines Nevada rancher's account books to explain details of relationship between Great Basin Indian laborers and White employers during the late 19th century. Describes Indians' work, pay rates, purchases, seasonal food availability, and credit arrangements. Examines Indians' social, economic lives and their incorporation into debt/wage system.…

  20. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  1. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  2. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1979-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1% of the aquifer material would have been dissolved since the mid-Tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean deltaD of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (author)

  3. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  4. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  5. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  6. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  7. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  8. Flow velocities estimated from chlorine-36 in the South-West Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Herczeg, A.L.; Love, A.J.; Sampson, L.; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The Great Artesian Basin (GAB) is the largest groundwater basin in the world and is the lifeline for water resources in a large proportion of the arid interior of the Australian continent. Despite its obvious importance, there is a great deal of uncertainty in the estimates of horizontal groundwater flow velocities and recharge rates. We report the first reliable estimates of these sustainability indicators in the south west segment of the GAB. Groundwater was sampled from 23 wells along two transects parallel to the W-E hydraulic gradient for 36 Cl, 14 C, stable isotopes (δ 13 C, δ 18 O, δ 2 H) and major ion chemistry. The groundwater collected was from the undifferentiated Jurassic and Cretaceous (J and K) aquifer. These new data potentially contribute to the resolution of the interpretation of 36 Cl derived ages in a very large slow moving groundwater system and to the overall conceptual understanding of flow systems of the GAB

  9. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  10. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  11. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    International Nuclear Information System (INIS)

    Aldekoa, Joana; Medici, Chiara; Osorio, Victoria; Pérez, Sandra; Marcé, Rafael; Barceló, Damià; Francés, Félix

    2013-01-01

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results

  12. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Aldekoa, Joana, E-mail: joaalma2@cam.upv.es [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Medici, Chiara [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Osorio, Victoria; Pérez, Sandra [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Marcé, Rafael [Catalan Institute for Water Research, Emili Grahit 101, 17003 Girona (Spain); Barceló, Damià [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Francés, Félix [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain)

    2013-12-15

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.

  13. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1978-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1 per cent of the aquifer materia would have been dissolved since the mid-tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean of delta D of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (orig.) [de

  14. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  15. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  16. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  17. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  18. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  19. GEOMORPHIC AND HYDROGEOLOGICAL CONTROLS ON THE DISTRIBUTION OF WET MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...

  20. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    Science.gov (United States)

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Reconsidering the process for bow-stave removal from juniper trees in the Great Basin

    Science.gov (United States)

    Constance I. Millar; Kevin T. Smith

    2017-01-01

    We question the growth arrestment hypothesis for bow stave removal used by indigenous people in the western Great Basin. Using modern understanding of tree growth and wound response, we suggest that growth would not be arrested by one or two transverse notches along a juniper stem. Rather these would trigger compartmentalization, which limits cambial death to within 10...

  2. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Science.gov (United States)

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  3. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  4. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  5. New records of marginal locations for American pika (Ochotona princeps) in the Western Great Basin

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany

    2013-01-01

    We describe 46 new site records documenting occupancy by American pika (Ochotona princeps) at 21 locations from 8 mountain regions in the western Great Basin, California, and Nevada. These locations comprise a subset of sites selected from regional surveys to represent marginal, isolated, or otherwise atypical pika locations, and to provide...

  6. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  7. MODELING ECONOMIC AND ECOLOGICAL BENEFITS OF POST-FIRE REVEGETATION IN THE GREAT BASIN

    OpenAIRE

    Niell, Rebecca; Englin, Jeffrey E.; Nalle, Darek

    2004-01-01

    This study employs a Markov chain model of vegetation dynamics to examine the economic and ecological benefits of post-fire revegetation in the Great Basin sagebrush steppe. The analysis is important because synergies between wildland fire and invasive weeds in this ecosystem are likely to result in the loss of native biodiversity, less predictable forage availability for livestock and wildlife, reduced watershed stability and water quality, and increased costs and risk associated with firefi...

  8. Assessing potential impacts of climate change and variability on the Great Lakes-St. Lawrence Basin: A binational approach

    International Nuclear Information System (INIS)

    Quinn, F.H.; Mortsch, L.D.

    1997-01-01

    The potential impacts of climate change and variability on the Great Lakes environment are serious and complex. The Great Lakes-St. Lawrence Basin is home to 42.5 million US and Canadian citizens and is the industrial and commercial heartland of both nations. The region is rich in human and natural resources, with diverse economic activities and substantial infrastructure which would be affected by major shifts in climate. For example, water level changes could affect wetland distribution and functioning; reductions in streamflow would alter assimilative capacities while warmer water temperatures would influence spring and fall turnover and incidence of anoxia. A binational program has been initiated to conduct interdisciplinary, integrated impact assessments for the Great Lakes-St. Lawrence River Basin. The goal of this program is to undertake interdisciplinary, integrated studies to improve the understanding of the complex interactions between climate, the environment, and socioeconomic systems in order to develop informed regional adaptation responses

  9. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  10. Priority research and management issues for the imperiled Great Basin of the western United States

    Science.gov (United States)

    Jeanne C. Chambers; Michael J. Wisdom

    2009-01-01

    Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...

  11. Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species

    Science.gov (United States)

    Covy D. Jones; Mikel R. Stevens; Von D. Jolley; Bryan G. Hopkins; Scott L. Jensen; Dave Turner; Jason M. Stettler

    2016-01-01

    Seeds of most Great Basin lupine (Lupinus spp. [Fabaceae]) species are physically dormant and thus, difficult to establish in uniform stands in seed production fields. We designed this study to examine 5 seed scarification techniques, each with 11 levels of application (including a non-scarified control), to reduce the physical seed dormancy of longspur lupine...

  12. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  13. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  14. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  15. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  16. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  17. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  18. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  19. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  20. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  1. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  2. 76 FR 17347 - Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control...

    Science.gov (United States)

    2011-03-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control District CFR Correction In Title 40 of the Code of Federal Regulations, Part 52 (Sec. Sec. 52.01 to 52.1018), revised as of July 1, 2010, on page 252, in Sec. 52.220, paragraph (c)(345)(i)(D) is added to...

  3. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  4. Variation in ant populations with elevation, tree cover, and fire in a pinyon-juniper-dominated watershed

    Science.gov (United States)

    Eugenie M. MontBlanc; Jeanne C. Chambers; Peter E. Brussard

    2007-01-01

    Climate change and fire suppression have facilitated expansion of pinyon-juniper woodlands into sagebrush- steppe ecosystems of the Great Basin, USA, resulting in a loss of biological diversity. To assess the effects of using prescribed fire in restoration efforts, ant abundance, species richness, and composition were examined pre- and post-burn along the elevation and...

  5. AN INTEGRATED, SCIENCE-BASED APPROACH TO MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE GREAT BASIN OF CENTRAL NEVADA

    Science.gov (United States)

    Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...

  6. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.

  7. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  8. Continental extension, magmatism and elevation; formal relations and rules of thumb

    Science.gov (United States)

    Lachenbruch, A.H.; Morgan, P.

    1990-01-01

    To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a

  9. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  10. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  11. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  12. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  13. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  14. Geochemistry and travertine dating provide new insights into the hydrogeology of the Great Artesian Basin, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Rousseau-Gueutin, P.; Priestley, S.; Keppel, M.; Shand, P.; Karlstrom, K.; Crossey, L.; Wholing, D.; Fulton, S.

    2013-01-01

    While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flow paths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neotectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs. (authors)

  15. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    Science.gov (United States)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the

  16. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  17. Insights from a synthesis of old and new climate-proxy data from the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka

    Science.gov (United States)

    Benson, Larry; Smoot, J.P.; Lund, S.P.; Mensing, S.A.; Foit, F.F.; Rye, R.O.

    2013-01-01

    A synthesis of old and new paleoclimatic data from the Pyramid and Winnemucca lake basins indicates that, between 48.0 and 11.5·103 calibrated years BP (hereafter ka), the climate of the western Great Basin was, to a degree, linked with the climate of the North Atlantic. Paleomagnetic secular variation (PSV) records from Pyramid Lake core PLC08-1 were tied to the GISP2 ice-core record via PSV matches to North Atlantic sediment cores whose isotopic and(or) carbonate records could be linked to the GISP2 δ18O record. Relatively dry intervals in the western Great Basin were associated with cold Heinrich events and relatively wet intervals were associated with warm Dansgaard-Oeschger (DO) oscillations. The association of western Great Basin dry events with North Atlantic cold events (and vice versa) switched sometime after the Laurentide Ice Sheet (LIS) reached its maximum extent. For example, the Lahontan highstand, which culminated at 15.5 ka, and a period of elevated lake level between 13.1 and 11.7 ka were associated with cold North Atlantic conditions, the latter period with the Youngest Dryas event. Relatively dry periods were associated with the Bølling and Allerød warm events. A large percentage of the LIS may have been lost to the North Atlantic during Heinrich events 1 and 2 and may have resulted in the repositioning of the Polar Jet Stream over North America. The Trego Hot Springs, Wono, Carson Sink, and Marble Bluff tephras found in core PLC08-1 have been assigned GISP2 calendar ages of respectively, 29.9, 33.7, 34.1, and 43.2 ka. Given its unique trace-element chemistry, the Carson Sink Bed is the same as Wilson Creek Ash 15 in the Mono Lake Basin. This implies that the Mono Lake magnetic excursion occurred at approximately 34 ka and it is not the Laschamp magnetic excursion. The entrance of the First Americans into the northern Great Basin is dated to approximately 14.4 ka, a time when the climate was relatively dry. Evidence for human occupation of

  18. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  19. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic

  20. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  1. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  2. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  3. Digital Elevation Model (DEM) file of topographic elevations for the Death Valley region of southern Nevada and southeastern California processed from US Geological Survey 1-degree Digital Elevation Model data files

    International Nuclear Information System (INIS)

    Turner, A.K.; D'Agnese, F.A.; Faunt, C.C.

    1996-01-01

    Elevation data have been compiled into a digital data base for an ∼100,000-km 2 area of the southern Great Basin, the Death Valley region of southern Nevada, and SE Calif., located between lat 35 degree N, long 115 degree W, and lat 38 degree N, long 118 degree W. This region includes the Nevada Test Site, Yucca Mountain, and adjacent parts of southern Nevada and eastern California and encompasses the Death Valley regional ground-water system. Because digital maps are often useful for applications other than that for which they were originally intended, and because the area corresponds to a region under continuing investigation by several groups, these digital files are being released by USGS

  4. Regional elevator survey : grain transportation & industry trends for Great Plains elevators

    Science.gov (United States)

    2001-08-01

    One potential means for gaining insight into the current state of the elevator industry, : and into expectations for future trends, is through a survey. The objective of this study is to profile the transportation and industry characteristics of the ...

  5. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  6. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  7. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  8. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  9. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  10. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  11. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to

  12. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    Science.gov (United States)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  13. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  14. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Julienne J. eParaiso

    2013-08-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r2 = 0.546, with moderate correlations with pH (r2 = 0.359, nitrite (r2 = 0.286, oxygen (r2 = 0.259, and nitrate (r2 = 0.215. Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C, iGDGT-3 (≥55°C, and iGDGT -4 (≥60°C. These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA.

  15. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    Science.gov (United States)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  16. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  17. Precise topography assessment of Lop Nur Lake Basin using GLAS altimeter

    International Nuclear Information System (INIS)

    Wang, Longfei; Gong, Huaze; Shao, Yun

    2014-01-01

    Lop Nur is a dried-up salt lake lying in the eastern part of Tarim basin, which used to be the second largest lagon in China. The ''ear'' rings in Lop Nur attract many interests and are regarded as the lake shorelines during its recession. The topography of the lake basin is important in understanding the formation of the ''ear'' rings. In this paper, elevation data along three transects obtained from laser altimeter were taken as the basic material of the topography in Lop Nur. Elevation data of laser altimeter show great consistency between adjacent passes. Orthometric height (OH) derived from altimetry data and the geoid model are used to analyze the elevation characteristic along ''ear'' rings. The result shows the ''ear'' rings are basically identical in elevation, supporting the statement that ''ear'' rings are former lake shorelines. A discrepancy of approximately 1 meter in OH is observed on the same ''ear'' ring, lower in the north and higher in the south, which is found for the first time. Possible explanations could be deformation of ground surface due to earthquake or tectonic movement after the ''ear'' rings are formed, or tilt of water surface due to wind stress or lake current during the formation of the rings

  18. Influence of domestic livestock grazing on American Pika (Ochotona princeps) forage and haypiling behavior in the Great Basin. Western North American Naturalist.

    Science.gov (United States)

    Constance I. Millar

    2011-01-01

    In a pilot study, I observed a relationship between domestic livestock grazing and location of American pika (Ochotona princeps) haypiles in the eastern Sierra Nevada and several Great Basin mountain ranges. Where vegetation communities adjacent to talus bases (forefields) were grazed, mean distance from the talus borders to the closest fresh...

  19. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  20. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-06-01

    Full Text Available The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.

  1. Male cerebral palsy hospitalization as a potential indicator of neurological effects of methylmercury exposure in Great Lakes communities

    International Nuclear Information System (INIS)

    Gilbertson, Michael

    2004-01-01

    Perinatal exposure to methylmercury is known to result in severe neurological effects on the developing fetus and infant, including cerebral palsy, mental retardation, and seizures. Males are more susceptible than females to neurological damage from perinatal methylmercury exposures. Preliminary analyses of data and statistics for the hospitalization rates of males for cerebral palsy in the 17 Canadian Areas of Concern in the Great Lakes basin indicate a possible geographic association with locations with elevated mercury from natural or industrial sources

  2. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  3. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  4. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  5. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes

    Science.gov (United States)

    Salzer, Matthew W.; Hughes, Malcolm K.; Bunn, Andrew G.; Kipfmueller, Kurt F.

    2009-01-01

    Great Basin bristlecone pine (Pinus longaeva) at 3 sites in western North America near the upper elevation limit of tree growth showed ring growth in the second half of the 20th century that was greater than during any other 50-year period in the last 3,700 years. The accelerated growth is suggestive of an environmental change unprecedented in millennia. The high growth is not overestimated because of standardization techniques, and it is unlikely that it is a result of a change in tree growth form or that it is predominantly caused by CO2 fertilization. The growth surge has occurred only in a limited elevational band within ≈150 m of upper treeline, regardless of treeline elevation. Both an independent proxy record of temperature and high-elevation meteorological temperature data are positively and significantly correlated with upper-treeline ring width both before and during the high-growth interval. Increasing temperature at high elevations is likely a prominent factor in the modern unprecedented level of growth for Pinus longaeva at these sites. PMID:19918054

  6. Potential Influence of Climate Change on the Acid-Sensitivity of High-Elevation Lakes in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Donna Strang

    2015-01-01

    Full Text Available Global climate models predict increased temperature and precipitation in the Georgia Basin, British Colmbia; however, little is known about the impacts on high-elevation regions. In the current study, fifty-four high-elevation lakes (754–2005 m a.s.l. were studied to investigate the potential influence of climate change on surface water acid-sensitivity. Redundancy analysis indicated that the concentration of nitrate, dissolved organic carbon, and associated metals was significantly influenced by climate parameters. Furthermore, these components differed significantly between biogeoclimatic zones. Modelled soil base cation weathering for a subset of the study lakes (n=11 was predicted to increase by 9% per 1°C increase in temperature. Changes in temperature and precipitation may potentially decrease the pH of surface waters owing to changes in anthropogenic deposition and organic acid production. In contrast, increased soil base cation weathering may increase the critical load (of acidity of high-elevation lakes. Ultimately, the determining factor will be whether enhanced base cation weathering is sufficient to buffer changes in natural and anthropogenic acidity. Mountain and high-elevation regions are considered early warning systems to climate change; as such, future monitoring is imperative to assess the potential ramifications of climate change on the hydrochemistry and acid-sensitivity of these surface waters.

  7. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  8. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures

    Science.gov (United States)

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R.; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-01-01

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present. PMID:27551101

  9. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  10. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    Science.gov (United States)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow

  11. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  12. Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah.

    Science.gov (United States)

    Helmig, D; Thompson, C R; Evans, J; Boylan, P; Hueber, J; Park, J-H

    2014-05-06

    Oil and natural gas production in the Western United States has grown rapidly in recent years, and with this industrial expansion, growing environmental concerns have arisen regarding impacts on water supplies and air quality. Recent studies have revealed highly enhanced atmospheric levels of volatile organic compounds (VOCs) from primary emissions in regions of heavy oil and gas development and associated rapid photochemical production of ozone during winter. Here, we present surface and vertical profile observations of VOC from the Uintah Basin Winter Ozone Studies conducted in January-February of 2012 and 2013. These measurements identify highly elevated levels of atmospheric alkane hydrocarbons with enhanced rates of C2-C5 nonmethane hydrocarbon (NMHC) mean mole fractions during temperature inversion events in 2013 at 200-300 times above the regional and seasonal background. Elevated atmospheric NMHC mole fractions coincided with build-up of ambient 1-h ozone to levels exceeding 150 ppbv (parts per billion by volume). The total annual mass flux of C2-C7 VOC was estimated at 194 ± 56 × 10(6) kg yr(-1), equivalent to the annual VOC emissions of a fleet of ∼100 million automobiles. Total annual fugitive emission of the aromatic compounds benzene and toluene, considered air toxics, were estimated at 1.6 ± 0.4 × 10(6) and 2.0 ± 0.5 × 10(6) kg yr(-1), respectively. These observations reveal a strong causal link between oil and gas emissions, accumulation of air toxics, and significant production of ozone in the atmospheric surface layer.

  13. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    International Nuclear Information System (INIS)

    Harmsen, S.C.

    1994-01-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy's Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC

  14. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  15. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  16. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  17. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  18. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  19. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Zhang Min; Frape, Shaun K.; Love, Andrew J.; Herczeg, Andrew L.; Lehmann, B.E.; Beyerle, U.; Purtschert, R.

    2007-01-01

    Stable Cl isotope ratios ( 37 Cl/ 35 Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl - sources and transport mechanisms. δ 37 Cl values range from 0 per mille to -2.5 per mille (SMOC), and are inversely correlated with Cl - concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl - in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ 37 Cl and Cl - concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl - concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ 37 Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl - for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl - is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis

  20. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  1. Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Salami Adebayo Wahab

    2016-03-01

    Full Text Available This study utilized Spatial Information Technology (SIT such as Remote Sensing (RS, a Geographical Information System (GIS, the Global Positioning System (GPS and a high-resolution Digital Elevation Model (DEM for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35 as the most hazardous site where floods could reach a great volume over a small area.

  2. Floristic Characteristics and Biodiversity Patterns in the Baishuijiang River Basin, China

    Science.gov (United States)

    Liu, Bing; Zhao, Wenzhi; Wen, Zijuan; Teng, Jirong; Li, Xiaohong

    2009-07-01

    A case study was conducted on the forest ecosystem in the Baishuijiang River basin of China to reveal the influences of environmental factors and human disturbance on the floristic characteristics and biodiversity patterns. Field surveys of the floristic composition, environmental factors, and disturbance factors were conducted along an elevation gradient, and the relationships between biodiversity pattern and environmental factors were analyzed using CCA (canonical correspondence analysis). The results showed that the floristic composition of higher plants consisted of 197 families, 796 genera, 2165 species, 19 subspecies, 239 varietas, and 12 forma, and it was characterized by the multi-geographic composition and by the transition from tropical to temperate zones. Along an elevation gradient, the variations in α and β diversity were best described by a bimodal curve, and the peak values occurred at middle elevations. The CCA indicated that the elevation had the greatest influence on the biodiversity pattern, followed by the topographic index, slope direction, slope, slope position, slope shape, and vegetation coverage. In addition, human disturbance has greatly impacted the floristic composition and biodiversity patterns, and the biodiversity indices were higher with intermediate disturbance at middle elevations compared to higher and lower disturbances at low and high elevations, respectively. This reflected a disturbance-diversity pattern and thus revealed the obvious importance to maintain the intermediate disturbance for biodiversity conservation.

  3. Operation of a hydraulic elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  4. Stream-channel and watershed delineations and basin-characteristic measurements using lidar elevation data for small drainage basins within the Des Moines Lobe landform region in Iowa

    Science.gov (United States)

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.; Gelder, Brian K.

    2018-02-14

    Basin-characteristic measurements related to stream length, stream slope, stream density, and stream order have been identified as significant variables for estimation of flood, flow-duration, and low-flow discharges in Iowa. The placement of channel initiation points, however, has always been a matter of individual interpretation, leading to differences in stream definitions between analysts.This study investigated five different methods to define stream initiation using 3-meter light detection and ranging (lidar) digital elevation models (DEMs) data for 17 streamgages with drainage areas less than 50 square miles within the Des Moines Lobe landform region in north-central Iowa. Each DEM was hydrologically enforced and the five stream initiation methods were used to define channel initiation points and the downstream flow paths. The five different methods to define stream initiation were tested side-by-side for three watershed delineations: (1) the total drainage-area delineation, (2) an effective drainage-area delineation of basins based on a 2-percent annual exceedance probability (AEP) 12-hour rainfall, and (3) an effective drainage-area delineation based on a 20-percent AEP 12-hour rainfall.Generalized least squares regression analysis was used to develop a set of equations for sites in the Des Moines Lobe landform region for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs. A total of 17 streamgages were included in the development of the regression equations. In addition, geographic information system software was used to measure 58 selected basin-characteristics for each streamgage.Results of the regression analyses of the 15 lidar datasets indicate that the datasets that produce regional regression equations (RREs) with the best overall predictive accuracy are the National Hydrographic Dataset, Iowa Department of Natural Resources, and profile curvature of 0.5 stream initiation methods combined with

  5. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  6. Radiocarbon constraints on fossil thinolite tufa formation in the Mono Basin, CA, USA

    Science.gov (United States)

    Leroy, S. L.; Zimmerman, S. R.; Hemming, S. R.; Stine, S.; Guilderson, T. P.

    2009-12-01

    Mono Lake is a terminal lake located at the western edge of the Great Basin, and is famous for its tufa towers. Thinolite, which is thought to be a CaCO3 pseudomorph of ikaite, is found around the Mono Basin in many fossil tufa towers, particularly at elevations above 2000 meters. The subaqueous parent mineral ikaite forms at low temperatures (34 kyr) to as young as 15.5 14C kyr BP. In general there is a consistent stratigraphic trend of ages within the mound, but the thinolite ages are anomalously young and one thinolite sample shows a large age reversal. The best estimate of the age of the precipitation of this tufa mound is given by the non-thinolite textures. More work is needed to determine the best sampling and sample preparation strategies in order to get a reliable age model for this mound.

  7. Morphometric analysis of Martian valley network basins using a circularity function

    Science.gov (United States)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  8. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  9. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  10. Use of environmental isotope tracer and GIS techniques to estimate basin recharge

    Science.gov (United States)

    Odunmbaku, Abdulganiu A. A.

    The extensive use of ground water only began with the advances in pumping technology at the early portion of 20th Century. Groundwater provides the majority of fresh water supply for municipal, agricultural and industrial uses, primarily because of little to no treatment it requires. Estimating the volume of groundwater available in a basin is a daunting task, and no accurate measurements can be made. Usually water budgets and simulation models are primarily used to estimate the volume of water in a basin. Precipitation, land surface cover and subsurface geology are factors that affect recharge; these factors affect percolation which invariably affects groundwater recharge. Depending on precipitation, soil chemistry, groundwater chemical composition, gradient and depth, the age and rate of recharge can be estimated. This present research proposes to estimate the recharge in Mimbres, Tularosa and Diablo Basin using the chloride environmental isotope; chloride mass-balance approach and GIS. It also proposes to determine the effect of elevation on recharge rate. Mimbres and Tularosa Basin are located in southern New Mexico State, and extend southward into Mexico. Diablo Basin is located in Texas in extends southward. This research utilizes the chloride mass balance approach to estimate the recharge rate through collection of groundwater data from wells, and precipitation. The data were analysed statistically to eliminate duplication, outliers, and incomplete data. Cluster analysis, piper diagram and statistical significance were performed on the parameters of the groundwater; the infiltration rate was determined using chloride mass balance technique. The data was then analysed spatially using ArcGIS10. Regions of active recharge were identified in Mimbres and Diablo Basin, but this could not be clearly identified in Tularosa Basin. CMB recharge for Tularosa Basin yields 0.04037mm/yr (0.0016in/yr), Diablo Basin was 0.047mm/yr (0.0016 in/yr), and 0.2153mm/yr (0.00848in

  11. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  12. Ammonia emissions from Swine waste lagoons in the Utah great basin.

    Science.gov (United States)

    Harper, Lowry A; Weaver, Kim H; Dotson, Richard A

    2006-01-01

    In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.

  13. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  14. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  15. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Science.gov (United States)

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  16. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  17. Spatial distribution and ecological environment analysis of great gerbil in Xinjiang Plague epidemic foci based on remote sensing

    International Nuclear Information System (INIS)

    Gao, Mengxu; Wang, Juanle; Li, Qun; Cao, Chunxiang

    2014-01-01

    Yersinia pestis (Plague bacterium) from great gerbil was isolated in 2005 in Xinjiang Dzungarian Basin, which confirmed the presence of the plague epidemic foci. This study analysed the spatial distribution and suitable habitat of great gerbil based on the monitoring data of great gerbil from Chinese Center for Disease Control and Prevention, as well as the ecological environment elements obtained from remote sensing products. The results showed that: (1) 88.5% (277/313) of great gerbil distributed in the area of elevation between 200 and 600 meters. (2) All the positive points located in the area with a slope of 0–3 degree, and the sunny tendency on aspect was not obvious. (3) All 313 positive points of great gerbil distributed in the area with an average annual temperature from 5 to 11 °C, and 165 points with an average annual temperature from 7 to 9 °C. (4) 72.8% (228/313) of great gerbil survived in the area with an annual precipitation of 120–200mm. (5) The positive points of great gerbil increased correspondingly with the increasing of NDVI value, but there is no positive point when NDVI is higher than 0.521, indicating the suitability of vegetation for great gerbil. This study explored a broad and important application for the monitoring and prevention of plague using remote sensing and geographic information system

  18. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A. S.

    2015-12-01

    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  19. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  20. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  1. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    ' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  2. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  3. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  4. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees

    Science.gov (United States)

    Huyghe, Damien; Mouthereau, Frédéric; Emmanuel, Laurent

    2012-09-01

    Constraining paleoaltimetry of collisional orogens is critical to understand the dynamics of topographic evolution and climate/tectonics retroactions. Here, we use oxygen stable-isotope record on oyster shells, preserved in marine foreland deposits, to examine the past elevation of the Pyrenees during the Eocene. Our approach is based on the comparison with the Paris basin, an intracratonic basin not influenced by orogenic growth. The finding of a shift of 1.5‰ between 49 and 41 Ma, indicating more negative δ18Oc in the south Pyrenean foreland, is interpreted to reflect the inflow of river water sourced from higher elevation in the Pyrenees. To test this and provide paleoelevation estimate, we adopt a morphologic-hydrological model accounting for the hypsometry of drainage basin. Our best fitting model shows that the Pyrenees rose up to 2000 m. This indicates that the Pyrenees reached high elevation in the Eocene, thus providing new critical constraints on their long-term orogenic development. δ18O of marine mollusc shells are proved potentially attractive for paleoelevation studies, especially for mountain belts where elevated continental surfaces have not been preserved.

  5. Hydrological Modeling of Highly Glacierized Basins (Andes, Alps, and Central Asia

    Directory of Open Access Journals (Sweden)

    Nina Omani

    2017-02-01

    Full Text Available The Soil and Water Assessment Tool (SWAT was used to simulate five glacierized river basins that are global in coverage and vary in climate. The river basins included the Narayani (Nepal, Vakhsh (Central Asia, Rhone (Switzerland, Mendoza (Central Andes, Argentina, and Central Dry Andes (Chile, with a total area of 85,000 km2. A modified SWAT snow algorithm was applied in order to consider spatial variation of associated snowmelt/accumulation by elevation band across each subbasin. In previous studies, melt rates varied as a function of elevation because of an air temperature gradient while the snow parameters were constant throughout the entire basin. A major improvement of the new snow algorithm is the separation of the glaciers from seasonal snow based on their characteristics. Two SWAT snow algorithms were evaluated in simulation of monthly runoff from the glaciered watersheds: (1 the snow parameters are lumped (constant throughout the entire basin and (2 the snow parameters are spatially variable based on elevation bands of a subbasin (modified snow algorithm. Applying the distributed SWAT snow algorithm improved the model performance in simulation of monthly runoff with snow-glacial regime, so that mean RSR decreased to 0.49 from 0.55 and NSE increased to 0.75 from 0.69. Improvement of model performance was negligible in simulations of monthly runoff from the basins with a monsoon runoff regime.

  6. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  7. GAMA-LLNL Alpine Basin Special Study: Scope of Work

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, M J; Visser, A; Esser, B K; Moran, J E

    2011-12-12

    For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

  8. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  9. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  10. 76 FR 8978 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2011-02-16

    .../town/county Source of flooding Location ** ground [caret] Elevation in meters (MSL) Existing Modified Unincorporated Areas of Yolo County, California California Unincorporated Areas of Cache Creek Settling Basin At........ Entire None +901 Town of shoreline Wolcottvill e, Unincorpora ted Areas of LaGrange County. * National...

  11. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    Science.gov (United States)

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  12. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  13. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  14. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  15. Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart F. [Colorado School of Mines, Golden, CO (United States). Geology and Geological Engineering; Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  16. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications

    Science.gov (United States)

    Wang, Yang; Wang, Xiaoming; Xu, Yingfeng; Zhang, Chunfu; Li, Qiang; Tseng, Zhijie Jack; Takeuchi, Gary; Deng, Tao

    2008-06-01

    than the present-day mean annual temperature in the basin. If valid, the estimated temperature change would imply that the elevation of the basin has increased by ˜ 2700 ±1600 m since ˜ 2-3 Ma.

  17. High-elevation mass loss of Greenland increasing

    DEFF Research Database (Denmark)

    Andersen, M. L.; Andersen, S. B.; Ahlstrøm, A. P.

    project, repeated airborne LIDAR and radar surveys were carried out along the entire margin of the Greenland ice sheet in the years 2007 and 2011, providing bed and surface elevation profiles. Using these profiles, we establish a flux gate along the flight path, passing through 19 drainage basins...

  18. The Great Basin Canada goose in southcentral Washington: A 40-year nesting history

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.; Gray, R.H.

    1991-04-01

    Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above the 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab

  19. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India

    Science.gov (United States)

    Sharma, Gopal; Champati ray, P. K.; Mohanty, S.

    2018-01-01

    Alaknanda basin in the Garhwal Himalaya, India, is a tectonically active region owing to ongoing crustal deformation, erosion, and depositional processes active in the region. Active tectonics in this region have greatly affected the drainage system and geomorphic expression of topography and provide an ideal natural set up to investigate the influence of tectonic activity resulting from the India-Eurasia collision. We evaluated active tectonics by using high resolution digital elevation model (DEM) based on eight geomorphic indices (stream length gradient index, valley floor width-to-height ratio, hypsometric integral, drainage basin asymmetry, transverse topography symmetry factor, mountain front sinousity index, bifurcation ratio, and basin shape index) and seismicity in eight subbasins of Alaknanda basin. The integrated product, relative tectonic activity index (TAI) map, was classified into three classes such as: 'highly active' with values ranging up to 2.0; 'moderately active' with values ranging from 2.0 to 2.25; and 'less active' with values > 2.25. Further, the results were compared with relatively high crustal movement rate of 41.10 mm/y computed through high precession Global Navigation Satellite System (GNSS) based continuous operating reference station (CORS) data. Thus, we concluded that this new quantitative approach can be used for better characterization and assessment of active seismotectonic regions of the Himalaya and elsewhere.

  20. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  1. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    Science.gov (United States)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  2. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    Science.gov (United States)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not

  3. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    Science.gov (United States)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  4. Characterizing land subsidence mechanisms as a function of urban basin geohazards using space geodesy

    Science.gov (United States)

    Bawden, G. W.

    2016-12-01

    Land subsidence in urban basins will likely become a more significant geohazard in many of the global sedimentary basins as population growth, resource availability, and climate change compound natural and anthropogenic contributors that influence basin elevation. Coastal basins are at the greatest risk where land subsidence is additive to sea level rise, thereby increasing the rate of exposure to coastal populations. Land surface elevation change is a function of many different parameters, including: elastic and inelastic surface response to managed and natural groundwater levels; anthropogenic activities (hydrocarbon extraction, wastewater injection, fracking, geothermal production, and mass redistribution); local tectonic deformation and regional tectonic drivers (such as repeated uplift and subsidence cycles above subduction zones); climate change (influencing the timing, magnitude, nature and duration of seasonal/annual precipitation and permafrost extent); material properties of the basin sediments (influencing susceptibility to soil compaction, oxidization, and dissolution); post glacial rebound; isostatic flexure associated with sea-level and local mass changes; and large scale gravitational processes (such as growth faults and landslides). Geodetic measurements, such as InSAR and GPS, help track spatial and temporal changes in both relative and absolute basin elevation thereby helping to characterize the mechanism(s) driving the geohazards. In addition to a number of commercial radar satellites, European Space Agency's Sentinel-1a/b satellites are beginning to provide a wealth of data over many basin targets with C-band (5.5 cm wavelength). The NISAR (NASA-ISRO Synthetic Aperture Radar) L-band (24 cm wavelength) mission (anticipated 2021 launch) will image nearly every basin globally every 12 days and data from the mission will help characterize land subsidence and many other solid-Earth and hydrologic geohazards that impact urban basins.

  5. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico

    Science.gov (United States)

    Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío

    2016-12-01

    Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.

  6. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  7. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian; Erickson, Richard A.

    2017-01-01

    Contaminant exposure of tree swallows, Tachycineta bicolor, nesting in 27 Areas of Concern (AOCs) in the Great Lakes basin was assessed from 2010 to 2014 to assist managers and regulators in their assessments of Great Lakes AOCs. Contaminant concentrations in nestlings from AOCs were compared with those in nestlings from nearby non-AOC sites. Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether concentrations in tree swallow nestling carcasses at 30% and 33% of AOCs, respectively, were below the mean concentration for non-AOCs. Polycyclic aromatic hydrocarbon (PAH) concentrations in nestling stomach contents and perfluorinated compound concentrations in nestling plasma at 67% and 64% of AOCs, respectively, were below the mean concentration for non-AOCs. Concentrations of PCBs in nestling carcasses were elevated at some AOCs but modest compared with highly PCB-contaminated sites where reproductive effects have been documented. Concentrations of PAHs in diet were sufficiently elevated at some AOCs to elicit a measurable physiological response. Among AOCs, concentrations of the perfluorinated compound perfluorooctane sulfonate in plasma were the highest on the River Raisin (MI, USA; geometric mean 330 ng/mL) but well below an estimated toxicity reference value (1700 ng/mL). Both PAH and PCB concentrations in nestling stomach contents and PCBs in carcasses were significantly correlated with concentrations in sediment previously reported, thereby reinforcing the utility of tree swallows to assess bioavailability of sediment contamination.

  8. Comment on “The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States”: report published in Hydrogeology Journal (2014) 22:807–828, by Stephen T. Nelson and Alan L. Mayo

    Science.gov (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.; Heilweil, Victor M.; Sweetkind, Donald S.

    2015-01-01

    The subject article (Nelson and Mayo 2014) presents an overview of previous reports of interbasin flow in the Great Basin of the western United States. This Comment is presented by authors of a cited study (comprising chapters in one large report) on the Great Basin carbonate and alluvial aquifer system (GBCAAS; Heilweil and Brooks 2011; Masbruch et al. 2011; Sweetkind et al. 2011a, b), who agree that water budget imbalances alone are not enough to accurately quantify interbasin flow; however, it is proposed that statements made in the subject article about the GBCAAS report are inaccurate. The Comment authors appreciate the opportunity to clarify some statements made about the work.

  9. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  10. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  11. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  12. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    Energy Technology Data Exchange (ETDEWEB)

    Pippin, L.C.

    1998-06-01

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  13. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  14. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  15. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    Science.gov (United States)

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show

  16. Study on the characteristics of future precipitation in response to external changes over arid and humid basins.

    Science.gov (United States)

    Xue, Lianqing; Zhu, Boli; Yang, Changbing; Wei, Guanghui; Meng, Xianyong; Long, Aihua; Yang, Guang

    2017-11-09

    The simulation abilities of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) models to the arid basin (the Tarim River Basin, TRB) and humid basin (the Yangtze River Basin, YRB) were evaluated, determining the response of precipitation to external changes over typical basins. Our study shows that the future temporal and spatial variation characteristics of precipitation are different in different regions with the CMIP5. The annual and seasonal changes in precipitation were analyzed for the RCP2.6, RCP4.5 and RCP8.5 during 2021~2100 compared to those during 1961~2005. Precipitation shows an increasing trend in the TRB, but which decreases and then increases in the YRB, with a turning point in the middle of twenty-first Century. The ranges in annual precipitation increase with the increase in the scenario emissions in the future. Note that the Tarim River Basin is more vulnerable to the impact of emissions, especially for annual or spring and winter precipitation. Based on the uncertainty of CMIP5 data, the links between future precipitation changes and the elevation and relief amplitude were evaluated. The change of precipitation decreases with elevation, relief amplitude in the TRB, while it increases with elevation but decreases with relief amplitude in the YRB.

  17. Hydrochemistry of the Densu River Basin of Ghana

    International Nuclear Information System (INIS)

    Adomako, D.; Osae, S.; Fianko, J. R.

    2007-01-01

    Planned hydrochemical assessment of groundwater quality have been carried out to understand the sources of dissolved ions in the aquifers supporting groundwater systems in the Densu River basin. The basin is underlain mainly by the proterozoic basin type granitoids with associated gnesis, with dominant mineral such as plagioclase feldspars. The groundwater is Ca-HCO 3 and Na-HCO 3 facies, due to weathering and ion-exchange of minerals underlying the aquifers. The enrichment of the cation and anions are Na>Ca>Mg>K and HCO 3 >Cl>SO 4 >NO 3 respectively. Some of the elevated values of both cations and anions may be due to seawater intrusions, ion-exchange, oxidation and anthropogenic activities. Based on these studies, proper management would be recommended to address groundwater quality in the basin. (au)

  18. Water level fluctuations in the Congo basin derived from ENVISAT satellite altimetry

    OpenAIRE

    Becker, M.; da Silva, J. S.; Calmant, Stéphane; Robinet, V.; Linguet, L.; Seyler, Frédérique

    2014-01-01

    In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This...

  19. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  20. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  1. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  2. Quantification and Postglacial evolution of an inner alpine sedimentary basin (Gradenmoos Basin, Hohe Tauern)

    International Nuclear Information System (INIS)

    Götz, J.

    2012-01-01

    The overall objective of this thesis is the quantification of sediment storage and the reconstruction of postglacial landscape evolution within the glacially overdeepened Gradenmoos Basin (subcatchment size: 4.1 km 2 ; basin floor elevation: 1920 m) in the central Gradenbach catchment (Schober Range, Hohe Tauern, Austrian Alps). Following the approach of denudation-accumulation-systems, most reliable results are obtained (1) if sediment output of a system can be neglected for an established period of time, (2) if sediment storage can be assessed with a high level of accuracy, (3) if the onset of sedimentation and amounts of initially stored sediments are known, and (4) if sediment contributing areas can be clearly delimited. Due to spatial scale and topographic characteristics, all mentioned aspects are fulfilled to a high degree within the studied basin. Applied methods include surface, subsurface and temporal investigations. Digital elevation data is derived from terrestrial laserscanning and geomorphologic mapping. The quantification of sediment storage is based on core drillings, geophysical methods (DC resistivity, refraction seismic, and ground penetrating radar), as well as GIS and 3D modelling. Radiocarbon dating and palynological analyses are additionally used to reconstruct the postglacial infilling progress of the basin. The study reveals that a continuous postglacial stratigraphic record is archived in the basin. As proposed by Lieb (1987) timing of basin deglaciation could be verified to late-Egesen times by means of radiocarbon ages (oldest sample just above basal till: 10.4 ka cal. BP) and first palynologic results. Lateglacial oscillations seem to have effectively scoured the basin, leaving only a shallow layer of basal till. The analysis of postglacial sedimentation in the basin is further improved by the existence of a former lake in the basin lasting for up to 7500 years until approx. 3.7 ka cal. BP. Both, the stratigraphic (fine, partly

  3. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Science.gov (United States)

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  4. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  5. Coal fly ash basins as an attractive nuisance to birds: Parental provisioning exposes nestlings to harmful trace elements

    International Nuclear Information System (INIS)

    Bryan, A.L.; Hopkins, W.A.; Parikh, J.H.; Jackson, B.P.; Unrine, J.M.

    2012-01-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. - Highlights: ► We examined elemental uptake by grackle nestlings associated with coal ash basins. ► Diet of ash basin nestlings had higher levels of Se, As, and Cd than control nestlings. ► Se, As, Cd, and Sr concentrations of ash basin nestling tissues were elevated. ► Only Se in nestling liver approached published levels of concern. ► Nestling feathers sequestered >15% of the total body burden of Se, As, and Cd. - Nestlings of common grackles attracted to nest around coal ash settling basins were exposed to elevated dietary Se, As, Cd, and Sr, resulting in elevated Se tissue concentrations approaching reported levels of concern.

  6. Climate and tectonic evolution of the Descanso-Yauri basin in the northernmost Altiplano: Archetype example of a 'lithospheric drip' basin

    Science.gov (United States)

    Kar, N.; Garzione, C. N.

    2015-12-01

    We present a new multiproxy Miocene-Pliocene paleoelevation record of the northernmost Altiplano plateau reconstructed from pollen, clumped isotope (TΔ47) and δ18Oc of sedimentary carbonates and leaf wax n-alkane δD signatures. The ~18Ma to ~9Ma deposits of our study area, Descanso-Yauri basin in southern Peru show 11 to 16ºC warmer than modern mean annual air temperature, low elevation vegetation pollen assemblage (dominated by Podocarpus), and an average precipitation δ18Omw (VSMOW) value of -8.3±2.0‰ (2σ). The ~5 to 4 Ma deposits in the Descanso-Yauri basin are characterized by herb and shrub vegetation and an average δ18O mw (VSMOW) value of -14.6±3.0‰ (2σ), indicative of an elevation and/or climate similar to modern conditions. Based on the multiproxy paleoclimate record, we interpret that there was a 2±1 km surface uplift between 9 and 5 Ma in the northernmost Altiplano plateau. Deformation history analysis through map scale structural investigation combined with provenance analysis from conglomerate clast composition and paleocurrents show that the thrusts bounding the NE side of the Descanso-Yauri basin were active until ˜9Ma. Deformation waned afterwards, and switched to an extensional deformation regime, coincident with decrease in subsidence rate from ˜0.2mm/year to ˜0.03mm/year. Depositional history reconstructed by facies analysis and stratigraphic correlation reveal that deposition in the basin began with transverse braided river systems that formed along the thrust front and gave way to a larger fluvial-lacustrine system until ˜4 Ma. The basin deposits show an overall fining upward trend from coarse clastic dominated, in the lower most parts of the basin fill to fluvial overbank and lacustrine mudstone and diatomite deposits in the middle-upper parts. The thickest deposits formed in the central part of the basin. Based on these depositional and deformational patterns, we infer that the Descanso-Yauri basin formed in response to a

  7. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  8. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    Science.gov (United States)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust

  9. Growth and elemental content of two tree species growing on abandoned coal fly ash basins

    International Nuclear Information System (INIS)

    Carlson, C.L.; Adriano, D.C.

    1991-01-01

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among the ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate

  10. Contaminants of emerging concern in the Great Lakes Basin: A report on sediment, water, and fish tissue chemistry collected in 2010-2012

    Science.gov (United States)

    Choy, Steven J.; Annis, Mandy L.; Banda, JoAnn; Bowman, Sarah R.; Brigham, Mark E.; Elliott, Sarah M.; Gefell, Daniel J.; Jankowski, Mark D.; Jorgenson, Zachary G.; Lee, Kathy E.; Moore, Jeremy N.; Tucker, William A.

    2017-01-01

    Despite being detected at low levels in surface waters and sediments across the United States, contaminants of emerging concern (CECs) in the Great Lakes Basin are not well characterized in terms of spatial and temporal occurrence. Additionally, although the detrimental effects of exposure to CECs on fish and wildlife have been documented for many CECs in laboratory studies, we do not adequately understand the implications of the presence of CECs in the environment. Based on limited studies using current environmentally relevant concentrations of chemicals, however, risks to fish and wildlife are evident. As a result, there is an increasing urgency to address data gaps that are vital to resource management decisions. The U.S. Fish and Wildlife Service, in collaboration with the U.S. Geological Survey, is leading a Great Lakes Basin-wide evaluation of CECs (CEC Project) with the objectives to (a) characterize the spatial and temporal distribution of CECs; (b) evaluate risks to fish and wildlife resources; and (c) develop tools to aid resource managers in detecting, averting, or minimizing the ecological consequences to fish and wildlife that are exposed to CECs. This report addresses objective (a) of the CEC Project, summarizing sediment and water chemistry data collected from 2010 to 2012 and fish liver tissue chemistry data collected in 2012; characterizes the sampling locations with respect to potential sources of CECs in the landscape; and provides an initial interpretation of the variation in CEC concentrations relative to the identified sources. Data collected during the first three years of our study, which included 12 sampling locations and analysis of 134 chemicals, indicate that contaminants were more frequently detected in sediment compared to water. Chemicals classified as alkyphenols, flavors/ fragrances, hormones, PAHs, and sterols had higher average detection frequencies in sediment compared to water, while the opposite was observed for pesticides

  11. The Mythical Power of the Dual River-System of the Carpathian Basin: The Notion of a Hungarian Mesopotamia

    Directory of Open Access Journals (Sweden)

    Róbert Keményfi

    2016-01-01

    Full Text Available Gyula Prinz is responsible for the notion of “Magyar Mezopotámia” [Hungarian Mesopotamia]. The natural basis for this idea is that Hungarian culture developed on the surface of an alluvial plains area. This sort of natural environment was the precondition of great civilizations based on agriculture. In other words, the intrinsic Duna-Tisza [Danubius-Tibiscus] river structure, which is similar to that of the rivers Tigris and Euphrates, would elevate Hungary to the status of a mesopotamic country. This is how the central Hungarian area could become the distributing core of culture and how this culture could be radiated towards the neighboring peoples who also lived together with us in the Carpathian Basin. Our “cultural power” therefore “elevated” the cultural level of other peoples who lived with us on the edges of the Carpathian Basin. Accordingly, the end, or the borderline, of the highbrow “core culture” is located where the territory populated by Hungarians ends, or where the plains area shifts into the Carpathian Mountains.

  12. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  13. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications

    Science.gov (United States)

    Wang, Yang; Xu, Yingfeng; Khawaja, Sofia; Passey, Benjamin H.; Zhang, Chunfu; Wang, Xiaoming; Li, Qiang; Tseng, Zhijie J.; Takeuchi, Gary T.; Deng, Tao; Xie, Guangpu

    2013-08-01

    A mid-Pliocene fauna (4.2-3.1 Ma) was recently uncovered in the Zanda (Zhada) Basin in the southwestern Himalaya, at an elevation of about 4200 m above sea level. These fossil materials provide a unique window for examining the linkage among tectonic, climatic and biotic changes. Here we report the results from isotopic analyses of this fauna and of modern herbivores and waters as well as paleo-temperature estimates from the Zanda Basin. The δ13C values of enamel samples from modern wild Tibetan asses, and domesticated horses, cows and goats in the area are -9.4±1.8‰, which indicate a diet comprising predominantly of C3 plants and are consistent with the current dominance of C3 vegetation in the region. The enamel-δ13C values of the fossil horses, rhinos, deer, and bovids are -9.6±0.8‰, indicating that these ancient mammals, like modern herbivores in the area, also fed primarily on C3 vegetation and lived in an environment dominated by C3 plants. The lack of significant C4 plants in the basin suggests that the area had reached high elevations (>2.5 km) by at least the mid-Pliocene. Taking into account the changes in the δ13C of atmospheric CO2 in the past, the enamel-δ13C values suggest that the average modern-equivalent δ13C value of C3 vegetation in the Zanda Basin in the mid-Pliocene was ∼1-2‰ lower than that of the C3 biomass in the basin today. This would imply a reduction in annual precipitation by about 200-400 mm in the area since then (assuming that the modern C3 δ13C-precipitation relationship applied to the past). Consistent with this inference from the δ13C data, the enamel-δ18O data show a significant shift to higher values after the mid-Pliocene, which also suggests a shift in climate to much drier conditions after ∼4-3 Ma. Paleo-temperature estimates derived from a fossil bone-based oxygen isotope temperature proxy as well as the carbonate clumped isotope thermometer for the mid-Pliocene Zanda Basin are higher than the present

  14. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  15. Applicability of Hilt's law to the Czech part of the Upper Silesian Coal Basin (Czech Republic)

    International Nuclear Information System (INIS)

    Sivek, Martin; Caslavsky, Marek; Jirasek, Jakub

    2008-01-01

    Hilt's law (dependence of the coalification degree on depth) is a substantial and long-acknowledged rule. Its validity in the Czech part of the Upper Silesian Coal Basin (Carboniferous, Mississippian to Pennsylvanian - Lower Namurian to Westphalian A) is the subject of this study. It is based on over 29,000 analyses of the volatile matter moisture- and ash-free (V daf ) from surface and underground boreholes drilled in 1946-1989. Vitrinite reflectance (R max ) cannot be used as a measure of coalification in the Upper Silesian Coal Basin: the number of reflectance measurements is small and their distribution over the basin area is very uneven. Statistical data on V daf for the individual stratal units were processed. Modelling of the trends in the volatile matter moisture- and ash-free (V daf ) depending on ''stratigraphic depth'' proved the general applicability of Hilt's law. The distribution of this parameter in selected boreholes and segments of the basin was also studied, and coalification gradients were calculated. Coalification in specific examples (boreholes) is, however, highly variable and shows numerous deviations from Hilt's law even within individual boreholes, which is documented on a real example. The causes of some of the deviations are relatively well known (e.g., effect of elevated pressure in tectonically deformed areas, effect of effusive rocks or paleoweathering zones) while others can be presumed (heat flows due to Variscan and Carpathian orogenies affected by the lithology of the Carboniferous massif). The contribution of these effects in specific examples can be determined with great difficulty only. (author)

  16. Canada's Response to the Recommendations in the Tenth Biennial Report on Great Lakes Water Quality of the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Government of Canada and Ontario are currently renegotiating the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA). They are committed to restoring and maintaining the basin's chemical, physical and biological integrity and ensuring that it has a healthy, sustainable future. The COA has established a strategic framework for coordinated federal-provincial responsibilities regarding the Great Lakes basin ecosystem. This document presents responses to the recommendations of the International Joint Commission's (IJC) Tenth Biennial Report on how to improve the performance and effectiveness of government programs such as the Great Lakes Water Quality Agreement. According to the IJC, there are many challenges ahead, including: cleanup of Canadian Areas of Concern; controlling and preventing the further introduction of exotic species; mitigating the impact of rapid urban growth on environmental conditions throughout the basin; and reducing contaminants transported in the atmosphere over long distances to the Great Lakes. This document presented the government's responses to each of the following IJC recommendations regarding remedial action plans, threats to human health with respect to consumption of fish, contaminated sediment, airborne toxic substances, Great Lakes binational toxics strategy, land use, alien invasive species, and information and data management. IJC also recommended that indicators should be reported regarding whether the Great Lakes surface waters are suitable for drinking, swimming and whether fish are edible.

  17. Sierra Nevada snowpack and runoff prediction integrating basin-wide wireless-sensor network data

    Science.gov (United States)

    Yoon, Y.; Conklin, M. H.; Bales, R. C.; Zhang, Z.; Zheng, Z.; Glaser, S. D.

    2016-12-01

    We focus on characterizing snowpack and estimating runoff from snowmelt in high elevation area (>2100 m) in Sierra Nevada for daily (for use in, e.g. flood and hydropower forecasting), seasonal (supply prediction), and decadal (long-term planning) time scale. Here, basin-wide wireless-sensor network data (ARHO, http://glaser.berkeley.edu/wsn/) is integrated into the USGS Precipitation-Runoff Modeling System (PRMS), and a case study of the American River basin is presented. In the American River basin, over 140 wireless sensors have been planted in 14 sites considering elevation gradient, slope, aspect, and vegetation density, which provides spatially distributed snow depth, temperature, solar radiation, and soil moisture from 2013. 800 m daily gridded dataset (PRISM) is used as the climate input for the PRMS. Model parameters are obtained from various sources (e.g., NLCD 2011, SSURGO, and NED) with a regionalization method and GIS analysis. We use a stepwise framework for a model calibration to improve model performance and localities of estimates. For this, entire basin is divided into 12 subbasins that include full natural flow measurements. The study period is between 1982 and 2014, which contains three major storm events and recent severe drought. Simulated snow depth and snow water equivalent (SWE) are initially compared with the water year 2014 ARHO observations. The overall results show reasonable agreements having the Nash-Sutcliffe efficiency coefficient (NS) of 0.7, ranged from 0.3 to 0.86. However, the results indicate a tendency to underestimate the SWE in a high elevation area compared with ARHO observations, which is caused by the underestimated PRISM precipitation data. Precipitation at gauge-sparse regions (e.g., high elevation area), in general, cannot be well represented in gridded datasets. Streamflow estimates of the basin outlet have NS of 0.93, percent bias of 7.8%, and normalized root mean square error of 3.6% for the monthly time scale.

  18. The influence of late Miocene exhumation on the petroleum systems of the greater Caucasus foreland basins

    International Nuclear Information System (INIS)

    Andy, A.; Colin, D.; Sally, H.; Simon, O.

    2002-01-01

    Full text: Northwards impingement of Arabia during the Cenozoic led to the inversion of the Mesozoic Greater Caucasus Basin and the associated development of areas of enhanced subsidence. However, there is great debate regarding the timing of initiation of thrusting and uplift in the Caucasus region.Traditionally, ages ranging from Middle Eocene through to Middle Miocene have been proposed.More recently. It has become clear that although deformation and flexural subsidence may have initiated during the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift and exhumation did not begin until the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift event have been identified.The late Miocene to Pliocene event influenced a broad region and had important implications for reservoir rock deposition and the generation,migration,trapping and preservation of hydrocarbons in the surrounding basins (e.g. Indolo-Kuban,Terek-Caspian, South Caspian, Kura-Kartli, Rion, Black Sea).One area of particular interest is the development of the Stavropol Arch through time,since foreland basins are presently restricted to the Indolo-Kuban and Terek-Caspian Sub-basins.The Stavropol Arch lies immediately north of the central, most elevated parts of the Caucasus Mountains and separates the main areas of enhanced foreland subsidence.Although in most palaeogeographic reconstructions of the area, the Stavropol Arch is shown as an uplifted massif during much of the Mesozoic and Lower Cenozoic, it seems likely from recent studies that it is a feature of Late Miocene to Pliocene exhumation.One major potential implication is that an Oligocene to Miocene (foreland) succession developed in a major basin across the whole region north of the Greater Caucasus.Much of this was subsequently eroded from the Stavropol Arch during uplift and exhumation, separating the Indolo-Kuban and Terek-Caspian foreland basins.From qualitative section balancing we

  19. Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique

    International Nuclear Information System (INIS)

    Dove, A.; Hill, B.; Klawunn, P.; Waltho, J.; Backus, S.; McCrea, R.C.

    2012-01-01

    Environment Canada recently developed a clean method suitable for sampling trace levels of metals in surface waters. The results of sampling for total mercury in the Laurentian Great Lakes between 2003 and 2009 give a unique basin-wide perspective of concentrations of this important contaminant and represent improved knowledge of mercury in the region. Results indicate that concentrations of total mercury in the offshore regions of the lakes were within a relatively narrow range from about 0.3 to 0.8 ng/L. The highest concentrations were observed in the western basin of Lake Erie and concentrations then declined towards the east. Compared to the offshore, higher levels were observed at some nearshore locations, particularly in lakes Erie and Ontario. The longer-term temporal record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease in equivalent water concentrations since 1986. - Highlights: ► Basin-wide concentrations of total mercury in Great Lakes surface waters are provided for the first time. ► A clean sampling method is described, stressing isolation of the sample from extraneous sources of contamination. ► Sub-ng/L concentrations of total mercury are observed in most Great Lakes offshore areas. ► Concentrations in the western basin of Lake Erie are consistently the highest observed in the basin. ► The longer-term record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease since 1986. - A new, clean sampling method for metals is described and basin-wide measurements of total mercury are provided for Great Lakes surface waters for the first time.

  20. Ecosystem Services in the Great Lakes – Results of a Summit

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  1. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    Science.gov (United States)

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    in estimated variables for circular buffers and contributing recharge areas of existing public-supply and network wells in the Great Miami River Basin. Large differences in areaweighted mean environmental variables are observed at the basin scale, determined by using the network of uniformly spaced hypothetical wells; the differences have a spatial pattern that generally is similar to spatial patterns in the underlying STATSGO data. Generally, the largest differences were observed for area-weighted nitrogen-application rate from county and national land-use data; the basin-scale differences ranged from -1,600 (indicating a larger value from within the volume-equivalent contributing recharge area) to 1,900 kilograms per year (kg/yr); the range in the underlying spatial data was from 0 to 2,200 kg/yr. Silt content, alfisol content, and nitrogen-application rate are defined by the underlying spatial data and are external to the groundwater system; however, depth to water is an environmental variable that can be estimated in more detail and, presumably, in a more physically based manner using a groundwater-flow model than using the spatial data. Model-calculated depths to water within circular buffers in the Great Miami River Basin differed substantially from values derived from the spatial data and had a much larger range. Differences in estimates of area-weighted spatial variables result in corresponding differences in predictions of nitrate occurrence in the aquifer. In addition to the factors affecting contributing recharge areas and estimated explanatory variables, differences in predictions also are a function of the specific set of explanatory variables used and the fitted slope coefficients in a given model. For models that predicted the probability of exceeding 1 and 4 milligrams per liter as nitrogen (mg/L as N), predicted probabilities using variables estimated from circular buffers and contributing recharge areas generally were correlated but differed

  2. Geochemical evidence for groundwater mixing in the western Great Artesian Basin and recognition of deep inputs in continental-scale flow systems

    Science.gov (United States)

    Crossey, L. J.; Karlstrom, K. E.; Love, A.; Priestley, S.; Shand, P.

    2010-12-01

    Mound springs of the western Great Artesian Basin (GAB), Australia, represent a significant proportion of the discharge of the continental-scale confined aquifers of the region. They also provide unique ecological niches, and they are important historical and cultural sites in an austere landscape. Fed by confined aquifers within the GAB, these spring systems are at risk due to anthropogenic drawdown and increasing demand on scarce hydrologic resources. New water and gas geochemical data indicate that they record hydrologic mixing and complex, fault-influenced flow paths within the western GAB. Elevated 3He/4He gas values, termed “xenowhiffs”, with RA up to 0.09 (Bubbler Spring) provide evidence for mantle-derived fluids introduced through fault conduits into the groundwater system in the last several million years and hence an active mantle-to-groundwater fluid linkage. We apply multiple tracers to understand mixing. Major and trace element data show distinctly different water chemistries for Dalhousie versus southern mound springs suggesting different flow paths and mixing proportions. The source of the C for the CO2 -rich springs is evaluated using water chemistry and C-isotope data. Carbon isotope values range from -9 (Bubbler) to -16 (Strangways). Mixing models allow us to distinguish contributions from dissolution of carbonate in the aquifer (Ccarb=Ca+Mg-SO4 and δ13C= 0), from biological/organic sources (δ13C= -28), and from endogenic sources (deeply derived; δ13C= -3). Results show that all of the springs contain appreciable (many > 50%) endogenic CO2, with Dalhousie showing less endogenic CO2 than the southern mound springs and Paralana hot spring system. CO2/3He values of 4 to 8 x 109 (Bubbler and Jersey Springs) are close to MORB end member values of 2 x 109 whereas other springs have values strongly enriched in CO2 (up to 1013 at Elizabeth Spring). Elevated but highly variable 87Sr/86Sr values up to 0.718 at Dalhousie and up to 0.76 at Paralana

  3. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    Science.gov (United States)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  4. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes.

    Science.gov (United States)

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva

    2017-03-01

    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ 15 N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ 15 N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  5. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  6. Elevational dependence of projected hydrologic changes in the San Francisco Estuary and watershed

    Science.gov (United States)

    Knowles, N.; Cayan, D.R.

    2004-01-01

    California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300-2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300-2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.

  7. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    Science.gov (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  8. Inversion of Magnetic Measurements of the CHAMP Satellite Over the Pannonian Basin

    Science.gov (United States)

    Kis, K. I.; Taylor, P. T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2011-01-01

    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5 x 0.5, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude were downward continued to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks.

  9. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  10. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  11. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    discussed, such as using the game in planning processes and to engage local communities. The game has been beta tested at a modelling workshop in Bangkok and was then used as the basis of a national basin management forum in Bogotá. 42 high-level stakeholders attended and the session generated a great deal of interest in the decision support system, and served as a nucleus for different stakeholders to discuss ideas. The study discusses the development of the game and observations from these sessions. More information: http://simbasin.hilab.nl

  12. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    International Nuclear Information System (INIS)

    Loehle, C.; Richardson, C.J.

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships

  13. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. (ed.) (Westinghouse Savannah River Co., Aiken, SC (USA)); Richardson, C.J. (ed.); Greenwood, K.P.; Hane, M.E.; Lander, A.J. (Duke Univ., Durham, NC (USA))

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships.

  14. The magnificent high-elevation five-needle white pines: Ecological roles and future outlook

    Science.gov (United States)

    Diana F. Tomback; Peter Achuff; Anna W. Schoettle; John W. Schwandt; Ron J. Mastrogiuseppe

    2011-01-01

    The High Five symposium is devoted to exchanging information about a small group of pines with little commercial value but great importance to the ecology of high-mountain ecosystems of the West. These High Five pines include the subalpine and treeline species - whitebark (Pinus albicaulis), Rocky Mountain bristlecone (P. aristata), Great Basin bristlecone (P. longaeva...

  15. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    Science.gov (United States)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations

  16. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    Science.gov (United States)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  17. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  18. Identification of the Impacts of Climate Changes and Human Activities on Runoff in the Jinsha River Basin, China

    Directory of Open Access Journals (Sweden)

    Xiaowan Liu

    2017-01-01

    Full Text Available Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.

  19. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2013-01-01

    Full Text Available Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.’s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  20. Climate change impacts on snow water availability in the Euphrates-Tigris basin

    Directory of Open Access Journals (Sweden)

    M. Özdoğan

    2011-09-01

    Full Text Available This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090. The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent in available snow water, particularly under the high-impact A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates-Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate but these findings also contain a larger uncertainty. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated

  1. National Elevation Dataset

    Science.gov (United States)

    ,

    2002-01-01

    The National Elevation Dataset (NED) is a new raster product assembled by the U.S. Geological Survey. NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation unit, and projection. Data corrections were made in the NED assembly process to minimize artifacts, perform edge matching, and fill sliver areas of missing data. NED has a resolution of one arc-second (approximately 30 meters) for the conterminous United States, Hawaii, Puerto Rico and the island territories and a resolution of two arc-seconds for Alaska. NED data sources have a variety of elevation units, horizontal datums, and map projections. In the NED assembly process the elevation values are converted to decimal meters as a consistent unit of measure, NAD83 is consistently used as horizontal datum, and all the data are recast in a geographic projection. Older DEM's produced by methods that are now obsolete have been filtered during the NED assembly process to minimize artifacts that are commonly found in data produced by these methods. Artifact removal greatly improves the quality of the slope, shaded-relief, and synthetic drainage information that can be derived from the elevation data. Figure 2 illustrates the results of this artifact removal filtering. NED processing also includes steps to adjust values where adjacent DEM's do not match well, and to fill sliver areas of missing data between DEM's. These processing steps ensure that NED has no void areas and artificial discontinuities have been minimized. The artifact removal filtering process does not eliminate all of the artifacts. In areas where the only available DEM is produced by older methods, then "striping" may still occur.

  2. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    Science.gov (United States)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  3. Recent changes in spring snowmelt timing in the Yukon River basin detected by passive microwave satellite data

    Directory of Open Access Journals (Sweden)

    K. A. Semmens

    2013-06-01

    Full Text Available Spring melt is a significant feature of high latitude snowmelt dominated drainage basins influencing hydrological and ecological processes such as snowmelt runoff and green-up. Melt duration, defined as the transition period from snowmelt onset until the end of the melt refreeze, is characterized by high diurnal amplitude variations (DAV where the snowpack is melting during the day and refreezing at night, after which the snowpack melts constantly until depletion. Determining trends for this critical period is necessary for understanding how the Arctic is changing with rising temperatures and provides a baseline from which to assess future change. To study this dynamic period, brightness temperature (Tb data from the Special Sensor Microwave Imager (SSM/I 37 V-GHz frequency from 1988 to 2010 were used to assess snowmelt timing trends for the Yukon River basin, Alaska/Canada. Annual Tb and DAV for 1434 Equal-Area Scalable Earth (EASE-Grid pixels (25 km resolution were processed to determine melt onset and melt refreeze dates from Tb and DAV thresholds previously established in the region. Temporal and spatial trends in the timing of melt onset and melt refreeze, and the duration of melt were analyzed for the 13 sub-basins of the Yukon River basin with three different time interval approaches. Results show a lengthening of the melt period for the majority of the sub-basins with a significant trend toward later end of melt refreeze after which the snowpack melts day and night leading to snow clearance, peak discharge, and green-up. Earlier melt onset trends were also found in the higher elevations and northernmost sub-basins (Porcupine, Chandalar, and Koyukuk rivers. Latitude and elevation displayed the dominant controls on melt timing variability and spring solar flux was highly correlated with melt timing in middle (∼600–1600 m elevations.

  4. Vertebrate Fossils Imply Paleo-elevations of the Tibetan Plateau

    Science.gov (United States)

    Deng, T.; Wang, X.; Li, Q.; Wu, F.; Wang, S.; Hou, S.

    2017-12-01

    The uplift of the Tibetan Plateau remains unclear, and its paleo-elevation reconstructions are crucial to interpret the geodynamic evolution and to understand the climatic changes in Asia. Uplift histories of the Tibetan Plateau based on different proxies differ considerably, and two viewpoints are pointedly opposing on the paleo-elevation estimations of the Tibetan Plateau. One viewpoint is that the Tibetan Plateau did not strongly uplift to reach its modern elevation until the Late Miocene, but another one, mainly based on stable isotopes, argues that the Tibetan Plateau formed early during the Indo-Asian collision and reached its modern elevation in the Paleogene or by the Middle Miocene. In 1839, Hugh Falconer firstly reported some rhinocerotid fossils collected from the Zanda Basin in Tibet, China and indicated that the Himalayas have uplifted by more than 2,000 m since several million years ago. In recent years, the vertebrate fossils discovered from the Tibetan Plateau and its surrounding areas implied a high plateau since the late Early Miocene. During the Oligocene, giant rhinos lived in northwestern China to the north of the Tibetan Plateau, while they were also distributed in the Indo-Pakistan subcontinent to the south of this plateau, which indicates that the elevation of the Tibetan Plateau was not too high to prevent exchanges of large mammals; giant rhinos, the rhinocerotid Aprotodon, and chalicotheres still dispersed north and south of "Tibetan Plateau". A tropical-subtropical lowland fish fauna was also present in the central part of this plateau during the Late Oligocene, in which Eoanabas thibetana was inferred to be closely related to extant climbing perches from South Asia and Sub-Saharan Africa. In contrast, during the Middle Miocene, the shovel-tusked elephant Platybelodon was found from many localities north of the Tibetan Plateau, while its trace was absent in the Siwaliks of the subcontinent, which implies that the Tibetan Plateau had

  5. Hanford K basins spent nuclear fuel project update

    International Nuclear Information System (INIS)

    Williams, N.H.; Hudson, F.G.

    1997-07-01

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building

  6. A topological system for delineation and codification of the Earth's river basins

    Science.gov (United States)

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  7. Soil Erosion Research Based on USLE in Great Khinggan

    OpenAIRE

    Wei Li; Wenyi Fan; Xuegang Mao

    2014-01-01

    Based on the amended model of USLE universal soil loss equation and GIS technology, combined with the natural geographical features of Great Khinggan area, it has conducted quantitative analysis of the factor in Soil loss equation. Uses 2011 years TM/ETM images classification are land uses/cover type figure, combination Great Khinggan area Digital Elevation Model (DEM) and soil type distribution figure and research regional rainfall information, we gets all factors values of space distributio...

  8. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina

    Science.gov (United States)

    Hoke, Gregory D.; Giambiagi, Laura B.; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.

    2014-11-01

    The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world's second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.

  9. River basin management and estuarine needs: the Great Brak case study

    CSIR Research Space (South Africa)

    Huizinga, P

    1995-01-01

    Full Text Available The study of the effect of the Wolwedans Dam on the Great Brak Estuary and the development of the management plan to maintain a healthy environment yielded many interesting results. The general conclusion is that developments in a catchment...

  10. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Science.gov (United States)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which

  11. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  12. Upper Ordovician-Lower Silurian shelf sequences of the Eastern Great Basin: Barn Hills and Lakeside Mountains, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.T. (Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Geosciences); Sheehan, P.M. (Milwaukee Public Museum, WI (United States). Dept of Geology)

    1993-04-01

    Detailed stratigraphic sections through Upper Ordovician-Lower Silurian shelf strata of the Eastern Great Basin were measured in two Utah localities, Barn Hills (Confusion Range) and Lakeside Mountains. Six major subfacies occur in these strata: mud-cracked and crinkly laminated subfacies, Laminated mudstone subfacies, cross-bedded grainstone subfacies, cross-laminated packstone subfacies, grainy bioturbated subfacies, muddy bioturbated subfacies, and thalassinoides burrowed subfacies. These occur in 1--10 m thick cycles in three facies: muddy cyclic laminite facies (tidal flats), cross-bedded facies (subtidal shoals), and bioturbated facies (moderate to low-energy shelf). The vertical facies succession, stacking patterns of meter-scale cycles, and exposure surfaces define correlatable sequences. The authors recognize four Upper Ordovician sequences (Mayvillian to Richmondian). An uppermost Ordovician (Hirnantian) sequence is missing in these sections but occurs basinward. Lower Silurian sequences are of early Llandoverian (A), middle Llandoverian (B), early late Llandoverian (C1--C3), late late Llandoverian (C4--C5), latest Llandoverian (C6) to early Wenlock age. In general, Upper Ordovician and latest Llandoverian-Wenlockian facies are muddier than intervening Llandoverian facies. The shift to muddier shelf facies in latest Llandoverian probably corresponds to the development of a rimmed shelf. The sequence framework improves correlation of these strata by combining sedimentologic patterns with the biostratigraphic data. For example, in the Lakesides, the Ordovician-Silurian boundary is shifted 37 m downward from recent suggestions. In addition, the sequence approach highlights intervals for which additional biostratigraphic information is needed.

  13. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  14. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  15. A multi-criteria approach to Great Barrier Reef catchment (Queensland, Australia) diffuse-source pollution problem.

    Science.gov (United States)

    Greiner, R; Herr, A; Brodie, J; Haynes, D

    2005-01-01

    This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.

  16. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  17. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  18. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia's Great Artesian Basin

    Science.gov (United States)

    Smerdon, Brian D.; Turnadge, Chris

    2015-08-01

    Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie-Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25-50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

  19. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    NARCIS (Netherlands)

    Jia, L.; Shang, H.L.; Hu, G.; Menenti, M.

    2011-01-01

    Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional

  20. SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

    Directory of Open Access Journals (Sweden)

    D. BURUIANĂ

    2012-03-01

    Full Text Available Jijia river basin surface geographically fits in Moldavian Plateau, Plain of Moldavia subunit. Being lowered by 200 to 300 m compared to adjacent subunits, it appears as a depression with altitudes between 270-300 m.Through its position in the extra-Carpathian region, away from the influence of oceanic air masses, but wide open to the action of air masses of eastern, north-eastern and northern continental origin, Jijia basin receives precipitations which vary according to the average altitude differing from the northern to the southern part of the basin (564 mm in north, 529.4 mm in Iasi. A characteristic phenomenon to the climate is represented by the torrential rains in the hot season, under the form of rain showers with great intensity, fact that influences the drainage of basin rivers. Jijia hydrographic basin is characterized by frequent and sharp variations of flow volumes and levels which lead to floods and flooding throughout the basin. The high waters generally occur between March and June, when approximately 70% of the annual stock is transported. The paper analyzes the main causes and consequences of flooding in the studied area, also identifying some structural and non-structural measures of flood protection applied by authorities in Jijia hydrographic basin. As a case study, the flood recorded in Dorohoi in June 28-29, 2010 is presented.

  1. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  2. Annual North Dakota Elevator Marketing Report, 2008-09

    Science.gov (United States)

    2009-12-01

    The Annual North Dakota Elevator Marketing Report for 2008-09 was prepared by Kimberly Vachal and Laurel Benson, : Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North Dakota : Grain Dealers Asso...

  3. Annual North Dakota Elevator Marketing Report, 2009-10

    Science.gov (United States)

    2010-11-01

    The Annual North Dakota Elevator Marketing Report for 2009-10 was prepared by Kimberly Vachal and Laurel Benson, : Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North Dakota : Wheat Commission a...

  4. Annual North Dakota Elevator Marketing Report, 2007-08

    Science.gov (United States)

    2008-12-01

    The Annual North Dakota Elevator Marketing Report for 2007-08 was prepared by Kimberly Vachal and Laurel Benson, : Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North Dakota : Grain Dealers Asso...

  5. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  6. Sedimentary tectonic evolution and reservoir-forming conditions of the Dazhou–Kaijiang paleo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yueming Yang

    2016-12-01

    Full Text Available Great breakthrough recently achieved in the Sinian–Lower Paleozoic gas exploration in the Leshan–Longnüsi paleo-uplift, Sichuan Basin, has also made a common view reached, i.e., large-scale paleo-uplifts will be the most potential gas exploration target in the deep strata of this basin. Apart from the above-mentioned one, the other huge paleo-uplifts are all considered to be the ones formed in the post-Caledonian period, the impact of which, however, has rarely ever been discussed on the Sinian–Lower Paleozoic oil and gas reservoir formation. In view of this, based on outcrops, drilling and geophysical data, we analyzed the Sinian–Lower Paleozoic tectonic setting and sedimentary background in the East Sichuan Basin, studied the distribution rules of reservoirs and source rocks under the control of paleo-uplifts, and finally discussed, on the basis of structural evolution analysis, the conditions for the formation of Sinian–Lower Paleozoic gas reservoirs in this study area. The following findings were achieved. (1 The Dazhou–Kaijiang inherited uplift in NE Sichuan Basin which was developed before the Middle Cambrian controlled a large area of Sinian and Cambrian beach-facies development. (2 Beach-facies reservoirs were developed in the upper part of the paleo-uplift, while in the peripheral depression belts thick source rocks were developed like the Upper Sinian Doushantuo Fm and Lower Cambrian Qiongzhusi Fm, so there is a good source–reservoir assemblage. (3 Since the Permian epoch, the Dazhou–Kaijiang paleo-uplift had gradually become elevated from the slope zone, where the Permian oil generation peak occurred in the slope or lower and gentle uplift belts, while the Triassic gas generation peak occurred in the higher uplift belts, both with a favorable condition for hydrocarbon accumulation. (4 The lower structural layers, including the Lower Cambrian and its underlying strata, in the East Sichuan Basin, are now equipped with a

  7. Evidence for early hunters beneath the Great Lakes

    OpenAIRE

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and loca...

  8. Annual North Dakota Elevator Marketing Report, 2010-11

    Science.gov (United States)

    2011-12-01

    The Annual North Dakota Elevator Marketing Report for 2010-11 was prepared by Kimberly Vachal and Laurel Benson, Upper Great Plains Transportation Institute. The authors gratefully acknowledge the assistance of the North Dakota Wheat Commission and t...

  9. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Science.gov (United States)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  10. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    Science.gov (United States)

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross

  11. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  12. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  13. Topography of Sputnik Planitia Basin on Pluto: What We Know and Don't Know

    Science.gov (United States)

    Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Moore, J.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    Pluto's topography is complex and reflects a diversity of geologic processes throughout its history. The most dominant feature is the deep 1200-by-2000-km-wide topographic depression enclosing the Sputnik Planitia nitrogen-rich ice sheet. Centered in the encounter hemisphere this large basin is ideally suited for topographic analysis. Despite this, considerable effort is required to constrain the true depth of this giant feature due to the uncertainties in controlling MVIC line-scan images, our primary source for long-wavelength information. Here we will summarize the current state of knowledge of this feature, as processing continues. Current estimates are that the floor of the observed basin (i.e., the top of the ice sheet) is 2-2.5 km depressed below the mean elevation of the surface. There is a highly eroded annular raised arched-ridge surrounding most of the basin that rises up to 1 km above mean surface. The surface of most of the ice sheet appears to be remarkably level within the limits of measurement ( 125 m). Comparison to other similar-sized depressions on Mars and the Moon support the interpretation that this is a large ancient impact structure. The outer 20-40- km of the ice sheet can be either depressed or raised several hundred meters, with the depressed moat forming north of 30° latitude or so, the raised portions forming south of this and corresponding to areas where glacier-like flow of material from the elevated rim regions meets the ice sheet. This suggests that the equatorial areas are areas of net accumulation of ice and the areas to the north are net deflation or lateral flow. The ice sheet is also characterized by polygonal and ovoid `cells' diagnostic of convection. These have shading patterns consistent with cell centers being raised in elevation. Preliminary shape-from-shading measurements suggest elevations of 100-200 m, consistent with weak stereo observations, though much more work is required on all these topics. Interpolation of d

  14. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  15. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    liter as phosphorus) were measured in a stream that receives treated sewage effluent. Discharge of water containing elevated sulfate (about 250 milligrams per liter) from quarry dewatering operations contributes to die increase in sulfate concentration (of 10 to 40 milligrams per liter) in base flow downstream from the quarry. The chloride load at all stream sites is greater than the load contributed by precipitation and mineral weathering to the basin, indicating anthropogenic sources of chloride throughout the basin. The diversity index of the benthic invertebrate community has increased since 1973 at the longterm biological monitoring site on West Valley Creek, indicating an improvement in stream quality. The improvement probably is related to controls on discharges and banning of pesticides, such as DOT, in the 1970's. Concentrations of dissolved constituents, except for chloride, determined for base flow in the autumn do not appear to have changed since 1971. Application of the seasonal Kendall test for trend indicates that concentrations of chloride in base flow have increased since 1971; this increase may be related to the increase in urbanization in the basin. The benthic community structure at the West Valley Creek site in 1991 indicates slight nutrient enrichment.Lithium was detected in ground water and surface water downgradient from two lithiumprocessing facilities. Until 1991, lithium was discharged into a losing reach of West Valley Creek, thus introducing lithium into the ground-water system. The potential for cross-contamination between the ground-water and surface-water systems is great, as demonstrated by the detection of lithium in ground water and surface water downstream and downgradient from the two lithium-processing facilities. The lithium that was discharged into the creek acts as a conservative tracer in gaining reaches of West Valley Creek, maintaining a mass balance and characteristic isotopic signature. Lithium-7/lithium-6 ratios were

  16. 81Br, 37Cl, and 87Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan; Love, Andy

    2013-01-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ 81 Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ 37 Cl ranges from 00/00 to -2.50/00. While δ 37 Cl decreases with distance from the recharge area, δ 81 Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. 87 Sr/ 86 Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  17. Stream Flow Simulation of a Snow-Fed Mountainous Basin Using the SWAT Model

    Science.gov (United States)

    Shukla, S.; Kansal, M. L.; Jain, S. K.

    2017-12-01

    Hydrological budget of the Satluj River (a major tributary of Indus river system) in Western Himalaya, is dominated by monsoonal rainfall and snowmelt during the non-monsoon months. The river watershed experiences extensive snowfall in the winters and snowmelt runoff substantially contributes to the streamflow of the river in the spring and summer months. In order to understand the hydrologic response of Satluj basin, hydrological modeling study is carried out using a semi distributed hydrological model Soil and Water Assessment Tool (SWAT), for the period of thirty years (1985-2014). The basic intent of this study is to derive the parameters required for runoff modeling using the geospatial database. The Sequential Uncertainty Fitting (SUFI-2) algorithm is used to calibrate and validate the model and incorporate uncertainties in the analysis. The results are validated with the observed daily streamflow data at Rampur, in terms of Nash-Sutcliffe Coefficient (NSC), R2 and Root Mean Square Error (RMSE). Further, the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. The northern part of the basin and the south part of the basin on the high elevation zones have the coldest maximum temperatures that is about 7°C. It is found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Rampur is about 66% and remaining 34% is from rainfall.

  18. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  19. Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona

    Science.gov (United States)

    Angeroth, Cory E.

    2002-01-01

    Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

  20. An outline of neotectonic structures and morphotectonics of the western and central Pannonian basin.

    NARCIS (Netherlands)

    Fodor, L.; Bada, G.; Csillag, G.; Horvath, E.; Ruszkiczay-Rudiger, Z.; Klara, P.; Sikhegyi, F.; Timár, G.; Cloetingh, S.A.P.L.; Horvath, F.

    2005-01-01

    Neotectonic deformation in the western and central part of the Pannonian Basin was investigated by means of surface and subsurface structural analyses, and geomorphologic observations. The applied methodology includes the study of outcrops, industrial seismic profiles, digital elevation models,

  1. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  2. Insights on the evolution of mid-ocean basins: the Atlantis Basin of southern Azores

    Science.gov (United States)

    Alves, T.; Bouriak, S.; Volkonskaya, A.; Monteiro, J.; Ivanov, M.

    2003-04-01

    Single-channel seismic reflection and sidescan (OKEAN) data acquired in an unstudied region of the North Atlantic give important insights on the evolution of mid-ocean basins. Located on the eastern flank of the Mid-Atlantic Ridge, south of the Azores Islands, the study area contains more than 1,000 ms two-way travel-time of sediments with a similar seismic stratigraphy to that of ODP sites 950-952 in the Madeira Abyssal Plain. Processed thickness values correspond to a maximum thickness of about 1450 m and an average thickness of more than 500 m based on velocity data from ODP sites 950-952. The structure of the surveyed area and its location in relation to the Madeira Abyssal Plain and Mid-Atlantic Ridge indicate the existence, south of Azores, of two distinct sedimentary basins separated by major structural lineaments (Azores-Gibraltar and Atlantis Fracture Zones) and by seamount chains (Cruiser-Great Meteor Chain, Plato-Atlantis Chain). The basement of the sedimentary basins is irregular, showing multiple dome-shaped volcanic structures identical to those in the Norwegian-Greenland Sea and Madeira Abyssal Plain. However, half-graben/graben basement blocks predominate east of 30ºW underneath a moderately deformed overburden. The complex structure observed most likely reflects changes in the direction and velocity of ocean spreading plus variations in the regional thermal gradients induced by local hot spots. In parallel, some of the sub-surface structures identified next to basin-bounding Fracture Zones may have resulted from transtensional and transpressional tectonism.

  3. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    Science.gov (United States)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  4. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    Science.gov (United States)

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  5. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  6. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  7. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  8. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  9. Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2016-10-01

    Full Text Available A comprehensive survey of dissolved organic carbon (DOC and chromophoric dissolved organic matter (CDOM was conducted in the Canada and Makarov Basins and adjacent seas during 2010-2012 to investigate the dynamics of dissolved organic matter (DOM in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69±6 µmol L-1, CDOM absorption (a325: 0.32±0.07 m-1 and CDOM-derived lignin phenols (3±0.4 nmol L-1 and high spectral slope values (S275-295: 31.7±2.3 µm-1, indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108±9 µmol L-1 and lignin phenol concentrations (15±3 nmol L-1, high a325 values (1.36±0.18 m-1 and low S275-295 values (22.8±0.8 µm-1, indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea, a decrease (Bering-Chukchi Seas, and negligible change (deep basins in surface DOC concentrations and a325 values. Halocline structures differed between basins, and the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65-70 µmol L-1 and lignin phenol concentrations (3-4 nmol L-1 and S275-295 values (22.9-23.7 µm-1. Deep-water DOC concentrations decreased by 6-8 µmol L-1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036-0.039 µmol L-1 yr-1 in the deep Arctic were lower than those in other ocean

  10. Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Robbins, Lisa L.; Wynn, Jonathan

    2016-01-01

    A comprehensive survey of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) was conducted in the Canada and Makarov Basins and adjacent seas during 2010–2012 to investigate the dynamics of dissolved organic matter (DOM) in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69 ± 6 μmol L−1), CDOM absorption (a325: 0.32 ± 0.07 m−1) and CDOM-derived lignin phenols (3 ± 0.4 nmol L−1), and high spectral slope values (S275–295: 31.7 ± 2.3 μm−1), indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108 ± 9 μmol L−1) and lignin phenol concentrations (15 ± 3 nmol L−1), high a325 values (1.36 ± 0.18 m−1), and low S275–295 values (22.8 ± 0.8 μm−1), indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea), a decrease (Bering-Chukchi Seas), and negligible change (deep basins) in surface DOC concentrations and a325 values. Halocline structures differed between basins, but the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65–70 μmol L−1) and lignin phenol concentrations (3–4 nmol L−1) and S275–295 values (22.9–23.7 μm−1). Deep-water DOC concentrations decreased by 6–8 μmol L−1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036–0.039 μmol L−1

  11. Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios

    Science.gov (United States)

    Wang, Hongqing; Steyer, Gregory D.; Couvillion, Brady R.; John M. Rybczyk,; Beck, Holly J.; William J. Sleavin,; Ehab A. Meselhe,; Mead A. Allison,; Ronald G. Boustany,; Craig J. Fischenich,; Victor H. Rivera-Monroy,

    2014-01-01

    Large sediment diversions are proposed and expected to build new wetlands to alleviate the extensive wetland loss (5,000 km2) affecting coastal Louisiana during the last 78 years. Current assessment and prediction of the impacts of sediment diversions have focused on the capture and dispersal of both water and sediment on the adjacent river side and the immediate outfall marsh area. However, little is known about the effects of sediment diversions on existing wetland surface elevation and vertical accretion dynamics in the receiving basin at the landscape scale. In this study, we used a spatial wetland surface elevation model developed in support of Louisiana's 2012 Coastal Master Plan to examine such landscape-scale effects of sediment diversions. Multiple sediment diversion projects were incorporated in the model to simulate surface elevation and vertical accretion for the next 50 years (2010-2060) under two environmental (moderate and less optimistic) scenarios. Specifically, we examined landscape-scale surface elevation and vertical accretion trends under diversions with different geographical locations, diverted discharge rates, and geomorphic characteristics of the receiving basin. Model results indicate that small diversions ( 1,500 m3 s-1) are required to achieve landscape-level benefits to promote surface elevation via vertical accretion to keep pace with rising sea level.

  12. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  13. Post-fire Downy Brome (Bromus tectorum) invasion at high elevation in Wyoming

    Science.gov (United States)

    The invasive annual grass downy brome is the most ubiquitous weed in sagebrush systems of western North America. The center of invasion has largely been the Great Basin region, but there is an increasing abundance and distribution in the Rocky Mountain States. We evaluated post-fire vegetation chang...

  14. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    Science.gov (United States)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  15. Extraction and Validation of Geomorphological Features from EU-DEM in The Vicinity of the Mygdonia Basin, Northern Greece

    Science.gov (United States)

    Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios

    2017-12-01

    The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from

  16. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    Science.gov (United States)

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity and snow depth. The network consisted of 10 sensor clusters, each with 10 measurement no...

  17. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  18. Encounters with Pinyon-Juniper influence riskier movements in Greater Sage-Grouse across the Great Basin

    Science.gov (United States)

    Prochazka, Brian; Coates, Peter S.; Ricca, Mark; Casazza, Michael L.; Gustafson, K. Ben; Hull, Josh M.

    2016-01-01

    Fine-scale spatiotemporal studies can better identify relationships between individual survival and habitat fragmentation so that mechanistic interpretations can be made at the population level. Recent advances in Global Positioning System (GPS) technology and statistical models capable of deconstructing high-frequency location data have facilitated interpretation of animal movement within a behaviorally mechanistic framework. Habitat fragmentation due to singleleaf pinyon (Pinus monophylla; hereafter pinyon) and Utah juniper (Juniperus osteosperma; hereafter juniper) encroachment into sagebrush (Artemisia spp.) communities is a commonly implicated perturbation that can adversely influence greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) demographic rates. Using an extensive GPS data set (233 birds and 282,954 locations) across 12 study sites within the Great Basin, we conducted a behavioral change point analysis and subsequently constructed Brownian bridge movement models from each behaviorally homogenous section. We found a positive relationship between modeled movement rate and probability of encountering pinyon-juniper with significant variation among age classes. The probability of encountering pinyon-juniper among adults was two and three times greater than that of yearlings and juveniles, respectively. However, the movement rate in response to the probability of encountering pinyon-juniper trees was 1.5 times greater for juveniles. We then assessed the risk of mortality associated with an interaction between movement rate and the probability of encountering pinyon-juniper using shared frailty models. During pinyon-juniper encounters, on average, juvenile, yearling, and adult birds experienced a 10.4%, 0.2%, and 0.3% reduction in annual survival probabilities. Populations that used pinyon-juniper habitats with a frequency ≥ 3.8 times the overall mean experienced decreases in annual survival probabilities of 71.1%, 0.9%, and 0.9%. This

  19. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    Science.gov (United States)

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  1. Thorium abundances of basalt ponds in South Pole-Aitken basin: Insights into the composition and evolution of the far side lunar mantle

    Science.gov (United States)

    Hagerty, Justin J.; Lawrence, D.J.; Hawke, B.R.

    2011-01-01

    Imbrian-aged basalt ponds, located on the floor of South Pole-Aitken (SPA) basin, are used to provide constraints on the composition and evolution of the far side lunar mantle. We use forward modeling of the Lunar Prospector Gamma Ray Spectrometer thorium data, to suggest that at least five different and distinct portions of the far side lunar mantle contain little or no thorium as of the Imbrian Period. We also use spatial correlations between local thorium enhancements and nonmare material on top of the basalt ponds to support previous assertions that lower crustal materials exposed in SPA basin have elevated thorium abundances, consistent with noritic to gabbronoritic lithologies. We suggest that the lower crust on the far side of the Moon experienced multiple intrusions of thorium-rich basaltic magmas, prior to the formation of SPA basin. The fact that many of the ponds on the lunar far side have elevated titanium abundances indicates that the far side of the Moon experienced extensive fractional crystallization that likely led to the formation of a KREEP-like component. However, because the Imbrian-aged basalts contain no signs of elevated thorium, we propose that the SPA impact event triggered the transport of a KREEP-like component from the lunar far side and concentrated it on the nearside of the Moon. Because of the correlation between basaltic ponds and basins within SPA, we suggest that Imbrian-aged basaltic volcanism on the far side of the Moon was driven by basin-induced decompressional melting.

  2. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  3. Pesticide presence in Great Lakes tributaries and comparison to ToxCast and other water quality benchmarks to screen for potential biological effects

    Science.gov (United States)

    Product Description:Pesticides are a broad category of current use chemicals that pose potential threats to aquatic organisms in and around the Great Lakes basin. In this study, we monitored for over 200 pesticides or their break down products in 16 major tributaries to the Great...

  4. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    Science.gov (United States)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  5. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe

    2003-01-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  6. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  7. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    Science.gov (United States)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  8. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  9. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    Science.gov (United States)

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    Science.gov (United States)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  11. A population model of the impact of a rodenticide containing strychnine on Great Basin Gophersnakes (Pituophis catenifer deserticola).

    Science.gov (United States)

    Bishop, Christine A; Williams, Kathleen E; Kirk, David A; Nantel, Patrick; Reed, Eric; Elliott, John E

    2016-09-01

    Strychnine is a neurotoxin and an active ingredient in some rodenticides which are placed in burrows to suppress pocket gopher (Thomomys talpoides) populations in range and crop land in western North America. The population level impact was modelled of the use of strychnine-based rodenticides on a non-target snake species, the Great Basin Gophersnake (Pituophis catenifer deserticola), which is a predator of pocket gopher and a Species at Risk in Canada. Using information on population density, demographics, and movement and habitat suitability for the Gophersnake living in an agricultural valley in BC, Canada, we estimated the impact of the poisoning of adult snakes on the long-term population size. To determine the area where Gophersnakes could be exposed to strychnine, we used vendor records of a rodenticide, and quantified the landcover areas of orchards and vineyards where the compound was most commonly applied. GIS analysis determined the areas of overlap between those agricultural lands and suitable habitats used by Gophersnakes. Stage-based population matrix models revealed that in a low density (0.1/ha) population scenario, a diet of one pocket gopher per year wherein 10 % of them carried enough strychnine to kill an adult snake could cause the loss of 2 females annually from the population and this would reduce the population by 35.3 % in 25 years. Under the same dietary exposure, up to 35 females could die per year in a high density (0.4/ha) population which would result in a loss of 50 % of adults in 25 years.

  12. Regional trend of coal metamorphism in the major Gondwana basins of India

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A K; Alam, M M; Bunerjee, B

    1983-04-01

    The coal-bearing Gondwana sedimentaries are of great economic importance as they possess over 98% of coal resources of India. Within the Gondwana supergroup coal-bearing formations are confined in the Lower Gondwana sequence (Damuda group). The development of coal seams in the different basins were genetically related to the evolutionary pattern of each basin. The imprint of such diverse tectono-geomorphic conditions prevailing over the vast Peninsular Shield, and their regional impact in individual basins are well preserved in the different lithofacies of this thick-pile of sedimentary sequence. In fact constituting coal facies served as a sensitive recorder of the past episode enacted for long geological time span in each basin of the Gondwana grabens. In the present paper an attempt is made to incorporate the salient features of the operative processes in the major Gondwana basins with special reference to coal metamorphism. This has been done considering mass of analytical and sub-surface data available from the physico-chemical survey of coal seams of major coalfields, and extensive drilling operations carried out over the vast virgin tracts of important coalfields.

  13. CO2 and the hydrologic cycle: Simulation of two Texas river basins

    International Nuclear Information System (INIS)

    King, K.W.; Srinivasan, R.; Arnold, J.G.; Williams, J.R.

    1994-01-01

    Increasing concentrations of CO 2 , in the atmosphere have been speculated to have a major effect on water supplies as well as other ecological characteristics. SWAT (Soil Water Assessment Tool) is a river basin scale hydrologic model that was modified to simulate the impact of CO 2 concentration on ET and biomass production. The model was utilized to analyze the impact of global climate change on two contrasting Texas basins. Climatic changes included doubling of CO 2 concentration from 330 ppm to 660 ppm and varying temperatures 0, ±2, and ±4 C from present values. Potential impacts of six hydrologic parameters including ET, potential ET, water yield, water stress, soil water, and biomass were simulated. CO 2 doubling had a more pronounced effect than did temperature variances. When temperature alone was varied, water yield at the outlet of the basins ranged from -4.4% to 6.5% for basin 1202 and from 2.9% to 26.7% for basin 1208. But, when coupled with an elevated CO 2 concentration, water yields increased in the range of 13.1% to 24.5% for basin 1202 and 5.6% to 33.7% for basin 1208. Rising CO 2 levels reduced ET for both basins, representing an enhanced water use efficiency. Seasonal fluctuations of soil water were a result of different growing periods and are evident from water stress encountered by the plant. With enriched CO 2 levels, increases in biomass production ranged from 6.9% to 47.4% and from 14.5 % to 31.4% for basins 1202 and 1208, respectively. 42 refs., 10 figs., 2 tabs

  14. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    ) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.

  15. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  16. Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States†

    Science.gov (United States)

    Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.

    2017-01-01

    Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. PMID:28091681

  17. Role of burrowing activities of the Great Basin pocket mouse (Perognathus parvus) in the dispersal of radionuclides on a decommissioned pond

    International Nuclear Information System (INIS)

    Landeen, D.S.; Mitchell, R.M.

    1982-08-01

    The intrusion of waste burial sites by animals is a common occurrence at nuclear waste facilities. This study identifies parameters associated with burrowing activities of the Great Basin Pocket Mouse at the Hanford Site in southeastern Washington. The objectives of the study were to: (1) document and compare burrow depths on a control site and a decommissioned radioactive waste pond and (2) document 137 Cs concentrations in pocket mice and the soil mounds created by their burrowing activities. Pocket mice burrowed deeper in the backfilled burial site (anti x = 72 cm) than they did in the control site (anti x = 38 cm). The small amounts of 137 Cs found in the mice were an order of magnitude below what was present in the mounds. This indicates that the burrowing habits of these mice and subsequent mound construction may be more important in terms of radionuclide dispersal than the small amounts contained within their bodies. The 137 Cs values reported in the mice and mounds are below Rockwell Hanford Operations (Rockwell) surface soil contamination limits. Information received from test plots will be used in formulating appropriate control mechanisms which may be deployed in the future. In the interim, surface stabilization efforts are being conducted on waste sites to control and deter burrowing animals

  18. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  19. Avifauna of the Pongos Basin, Amazonas Department, Peru

    Science.gov (United States)

    Brooks, Daniel M.; O'Neill, John P.; Foster, Mercedes S.; Mark, Todd; Dauphine, Nico; Franke, Irma J.

    2009-01-01

    We provide an inventory of the avifauna of the Pongos Basin, northern Amazonas Department, Peru based on museum specimens collected during expeditions spanning >60 years within the 20th century. Four hundred and thirty-eight species representing 52 families are reported. Differences between lowland and higher elevation avifaunas were apparent. Species accounts with overviews of specimen data are provided for four species representing distributional records, two threatened species, and 26 species of Nearctic and Austral migrants, of which six are considered probable migrants.

  20. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  1. New evidence of lacustrine basins on Mars - Amazonis and Utopia Planitiae

    Science.gov (United States)

    Scott, David H.; Chapman, Mary G.; Rice, James W., Jr.; Dohm, James M.

    1992-01-01

    Amazonis and Utopia Planitiae are two large basins on Mars that have morphologic features commonly associated with former standing bodies of water. Like Elysium, the basins exhibit terraces and lineations resembling shorelines, etched and infilled floors marked by sinuous channels in places, inflow channels along their borders, and other geomorphic indicators believed to be related to the presence of water and ice. Moreover, most of the shoreline features have consistent elevations of about -1000 m, which suggests that the bodies of water thought to have occupied the basins may once have been connected. Although the concept of large paleolakes in the northern lowlands of Mars might be expanded to include inland seas, it is still premature to advance this hypothesis at the present stage of investigation. Even though these postulated paleolakes are very young in the Martian stratigraphic sequence, they are probably much older than large Pleistocene lakes on earth, and their shoreline features are less well preserved.

  2. Resonance properties of tidal channels with multiple retention basins: role of adjacent sea

    Science.gov (United States)

    Roos, Pieter C.; Schuttelaars, Henk M.

    2015-03-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea geometry controls the extent to which radiative damping takes place and hence the type of conditions that effectively apply at the channel mouth. These conditions range between the two extremes of prescribing elevation (deep sea limit) and prescribing the incoming wave (sea as channel extension of the same depth, as done in an earlier study). The closer to this first extreme, the stronger the oscillations in the secondary basins may feed back onto the channel mouth and thus produce an amplified or weakened response in the system as a whole. The possibly resonant response is explained by analysing the additional waves that emerge on either side of the entrance of the secondary basin. Finally, we show that the simultaneous presence of two secondary basins may amplify or weaken the accumulated responses to these basins individually.

  3. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rossetti, Dilce F.; Valeriano, Marcio M., E-mail: rossetti@dsr.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Divisao de Sensoriamento Remoto; Goes, Ana M.; Brito-Neves, Benjamim B. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Geociencias; Bezerra, Francisco H.R.; Ochoa, Felipe L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias Exatas e da Terra. Departamento de Geologia

    2012-06-15

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  4. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    International Nuclear Information System (INIS)

    Rossetti, Dilce F.; Valeriano, Marcio M.; Goes, Ana M.; Brito-Neves, Benjamim B.; Bezerra, Francisco H.R.; Ochoa, Felipe L.

    2012-01-01

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  5. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  6. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    Science.gov (United States)

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  7. Geohydrologic reconnaissance of the upper Potomac River basin

    Science.gov (United States)

    Trainer, Frank W.; Watkins, Frank A.

    1975-01-01

    The upper Potomac River basin, in the central Appalachian region in Pennsylvania, Maryland, Virginia, and West Virginia, is a humid temperate region of diverse fractured rocks. Three geohydrologic terranes, which underlie large parts of the basin, are described in terms of their aquifer characteristics and of the magnitude and duration of their base runoff: (1) fractured rock having a thin regolith, (2) fractured rock having a thick regolith, and (3) carbonate rock. Crystalline rock in the mountainous part of the Blue Ridge province and shale with tight sandstone in the folded Appalachians are covered with thin regolith. Water is stored in and moves through fairly unmodified fractures. Average transmissivity (T) is estimated to be 150 feet squared per day, and average storage coefficient (S), 0.005. Base runoff declines rapidly from its high levels during spring and is poorly sustained during the summer season of high evapotranspiration. The rocks in this geohydrologic terrane are the least effective in the basin for the development of water supplies and as a source of dry-weather streamflow. Crystalline and sedimentary rocks in the Piedmont province and in the lowland part of the Blue Ridge province are covered with thick regolith. Water is stored in and moves through both the regolith and the underlying fractured rock. Estimated average values for aquifer characteristics are T, 200 feet squared per day, and S, 0.01. Base runoff is better sustained in this terrane than in the thin-regolith terrane and on the average .is about twice as great. Carbonate rock, in which fractures have been widened selectively by solution, especially near streams, has estimated average aquifer characteristics of T, 500 feet squared per day, and S, 0.03-0.04. This rock is the most effective in the basin in terms of water supply and base runoff. Where its fractures have not been widened by solution, the carbonate rock is a fractured-rock aquifer much like the noncarbonate rock. At low

  8. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    Science.gov (United States)

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.

  9. High altitude agriculture in the Titicaca basin (800 BCE-200 CE): Impacts on nutrition and disease load.

    Science.gov (United States)

    Juengst, Sara L; Hutchinson, Dale L; Chávez, Sergio J

    2017-07-08

    This study investigates the biological impacts of sedentism and agriculture on humans living in the high altitude landscape of the Titicaca Basin between 800 BCE and CE 200. The transition to agriculture in other global areas resulted in increases in disease and malnutrition; the high altitude of the Titicaca Basin could have exacerbated this. Our objective is to test whether the high altitude of the Titicaca Basin created a marginal environment for early agriculturalists living there, reflected through elevated rates of malnutrition and/or disease. To test this, we analyzed human remains excavated from seven archaeological sites on the Copacabana Peninsula for markers of diet and disease. These markers included dental caries, dental abscesses, cribra orbitalia, porotic hyperostosis, periosteal reactions, osteomyelitis, and linear enamel hypoplasia. Results showed that markers of diet did not support malnutrition or micronutrient deficiencies but instead, indicated a relatively diverse diet for all individuals. Markers of disease also did not vary significantly but were common, indicating circulation of pathogens or chronic bodily stress. We interpret these results as an indication that while diets remained nutritious, investment in the landscape exposed populations to issues of sanitation and disease. The high-altitude of the Titicaca Basin did not exacerbate the biological impacts of agriculture in terms of increased malnutrition. Additionally, disease load was likely related to problems faced by many sedentary groups as opposed to unique challenges posed by high altitude. In sum, despite the high elevation, the Titicaca Basin is not truly a marginal environment for humans. © 2017 Wiley Periodicals, Inc.

  10. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Mélanie Becker

    2014-09-01

    Full Text Available In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009. To improve the understanding of the physical phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived river level height variations to identify groups of hydrologically similar catchments. This analysis reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and therefore considered reliable for estimating monthly water level variations in the Congo Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented means for improved representation of the hydrologic characteristics in large ungauged river basins.

  11. Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau

    Science.gov (United States)

    Koç, Ayten; Kaymakci, Nuretdin; Van Hinsbergen, Douwe J. J.; Kuiper, Klaudia F.

    2017-11-01

    Marine Lower-Upper Miocene deposits uplifted to > 2 km elevation in the Tauride mountains of southern Turkey are taken as evidence for the rise of a nascent plateau. The dynamic causes of this uplift are debated, but generally thought to be a regional dynamic topographic effect of slab motions or slab break-off. Immediately adjacent to the high Tauride mountains lie the Central Tauride Intramontane Basins, which consist of Miocene and younger fluvio-lacustrine basins, at much lower elevations than the highly uplifted marine Miocene rocks. These basins include the previously analyzed Altınapa and Yalvaç basins, as well as the until now undescribed Ilgın Basin. In this paper, we aim to constrain the paleogeography of the Central Tauride Intramontane Basins and determine the role of the tectonics driving the formation of the high Miocene topography in southern Turkey. Therefore, we provide new data on the stratigraphy, sedimentology and structure of the continental Ilgın Basin. We provide an 40Ar/39Ar age of 11.61 ± 0.05 Ma for pumice deposits in the stratigraphy. We provide paleostress inversion analysis based on growth faults showing that the basin formed during multi-directional extension, with NE-SW to E-W dominating over subordinate Nsbnd S extension. We conclude that major, still-active normal faults like the Akşehir Fault also controlled Miocene Ilgın basin formation, with proximal facies close to the basin margins grading upwards and basinwards into lacustrine deposits representing the local depocenter. The Ilgın Basin was a local depocenter, but it may have connected with the adjacent Altınapa Basin during high lake levels in late Serravallian time. The Ilgın Basin and the other continental basins provide key constraints on the paleogeography and tectonic history of the region. These continental basins were likely close to the paleo-coastline during the Late Miocene after which there must have been major differential uplift of the Taurides. We

  12. Influence of irrigation on the occurrence of organic and inorganic pollutants in soil, water and sediments of a Spanish agrarian basin (Lerma)

    Energy Technology Data Exchange (ETDEWEB)

    Abrahao, R.; Sarasa, J.; Causape, J.; Garcia-Garizabal, I.; Ovelleiro, J. L.

    2011-07-01

    In order to understand the several possible environmental impacts caused by irrigation, the existence of a study area under transition from unirrigated to irrigated land is a great advantage. This work investigates the presence of 44 pesticides and metabolites, 11 organo chlorinated compounds, 17 polycyclic aromatic hydrocarbons (PAHs), 13 polychlorinated biphenyls (PCBs), and several metals and metalloids such as Cd, Cr, Cu, Ni, Pb, Zn, As, Se and Hg, in the soil, water and sediments of an agrarian basin in Northeast Spain. The study area was unirrigated until 2006, when irrigation began. The objective of this work was to verify if the first irrigation years influenced the concentrations of the substances and elements analyzed. The main contaminants detected were organo chlorinated compounds, Paths and metals in the soil; atrazine, desethyl atrazine, terbuthylazine, dicofol and pp'-DDT in the water; and PAHs, 1,2,4 trichlorobenzene and metals in the sediments. Until the conclusion of this study, no serious contamination issues existed related to the analyzed substances, and for the moment, irrigation has not significantly influenced the concentrations of such substances in the basin. Nevertheless, slightly elevated punctual values were observed for endrin in the soil, pp'-DDT in the water, and Ni and Zn in the sediments. (Author) 45 refs.

  13. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  14. Monocular Elevation Deficiency - Double Elevator Palsy

    Science.gov (United States)

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  15. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    Science.gov (United States)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  16. Density characteristics in the upper part of the platform of the Pripyatskiy Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bulyga, V.K.; Anpilogov, A.P.; Ksenofontov, V.A.; Ur' yev, I.I.

    1981-01-01

    Density characteristics are examined for the Devonian (upper saline and suprasaline), Carboniferous, Permian, Mesozoic and Cenozoic deposits of the Pripyatskiy Basin. Maps are compiled for isodensities, variability is established in the average values of density both in a regional sense and on local elevations which are characterized for the most part by density minimums.

  17. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Science.gov (United States)

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  18. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  19. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    Science.gov (United States)

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  20. Equilibrium and Disequilibrium of River Basins: Effects on Stream Captures in Serra do Mar and Serra da Mantiqueira, Brazil

    Science.gov (United States)

    DA Silva, L. M.

    2015-12-01

    Landscapes are mainly driven by river processes that control the dynamic reorganization of networks. Discovering and identifying whether river basins are in geometric equilibrium or disequilibrium requires an analysis of water divides, channels that shift laterally or expand upstream and river captures. Issues specifically discussed include the variation of drainage area change and erosion rates of the basins. In southeastern Brazil there are two main escarpments with extensive geomorphic surfaces: Serra do Mar and Serra da Mantiqueira Mountains. These landscapes are constituted of Neoproterozoic and early Paleozoic rocks, presenting steep escarpments with low-elevation coastal plains and higher elevation interior plateaus. To identify whether river basins and river profiles are in equilibrium or disequilibrium in Serra do Mar and Serra da Mantiqueira Mountains, we used the proxy (χ), evaluating the effect of drainage area change and erosion rates. We selected basins that drain both sides of these two main escarpments (oceanic and continental sides) and have denudation rates derived from pre-existing cosmogenic isotopes data (Rio de Janeiro, Paraná and Minas Gerais). Despite being an ancient and tectonically stable landscape, part of the coastal plain of Serra do Mar Mountain in Rio de Janeiro and Paraná is in geometric disequilibrium, with water divides moving in the direction of higher χ values. To achieve equilibrium, some basins located in the continental side are retracting and disappearing, losing area to the coastal basins. On the contrary, there are some adjacent sub-basins that are close to equilibrium, without strong contrasts in χ values. The same pattern was observed in Serra da Mantiqueira (Minas Gerais state), with stream captures and river network reorganization in its main rivers. The initial results suggest a strong contrast between erosion rates in the continental and the oceanic portions of the escarpments.

  1. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  2. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  3. A Case of Isolated Elevated Copper Levels during Pregnancy

    Directory of Open Access Journals (Sweden)

    LaToya R. Walker

    2011-01-01

    Full Text Available Introduction. Outside of Wilson's Disease, abnormal copper metabolism is a rare condition. In pregnancy, excess copper levels can be associated with intrauterine growth restriction, preeclampsia and neurological disease. Case Report. A 32 year old Gravida 4 para 2012 with an obstetrical history complicated by elevated copper levels presented for routine prenatal care. Her children had elevated copper levels at birth, with her firstborn child being diagnosed with autism and suffering three myocardial infarctions and being treated for elevated copper levels. During her prior pregnancies, she declined treatment for her elevated copper levels. During this pregnancy, she had declined chelation therapy and instead choose zinc therapy. She delivered a healthy infant with normal copper levels. Conclusion. Alterations in copper metabolism are rare, the consequences in pregnancy can be devastating. While isolated elevations of copper in pregnancy is exceedingly rare, it is treated the same as Wilson's disease. The goal is to prevent fetal growth restricting and neurological sequelae in the newborn and preeclampsia in the mother. Counseling, along with treatment options and timely delivery can greatly improve neonatal and maternal outcome.

  4. Elevating your elevator talk

    Science.gov (United States)

    An important and often overlooked item that every early career researcher needs to do is compose an elevator talk. The elevator talk, named because the talk should not last longer than an average elevator ride (30 to 60 seconds), is an effective method to present your research and yourself in a clea...

  5. Preliminary results of the ice_sheet_CCI round robin activity on the estimation of surface elevation changes

    DEFF Research Database (Denmark)

    Ticconi, F.; Fredenslund Levinsen, Joanna; Khvorostovsky, K.

    2013-01-01

    This work presents the first results of a research activity aiming to compare estimates of Surface Elevation Changes (SEC) over the Jakobshavn Isbræ basin (Greenland) using different repeat altimetry techniques and different sensors (laser vs. radar altimetry). The goal of this comparison...... is the identification of the best performing algorithm, in terms of accuracy, coverage and processing effort, for the generation of surface elevation change maps. The methods investigated here are the cross-over and repeat-track. The results of the inter-comparison are here reported and, from a first analysis...

  6. Geomorphic evidence for enhanced Pliocene-Quaternary faulting in the northwestern Basin and Range

    Science.gov (United States)

    Ellis, Magdalena A; Barnes Jason B,; Colgan, Joseph P.

    2014-01-01

    Mountains in the U.S. Basin and Range Province are similar in form, yet they have different histories of deformation and uplift. Unfortunately, chronicling fault slip with techniques like thermochronology and geodetics can still leave sizable, yet potentially important gaps at Pliocene–Quaternary (∼105–106 yr) time scales. Here, we combine existing geochronology with new geomorphic observations and approaches to investigate the Miocene to Quaternary slip history of active normal faults that are exhuming three footwall ranges in northwestern Nevada: the Pine Forest Range, the Jackson Mountains, and the Santa Rosa Range. We use the National Elevation Dataset (10 m) digital elevation model (DEM) to measure bedrock river profiles and hillslope gradients from these ranges. We observe a prominent suite of channel convexities (knickpoints) that segment the channels into upper reaches with low steepness (mean ksn = ∼182; θref = 0.51) and lower, fault-proximal reaches with high steepness (mean ksn = ∼361), with a concomitant increase in hillslope angles of ∼6°–9°. Geologic maps and field-based proxies for rock strength allow us to rule out static causes for the knickpoints and interpret them as transient features triggered by a drop in base level that created ∼20% of the existing relief (∼220 m of ∼1050 m total). We then constrain the timing of base-level change using paleochannel profile reconstructions, catchment-scale volumetric erosion fluxes, and a stream-power–based knickpoint celerity (migration) model. Low-temperature thermochronology data show that faulting began at ca. 11–12 Ma, yet our results estimate knickpoint initiation began in the last 5 Ma and possibly as recently as 0.1 Ma with reasonable migration rates of 0.5–2 mm/yr. We interpret the collective results to be evidence for enhanced Pliocene–Quaternary fault slip that may be related to tectonic reorganization in the American West, although we cannot rule out climate as a

  7. Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia's Great Artesian Basin.

    Science.gov (United States)

    Murphy, Nicholas P; Adams, Mark; Austin, Andrew D

    2009-01-01

    The groundwater-dependent springs of the Great Artesian Basin (GAB) in arid inland Australia represent a unique and threatened ecosystem. These incredibly isolated springs support a diverse array of endemic flora and fauna. One of the common faunal groups in the GAB springs is the freshwater amphipods of the family Chiltoniidae. The morphological conservatism and taxonomic uncertainty associated with these amphipods has ensured their true biodiversity, phylogeographical history and evolutionary affinities have remained unknown. We have used mitochondrial DNA and allozyme data to unravel a complicated history of isolation, extinction and dispersal among spring amphipod populations across the GAB. The results provide evidence for multiple independent colonizations in the GAB springs, particularly within the Lake Eyre group of springs. The inclusion of a group of Western Australian (WA) stygobitic amphipods from populations up to 1500 km away found surprising evidence for a shared evolutionary history between stygobitic and GAB spring amphipods. Approximate dating of the diversity found between major clades suggests the majority of lineages originated in the late Miocene, around the time of the aridification of inland Australia. The large number of independent lineages and the close connection between GAB spring and WA stygobitic amphipods suggest that a significantly rich amphipod fauna existed in the much wetter environment that once existed in inland Australia. The results also provide evidence for a gross underestimation of the species diversity within the springs, with 12 putative species identified, a conclusion with significant implications for the ongoing conservation of the GAB springs.

  8. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    Science.gov (United States)

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  9. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  10. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  11. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  12. Slope instability in the Bastardo Basin (Umbria, Central Italy – The landslide of Barattano

    Directory of Open Access Journals (Sweden)

    C. Cencetti

    2003-01-01

    Full Text Available The Bastardo Basin is one of the classics Apenninic intermontane basins of central Italy. They are en-closed tectonic basins (graben and semigraben with high anthropization, but with high vulnerability, too (seismic, hydrogeological and geomorphological. The paper concerns some aspects about slope instability in the Bastardo Basin as part of a wider research, which aims to actually define the characteristics of the liability to landslides of the Apenninic intermontane basins. In particular lithological, stratigraphical and hydrogeological conditions are analysed under which a landslide near village of Barattano has developed. This mass movement, at different times, produced partial or total occlusion of the torrent Puglia. Here geognostic investigations together with laboratory tests and subsequent monitoring of landslide area were carried out.  A back analysis, based on limit equilibrium solutions for the factor of safety of the slope, provided the residual strenght properties of the soil mass along the sliding surface.   The landslide of Barattano is representative of a very frequent situation (in terms of type, factors and causes of the movement, possible development of the movement not only within Bastardo Basin, but in general within Apenninic intermontane basins, too.  The study of landslide and the design of appropriate remedial measures are of great importance in terms of prevention and mitigation of geologic-hydraulic risk in Apenninic intermontane basins.

  13. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.

    2018-01-01

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1

  14. {sup 81}Br, {sup 37}Cl, and {sup 87}Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan [University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada); Love, Andy [Flinders University, Sturt Road, Bedford Park 5042 (Australia)

    2013-07-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ{sup 81}Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ{sup 37}Cl ranges from 00/00 to -2.50/00. While δ{sup 37}Cl decreases with distance from the recharge area, δ{sup 81}Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. {sup 87}Sr/{sup 86}Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  15. Hanford K Basins spent nuclear fuels project update

    International Nuclear Information System (INIS)

    Hudson, F.G.

    1997-01-01

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed

  16. Hanford K Basins spent nuclear fuels project update

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, F.G.

    1997-10-17

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed.

  17. Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India

    Science.gov (United States)

    Ahmad, Shabir; Alam, Akhtar; Ahmad, Bashir; Afzal, Ahsan; Bhat, M. I.; Sultan Bhat, M.; Farooq Ahmad, Hakim; Tectonics; Natural Hazards Research Group

    2018-01-01

    The present study aims to assess the tectonic activity in the Erin basin (NE Kashmir) on the basis of several relevant geomorphic indices and field observations. We use Digital Elevation Model (SRTM) and Survey of India (SoI) topographic maps in GIS environment to compute the geomorphic indices. The indices i.e., convex hypsometric curve, high hypsometric integral value (Hi > 0.5), low basin elongation ratio (Eb = 0.17), low mountain front sinuosity values (Smf = 1.08 average), low valley floor width ratios (Vf 4) suggest that the area is tectonically active. Moreover, prominent irregularities (knickpoints/knickzones) along longitudinal profile of the Erin River even in homogenous resistant lithology (Panjal trap) and anomalous stream gradient index (SL) values reflect that the Erin basin is dissected by two faults (EF-1 and EF-2) with NNW-SSE and SSW-NNE trends respectively. The results of this preliminary study further substantiate the recent GPS studies, which argue that the maximum strain is accumulating in the NE part of the Kashmir Himalaya.

  18. H-Area Acid/Caustic Basin Groundwater Monitoring Report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity

  19. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  20. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.

    Science.gov (United States)

    Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash

    2018-06-01

    The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    Science.gov (United States)

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  2. Let's jump in: A phylogenetic study of the great basin springfishes and poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae.

    Directory of Open Access Journals (Sweden)

    D Cooper Campbell

    Full Text Available North America's Great Basin has long been of interest to biologists due to its high level of organismal endemicity throughout its endorheic watersheds. One example of such a group is the subfamily Empetricthyinae. In this paper, we analyzed the relationships of the Empetrichtyinae and assessed the validity of the subspecies designations given by Williams and Wilde within the group using concatenated phylogenetic tree estimation and species tree estimation. Samples from 19 populations were included covering the entire distribution of the three extant species of Empetricthyinae-Crenichthys nevadae, Crenichthys baileyi and Empetricthys latos. Three nuclear introns (S8 intron 4, S7 intron 1, and P0 intron 1 and one mitochondrial gene (Cytb were sequenced for phylogenetic analysis. Using these sequences, we generated two separate hypotheses of the evolutionary relationships of Empetrichtyinae- one based on the mitochondrial data and one based on the nuclear data using Bayesian phylogenetics. Haplotype networks were also generated to look at the relationships of the populations within Empetrichthyinae. After comparing the two phylogenetic hypotheses, species trees were generated using *BEAST with the nuclear data to further test the validity of the subspecies within Empetrichthyinae. The mitochondrial analyses supported four lineages within C. baileyi and 2 within C. nevadae. The concatenated nuclear tree was more conserved, supporting one clade and an unresolved polytomy in both species. The species tree analysis supported the presence of two species within both C. baileyi and C. nevadae. Based on the results of these analyses, the subspecies designations of Williams and Wilde are not valid, rather a conservative approach suggests there are two species within C. nevadae and two species within C. baileyi. No structure was found for E. latos or the populations of Empetricthyinae. This study represents one of many demonstrating the invalidity of

  3. Digitization of uranium deposit information in basin. A new strategy of ISL sandstone-type uranium deposits exploration

    International Nuclear Information System (INIS)

    Tan Chenglong

    2006-01-01

    The discovered ISL sandstone-type uranium deposits in the entire world are mostly blind deposits, many of them occur in bleak desert, gobi desert, and semi-hilly land area. Exploration methods for these deposits mainly depend on great and systematic drilling. There are many large-medium size Meso-Cenozoic sedimentary basins in northern China, and over twenty of them are thick overburden basins which are mostly the virgin land for ISL sandstone-type uranium deposit. Due to the comprehensive national power, geological background, uranium exploration ability, great and systematic drilling is not favorable for prospecting ISL sandstone-type uranium deposit in China. According to the exploration and prospecting experiences for mineral ore bodies at home and abroad, uranium information mapping based on geochemical survey of the basins is a new strategy for ISL sandstone-type uranium deposits. It is an economic, practical, fast and effective method, and has been manifested by the performing information digitization for oil and gas resources, gold mineral resources in China and the mapping of uranium information for whole Europe continent. (authors)

  4. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    Science.gov (United States)

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  5. Patterns of care and persistence after incident elevated blood pressure.

    Science.gov (United States)

    Daley, Matthew F; Sinaiko, Alan R; Reifler, Liza M; Tavel, Heather M; Glanz, Jason M; Margolis, Karen L; Parker, Emily; Trower, Nicole K; Chandra, Malini; Sherwood, Nancy E; Adams, Kenneth; Kharbanda, Elyse O; Greenspan, Louise C; Lo, Joan C; O'Connor, Patrick J; Magid, David J

    2013-08-01

    Screening for hypertension in children occurs during routine care. When blood pressure (BP) is elevated in the hypertensive range, a repeat measurement within 1 to 2 weeks is recommended. The objective was to assess patterns of care after an incident elevated BP, including timing of repeat BP measurement and likelihood of persistently elevated BP. This retrospective study was conducted in 3 health care organizations. All children aged 3 through 17 years with an incident elevated BP at an outpatient visit during 2007 through 2010 were identified. Within this group, we assessed the proportion who had a repeat BP measured within 1 month of their incident elevated BP and the proportion who subsequently met the definition of hypertension. Multivariate analyses were used to identify factors associated with follow-up BP within 1 month of initial elevated BP. Among 72,625 children and adolescents in the population, 6108 (8.4%) had an incident elevated BP during the study period. Among 6108 with an incident elevated BP, 20.9% had a repeat BP measured within 1 month. In multivariate analyses, having a follow-up BP within 1 month was not significantly more likely among individuals with obesity or stage 2 systolic elevation. Among 6108 individuals with an incident elevated BP, 84 (1.4%) had a second and third consecutive elevated BP within 12 months. Whereas >8% of children and adolescents had an incident elevated BP, the great majority of BPs were not repeated within 1 month. However, relatively few individuals subsequently met the definition of hypertension.

  6. Contamination of Piracicaba river basin source by Zn, Cr and Co

    International Nuclear Information System (INIS)

    Favaro, P.C.; Ferraz, E.S.B.

    1999-01-01

    The growth of the industrialization, urbanization and modernization of the agricultural practices in the last decades, has been causing a great impact in the basin of the Piracicaba river, the second economic pole of the country, area that shelters important urban centers like Campinas and Piracicaba. there are 45 headquarters of municipal districts in area of 12.400 km 2 with more than 3,5 million inhabitants. The present work studies one of the source of the basin, the sub-basin of the high Atibaia river, one of the former of the river Piracicaba, in low impacted area due to low demographic density, absence of load industries and non significant agriculture. The objective is to establish parameters for comparison with other areas of the basin, intensely modified. Samples of bottom sediments on the former rivers and of soils of the area they were analyzed by neutronic activation for the identification of about 20 elements line. The results showed that the area already presents signs of preoccupying anthropic pollution because the contaminations with Zn, Cr and Co are already significant, probably due to the agricultural activity and to the urban sewer. (author)

  7. Hypsometric Analysis of Glacial Features: A Survey of Lobate Debris Apron Populations in Eastern Hellas Basin and Deuteronilus Mensae, Mars

    Science.gov (United States)

    Rutledge, A. M.; Christensen, P. R.

    2014-07-01

    Hypsometric curves of lobate debris apron populations in Hellas Basin and Deuteronilus Mensae were evaluated and compared with respect to inferred ice accumulation and flow. Curve types are elevation-dependent, indicating a past shift in climate.

  8. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Laura Bourgeau-Chavez

    2015-07-01

    Full Text Available Methods using extensive field data and three-season Landsat TM and PALSAR imagery were developed to map wetland type and identify potential wetland stressors (i.e., adjacent land use for the United States and Canadian Laurentian coastal Great Lakes. The mapped area included the coastline to 10 km inland to capture the region hydrologically connected to the Great Lakes. Maps were developed in cooperation with the overarching Great Lakes Consortium plan to provide a comprehensive regional baseline map suitable for coastal wetland assessment and management by agencies at the local, tribal, state, and federal levels. The goal was to provide not only land use and land cover (LULC baseline data at moderate spatial resolution (20–30 m, but a repeatable methodology to monitor change into the future. The prime focus was on mapping wetland ecosystem types, such as emergent wetland and forested wetland, as well as to delineate wetland monocultures (Typha, Phragmites, Schoenoplectus and differentiate peatlands (fens and bogs from other wetland types. The overall accuracy for the coastal Great Lakes map of all five lake basins was 94%, with a range of 86% to 96% by individual lake basin (Huron, Ontario, Michigan, Erie and Superior.

  9. Adaptive Fusion of Information for Seeing into Ordos Basin, China: A China-Germany-US Joint Venture.

    Science.gov (United States)

    Yeh, T. C. J.; Yin, L.; Sauter, M.; Hu, R.; Ptak, T.; Hou, G. C.

    2014-12-01

    Adaptive fusion of information for seeing into geological basins is the theme of this joint venture. The objective of this venture is to initiate possible collaborations between scientists from China, Germany, and US to develop innovative technologies, which can be utilized to characterize geological and hydrological structures and processes as well as other natural resources in regional scale geological basins of hundreds of thousands of kilometers (i.e., the Ordos Basin, China). This adaptive fusion of information aims to assimilate active (manmade) and passive (natural) hydrologic and geophysical tomography surveys to enhance our ability of seeing into hydrogeological basins at the resolutions of our interests. The active hydrogeophysical tomography refers to recently developed hydraulic tomgoraphic surveys by Chinese and German scientists, as well as well-established geophysical tomography surveys (such as electrical resistivity tomography, cross-borehole radars, electrical magnetic surveys). These active hydrogeophysical tomgoraphic surveys have been proven to be useful high-resolution surveys for geological media of tens and hundreds of meters wide and deep. For basin-scale (i.e., tens and hundreds of kilometers) problems, their applicabilities are however rather limited. The passive hydrogeophysical tomography refers to unexplored technologies that exploit natural stimuli as energy sources for tomographic surveys, which include direct lightning strikes, groundwater level fluctuations due to earthquakes, river stage fluctuations, precipitation storms, barometric pressure variations, and long term climate changes. These natural stimuli are spatially varying, recurrent, and powerful, influencing geological media over great distances and depths (e.g., tens and hundreds of kilometers). Monitoring hydrological and geophysical responses of geological media to these stimuli at different locations is tantamount to collecting data of naturally occurring tomographic

  10. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  11. Suceava Anthropic Torrential Basin - Prolegomena

    Directory of Open Access Journals (Sweden)

    Andrei-Emil BRICIU

    2010-05-01

    Full Text Available One problem discussed by urban hydrology today is the draining influence of the modern cities over the natural drainage systems. The increasing urban areas and of their imperviousness all over theworld is linked to floods shape modifications and unpredicted systemic implications.  Generally, the draining influence of a city over its environment begins when it has a surface great enough to create an anthropic-generated runoff during a rain with enoughprecipitations to provoke waters accumulation into street torrents. The size, imperviousness, precipitations, drainage system and water consumption of the Suceava city are analysed in order to estimate the discharge of the city into Suceava river at various rainfalls. The article is structured as follows:1. Argumentation on the class separation between natural and anthropic torrential basins.2. Placing Suceava city as one of the torrential anthropic basins in Romania using basic arguments.3. Extending one of the argument, the importance of the rainfalls, in more detailed discussions (rainfall characteristics mainly, but also its cumulative effect with the floods on the Suceava river and the consumption of water in the city, with two scenarios. 4. The city is analysed as being integrated into a metropolitan area which can exacerbate the influence of the main city over the surrounding natural drainage basins nearby that area.5. Conclusions, where measures are proposed in order to diminish the potential negative effects on environment and human society.This article is only an introduction to a more detailed analysis which will be complete with further field data.

  12. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    importance of the potential of the ice overburden pressure compared to the bedrock topography. The meltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard......The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat......-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative...

  13. High-Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance

    Science.gov (United States)

    Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.

    2018-02-01

    Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

  14. Repository site data and information in bedded salt: Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Tien, P.; Nimick, F.B.; Muller, A.B.; Davis, P.A.; Guzowski, R.V.; Duda, L.E.; Hunter, R.L.

    1983-11-01

    This report is a compilation of data from the literature on the Palo Duro Basin. The Palo Duro Basin is a structural basin, about 150 miles long and 80 miles wide, that is a part of the much larger Permian Basin. The US Department of Energy is investigating the Palo Duro Basin as a potentially suitable area for the site of a repository for the disposal of high-level radioactive waste. Sediments overlying the Precambrian basement range from about 5000 to about 11,000 ft in thickness and from Cambrian to Holocene in age. The strata in the Palo Duro Basin that are of primary interest to the Department of Energy are the bedded salts of the Permian San Andres Formation. The total thickness of the bedded salts is about 2000 ft. The geology of the Palo Duro Basin is well understood. A great deal of information exists on the properties of salt, although much of the available information was not collected in the Palo Duro Basin. Mineral resources are not currently being exploited from the center of the Palo Duro Basin at depth, although the possibility of exploration for and development of such resources can not be ruled out. The continued existence of salts of Permian age indicates a lack of any large amount of circulating ground water. The hydrology of the pre-Tertiary rocks, however, is currently too poorly understood to carry out detailed, site-specific hydrologic modeling with a high degree of confidence. In general, ground water flows from west to east in the Basin. There is little or no hydraulic connection between aquifers above and below the salt sequences. Potable water is pumped from the Ogallala aquifer. Most of the other aquifers yield only nonpotable water. More extensive hydrological data are needed for detailed future modeling in support of risk assessment for a possible repository for high-level waste in the Palo Duro Basin. 464 references

  15. The Elevation to Area Relationship of Lake Behnke

    Directory of Open Access Journals (Sweden)

    Kaitlin Deutsch

    2012-01-01

    Full Text Available The objective of this project was to determine the area-to-depth relationship in Lake Behnke, which acts as the principal stormwater drainage basin for the University of South Florida campus in Tampa, Florida. Data previously collected in a stormwater management study by Jeffery Earhart illustrated a linear correlation between the lake's area and depth; however, that study was conducted in 1998, and this present work serves to double check that correlation. We analyzed a bathymetric map of Lake Behnke that displayed several contour lines indicating depth and approximated the area inside each closed curve with a contour integral. The resulting relationship between area and elevation was determined to be more parabolic than linear.

  16. Quaternary landscape evolution of the Helmand Basin, Afghanistan: Insights from staircase terraces, deltas, and paleoshorelines using high-resolution remote sensing analysis

    Science.gov (United States)

    Evenstar, L. A.; Sparks, R. S. J.; Cooper, F. J.; Lawton, M. N.

    2018-06-01

    The Helmand Basin in southern Afghanistan is a large (310,000 km2), structurally controlled, endorheically drained basin with a hyperarid climate. The basin hosts a high elevation ( 200 m) plateau (the Dasht-i Margo), 11 fluvial staircase terraces (T11 to T1), 7 delta systems (D1 to D7), and 6 paleolake shorelines (SL1 to SL6) within the Sistan Depression on the western side of the basin. Mapping and surveying of these features by remote sensing is integrated with geological observations to reconstruct Quaternary landscape evolution of the basin. The fluvial systems, deltas, and paleolake shorelines are correlated with one another and with the younger terraces (T7 to T1). The shape of fluvial longitudinal profiles changes depending on whether they formed pre-, syn-, or post-growth of the Koh-i Khannesin volcano on the southern margin of the Helmand River. The age of the volcano ( 0.6 Ma) and correlation of the terraces with the global history of glacial-interglacial cycles constrain the age of the younger terraces to the late Pleistocene and indicates that the older terraces are middle Pleistocene (dating back to 800 ka). The Helmand Basin once hosted a large lake, called here the Sistan paleolake, which at SL6 times and before had a surface area >50,000 km2. Since that time the lake elevation and area have decreased, evolving to the present-day dried out Sistan Depression with small ephemeral playa lakes. Episodic formation of terraces, deltas, and paleolake shorelines is attributed to changes in base level modulated by climate change related to Milankovitch cycles.

  17. Micromammal biostratigraphy of the Alcoy Basin (Eastern Spain): remarks on the Mio-Pliocene boundary of the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Mansino, S.; Fierro, I.; Tossal, A.; Montoya, P.; Ruiz-Sánchez, F.J.

    2017-11-01

    The study of 13 micromammal localities in the southern section of the Gormaget ravine (Alcoi Basin, SE Spain) and another 4 localities in the northern section has allowed us to define four local biozones in the dawn of the Pliocene, possibly recording the Mio-Pliocene boundary. The great density of localities close to the Mio-Pliocene boundary has enabled us to achieve a great resolution in the biozonation of the earliest Pliocene, only comparable in the Iberian Peninsula to the record of the Teruel Basin (NE Spain). We interpret these biozones in the light ofthe Neogene Mammal units and the European Land Mammal Ages, and correlate them with other local biozones defined for the same time span in the Iberian Peninsula.

  18. Micromammal biostratigraphy of the Alcoy Basin (Eastern Spain): remarks on the Mio-Pliocene boundary of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Mansino, S.; Fierro, I.; Tossal, A.; Montoya, P.; Ruiz-Sánchez, F.J.

    2017-01-01

    The study of 13 micromammal localities in the southern section of the Gormaget ravine (Alcoi Basin, SE Spain) and another 4 localities in the northern section has allowed us to define four local biozones in the dawn of the Pliocene, possibly recording the Mio-Pliocene boundary. The great density of localities close to the Mio-Pliocene boundary has enabled us to achieve a great resolution in the biozonation of the earliest Pliocene, only comparable in the Iberian Peninsula to the record of the Teruel Basin (NE Spain). We interpret these biozones in the light ofthe Neogene Mammal units and the European Land Mammal Ages, and correlate them with other local biozones defined for the same time span in the Iberian Peninsula.

  19. Timing of deformation and rapid subsidence in the northern Altiplano, Peru: Insights from detrital zircon geochronology of the Ayaviri hinterland basin

    Science.gov (United States)

    Horton, B. K.; Perez, N. D.; Saylor, J. E.

    2011-12-01

    Although age constraints on crustal deformation and sediment accumulation prove critical to testing hypotheses of orogenic plateau construction, a common lack of marine facies, volcanic tuffs, and suitable fossils hinders many attempts at chronological reconstructions. A series of elevated retroarc basins along the axis of the Andean orogenic belt provide opportunities to define the timing of deformation and transformation from foreland to hinterland basin configurations. In this study, we present new U-Pb ages of detrital zircons in the Ayaviri intermontane basin of southern Peru (~4 km elevation) in the northern part of the central Andean (Altiplano) plateau. Nearly all sandstone samples show strong unimodal U-Pb age peaks (generally defined by > 5-50 zircons), suggesting these age peaks represent syndepositional volcanism and can be regarded as accurate estimates of true depositional (stratigraphic) age. Integration of these ages with structural and stratigraphic relationships demonstrate the utility of zircon U-Pb geochronology in defining both (1) the timing of basin partitioning and (2) the pace of sediment accumulation. (1) U-Pb ages for several sandstone samples from growth-strata packages associated with two basin-bounding faults reveal structural partitioning of the Ayaviri basin from late Oligocene to Miocene time. In the north, displacement along the southwest-directed Ayaviri thrust fault commenced in late Oligocene time (~28-24 Ma), inducing initial structural partitioning of an upper Eocene-Oligocene, > 5 km thick succession potentially representing an early Andean retroarc foreland basin. In the south, the Ayaviri basin was further disrupted by initial displacement along the northeast-directed Pasani thrust fault in early to middle Miocene time (~18-15 Ma). (2) Additional U-Pb analyses from the Ayaviri basin fill help delimit the long-term rates of sedimentation, suggesting relatively short-lived (< 5 Myr) pulses of accelerated accumulation. Rapid

  20. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary.

  1. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  2. Elevation of Derivatives of Reactive Oxygen Metabolites Elevated in Young "Disaster Responders" in Hypertension due to Great East Japan Earthquake.

    Science.gov (United States)

    Shiraishi, Yasunaga; Kujiraoka, Takehiko; Hakuno, Daihiko; Masaki, Nobuyuki; Tokuno, Shinichi; Adachi, Takeshi

    2016-01-01

    There have been very few studies on serum biomarkers associated with hypertension in disaster situations. We assessed biomarkers associated with disaster-related hypertension (DRH) due to the Great East Japan Earthquake of March 2011.We collected blood samples from members of the Japan Self Defense Forces (JSDF) (n = 77) after completing disaster relief operations. We divided them into two groups based on systolic blood pressure. We defined DRH as either systolic blood pressure greater than 140 mmHg or diastolic blood pressure greater than 90 mmHg at the time of completing missions.In subjects with DRH, the mean blood pressure was 143.5 ± 5.0/99.5 ± 2.4 mmHg. Height and body weight measurements were slightly greater in the DRH group but the differences were not significant, and age was significantly higher in the DRH group. There were no differences in serum biochemical tests including metabolic markers, sulfur-containing amino acids, and cytokines. Among nitric oxide-related amino acids, asymmetric dimethylarginine (ADMA) was lower in the DRH group than in the normotension group (0.40 ± 0.02 versus 0.31 ± 0.02 μmol/L P = 0.04). The serum oxidative stress metabolite levels (d-ROMs; indicators of active oxygen metabolite products) were significantly higher in the DRH group (273.6 ± 6.08 versus 313.5 ± 13.7 U.CARR P = 0.016). Using multivariable regression analysis, d-ROMs levels were particularly predictive for DRH.Oxidative stress is associated with DRH in responders to the disaster of the Great East Japan Earthquake.

  3. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    Science.gov (United States)

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  4. Lunar transportation scenarios utilising the Space Elevator.

    Science.gov (United States)

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. c2005 Elsevier Ltd. All rights reserved.

  5. Lunar transportation scenarios utilising the Space Elevator

    Science.gov (United States)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  6. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin

    Science.gov (United States)

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique

    2016-05-01

    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a data set containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data were randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency (Ens) of 0.68. When the MGB discharge uncertainties were less than 5%, the Ens value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an Ens value of 0.71 for the validation samples (and 0.77 for calibration). The Ens values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission-dependent, and the Ens value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at crossovers. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated

  7. Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran

    Science.gov (United States)

    Zareinejad, M.

    2011-12-01

    Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.

  8. An Analytical Model for Basin-scale Glacier Erosion as a Function of Climate and Topography

    Science.gov (United States)

    Jaffrey, M.; Hallet, B.

    2017-12-01

    Knowledge about glacier erosion has advanced considerably over the last few decades with the emergence of a firm mechanistic understanding of abrasion and quarrying, the growing sophistication of complex numerical models of glacial erosion and the evolution of glacial landforms, and the increase in data from field studies of erosion rates. Interest in glacial erosion has also intensified and diversified substantially as it is increasingly recognized as a key process affecting the heights of mountains, the overall evolution of mountain belts, and the coupling of climate, erosion, and tectonics. Yet, the general controls of glacier erosion rates have not been addressed theoretically, and the large range of published basin-scale erosion rates, covering more than 3 orders of magnitude, remains poorly understood. To help gain insight into glacier erosion rates at the scale of glacier basins, the only scale for which extensive data exist, we develop analytically a simple budget of the total mechanical energy per unit time, the power, dissipated by a steady state glacier in sliding, S, and viscous deformation, V. We hypothesize that the power for the work of erosion derives solely from S and that the basin wide erosion rate scales with S averaged over the basin. We solve the power budget directly in terms of climatic and topographic parameters, showing explicitly that the source of power to drive both S and V is the gravitational power supplied by the net snow accumulation (mass balance). The budget leads to the simple metric φ=mbΔz2 for the basin average of S with Δz being the glacier basin relief and mb the gradient of the mass balance with elevation. The dependence of φ on the square of the relief arises from both the mass balance's and potential energy's linear increases with elevation. We validate φ using results from a comprehensive field study of erosion rates paired with glaciological data along a transect extending from Southern Patagonia to the Antarctic

  9. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B 2 and Aquifer Zone 2B 1 wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988

  10. Geochemical elements mobility during the history of a paleo-Proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, P.

    2003-10-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary. The purpose of this study was to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study the mobility of some elements in a context that shows analogies with deep geological nuclear waste disposals. The natural analogies of interest include (i) uranium oxide and spent nuclear fuel; (ii) clay alteration halo and near field barrier, (iii) Athabasca sandstone cover and far-field barrier. Five research axis: (1) 3D modelling of the distribution of the main minerals and of some trace elements (U, Pb, Zr, Th, REE, Y, Rb, Sr) on a basin-wide scale and in the U mineralized zones, using the Gocad software. The models have been compared with detailed mineralogical studies performed on selected samples. (2) Pb-Pb and Rb-Sr systematics by TIMS (3) Mass balance calculation of the average Pb/U ratio at the scale of the deposit to evaluate whether the present day amount of radiogenic lead is sufficient to explain a U deposition in one or several episodes (geostatistical tools on Gocad) (4) Thermodynamic modelling of the mineralogical evolution of the Athabasca basin, considering the main mineral present in the sandstone (Phreeqc and Supcrt softwares) (5) U-Pb geochronology of uranium oxides using a 3 step approach: (i) optical and scanning electron microscopy; (ii) electron microprobe; (iii) ion microprobe (SIMS). The purpose was to study the long term stability of the uranium oxides and to characterise the

  11. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  12. Magmatism and underplating, a broadband seismic perspective on the Proterozoic tectonics of the Great Falls and Snowbird Tectonic Zones

    Science.gov (United States)

    Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.

    2017-12-01

    The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern

  13. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  14. New constraints on the structure and dynamics of the East Antarctic Ice Sheet from the joint IPY/Ice Bridge ICECAP aerogeophysical project

    Science.gov (United States)

    Blankenship, D. D.; Young, D. A.; Siegert, M. J.; van Ommen, T. D.; Roberts, J. L.; Wright, A.; Warner, R. C.; Holt, J. W.; Young, N. W.; Le Meur, E.; Legresy, B.; Cavitte, M.; Icecap Team

    2010-12-01

    Ice within marine basins of East Antarctica, and their outlets, represent the ultimate limit on sea level change. The region of East Antarctica between the Ross Sea and Wilkes Land hosts a number of major basin, but has been poorly understood. Long range aerogeophysics from US, Australian and French stations, with significant British and IceBridge support, has, under the banner of the ICECAP project, greatly improved our knowledge of ice thickness, surface elevation, and crustal structure of the Wilkes and Aurora Subglacial Basins, as well as the Totten Glacier, Cook Ice Shelf, and Byrd Glacier. We will discuss the evolution of the Wilkes and Aurora Subglacial Basins, new constraints on the geometry of the major outlet glaciers, as well as our results from surface elevation change measurements over dynamic regions of the ice sheet. We will discuss the implications of our data for the presence of mid Pleistocene ice in central East Antarctica. Future directions for ICECAP will be discussed.

  15. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    Science.gov (United States)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  17. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  18. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  19. Empirical assessment of effects of urbanization on event flow hydrology in watersheds of Canada's Great Lakes-St Lawrence basin

    Science.gov (United States)

    Trudeau, M. P.; Richardson, Murray

    2016-10-01

    We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event

  20. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  1. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  2. Conjunctive Use of Surface and Groundwater with Inter-Basin Transfer Approach: Case Study Piranshahr Plain

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammad Rezapour Tabari

    2012-01-01

    Full Text Available In IRAN, inconsideration to water as a key sustainable development is the water crisis. This problem is the biggest factor for being marginalize planning and long-term management of water. The sustainable development policies in water resources management of IRAN require consideration of the different aspects of management that each of them required the scientific integrated programs. Optimal operation from inter-basin surface and groundwater resources and transfer surplus water to adjacent basins is important from different aspects. The purpose of this study is to develop an efficient optimization model based on inter-basin water resources and restoration of outer-basin water resources. In the proposed model the different three objective function such as inter-basin water supply demand, reduce the amount of water output of the boundary of IRAN and increase water transfer to adjacent basins are considered. In this model, water allocation is done based on consumption and resources priorities and groundwater table level constrain. In this research, the non-dominate sorting genetic algorithm is used for solution developed model because the objectives function and decision variables are complex and nonlinear. The optimal allocation of each water resources and Water transfer to adjacent basin are can be determined by using of proposed model. Based on optimal value and planning horizon, optimal allocation policy presented. The result as shown that applying the optimal operation policy can be transfer considerable volume of water resources within the basin for restoration the outside basin. Based on policy, can be prevented the great flow of water from river border.

  3. Source apportionment of heavy metals and their ecological risk in a tropical river basin system.

    Science.gov (United States)

    Kumar, Balwant; Singh, Umesh Kumar

    2018-06-27

    Surface water and sediment samples were collected from Ajay River basin to appraise the behavior of heavy metals with surrounding environments and their inter-elemental relationships. Parameters like pH and organic carbon are having a minimal role in heavy metal distribution while some elements like Fe and Cu showed great affinity for organic matter based on linear regression analysis (LRA). Ficklin diagram justified that river basin is not contaminated through acidic pollutants. The river basin is highly enriched with Cu, Cd, Pb, and Ni which were much higher than world average values, average shale standard, effect range low (ERL), and threshold effect level (TEL). PCA and LRA verified that Cu, Cd, Pb, and Ni were mainly derived from anthropogenic inputs, and others like Fe, Mn, Zn, and Co came from geogenic sources. Pollution indices revealed that river basin is moderately to highly contaminated by Cu, Cd, and Ni. Furthermore, Ajay River basin is under strong potential ecological risk based on the obtained value of risk index and probable effect level/effect range median quotient index. However, river basin is strongly influenced by lithological properties, diversified hydrogeological settings, mineralization and mobilization of subsurface materials, and urban and industrial effluents which are controlling the heavy metals.

  4. Evidence for early hunters beneath the Great Lakes.

    Science.gov (United States)

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  5. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  6. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  7. Comparison of respiratory and growth characteristics of two co-occurring shrubs from a cold desert, Coleogyne ramosissima (blackbrush) and Atriplex confertifolia (shadscale)

    Science.gov (United States)

    H. A. Summers; B. N. Smith; L. D. Hansen

    2009-01-01

    Coleogyne ramosissima Torr. (blackbrush) and Atriplex confertifolia [Torr. & Frem.] Wats. (shadscale) are cold desert shrubs from different families. Despite very different life histories they often grow in close geographic proximity in the Great Basin and the Colorado Plateau between 800 and 2000 m elevation. The purpose of...

  8. Response of selenium concentrations in groundwater to seasonal canal leakage, lower Gunnison River Basin, Colorado, 2013

    Science.gov (United States)

    Linard, J.I.; McMahon, P.B.; Arnold, L.R.; Thomas, J.C.

    2016-05-23

    Selenium is a water-quality concern in the lower Gunnison River Basin because irrigation water interacting with seleniferous soils derived from the Mancos Shale Formation has mobilized selenium and increased its concentrations in surface water. Understanding the occurrence of elevated selenium concentrations in groundwater is necessary because groundwater discharge is an important source of selenium in surface water in the basin. In 2013, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Colorado Water Conservation Board, began a study to understand how changes in groundwater levels attributed to canal leakage affected the concentrations and speciation of dissolved selenium in groundwater. The purpose of this report is to characterize the groundwater adjacent to an unlined leaky canal. Two locations, near the East Canal (W-N1 and W-N2) and farther from the East Canal (W-M1 and W-M2), were selected for nested monitoring well installations. The pressure exerted by changes in canal stage was more readily transferred to the deep groundwater measured in the W-N1 near the canal than the shallow groundwater at the W-N2 well. No definitive relation could be made between canal water-level elevation and water-level elevations in monitoring wells farther from the canal (W-M1 and W-M2). 

  9. Geochemical characteristics of Lower Jurassic source rocks in the Zhongkouzi Basin

    Science.gov (United States)

    Niu, Haiqing; Han, Xiaofeng; Wei, Jianshe; Zhang, Huiyuan; Wang, Baowen

    2018-01-01

    Zhongkouzi basin is formed in Mesozoic and Cenozoic and developed on the Hercynian folded belt, the degree of exploration for oil and gas is relatively low hitherto. In order to find out the geochemical characteristics of the source rocks and the potentials for hydrocarbon generation. The research result shows that by analysis the geochemical characteristics of outcrop samples and new core samples in Longfengshan Group, Longfengshan Group are most developed intervals of favorable source rocks. They are formed in depression period of the basin when the sedimentary environments is salt water lacustrine and the water is keeping stable; The organic matter abundance is middle-higher, the main kerogen type is II1-II2 and few samples act as III type, The organic matter maturity is low maturity to medium maturity. The organic matter maturity of the source rock from eastern part of the basin is higher than in the western region. The source rock of Longfengshan Group are in the hydrocarbon generation threshold. The great mass of source rocks are matured and in the peak stage of oil generation.

  10. Causes and possible solutions to water resource conflicts in the Okavango River Basin: The case of Angola, Namibia and Botswana

    Science.gov (United States)

    Mbaiwa, Joseph E.

    This paper reviews available literature concerning water resources use in the Okavango River Basin (ORB). It describes a number of common arguments regarding possibilities for the emergence of violent conflict in and among Basin states, particularly those states party to the Okavango River Basin Commission (Okacom)-Angola, Botswana and Namibia. The paper presents data concerning present and future water demands and examines a number of formal, institutional steps taken by global and regional actors to facilitate sustainable development, natural resources management and peaceful cooperation in the Basin. Contrary to trends in much of the literature, the paper suggests that there is great scope for enhanced inter-state cooperation in the Basin. It argues that to achieve sustainable utilisation of water resources and avoid violent conflict in the ORB, an integrated management plan for the entire basin needs to be developed. In addition, each basin member-state should observe international and regional conventions and treaties governing the use of water resources when designing national water development projects that require the use of water from the ORB.

  11. Rainfall and runoff characteristics of Namman Basin in the Kingdom of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Wagdany, A.S.

    2008-01-01

    Namman basin is an arid mountainous basin located in the western region of Saudi Arabia and has drainage area of about 650 km2. Namman unconfined groundwater aquifer is the source of water to the historic underground galleries known as Ain Zubaidah. The galleries became dry due to the fall of groundwater levels dramatically in the last few decades. The galleries can only be restored only if a proper water resources management is utilized in the basin. The aim of this research is to investigate two major hydrological components, namely rainfall and runoff, which are essential for a proper management of the water resources of the basin. Rainfall and runoff records for ten rain gauge stations and one runoff gauge station are used to investigate major characteristics of rainfall and runoff in Namman basin. Rainfall records are analyzed to derive conclusion about rainfall occurrence, depth duration, temporal distribution and extreme values. The relation between rainfall depth and elevation is also investigated. Runoff records are utilized to investigate seasonal variation of runoff. Values of runoff coefficient for all runoff events are computed and the relation between rainfall and runoff for the basin are discussed. The results show that there are more than 30 rainstorms per year and only about two runoff events are usually observed. The temporal analysis of rainfall and runoff indicates that there are two rainy seasons, one is during fall and winter season and other is during spring seasons while runoff is mainly observed in the winter season and the other is during spring seasons while runoff is mainly observed in the winter season. Values of runoff coefficient were very low with mean value of 0.013, which indicate that most rainfall infiltrate through the alluvial channels of the basin. (author)

  12. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  13. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    Science.gov (United States)

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  14. Gas Generation from K East Basin Sludges - Series I Testing

    International Nuclear Information System (INIS)

    Delegard, Calvin H.; Bryan, Samuel A.; Schmidt, Andrew J.; Bredt, Paul R.; King, Christopher M.; Sell, Rachel L.; Burger, Leland L.; Silvers, Kurt L.

    2000-01-01

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor and canister sludge. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. The overall goals for this testing were to collect detailed gas generation rate and composition data to ascertain the quantity and reactivity of the metallic uranium (and other reactive species) present in the K Basin sludge. The gas generation evaluation included four large-scale vessels (850 ml) and eight small-scale vessels (30 ml) in an all-metal, leak tight system. The tests were conducted for several thousand hours at ambient and elevated temperatures (32 C, 40 C, 60 C, 80 C, and 95 C) to accelerated the reactions and provide conclusive gas generation data within a reasonable testing period. The sludge used for these tests was collected from the KE Basin floor and canister barrels (containing damaged spent fuel elements) using a consolidated sampling technique (i.e., material from several locations was combined to form ''consolidated samples''). Portions of these samples were sieved to separate particles greater than 250 m (P250) from particle less than 250 m (M250). This separation was performed to mimic the separation operations that are planned during the retrieval of certain K Basin sludge types and to gain a better understanding of how uranium metal is distributed in the sludge. The corrosion rate of the uranium metal particles in the sludge was found to agree reasonably well with corrosion rates reported in the literature

  15. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  16. Lineament and Morphometric Analysis for Watershed Development of Tarali River Basin, Western India

    Directory of Open Access Journals (Sweden)

    Vikrant Bartakke

    2013-06-01

    Full Text Available Tarali river is major tributary of River Krishna, which is flowing in western India. The study area lies between latitude 17°23' to 17°38' N and longitude 73°48' to 74°7' E. The area has steep to moderate slope and elevation ranges from 584 - 1171m above mean sea level. Basin exhibits hilly and mountain terrain forming ridges and Western Ghats with deep valley, plateaus and plain. The whole area can be obtained in topographical maps i.e. 47 G/14, 47 G/15 47 K/2, 47 K/3 covering area of about 627 sq.km, acquired from Survey of India. Present study includes lineament and morphometric analysis of Tarali River basin for management and conservation of watershed.

  17. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    Science.gov (United States)

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  18. Drainage basins features and hydrological behaviour river Minateda basin

    International Nuclear Information System (INIS)

    Alonso-Sarria, F.

    1991-01-01

    Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

  19. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  20. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  1. Contribution of the gravimetry to the structural study of the Haouz basin (Morocco)

    International Nuclear Information System (INIS)

    El Goumi, N.; Jaffal, M.; Kchikach, A.; Manar, A.

    2010-01-01

    The aim of the present study is to improve the knowledge of the Haouz basin structure using gravity data analysis. First of all, a residual anomaly map was computed from the Bouguer anomaly, greatly affected by an important regional gravity gradient. The calculated map provides information on the ground density variations mainly attributed to the top of the Paleozoic basement undulations under the sedimentary cover. However, in order to further study this map, it has been later analyzed with a method that allows evidencing different buried geological structures, combining the horizontal gradient and the upward continuations processing. The obtained results allows us to establish a structural map of the Haouz basin which confirms the existence of structures already recognized or assumed by the classic geological studies, and highlights accidents, as yet, unknown until the present time. This map shows that the fault system of the Haouz basin is organized in two families of directions NE-SW and NW-SE. (Author).

  2. Variation in zoogeographical composition along an elevational gradient: the tenebrionid beetles of Latium (Central Italy

    Directory of Open Access Journals (Sweden)

    S. Fattorini

    2013-10-01

    Full Text Available The aim of this paper is to propose the use of chorotype analysis of species assemblages on an elevational gradient to detect the main historical and ecological factors responsible for current faunal settings. A comprehensive faunistic database was used to assess species abundance across 100 m belts in Latium (Central Italy. Species were assigned to chorotypes according to their ranges. Entropy and evenness indices were applied to both species abundances and chorotype frequencies recorded in each belt. Both species and chorotype entropy decreased with elevation, whereas species and chorotype evenness increased. Chorotypes centred on the Mediterranean basin decreased with increasing elevation, chorotypes centred in Europe and Asia had similar frequencies among belts and endemic species increased with elevation. A cluster analysis with species presence/absence data, revealed three main clusters grouping respectively: i all belts above 1700 m; ii belts between 901 and 1500 m; and iii belts between 0 and 900 m. An analysis based on chorotype frequencies produced very similar results. We can conclude that: high elevation assemblages are less diversified, but more balanced than lowland assemblages, in terms of both species and chorological composition. Belts similar in species composition (presence/absence are also similar in zoogeographical composition (frequency of chorotypes. This indicates that elevation is a factor that strongly selects species’ attributes and especially their geographical distribution. Variations in chorotype composition along an elevational gradient may be used to trace the history of biotas.

  3. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    Science.gov (United States)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  4. Money, management, and manipulation: Environmental mobilization in the Great Lakes basin

    International Nuclear Information System (INIS)

    Gould, K.A.

    1991-01-01

    This document examines variations in the responses of communities to local pollution problems affecting Great Lakes water quality. The study is based on research conducted at six such communities, at sites that have been designated as 'Areas of Concern' by the International Joint Commission. The roles of economic dependency or diversity, access to scientific and political resources, community size, social visibility of pollution, and consciousness- and unconsciousness-making activities are examined as they relate to grass roots political mobilization in response to local, lake-related environmental issues. Of particular interest is the participation of national and regional environmental social movement organizations, Federal, State/Provincial and local governments, and local industry. National and regional environmental social movement organizations appear to have a greater mobilizing impact on communities that are closest to the urban centers in which these organizations are based. State and Provincial environmental agencies play a centrist role in promoting minimal remediation. Local governments typically oppose the definition of local environmental disorganization as a problem

  5. Decline of the Maurepas Swamp, Pontchartrain Basin, Louisiana, and Approaches to Restoration

    Directory of Open Access Journals (Sweden)

    Gary P. Shaffer

    2016-03-01

    Full Text Available The Maurepas swamp is the second largest contiguous coastal forest in Louisiana but it is highly degraded due to subsidence, near permanent flooding, nutrient starvation, nutria herbivory, and saltwater intrusion. Observed tree mortality rates at study sites in the Maurepas swamp are very high (up to 100% tree mortality in 11 years and basal area decreased with average salinities of <1 ppt. Habitat classification, vegetation productivity and mortality, and surface elevation changes show a clear trajectory from stagnant, nearly permanently flooded forests with broken canopy to degraded forests with sparse baldcypress and dominated by herbaceous species and open water to open water habitat for most of the Maurepas swamp without introduction of fresh water to combat saltwater intrusion and stimulate productivity and accretion. Healthy forests in the Maurepas are receiving fresh water containing nutrients and sediments from urban areas, high quality river water, or secondarily treated municipal effluent. Currently, two proposed diversions into the swamp are via Hope Canal (57 m3·s−1 and Blind River (142 m3·s−1. These diversions would greatly benefit their immediate area but they are too small to influence the entire Maurepas sub-basin, especially in terms of accretion. A large diversion (>1422 m3·s−1 is needed to deliver the adequate sediments to achieve high accretion rates and stimulate organic soil formation.

  6. Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey

    Science.gov (United States)

    Fusillo, Thomas V.

    1981-01-01

    Surface-water and ground-water quality, streamflow, and data on ground-water levels in the upper Great Egg Harbor River basin in the vicinity of the Winslow Crossing residential development in Winslow Township are evaluated. The data include continuous streamflow at four sites, monthly stream water quality at seven sites, ground-water levels and periodic ground-water quality in four wells from 1972 through 1978. Pumpage from the Cohansey Sand in the study area was lower than anticipated because of a slowdown in construction. The average pumpage of 0.48 million gallons per day during 1978 had little effect on ground-water levels. Dissolved-solids concentrations were lower in a well upgradient from the urbanized area. Elevated levels of dissolved solids, specific conductance, chloride, nitrate, and phosphorus were found in the shallow ground water in the vicinity of the Winslow wastewater treatment plant because of effluent infiltration ponds. Nitrate was greatly reduced in October 1974 by a change in the treatment process, which increased denitrification. Phosphorus concentrations in the ground water remained elevated, however. Water from the most urbanized drainage basin was a magnesium bicarbonate type, while the less developed basins had sodium chloride sulfate type waters. Water from the two developed basins had higher median pH (7.1) compared with that of the other basins (5.6-6.3). Winslow Crossing?s development had only a slight effect on the quality of water in Great Egg Harbor River. The river receives point and non-point discharges upstream from Winslow Crossing, and the quality of the water generally improves as the river flows downstream. Streamflow and rainfall were slightly above normal. Unit hydrograph analysis of one basin showed an 80 percent increase in the peak discharge of a 60-minute unit hydrograph (from approximately 150 to 270 cubic feet per second) after the development of 14 percent of the basin. Installation of a stormwater detention basin

  7. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    Science.gov (United States)

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  8. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes

    Science.gov (United States)

    Jorgenson, Zachary G.; Thomas, Linnea M.; Elliott, Sarah M.; Cavallin, Jenna E.; Randolph, Eric C.; Choy, Steven J.; Alvarez, David; Banda, Jo A.; Gefell, Daniel J.; Lee, Kathy E.; Furlong, Edward T.; Schoenfuss, Heiko L.

    2018-01-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in

  9. Low-Centred Polygons and Alas-Like Basins as Geological Markers of Warming Trends Late in Mars' History

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.; Godin, E.; Osinski, G.; Hawkswell, J.; Bina, A.

    2017-12-01

    Expansive assemblages of low/high centred (ice-wedge) polygons and (polygonised) flat-floored thermokarst-basins (alases) are ubiquitous on Earth where the permafrost is continuous, metres to decametres-thick and ice rich, i.e. the Tuktoyaktuk Coastlands of northern Canada and the Yamal Peninsula of eastern Russia. These assemblages are geological bellwethers of transient and on occasion, long-term rises of sub-aerial and thaw-generating mean temperatures, for two principal reasons. First, high-centred (ice-wedge) polygons evolve from low-centred (ice-wedge) polygons when ice wedges that have aggraded and uplift overlying sediments above the elevation datum at the polygon centres, degrade, by thaw, and induce the loss of elevation below that datum. Second, thermokarst terrain comprises sediments whose pore volume is exceeded by the presence of water ice. A thermokarst basin (an alas) forms if and only when this ice undergoes thermal destabilisation and where thaw-generated meltwater is lost by evaporation or drainage. Spatially-associated and morphologically-similar assemblages of polygons and basins are commonplace throughout the mid-latitudes of eastern Utopia Planitia (UP), Mars. Under current conditions of extreme aridity, low atmospheric-pressure and frigid mean-temperatures, the widespread formation of ice-rich terrain by freeze-thaw cycling, let alone of near-surface ice-wedges and/or thermokarst basins, seems implausible. Against this environmental backdrop, sublimation seemingly stands alone in being able to revise ice-rich landscapes. However, multiple strands of data point to the possible periglacial-assemblages (PPAs) being youthful but not current in their formation. First, the sub-regional and dark-toned terrain incised by the PPAs is cratered more densely than would be expected. Second, the PPAs reside at a lower relative and absolute elevation than a light-toned and region-wide latitude-dependent mantle that is generally thought to be very recent in

  10. The Paleozoic ichthyofauna of the Amazonas and Parnaíba basins, Brazil

    Science.gov (United States)

    Figueroa, Rodrigo Tinoco; Machado, Deusana Maria da Costa

    2018-03-01

    The Brazilian Paleozoic ichthyofauna from the Parnaíba and Amazonas basins regard a sparsely known diversity, including chondrichthyans and acanthodians, besides some osteichthyan remains. This work proposes a revision of the fossil material from these two sedimentary basins and synthesizes the morphological aspect of such material trying to understand the influences of those fossils to the paleontology of the region, comparing the Brazilian fossils with other gondwanan faunas. The Brazilian Paleozoic fish fauna shows great resemblance to those of Bolivia, especially during the Devonian. Many of the Acanthodian spines from the Manacapuru Formation (Amazonas Basin), and the Pimenteira Formation (Parnaíba Basin), are comparable to the taxa found in Bolivia. The lack of more Placoderm remains in the Brazilian outcrops is similar to the low diversity of this group in Bolivia, when compared to other South American and Euramerican localities. The most diverse Brazilian ichthyofauna is encountered in the Permian Pedra de Fogo Formation where numerous chondrichthyans and 'paleopterygians' remains are found, together with dipnoans and actinistians. Despite the apparent lack of more representative Paleozoic ichthyofaunas in Brazil, the available material that ranges from Lower Devonian to early Permian from Brazil bears important taxa that could address valuable taxonomic and biogeographic informations.

  11. Mean precipitation estimation, rain gauge network evaluation and quantification of the hydrologic balance in the River Quito basin in Choco, state of Colombia

    International Nuclear Information System (INIS)

    Cordoba, Samir; Zea, Jorge A; Murillo, W

    2006-01-01

    In this work the calculation of the average precipitation in the Quito River basin, state of Choco, Colombia, is presents through diverse techniques, among which are those suggested by Thiessen and those based on the isohyets analysis, in order to select the one appropriate to quantification of rainwater available to the basin. Also included is an estimation of the error with which the average precipitation in the zone studied is fraught when measured, by means of the methodology proposed by Gandin (1970) and Kagan (WMO, 1966), which at the same time allows to evaluate the representativeness of each one of the stations that make up the rain gauge network in the area. The study concludes with a calculation of the hydrologic balance for the Quito river basin based on the pilot procedure suggested in the UNESCO publication on the study of the South America hydrologic balance, from which the great contribution of rainfall to a greatly enhanced run-off may be appreciated

  12. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  13. Identification of igneous rocks in a superimposed basin through integrated interpretation dominantly based on magnetic data

    Science.gov (United States)

    LI, S.

    2017-12-01

    Identification of igneous rocks in the basin environment is of great significance to the exploration for hydrocarbon reservoirs hosted in igneous rocks. Magnetic methods are often used to alleviate the difficulties faced by seismic imaging in basins with thick cover and complicated superimposed structures. We present a case study on identification of igneous rocks in a superimposed basin through integrated interpretation based on magnetic and other geophysical data sets. The study area is located in the deepest depression with sedimentary cover of 14,000 m in Huanghua basin, which is a Cenozoic basin superimposed on a residual pre-Cenozoic basin above the North China craton. Cenozoic and Mesozoic igneous rocks that are dominantly intermediate-basic volcanic and intrusive rocks are widespread at depth in the basin. Drilling and seismic data reveal some volcanic units and intrusive rocks in Cenozoic stratum at depths of about 4,000 m. The question remains to identify the lateral extent of igneous rocks in large depth and adjacent areas. In order to tackle the difficulties for interpretation of magnetic data arisen from weak magnetic anomaly and remanent magnetization of igneous rocks buried deep in the superimposed basin, we use the preferential continuation approach to extract the anomaly and magnetic amplitude inversion to image the 3D magnetic units. The resultant distribution of effective susceptibility not only correlates well with the locations of Cenozoic igneous rocks known previously through drilling and seismic imaging, but also identifies the larger scale distribution of Mesozoic igneous rocks at greater depth in the west of the basin. The integrated interpretation results dominantly based on magnetic data shows that the above strategy is effective for identification of igneous rocks deep buried in the superimposed basin. Keywords: Identification of igneous rocks; Superimposed basin; Magnetic data

  14. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    Science.gov (United States)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases

  15. Predicting the ungauged basin: Model validation and realism assessment

    Directory of Open Access Journals (Sweden)

    Tim evan Emmerik

    2015-10-01

    Full Text Available The hydrological decade on Predictions in Ungauged Basins (PUB led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  16. Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Min Luo

    2017-08-01

    Full Text Available The effects of global climate change threaten the availability of water resources worldwide and modify their tempo-spatial pattern. Properly quantifying the possible effects of climate change on water resources under different hydrological models is a great challenge in ungauged alpine regions. By using remote sensing data to support established models, this study aimed to reveal the effects of climate change using two models of hydrological processes including total water resources, peak flows, evapotranspiration, snowmelt and snow accumulation in the ungauged Hotan River Basin under future representative concentration pathway (RCP scenarios. The results revealed that stream flow was much more sensitive to temperature variation than precipitation change and increased by 0.9–10.0% according to MIKE SHE or 6.5–10.5% according to SWAT. Increased evapotranspiration was similar for both models with a range of 7.6–31.3%. The snow-covered area shrank from 32.5% to 11.9% between the elevations of 4200–6400 m, respectively, and snow accumulation increased when the elevation exceeded 6400 m above sea level (asl. The results also suggested that the fully distributed and semi-distributed structures of these two models strongly influenced the responses to climate change. The study proposes a practical approach to assess the climate change effect in ungauged regions.

  17. Comparison of long-term geochemical interactions at two natural CO2-analogues : Montmiral (Southeast Basin, France) and Messokampos (Florina Basin, Greece) case studies

    International Nuclear Information System (INIS)

    Gaus, I.; Le Guern, C.; Pauwels, H.; Pearce, J.; Shepherd, T.; Hatziyannis, G.; Metaxas, A.

    2005-01-01

    Carbon dioxide (CO 2 ) capture and storage is considered to be a viable strategy to reduce the amount of greenhouse gases released to the atmosphere. When assessing the feasibility of current or future CO 2 storage projects, mineral trapping within a reservoir is considered as a key mechanism for the permanent sequestration of CO 2 . There are many occurrences worldwide, where natural CO 2 has been trapped in geological reservoirs. These natural CO 2 analogues provide a unique opportunity to study the reactivity, due to CO 2 interactions, which occurred in the reservoirs over a geologic timeframe. Therefore, the study of analogous natural CO 2 -rich reservoirs, which act as long-term laboratories, are an important part of the assessment of the long-term geochemical effects of geological CO 2 storage. This paper referred to 2 natural CO 2 sites studied under the Natural Analogues for the Storage of CO2 in the Geological Environment (NASCENT) Project. The Montmiral reservoir in France's Southeast Basin is a high-temperature and high-pressure reservoir at great depth (100 degrees C and 36 MPa). The Messokampos reservoir in Greece's Florina Basin is a shallow, low temperature and low-pressure reservoir (25 degrees C and 0.5 MPa). Both are sandstone reservoirs, and feldspar alteration is the key interaction in both cases between dissolved CO 2 , the formation water and the reservoir rock. Both natural analogues were studied in detail petrographically and through geochemical modelling in order to characterize and explain the water-rock-gas interactions in the different geological contexts. The purpose was to assess the consequences of these interactions on CO 2 storage capacity and porosity of the host rock. It was concluded that the reservoir's temperature and pressure conditions determine the impact of CO 2 interactions, with elevated temperatures significantly increasing the reaction rates of mineral-trapping reactions. This is particularly significant when choosing

  18. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  19. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  20. Assessment of geomorphological and hydrological changes produced by Pleistocene glaciations in a Patagonian basin

    Science.gov (United States)

    Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.

    2018-04-01

    This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.

  1. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin.

    Science.gov (United States)

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-06-08

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ(18)O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time.

  2. Landform elevation suggests ecohydrologic footprints in subsurface geomorphology

    Science.gov (United States)

    Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.

    2012-12-01

    Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.

  3. Exhumation of the North Alpine Foreland Basin- Quantitative insights from structural analysis, thermochronology and a new thermal history model

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2016-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. We present an unprecedented compilation of thermochronological data from the basin and quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. Uncertainty analysis shows that thermochronometers can be explained by cooling and exhumation starting as early as the Miocene or as late as the Pleistocene. New (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  4. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  5. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    Science.gov (United States)

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  7. Application of Statistical Downscaling Techniques to Predict Rainfall and Its Spatial Analysis Over Subansiri River Basin of Assam, India

    Science.gov (United States)

    Barman, S.; Bhattacharjya, R. K.

    2017-12-01

    The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.

  8. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  9. Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar

    Science.gov (United States)

    Bien, Ferdinand E.; Plopenio, Joanaviva C.

    2017-09-01

    This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.

  10. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Rutkiewicz, Jennifer [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States); Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena [Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Basu, Niladri, E-mail: niladri@umich.ed [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States)

    2010-08-15

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 {mu}g/g (dry weight) with a mean of 0.54 {mu}g/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor {alpha}-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  11. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    International Nuclear Information System (INIS)

    Rutkiewicz, Jennifer; Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena; Basu, Niladri

    2010-01-01

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 μg/g (dry weight) with a mean of 0.54 μg/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor α-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  12. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    Science.gov (United States)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic

  13. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Sonoran region, California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, Kenneth A.; Langer, William H.

    1989-01-01

    The Sonoran region of California lies west of the Colorado River and adjoins the Mojave Desert on the west, Death Valley on the northwest, and the Salton trough on the south. The region is arid with annual precipitation ranging from less than 80 millimeters to as great as 250 millimeters in one mountain range; annual free-surface evaporation is as great as 2,500 millimeters. The characteristic basin and range topography of the region was caused by a mid-Tertiary period of intense crustal extension, accompanied by volcanic eruptions, clastic sedimentation, faulting, and tilting. Potential host media for isolation of high-level radioactive waste include granite and other coarsegrained plutonic rocks, ash-flow tuff, and basalt and basaltic andesite lava flows. Thick sections of the unsaturated zone in basin fill, intrusive, and volcanic rocks appear to have potential as host media. The region is bordered on the west by areas of relatively greater Quaternary faulting, vertical crustal uplift, and seismicity. The region has a few areas of Quaternary volcanic activity. Geothermal heat flows of 2.5 heat-flow units or greater and one earthquake of magnitude 6-7 have been recorded. The region includes topographically closed basins as well as basins that drain to the Colorado River. Dry lakes and playas occupy the closed basins. Ground-water recharge and surface runoff are small because of the small amount of precipitation and great potential evaporation. Natural ground-water discharge is by evaporation in the basin playas and by underflow to the Colorado River. Dissolved-solids concentration of ground water generally is less than 500 milligrams per liter, and much of it is of the sodium bicarbonate type. Ground water is saline in many of the playas, and chloride or sulfate is the predominant anion. Small tonnages of ore have been produced from numerous precious and fewer base-metal deposits. (author)

  14. Assessing groundwater accessibility in the Kharga Basin, Egypt: A remote sensing approach

    Science.gov (United States)

    Parks, Shawna; Byrnes, Jeffrey; Abdelsalam, Mohamed G.; Laó Dávila, Daniel A.; Atekwana, Estella A.; Atya, Magdy A.

    2017-12-01

    We used multi-map analysis of remote sensing and ancillary data to identify potentially accessible sites for groundwater resources in the Kharga Basin in the Western Desert of Egypt. This basin is dominated by Cretaceous sandstone formations and extends within the Nubian Sandstone Aquifer. It is dissected by N-S and E-W trending faults, possibly acting as conduits for upward migration of groundwater. Analysis of paleo-drainage using Digital Elevation Model (DEM) generated from the Shuttle Radar Topography Mission (SRTM) data shows that the Kharga was a closed basin that might have been the site of a paleo-lake. Lake water recharged the Nubian Sandstone Aquifer during the wetter Holocene time. We generated the following layers for the multi-map analysis: (1) Fracture density map from the interpretation of Landsat Operational Land Imager (OLI), SRTM DEM, and RADARSAT data. (2) Thermal Inertia (TI) map (for moisture content imaging) from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. (3) Hydraulic conductivity map from mapping lithological units using the Landsat OLI and previously published data. (4) Aquifer thickness map from previously published data. We quantitatively ranked the Kharga Basin by considering that regions of high fracture density, high TI, thicker aquifer, and high hydraulic conductivity have higher potential for groundwater accessibility. Our analysis shows that part of the southern Kharga Basin is suitable for groundwater extraction. This region is where N-S and E-W trending faults intersect, has relatively high TI and it is underlain by thick aquifer. However, the suitability of this region for groundwater use will be reduced significantly when considering the changes in land suitability and economic depth to groundwater extraction in the next 50 years.

  15. Making Digital Elevation ModelsAccessible, Comprehensible, and Engaging through Real-Time Visualization

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Kim; Mikkelsen, Peter Trier; Mosegaard, Jesper

    2015-01-01

    In this paper we present our initial experiments with the new high quality digital elevation model, “Danmarks Højdemodel-2015” (DHM) exposed as an interactive 3D visualization on web and in virtual reality. We argue that such data has great opportunities to spawn new business and new insight...

  16. Neotectonic and seismicidad in the Granada basin

    International Nuclear Information System (INIS)

    Sanz de Galdeano, C.; Vidal, F.; Miguel, F. de

    1984-01-01

    The depression of Granada is one of the Betics interior basins whose formation begun during the Middle Miocene and reached its individualization from the Upper Miocene. The main fracture directions are: N10-30E, N120-150E, N70-100E, some of them show great vertical jumpings. This seismic area is the most active in the Cordilleras Beticas (frequently like seismic series) and some destructive earthquakes occurred in the past. The higher seismic activity is concentrated in most subsident sectors of the area: the Vega de Granada, the Padul-Valle de Lecrin and the ''corredor de las Alpujarras'' prolongation about Arenas del Rey. (author)

  17. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: impacts of geomorphological parameters and river flow representation

    Science.gov (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, L. Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-03-01

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes. This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that

  18. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    Science.gov (United States)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  19. Deep Microbial Ecosystems in the U.S. Great Basin: A Second Home for Desulforudis audaxviator?

    Science.gov (United States)

    Moser, D. P.

    2012-12-01

    Deep subsurface microbial ecosystems have attracted scientific and public interest in recent years. Of deep habitats so far investigated, continental hard rock environments may be the least understood. Our Census of Deep Life (CoDL) project targets deep microbial ecosystems of three little explored (for microbiology), North American geological provinces: the Basin and Range, Black Hills, and Canadian Shield. Here we focus on the Basin and Range, specifically radioactive fluids from nuclear device test cavities (U12N.10 tunnel and ER-EC-11) at the Nevada National Security Site (NNSS) and non-radioactive samples from a deep dolomite aquifer associated with Death Valley, CA (BLM-1 and Nevares Deep Well 2). Six pyrotag sequencing runs were attempted at the Marine Biology Lab (MBL) (bacterial v6v4 amplification for all sites and archaeal v6v4 amplification for BLM-1 and Nevares DW2). Of these, DNA extracts from five samples (all but Nevares DW2 Arch) successfully amplified. Bacterial libraries were generally dominated by Proteobacteria, Firmicutes, and Nitrospirae (ER-EC-11: Proteobacteria (45%), Deinococcus-Thermus (35%), Firmicutes (15%); U12N.10: Proteobacteria (37%), Firmicutes (32%), Nitrospirae (15%), Bacteroidetes (11%); BLM-1 (Bact): Firmicutes (93%); and Nevares DW2: Firmicutes (51%), Proteobacteria (16%), Nitrospirae (15%)). The BLM-1 (Arch) library contained >99% Euryarchaeota, with 98% of sequences represented by a single uncharacterized species of Methanothermobacter. Alpha diversity was calculated using the MBL VAMPS (Visualization and Analysis of Microbial Population Structures) system; showing the highest richness at both the phylum and genus levels in U12N.10 (Sp = 42; Sg = 341), and the lowest (Sp = 3; Sg = 11) in the BLM-1(Arch) library. Diversity was covered well at this depth of sequencing (~20,000 reads per sample) based on rarefaction analysis. One Firmicute lineage, candidatus D. audaxviator, has been shown to dominate microbial communities from

  20. Considerations on fluorides anomalies in Botucatu-Piramboia aquifers system, Parana basin, Brazil

    International Nuclear Information System (INIS)

    Kimmelmann, A.A.; Reboucas, A.C.; Reboucas, A.M.; Heine, C.A.

    1991-01-01

    Groundwater of a great number of deep wells dug to exploit the Botucatu-Piramboia aquifer system in the Parana Basin, Brazil, have high fluoride concentrations, over 1 ppm, that turns groundwater useless for human supply. Investigations being carried out a the Center for Groundwater Research (CEPAS) of the Institute of Geosciences at USP, Sao Paulo, indicate a relationship between fluoride concentration and groundwater age, dated with radiocarbon. (author)

  1. Modeling of the loss of soil by water erosion of the basin of the River V Anniversary Cuyaguateje

    International Nuclear Information System (INIS)

    Alonso, Gustavo R.; Días, Jorge; Ruíz, Maria Elena

    2008-01-01

    The complexity of the processes involved in water erosion of soils has led to widespread use of models with high level of empiricism. However, there are few applications based on models with a considerable physical basis in this field. The purpose of this work is to evaluate the potential of a model of physical basis for estimating soil loss by erosion basin-scale and analyze the behavior of the variables in this model response. The study area was located in the Sub-basin V anniversary, which belongs to the basin of the Cuyaguateje, in the province of Pinar de Rio. You were a database of physical properties of main soils of the basin, the series-temporales of solid spending and runoff measured at River, and rain recorded by a network of rain gauges across the basin. The equation of physical basis used was the sediment transport model (STM), according to Biesemans (2000). As input variables of the model were obtained the following maps: the digital elevation model, accumulative area of drainage, drainage, land use, surface water retention capacity, retention of moisture and hydraulic conductivity of saturation curve. Soil loss was obtained per pixel, and these were correlated with each time series. The results show that the process can be extended to other sub-basins without the need to validate all the variables involved

  2. Assessing Canadian inventories to understand the environmental impacts of mercury releases to the Great Lakes region

    International Nuclear Information System (INIS)

    Trip, Luke; Bender, Tonya; Niemi, David

    2004-01-01

    North American pollutant release and transfer registries have been continuously developing with an eye to understanding source/receptor relationships and ensuring that the polluter-paid principle is applied to the appropriate parties. The potential contribution of mercury to the Great Lakes Basin arising from the rerelease of historic mercury pollution from contaminated aquatic and terrestrial media is poorly understood and the subject of concern. Although a considerable amount of data may be available on the atmospheric component of mercury releases to the Basin, further inventory work is needed to quantify the rerelease of the historic mercury. Much of the related existing inventory information is either not derived from direct measurement or not bounded by a mass-balance accounting. Critical to this determination is an increased confidence in the inventories of mercury from past and current practices. This may be enhanced through comprehensive and thorough surveys of contributions from specific products and their life-cycle assessments. An even greater challenge is to determine the bioavailability of the mercury emanating from land-based sources and from aquatic media. This paper describes the interplay among the sources and receptors of mercury and provides a quantitative assessment of current Canadian contributions of mercury as a contaminant to the Great Lakes. Recommendations for improved assessments are provided

  3. Hydrate-bearing Submarine Landslides in the Orca Basin, Gulf of Mexico

    Science.gov (United States)

    Sawyer, D.; Mason, A.; Cook, A.; Portnov, A.; Hillman, J.

    2017-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  4. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Science.gov (United States)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  5. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    Science.gov (United States)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  6. The laser elevator - Momentum transfer using an optical resonator

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.; Mckenna, Paul M.

    1987-01-01

    In a conventional laser lightsail system the payload is propelled by the momentum imparted to it by the reflection of a laser beam without the use of any propellant. Because of the unfavorable relationship between energy and momentum in a light beam, these systems are very inefficient. The efficiency can be greatly improved, in principle, if the photons that impact the payload mirror are returned to the source and then redirected back toward the payload again. This system, which recirculates the laser beam, is defined as the 'laser elevator'. The gain of the laser elevator over conventional lightsails depends on the number of times the beam is recycled which is limited by the reflectance of the mirrors used, any losses in the transmission of the beam, and diffraction. Due to the increase pathlength of the folded beam, diffraction losses occur at smaller separations of the payload and the source mirror than for conventional lightsail system. The laser elevator has potential applications in launching to low earth orbit, orbital transfer, and rapid interplanetary delivery of small payloads.

  7. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    Science.gov (United States)

    Wieczorek, Michael; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  8. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    Science.gov (United States)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  9. The Great Recession was not so Great

    NARCIS (Netherlands)

    van Ours, J.C.

    2015-01-01

    The Great Recession is characterized by a GDP-decline that was unprecedented in the past decades. This paper discusses the implications of the Great Recession analyzing labor market data from 20 OECD countries. Comparing the Great Recession with the 1980s recession it is concluded that there is a

  10. Stroke-attributable death among older persons during the great recession.

    Science.gov (United States)

    Falconi, April; Gemmill, Alison; Karasek, Deborah; Goodman, Julia; Anderson, Beth; Lee, Murray; Bellows, Benjamin; Catalano, Ralph

    2016-05-01

    Epidemiological evidence indicates an elevated risk for stroke among stressed persons, in general, and among individuals who have lost their job, in particular. We, therefore, tested the hypothesis that stroke accounted for a larger fraction of deaths during the Great Recession than expected from other deaths and from trends, cycles, and other forms of autocorrelation. Based on vital statistics death data from California spanning 132 months from January 2000 through December 2010, we found support for the hypothesis. These findings appear attributable to non-Hispanic white men, who experienced a 5% increase in their monthly odds of stroke-attributable death. Total mortality in this group, however, did not increase. Findings suggest that 879 deaths among older white men shifted from other causes to stroke during the 36 months following the start of the Great Recession. We infer the Great Recession may have affected social, biologic, and behavioral risk factors that altered the life histories of older white men in ways that shifted mortality risk toward stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  12. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  13. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  14. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  15. Hydrology and water quality in two mountain basins of the northeastern US: Assessing baseline conditions and effects of ski area development

    Science.gov (United States)

    Wemple, B.; Shanley, J.; Denner, J.; Ross, D.; Mills, K.

    2007-01-01

    Mountain regions throughout the world face intense development pressures associated with recreational and tourism uses. Despite these pressures, much of the research on bio-geophysical impacts of humans in mountain regions has focused on the effects of natural resource extraction. This paper describes findings from the first 3 years of a study examining high elevation watershed processes in a region undergoing alpine resort development. Our study is designed as a paired-watershed experiment. The Ranch Brook watershed (9.6 km2) is a relatively pristine, forested watershed and serves as the undeveloped 'control' basin. West Branch (11.7 km2) encompasses an existing alpine ski resort, with approximately 17% of the basin occupied by ski trails and impervious surfaces, and an additional 7% slated for clearing and development. Here, we report results for water years 2001-2003 of streamflow and water quality dynamics for these watersheds. Precipitation increases significantly with elevation in the watersheds, and winter precipitation represents 36-46% of annual precipitation. Artificial snowmaking from water within West Branch watershed currently augments annual precipitation by only 3-4%. Water yield in the developed basin exceeded that in the control by 18-36%. Suspended sediment yield was more than two and a half times greater and fluxes of all major solutes were higher in the developed basin. Our study is the first to document the effects of existing ski area development on hydrology and water quality in the northeastern US and will serve as an important baseline for evaluating the effects of planned resort expansion activities in this area.

  16. Movement ecology and seasonal distribution of mountain yellow-legged frogs, Rana muscosa, in a high-elevation Sierra Nevada basin.

    Science.gov (United States)

    K.L. Pope; K.R. Matthews

    2001-01-01

    Movement ecology and seasonal distribution of mountain yellow-legged frogs (Rana muscosa) in Dusy Basin (3470 m), Kings Canyon National Park, California, were characterized using passive integrated transponder (PIT) surveys and visual encounter surveys. We individually PIT-tagged 500 frogs during the summers of 1997 and 1998 and monitored these individuals during seven...

  17. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  18. Behavioral consequences of predator stress in the rat elevated T-maze.

    Science.gov (United States)

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  19. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Science.gov (United States)

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  20. Quantifying the role of mantle forcing, crustal shortening and exogenic forcing on exhumation of the North Alpine Foreland Basin

    Science.gov (United States)

    von Hagke, C.; Luijendijk, E.; Hindle, D.

    2017-12-01

    In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.